1
|
Balleza D. The Role of Flexibility in the Bioactivity of Short α-Helical Antimicrobial Peptides. Antibiotics (Basel) 2025; 14:422. [PMID: 40426489 DOI: 10.3390/antibiotics14050422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/13/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
The formation of aqueous pores through the interaction of amphipathic peptides is a process facilitated by the conformational dynamics typical of these biomolecules. Prior to their insertion with the membrane, these peptides go through several conformational states until they finally reach a stable α-helical structure. The conformational dynamics of these pore-forming peptides, α-PFP, is, thus, encoded in their amino acid sequence, which also predetermines their intrinsic flexibility. However, although the role of flexibility is widely recognized as fundamental in their bioactivity, it is still unclear whether this parameter is indeed decisive, as there are reports favoring the view of highly disruptive flexible peptides and others where relative rigidity also predetermines high rates of permeability across membranes. In this review we discuss in depth all those aspects linked to the conformational dynamics of these small biomolecules and which depend on the composition, sequence and dynamic performance both in aqueous phase and in close interaction with phospholipids. In addition, evidence is provided for the contribution of the known carboxyamidation in some well-studied α-PFPs, which are preferentially associated with sequences intrinsically more rigid than those not amidated and generally more flexible than the former. Taken together, this information is of great relevance for the optimization of new antibiotic peptides.
Collapse
Affiliation(s)
- Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz 91897, Mexico
| |
Collapse
|
2
|
Faz-Cortez OA, Sánchez-López AY, Hernández-Vásquez CI, Segura-Ruiz A, Pereyra-Alférez B, García-García JH. Computational analysis of polymorphic residues in maltose and maltotriose transporters of a wild Saccharomyces cerevisiae strain. Open Life Sci 2025; 20:20251080. [PMID: 40291777 PMCID: PMC12032978 DOI: 10.1515/biol-2025-1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/29/2025] [Accepted: 02/13/2025] [Indexed: 04/30/2025] Open
Abstract
The metabolism of maltose and maltotriose, the primary sugars in brewing wort, depends on an efficient transport system. However, most Saccharomyces cerevisiae strains transport maltotriose inefficiently, leaving residual α-glucosides in the final product. Proteins involved in maltotriose transport exhibit diverse polymorphic sequences linked to sugar transport efficiency. In this study, a wild S. cerevisiae strain was placed under adaptive selection, resulting in a strain with a 65 and 44% increase in maltose and maltotriose transport rates, respectively. Genes encoding maltose and maltotriose transporters, including MALx1, MPHx, and AGT1, were detected in both the native and adapted strains. One variant of Mal31p, carrying a polymorphism at position 371 in transmembrane helix 7, was identified. This helix has been reported to have a high likelihood of undergoing polymorphisms. Bioinformatics analysis revealed structural changes affecting substrate interactions and channel dynamics, with the polymorphism conferring greater protein flexibility and reducing electrostatic interactions. These results suggest that the residue at position 371 in maltose and maltotriose transporters is a key element distinct from those previously reported. Additionally, we propose a significant set of polymorphic residues within these transporters potentially resulting from the evolution of these proteins.
Collapse
Affiliation(s)
- Oscar A. Faz-Cortez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | - Alma Y. Sánchez-López
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | - César I. Hernández-Vásquez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | - Andre Segura-Ruiz
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | - Benito Pereyra-Alférez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | - Jorge H. García-García
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| |
Collapse
|
3
|
Waury K, Kvartsberg H, Zetterberg H, Blennow K, Teunissen CE, Abeln S. Data-driven evaluation of suitable immunogens for improved antibody selection. Protein Sci 2025; 34:e70100. [PMID: 40116298 PMCID: PMC11926642 DOI: 10.1002/pro.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/12/2025] [Accepted: 03/03/2025] [Indexed: 03/23/2025]
Abstract
Antibodies are indispensable in laboratory and clinical applications due to their high specificity and affinity for protein antigens. However, selecting the right protein fragments as immunogens for antibody production remains challenging. Leveraging the Human Protein Atlas, this study systematically evaluates immunogen properties aiming to identify key factors that influence their suitability. Antibodies were classified as successful or unsuccessful based on standardized validation experiments, and the structural and functional properties of their immunogens were analyzed. Results indicated that longer immunogens often resulted in more successful but less specific antibodies. Shorter immunogens (50 residues or fewer) with disordered or unfolded regions at the N- or C-terminus and long coil stretches were more likely to generate successful antibodies. Conversely, immunogens with high beta sheet content, transmembrane regions, or disulfide bridges were associated with poorer antibody performance. Post-translational modification sites within immunogens appeared to mark beneficial regions for antibody generation. To support antibody selection, a novel R package, immunogenViewer, was developed, enabling researchers to easily apply these insights when immunogen sequences are disclosed. By providing a deeper understanding of immunogen suitability, this study promotes the development of more effective antibodies, ultimately addressing issues of reproducibility and reliability in antibody-based research. The findings are highly relevant to the research community, as end users often lack control over the immunogen selection process in antibody production. The R package is freely available as part of Bioconductor: https://bioconductor.org/packages/release/bioc/html/immunogenViewer.html.
Collapse
Affiliation(s)
- Katharina Waury
- Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
- AI Technology For Life, Department of Information and Computing Science, and Department of BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Hlin Kvartsberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Paris Brain Institute, ICM, Pitié‐Salpêtrière Hospital, Sorbonne UniversityParisFrance
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of NeurologyInstitute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTCHefeiPeople's Republic of China
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical ChemistryAmsterdam Neuroscience, VU University Medical CenterAmsterdamThe Netherlands
| | - Sanne Abeln
- Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
- AI Technology For Life, Department of Information and Computing Science, and Department of BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
4
|
Gafar MA, Omolo CA, Ibrahim UH, Elamin G, Tageldin A, Elhassan E, Ismail EA, Mackraj I, Govender T. Hyaluronic acid-silybin conjugate for the preparation of multifunctional, biomimetic, vancomycin-loaded self-assembled polymersomes against bacterial sepsis. Int J Biol Macromol 2025; 299:140152. [PMID: 39855529 DOI: 10.1016/j.ijbiomac.2025.140152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Sepsis, a life-threatening disruption, remains a significant global healthcare challenge that urgently needs novel strategies to improve management. This study aimed to develop multifunctional vancomycin-loaded polymersomes (VCM-HA-SIL-Ps) using a novel hyaluronic acid-silybin (HA-SIL) conjugate to target the TLR inflammatory pathway and enhance VCM's efficacy against bacterial sepsis. HA-SIL was synthesized and characterized by FT-IR, UV-Vis spectroscopy, and 1H NMR. The biomimetic properties of HA-SIL were confirmed via in silico (-73.35 kcal/mol) and in vitro (dissociation constant = 2.872 μM) binding affinity studies against TLR2. VCM-HA-SIL-Ps exhibited appropriate physicochemical properties, biocompatibility, and stability. VCM-HA-SIL-Ps sustained VCM release for 48 h, achieving 73.38 % cumulative release. In vitro antibacterial studies showed that VCM-HA-SIL-Ps had superior minimum inhibitory concentration against sensitive and resistant Staphylococcus aureus and faster bacterial killing, compared to free VCM. Additionally, VCM-HA-SIL-Ps demonstrated excellent DPPH radicals scavenging and effective anti-inflammatory activity on bacterial toxin-stimulated cells. Finally, in a mouse model of MRSA-induced sepsis, VCM-HA-SIL-Ps achieved 100 % bacterial eradication, significantly reduced pro-inflammatory markers (IL-6, TNF-α, IL-1β by 2.9-, 1.8-, and 5-fold, respectively), and minimized organ damage. Collectively, these findings demonstrate the potential of HA-SIL as a novel multifunctional adjuvant for effective antibiotic delivery against bacterial sepsis.
Collapse
Affiliation(s)
- Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, P. O. Box 1996, Sudan
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ghazi Elamin
- Department of Pharmaceutical Chemistry, College of Pharmacy, Karary University, Khartoum, PO Box 11111, Sudan
| | - Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Irene Mackraj
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
5
|
Feng H, Zhao JY, Wei G. Multiscale Differential Geometry Learning for Protein Flexibility Analysis. J Comput Chem 2025; 46:e70073. [PMID: 40071503 PMCID: PMC11897948 DOI: 10.1002/jcc.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/15/2025]
Abstract
Protein structural fluctuations, measured by Debye-Waller factors or B-factors, are known to be closely associated with protein flexibility and function. Theoretical approaches have also been developed to predict B-factor values, which reflect protein flexibility. Previous models have made significant strides in analyzing B-factors by fitting experimental data. In this study, we propose a novel approach for B-factor prediction using differential geometry theory, based on the assumption that the intrinsic properties of proteins reside on a family of low-dimensional manifolds embedded within the high-dimensional space of protein structures. By analyzing the mean and Gaussian curvatures of a set of low-dimensional manifolds defined by kernel functions, we develop effective and robust multiscale differential geometry (mDG) models. Our mDG model demonstrates a 27% increase in accuracy compared to the classical Gaussian network model (GNM) in predicting B-factors for a dataset of 364 proteins. Additionally, by incorporating both global and local protein features, we construct a highly effective machine-learning model for the blind prediction of B-factors. Extensive least-squares approximations and machine learning-based blind predictions validate the effectiveness of the mDG modeling approach for B-factor predictions.
Collapse
Affiliation(s)
- Hongsong Feng
- Department of MathematicsMichigan State UniversityEast LansingMichiganUSA
| | | | - Guo‐Wei Wei
- Department of MathematicsMichigan State UniversityEast LansingMichiganUSA
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
6
|
Kharchenko V, Al-Harthi S, Ejchart A, Jaremko Ł. Pitfalls in measurements of R 1 relaxation rates of protein backbone 15N nuclei. JOURNAL OF BIOMOLECULAR NMR 2025; 79:1-14. [PMID: 39217275 PMCID: PMC11832611 DOI: 10.1007/s10858-024-00449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The dynamics of the backbone and side-chains of protein are routinely studied by interpreting experimentally determined 15N spin relaxation rates. R1(15N), the longitudinal relaxation rate, reports on fast motions and encodes, together with the transverse relaxation R2, structural information about the shape of the molecule and the orientation of the amide bond vectors in the internal diffusion frame. Determining error-free 15N longitudinal relaxation rates remains a challenge for small, disordered, and medium-sized proteins. Here, we show that mono-exponential fitting is sufficient, with no statistical preference for bi-exponential fitting up to 800 MHz. A detailed comparison of the TROSY and HSQC techniques at medium and high fields showed no statistically significant differences. The least error-prone DD/CSA interference removal technique is the selective inversion of amide signals while avoiding water resonance. The exchange of amide with solvent deuterons appears to affect the rate R1 of solvent-exposed amides in all fields tested and in each DD/CSA interference removal technique in a statistically significant manner. In summary, the most accurate R1(15N) rates in proteins are achieved by selective amide inversion, without the addition of D2O. Importantly, at high magnetic fields stronger than 800 MHz, when non-mono-exponential decay is involved, it is advisable to consider elimination of the shortest delays (typically up to 0.32 s) or bi-exponential fitting.
Collapse
Affiliation(s)
- Vladlena Kharchenko
- Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Samah Al-Harthi
- Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Andrzej Ejchart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Łukasz Jaremko
- Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
7
|
Han B, Hu G, Chen X, Shi R, Li J. Flexibility-Induced Collective Behavior Drives Symmetry Breaking in Discrimination of Undesired Ions. JACS AU 2025; 5:1051-1059. [PMID: 40017761 PMCID: PMC11862943 DOI: 10.1021/jacsau.4c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Structure flexibility is essential for the biological function of proteins. At the same time, many proteins need to discriminate ligands with subtle differences, with one example being ion selectivity. Investigating the mechanisms by which flexible proteins achieve such precise discrimination is crucial for advancing our understanding of their functions. In this work, we study transporter KCC4, which undergoes continuous conformation changes during ion transport and can realize K+ over Na+ selectivity. Our findings reveal that the center of the binding site no longer represents a stable equilibrium for the undesired Na+, and its binding mode exhibits bifurcation. Interestingly, protein conformation fluctuation can induce collective behavior throughout the entire binding region, which contributes to this bifurcation. Thus, the symmetry of the binding mode decreases from the inherent T d symmetry to a C2v symmetry, and the binding stability of Na+ is largely reduced. A similar phenomenon is observed in a GPCR, β2-AR, where a less favored ligand forms a biased binding mode with reduced stability. The mechanism underlying the selectivity in such flexible regions could be interpreted as spontaneous symmetry breaking, which may represent a general mechanism by which flexible proteins achieve efficient ligand discrimination.
Collapse
Affiliation(s)
- Binming Han
- School of
Physics, Zhejiang University, Hangzhou 310058, P.R. China
| | - Guorong Hu
- School of
Physics, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiaosong Chen
- Advanced
Institute of Physics, Zhejiang University, Hangzhou 310058, P.R. China
- School of
Systems Science, Beijing Normal University, Beijing 100000, P.R. China
| | - Rui Shi
- School of
Physics, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingyuan Li
- School of
Physics, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
8
|
Szczepski K, Jaremko Ł. AlphaFold and what is next: bridging functional, systems and structural biology. Expert Rev Proteomics 2025; 22:45-58. [PMID: 39824781 DOI: 10.1080/14789450.2025.2456046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION The DeepMind's AlphaFold (AF) has revolutionized biomedical and biocience research by providing both experts and non-experts with an invaluable tool for predicting protein structures. However, while AF is highly effective for predicting structures of rigid and globular proteins, it is not able to fully capture the dynamics, conformational variability, and interactions of proteins with ligands and other biomacromolecules. AREAS COVERED In this review, we present a comprehensive overview of the latest advancements in 3D model predictions for biomacromolecules using AF. We also provide a detailed analysis its of strengths and limitations, and explore more recent iterations, modifications, and practical applications of this strategy. Moreover, we map the path forward for expanding the landscape of AF toward predicting structures of every protein and peptide, and their interactions in the proteome in the most physiologically relevant form. This discussion is based on an extensive literature search performed using PubMed and Google Scholar. EXPERT OPINION While significant progress has been made to enhance AF's modeling capabilities, we argue that a combined approach integrating both various in silico and in vitro methods will be most beneficial for the future of structural biology, bridging the gaps between static and dynamic features of proteins and their functions.
Collapse
Affiliation(s)
- Kacper Szczepski
- Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
9
|
Frommlet A, Nguyen LK, Saabye M, Endres NF, Mulvihill MM, Quinn JG. Combining Fundamental Kinetics and Standard Alkylation Assays to Prioritize Lead-Like KRAS G12C Inhibitors. ACS OMEGA 2024; 9:51508-51514. [PMID: 39758649 PMCID: PMC11696385 DOI: 10.1021/acsomega.4c08774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025]
Abstract
We measure the fundamental rate constants of internally discovered KRAS G12C inhibitors to demonstrate how kinetic analyses can be integrated with standard biochemical and cell-based assays for more optimal biophysical compound prioritization. In this proof-of-principle study, we characterize three irreversible covalent inhibitors targeting the mutant cysteine at the switch II binding pocket. We estimate the three fundamental kinetic rate constants (k on , k off , k inact ) that define the contributions of affinity and inactivation to the overall alkylation rate for a more complete biophysical characterization. These parameters are typically unavailable and are generally approximated by a single overall alkylation rate constant (k alk ), where the relative contributions of affinity and inactivation remain unknown. We demonstrate that the alkylation rate constant sacrifices valuable mechanistic information leading to higher risk of suboptimal compound prioritization. Estimation of the three fundamental kinetic rate constants was made possible by developing label-free surface plasmon resonance (SPR) methodologies adapted to measure transient binding using standard SPR equipment. Binding enthalpy was measured by Eyring transition state analysis, which can also benefit compound prioritization. We illustrate how these methodologies can enable more reliable prioritization of lead-like compounds when combined with standard orthogonal assays in a typical lead optimization setting.
Collapse
Affiliation(s)
- Alexandra Frommlet
- Department
of Biochemical and Cellular Pharmacology, Genentech, Inc., South
San Francisco, California 94080, United States
| | - Lan K. Nguyen
- Department
of Biochemical and Cellular Pharmacology, Genentech, Inc., South
San Francisco, California 94080, United States
| | - Matt Saabye
- Confluence, Saint
Louis, Missouri 63110, United States
| | - Nicholas F. Endres
- Department
of Biochemical and Cellular Pharmacology, Genentech, Inc., South
San Francisco, California 94080, United States
| | - Melinda M. Mulvihill
- Department
of Biochemical and Cellular Pharmacology, Genentech, Inc., South
San Francisco, California 94080, United States
| | - John G. Quinn
- Department
of Biochemical and Cellular Pharmacology, Genentech, Inc., South
San Francisco, California 94080, United States
| |
Collapse
|
10
|
Marafie SK, Alshawaf E, Al-Mulla F, Abubaker J, Mohammad A. Targeting mTOR Kinase with Natural Compounds: Potent ATP-Competitive Inhibition Through Enhanced Binding Mechanisms. Pharmaceuticals (Basel) 2024; 17:1677. [PMID: 39770519 PMCID: PMC11677242 DOI: 10.3390/ph17121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The mammalian target of the rapamycin (mTOR) signaling pathway is a central regulator of cell growth, proliferation, metabolism, and survival. Dysregulation of mTOR signaling contributes to many human diseases, including cancer, diabetes, and obesity. Therefore, inhibitors against mTOR's catalytic kinase domain (KD) have been developed and have shown significant antitumor activities, making it a promising therapeutic target. The ATP-KD interaction is particularly important for mTOR to exert its cellular functions, and such inhibitors have demonstrated efficient attenuation of overall mTOR activity. Methods: In this study, we screened the Traditional Chinese Medicine (TCM) database, which enlists natural products that capture the relationships between drugs targets and diseases. Our aim was to identify potential ATP-competitive agonists that target the mTOR-KD and compete with ATP to bind the mTOR-KD serving as potential potent mTOR inhibitors. Results: We identified two compounds that demonstrated interatomic interactions similar to those of ATP-mTOR. The conformational stability and dynamic features of the mTOR-KD bound to the selected compounds were tested by subjecting each complex to 200 ns molecular dynamic (MD) simulations and molecular mechanics/generalized Born surface area (MM/GBSA) to extract free binding energies. We show the effectiveness of both compounds in forming stable complexes with the mTOR-KD, which is more effective than the mTOR-KD-ATP complex with more robust binding affinities. Conclusions: This study implies that both compounds could serve as potential therapeutic inhibitors of mTOR, regulating its function and, therefore, mitigating human disease progression.
Collapse
Affiliation(s)
- Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (E.A.)
| | - Eman Alshawaf
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (E.A.)
| | - Fahd Al-Mulla
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (E.A.)
| | - Anwar Mohammad
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (E.A.)
| |
Collapse
|
11
|
Wu X, Zhang B, Li H, Zhao M, Wu W. The synergistic effects of rice bran rancidity and dephenolization on digestive properties of rice bran protein. Food Chem 2024; 460:140617. [PMID: 39067385 DOI: 10.1016/j.foodchem.2024.140617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Both rice bran (RB) rancidity and dephenolization could affect the structural characteristics and phenolics composition of rice bran protein (RBP), thereby affecting RBP digestibility. The synergistic effects of RB rancidity and dephenolization on RBP digestibility were investigated. Excessive RB rancidity (RB stored for 10 d) and non-dephenolization reduced RBP digestibility, while moderate RB rancidity (RB stored for 1 d) combined with dephenolization improved RBP digestibility to a maximum of 74.19%. Dephenolization reduced the antioxidant capacities of RBP digestive products. The digestibility of non-dephenolized RBP (NDRBP) was significantly (P < 0.05) related with its carbonyl content, surface hydrophobicity, and ζ-potential. The digestibility of dephenolized RBP (DRBP) was significantly related with its β-sheet structure content, surface hydrophobicity, ζ-potential, and average particle size. Overall, moderate RB rancidity combined with dephenolization enhanced RBP digestibility by reducing the non-competitive inhibition of endogenous phenolics on protease and regulating the spatial structural characteristics of RBP.
Collapse
Affiliation(s)
- Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Benpeng Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Helin Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Mengmeng Zhao
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
12
|
Haque N, Wagenknecht JB, Ratnasinghe BD, Zimmermann MT. Systematic analysis of the relationship between fold-dependent flexibility and artificial intelligence protein structure prediction. PLoS One 2024; 19:e0313308. [PMID: 39591473 PMCID: PMC11594405 DOI: 10.1371/journal.pone.0313308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Artificial Intelligence (AI)-based deep learning methods for predicting protein structures are reshaping knowledge development and scientific discovery. Recent large-scale application of AI models for protein structure prediction has changed perceptions about complicated biological problems and empowered a new generation of structure-based hypothesis testing. It is well-recognized that proteins have a modular organization according to archetypal folds. However, it is yet to be determined if predicted structures are tuned to one conformation of flexible proteins or if they represent average conformations. Further, whether or not the answer is protein fold-dependent. Therefore, in this study, we analyzed 2878 proteins with at least ten distinct experimental structures available, from which we can estimate protein topological rigidity verses heterogeneity from experimental measurements. We found that AlphaFold v2 (AF2) predictions consistently return one specific form to high accuracy, with 99.68% of distinct folds (n = 623 out of 628) having an experimental structure within 2.5Å RMSD from a predicted structure. Yet, 27.70% and 10.82% of folds (174 and 68 out of 628 folds) have at least one experimental structure over 2.5Å and 5Å RMSD, respectively, from their AI-predicted structure. This information is important for how researchers apply and interpret the output of AF2 and similar tools. Additionally, it enabled us to score fold types according to how homogeneous versus heterogeneous their conformations are. Importantly, folds with high heterogeneity are enriched among proteins which regulate vital biological processes including immune cell differentiation, immune activation, and metabolism. This result demonstrates that a large amount of protein fold flexibility has already been experimentally measured, is vital for critical cellular processes, and is currently unaccounted for in structure prediction databases. Therefore, the structure-prediction revolution begets the protein dynamics revolution!
Collapse
Affiliation(s)
- Neshatul Haque
- Computational Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Jessica B. Wagenknecht
- Computational Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Brian D. Ratnasinghe
- Computational Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Michael T. Zimmermann
- Computational Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
13
|
Afzal A, Jamshaid H, Badshah Y, Shabbir M, Trembley JH, Zafar S, Kamal GM, Afsar T, Husain FM, Razak S. Investigating the role of non-synonymous variant D67N of ADGRE2 in chronic myeloid leukemia. BMC Cancer 2024; 24:1354. [PMID: 39501172 PMCID: PMC11536965 DOI: 10.1186/s12885-024-13108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/24/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Chronic myeloid leukaemia (CML) is a type of blood cancer that begins in the hematopoietic stem cells. It is primarily characterized by a specific chromosomal aberration, the Philadelphia chromosome. While the fusion gene is a major contributor to CML, several other genes including ADGRE2, that are reported as highly expressed in hematopoietic stem cells and could be utilized as a therapeutic marker in leukemic patients are implicated in the disease's progression. Until recently, little research had been conducted to identify single nucleotide polymorphisms (SNPs) associated with CML. Therefore, this study aims to investigate the influence of non-synonymous variants on the structure and function of the gene encoding adhesion G protein-coupled receptor E2, ADGRE2, and to evaluate their association with CML and its clinical and pathological characteristics. METHODS Non-synonymous SNPs of ADGRE2 were retrieved from the ENSEMBL, COSMIC, and gnomAD genome browsers, and the pathogenicity of deleterious variants was assessed using several established computational tools, including SIFT, CADD, REVEL, PolyPhen, and MetaLR. RESULTS Various in silico analyses explored the impact of damaging SNP on the function, stability, and structure of EGF-like modules containing mucin-like hormone receptor-like2 (EMR2) protein encoded by the ADGRE2 gene. Genotype analysis was performed on collected blood samples, revealing that altered genotype TT of variant rs765071211 (C/T) was associated significantly with CML patients compared to the control. Further in vitro and in vivo analyses suggest that this SNP holds potential for clinical translation.
Collapse
Affiliation(s)
- Ayesha Afzal
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Harooma Jamshaid
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sameen Zafar
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ghulam Murtaza Kamal
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Kim YS, Kim M, Park HM, Kim HJ, Ryu SE. Disulfide Bond Engineering of Soluble ACE2 for Thermal Stability Enhancement. Int J Mol Sci 2024; 25:9919. [PMID: 39337407 PMCID: PMC11432317 DOI: 10.3390/ijms25189919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Although the primary pandemic of SARS-CoV-2 is over, there are concerns about the resurgence of the next wave of related viruses, including a wide range of variant viruses. The soluble ACE2 (sACE2) inhibits the SARS-CoV-2 spike protein ACE2 interaction and has potential as a variant-independent therapeutic against SARS-CoV-2. Here, we introduce novel disulfide bonds in the wild-type sACE2-Fc by structure-guided mutagenesis, aiming to improve its stability. The stability of each mutant was assessed by a thermal shift assay to screen mutants with increased thermal stability. As a result, we identified a mutant sACE2-Fc with a significantly increased melting temperature. X-ray crystal structure determination of the sACE2 mutant confirmed the correct formation of the designed disulfide bond, and there were no significant structural disturbances. We also proved that the thermostable sACE2-Fc preserved the spike protein binding affinity comparable to the wild-type sACE2-Fc in both molecular and cellular environments, suggesting its therapeutic potential.
Collapse
Affiliation(s)
- Yoon Soo Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| | - Myeongbin Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| | - Hye Min Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| | - Hyun Jin Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| |
Collapse
|
15
|
Fong-Coronado PA, Ramirez V, Quintero-Hernández V, Balleza D. A Critical Review of Short Antimicrobial Peptides from Scorpion Venoms, Their Physicochemical Attributes, and Potential for the Development of New Drugs. J Membr Biol 2024; 257:165-205. [PMID: 38990274 PMCID: PMC11289363 DOI: 10.1007/s00232-024-00315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024]
Abstract
Scorpion venoms have proven to be excellent sources of antimicrobial agents. However, although many of them have been functionally characterized, they remain underutilized as pharmacological agents, despite their evident therapeutic potential. In this review, we discuss the physicochemical properties of short scorpion venom antimicrobial peptides (ssAMPs). Being generally short (13-25 aa) and amidated, their proven antimicrobial activity is generally explained by parameters such as their net charge, the hydrophobic moment, or the degree of helicity. However, for a complete understanding of their biological activities, also considering the properties of the target membranes is of great relevance. Here, with an extensive analysis of the physicochemical, structural, and thermodynamic parameters associated with these biomolecules, we propose a theoretical framework for the rational design of new antimicrobial drugs. Through a comparison of these physicochemical properties with the bioactivity of ssAMPs in pathogenic bacteria such as Staphylococcus aureus or Acinetobacter baumannii, it is evident that in addition to the net charge, the hydrophobic moment, electrostatic energy, or intrinsic flexibility are determining parameters to understand their performance. Although the correlation between these parameters is very complex, the consensus of our analysis suggests that there is a delicate balance between them and that modifying one affects the rest. Understanding the contribution of lipid composition to their bioactivities is also underestimated, which suggests that for each peptide, there is a physiological context to consider for the rational design of new drugs.
Collapse
Affiliation(s)
- Pedro Alejandro Fong-Coronado
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | - Verónica Ramirez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (FCQ-BUAP), Ciudad Universitaria, Puebla, México
| | | | - Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, México.
| |
Collapse
|
16
|
Spassov DS. Binding Affinity Determination in Drug Design: Insights from Lock and Key, Induced Fit, Conformational Selection, and Inhibitor Trapping Models. Int J Mol Sci 2024; 25:7124. [PMID: 39000229 PMCID: PMC11240957 DOI: 10.3390/ijms25137124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Binding affinity is a fundamental parameter in drug design, describing the strength of the interaction between a molecule and its target protein. Accurately predicting binding affinity is crucial for the rapid development of novel therapeutics, the prioritization of promising candidates, and the optimization of their properties through rational design strategies. Binding affinity is determined by the mechanism of recognition between proteins and ligands. Various models, including the lock and key, induced fit, and conformational selection, have been proposed to explain this recognition process. However, current computational strategies to predict binding affinity, which are based on these models, have yet to produce satisfactory results. This article explores the connection between binding affinity and these protein-ligand interaction models, highlighting that they offer an incomplete picture of the mechanism governing binding affinity. Specifically, current models primarily center on the binding of the ligand and do not address its dissociation. In this context, the concept of ligand trapping is introduced, which models the mechanisms of dissociation. When combined with the current models, this concept can provide a unified theoretical framework that may allow for the accurate determination of the ligands' binding affinity.
Collapse
Affiliation(s)
- Danislav S Spassov
- Drug Design and Bioinformatics Lab, Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
17
|
Abd-Elshafy DN, Nadeem R, Nasraa MH, Bahgat MM. Analysis of the SARS-CoV-2 nsp12 P323L/A529V mutations: coeffect in the transiently peaking lineage C.36.3 on protein structure and response to treatment in Egyptian records. Z NATURFORSCH C 2024; 79:13-24. [PMID: 38265042 DOI: 10.1515/znc-2023-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
SARS-CoV-2 nsp12, the RNA-dependent RNA-polymerase plays a crucial role in virus replication. Monitoring the effect of its emerging mutants on viral replication and response to antiviral drugs is important. Nsp12 of two Egyptian isolates circulating in 2020 and 2021 were sequenced. Both isolates included P323L, one included the A529V. Tracking A529V mutant frequency, it relates to the transience peaked C.36.3 variant and its parent C.36, both peaked worldwide on February-August 2021, enlisted as high transmissible variants under investigation (VUI) on May 2021. Both Mutants were reported to originate from Egypt and showed an abrupt low frequency upon screening, we analyzed all 1104 nsp12 Egyptian sequences. A529V mutation was in 36 records with an abrupt low frequency on June 2021. As its possible reappearance might obligate actions for a candidate VUI, we analyzed the predicted co-effect of P323L and A529V mutations on protein stability and dynamics through protein structure simulations. Three available structures for drug-nsp12 interaction were used representing remdesivir, suramin and favipiravir drugs. Remdesivir and suramin showed an increase in structure stability and considerable change in flexibility while favipiravir showed an extreme interaction. Results predict a favored efficiency of the drugs except for favipiravir in case of the reported mutations.
Collapse
Affiliation(s)
- Dina N Abd-Elshafy
- Department of Water Pollution Research, Environmental and Climate Change Research Institute, The National Research Centre, Dokki, Cairo, Egypt
- Immune- and Bio-markers for Infection Research Group, The Center of Excellence for Advanced Sciences, The National Research Centre, Dokki, Cairo, Egypt
| | - Rola Nadeem
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, The National Research Centre, Dokki, Cairo, Egypt
- Immune- and Bio-markers for Infection Research Group, The Center of Excellence for Advanced Sciences, The National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed H Nasraa
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, The National Research Centre, Dokki, Cairo, Egypt
- Immune- and Bio-markers for Infection Research Group, The Center of Excellence for Advanced Sciences, The National Research Centre, Dokki, Cairo, Egypt
| | - Mahmoud M Bahgat
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, The National Research Centre, Dokki, Cairo, Egypt
- Immune- and Bio-markers for Infection Research Group, The Center of Excellence for Advanced Sciences, The National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
18
|
Vander Meersche Y, Cretin G, Gheeraert A, Gelly JC, Galochkina T. ATLAS: protein flexibility description from atomistic molecular dynamics simulations. Nucleic Acids Res 2024; 52:D384-D392. [PMID: 37986215 PMCID: PMC10767941 DOI: 10.1093/nar/gkad1084] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Dynamical behaviour is one of the most crucial protein characteristics. Despite the advances in the field of protein structure resolution and prediction, analysis and prediction of protein dynamic properties remains a major challenge, mostly due to the low accessibility of data and its diversity and heterogeneity. To address this issue, we present ATLAS, a database of standardised all-atom molecular dynamics simulations, accompanied by their analysis in the form of interactive diagrams and trajectory visualisation. ATLAS offers a large-scale view and valuable insights on protein dynamics for a large and representative set of proteins, by combining data obtained through molecular dynamics simulations with information extracted from experimental structures. Users can easily analyse dynamic properties of functional protein regions, such as domain limits (hinge positions) and residues involved in interaction with other biological molecules. Additionally, the database enables exploration of proteins with uncommon dynamic properties conditioned by their environment such as chameleon subsequences and Dual Personality Fragments. The ATLAS database is freely available at https://www.dsimb.inserm.fr/ATLAS.
Collapse
Affiliation(s)
- Yann Vander Meersche
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France
| | - Gabriel Cretin
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France
| | - Aria Gheeraert
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France
| | - Jean-Christophe Gelly
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France
| | - Tatiana Galochkina
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France
| |
Collapse
|
19
|
Elamin G, Aljoundi A, Alahmdi MI, Abo-Dya NE, Soliman MES. Revealing the Role of the Arg and Lys in Shifting Paradigm from BTK Selective Inhibition to the BTK/HCK Dual Inhibition - Delving into the Inhibitory Activity of KIN-8194 against BTK, and HCK in the Treatment of Mutated BTKCys481 Waldenström Macroglobulinemia: A Computational Approach. Anticancer Agents Med Chem 2024; 24:813-825. [PMID: 36752293 DOI: 10.2174/1871520623666230208102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/30/2022] [Accepted: 12/08/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND Despite the early success of Bruton's tyrosine kinase (BTK) inhibitors in the treatment of Waldenström macroglobulinemia (WM), these single-target drug therapies have limitations in their clinical applications, such as drug resistance. Several alternative strategies have been developed, including the use of dual inhibitors, to maximize the therapeutic potential of these drugs. OBJECTIVE Recently, the pharmacological activity of KIN-8194 was repurposed to serve as a 'dual-target' inhibitor of BTK and Hematopoietic Cell Kinase (HCK). However, the structural dual inhibitory mechanism remains unexplored, hence the aim of this study. METHODS Conducting predictive pharmacokinetic profiling of KIN-8194, as well as demonstrating a comparative structural mechanism of inhibition against the above-mentioned enzymes. RESULTS Our results revealed favourable binding affinities of -20.17 kcal/mol, and -35.82 kcal/mol for KIN-8194 towards HCK and BTK, respectively. Catalytic residues Arg137/174 and Lys42/170 in BTK and Arg303 and Lys75/173/244/247 in HCK were identified as crucial mediators of the dual binding mechanism of KIN-8194, corroborated by high per-residue energy contributions and consistent high-affinity interactions of these residues. Prediction of the pharmacokinetics and physicochemical properties of KIN-8194 further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. Structurally, KIN-8194 impacted the stability, flexibility, solvent-accessible surface area, and rigidity of BTK and HCK, characterized by various alterations observed in the bound and unbound structures, which proved enough to disrupt their biological function. CONCLUSION These structural insights provided a baseline for the understanding of the dual inhibitory activity of KIN- 8194. Establishing the cruciality of the interactions between the KIN-8194 and Arg and Lys residues could guide the structure-based design of novel dual BTK/HCK inhibitors with improved therapeutic activities.
Collapse
Affiliation(s)
- Ghazi Elamin
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mohamed I Alahmdi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 7149, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabuk University, Tabuk, 71491, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mahmoud E S Soliman
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
20
|
Peters XQ, Elamin G, Aljoundi A, Alahmdi MI, Abo-Dya NE, Sidhom PA, Tawfeek AM, Ibrahim MAA, Soremekun O, Soliman MES. Therapeutic Path to Triple Knockout: Investigating the Pan-inhibitory Mechanisms of AKT, CDK9, and TNKS2 by a Novel 2-phenylquinazolinone Derivative in Cancer Therapy- An In-silico Investigation Therapy. Curr Pharm Biotechnol 2024; 25:1288-1303. [PMID: 37581526 DOI: 10.2174/1389201024666230815145001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Blocking the oncogenic Wnt//β-catenin pathway has of late been investigated as a viable therapeutic approach in the treatment of cancer. This involves the multi-targeting of certain members of the tankyrase-kinase family; Tankyrase 2 (TNKS2), Protein Kinase B (AKT), and Cyclin- Dependent Kinase 9 (CDK9), which propagate the oncogenic Wnt/β-catenin signalling pathway. METHODS During a recent investigation, the pharmacological activity of 2-(4-aminophenyl)-7-chloro- 3H-quinazolin-4-one was repurposed to serve as a 'triple-target' inhibitor of TNKS2, AKT and CDK9. Yet, the molecular mechanism that surrounds its multi-targeting activity remains unanswered. As such, this study aims to explore the pan-inhibitory mechanism of 2-(4-aminophenyl)-7-chloro-3H-quinazolin- 4-one towards AKT, CDK9, and TNKS2, using in silico techniques. RESULTS Results revealed favourable binding affinities of -34.17 kcal/mol, -28.74 kcal/mol, and -27.30 kcal/mol for 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one towards TNKS2, CDK9, and AKT, respectively. Pan-inhibitory binding of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one is illustrated by close interaction with specific residues on tankyrase-kinase. Structurally, 2-(4-aminophenyl)-7-chloro- 3H-quinazolin-4-one had an impact on the flexibility, solvent-accessible surface area, and stability of all three proteins, which was illustrated by numerous modifications observed in the unbound as well as the bound states of the structures, which evidenced the disruption of their biological function. Prediction of the pharmacokinetics and physicochemical properties of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4- one further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. CONCLUSION The following structural insights provide a starting point for understanding the paninhibitory activity of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one. Determining the criticality of the interactions that exist between the pyrimidine ring and catalytic residues could offer insight into the structure-based design of innovative tankyrase-kinase inhibitors with enhanced therapeutic effects.
Collapse
Affiliation(s)
- Xylia Q Peters
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Ghazi Elamin
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mohamed Issa Alahmdi
- Department of Pharmaceutical Science, University of Tabuk, Tabuk, 7149, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Science, University of Tabuk, Tabuk, 7149, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Peter A Sidhom
- Department of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Ahmed M Tawfeek
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- Chemistry Department, Computational Chemistry Laboratory, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Opeyemi Soremekun
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Mahmoud E S Soliman
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
21
|
Cisse A, Desfosses A, Stainer S, Kandiah E, Traore DAK, Bezault A, Schachner-Nedherer AL, Leitinger G, Hoerl G, Hinterdorfer P, Gutsche I, Prassl R, Peters J, Kornmueller K. Targeting structural flexibility in low density lipoprotein by integrating cryo-electron microscopy and high-speed atomic force microscopy. Int J Biol Macromol 2023; 252:126345. [PMID: 37619685 DOI: 10.1016/j.ijbiomac.2023.126345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023]
Abstract
Low-density lipoprotein (LDL) plays a crucial role in cholesterol metabolism. Responsible for cholesterol transport from the liver to the organs, LDL accumulation in the arteries is a primary cause of cardiovascular diseases, such as atherosclerosis. This work focuses on the fundamental question of the LDL molecular structure, as well as the topology and molecular motions of apolipoprotein B-100 (apo B-100), which is addressed by single-particle cryo-electron microscopy (cryo-EM) and high-speed atomic force microscopy (HS-AFM). Our results suggest a revised model of the LDL core organization with respect to the cholesterol ester (CE) arrangement. In addition, a high-density region close to the flattened poles could be identified, likely enriched in free cholesterol. The most remarkable new details are two protrusions on the LDL surface, attributed to the protein apo B-100. HS-AFM adds the dimension of time and reveals for the first time a highly dynamic direct description of LDL, where we could follow large domain fluctuations of the protrusions in real time. To tackle the inherent flexibility and heterogeneity of LDL, the cryo-EM maps are further assessed by 3D variability analysis. Our study gives a detailed explanation how to approach the intrinsic flexibility of a complex system comprising lipids and protein.
Collapse
Affiliation(s)
- Aline Cisse
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France; Institut Laue-Langevin, Grenoble, France
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Sarah Stainer
- Department of Experimental Applied Biophysics, Johannes Kepler University Linz, Linz, Austria
| | | | - Daouda A K Traore
- Institut Laue-Langevin, Grenoble, France; Faculté de Pharmacie, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali; Faculty of Natural Sciences, School of Life Sciences, Keele University, Staffordshire, UK
| | - Armel Bezault
- Institut Européen de Chimie et Biologie, UAR3033/US001, Université de Bordeaux, CNRS, INSERM 2, Pessac, France; Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
| | - Anna-Laurence Schachner-Nedherer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical Physics and Biophysics Division, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Gerd Hoerl
- Otto Loewi Research Center, Physiological Chemistry, Medical University of Graz, Graz, Austria
| | - Peter Hinterdorfer
- Department of Experimental Applied Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical Physics and Biophysics Division, Medical University of Graz, Graz, Austria
| | - Judith Peters
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France; Institut Laue-Langevin, Grenoble, France; Institut Universitaire de France, France.
| | - Karin Kornmueller
- Institut Laue-Langevin, Grenoble, France; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical Physics and Biophysics Division, Medical University of Graz, Graz, Austria.
| |
Collapse
|
22
|
Panecka-Hofman J, Poehner I. Structure and dynamics of pteridine reductase 1: the key phenomena relevant to enzyme function and drug design. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:521-532. [PMID: 37608196 PMCID: PMC10618315 DOI: 10.1007/s00249-023-01677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Pteridine reductase 1 (PTR1) is a folate and pterin pathway enzyme unique for pathogenic trypanosomatids. As a validated drug target, PTR1 has been the focus of recent research efforts aimed at finding more effective treatments against human parasitic diseases such as leishmaniasis or sleeping sickness. Previous PTR1-centered structural studies highlighted the enzyme characteristics, such as flexible regions around the active site, highly conserved structural waters, and species-specific differences in pocket properties and dynamics, which likely impacts the binding of natural substrates and inhibitors. Furthermore, several aspects of the PTR1 function, such as the substrate inhibition phenomenon and the level of ligand binding cooperativity in the enzyme homotetramer, likely related to the global enzyme dynamics, are poorly known at the molecular level. We postulate that future drug design efforts could greatly benefit from a better understanding of these phenomena through studying both the local and global PTR1 dynamics. This review highlights the key aspects of the PTR1 structure and dynamics relevant to structure-based drug design that could be effectively investigated by modeling approaches. Particular emphasis is given to the perspective of molecular dynamics, what has been accomplished in this area to date, and how modeling could impact the PTR1-targeted drug design in the future.
Collapse
Affiliation(s)
- Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| | - Ina Poehner
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211, Kuopio, Finland
| |
Collapse
|
23
|
Jafary F, Joozdani FA, Shahzamani K, Jafari S, Mirhendi H, Ganjalikhany MR. Different aspects in explaining how mutations could affect the binding mechanism of receptor binding domain of SARS-CoV-2 spike protein in interaction with ACE2. PLoS One 2023; 18:e0291210. [PMID: 37682927 PMCID: PMC10490914 DOI: 10.1371/journal.pone.0291210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
During replication, some mutations occur in SARS-CoV-2, the causal agent of COVID-19, leading to the emergence of different variants of the virus. The mutations that accrue in different variants of the virus, influence the virus' ability to bind to human cell receptors and ability to evade the human immune system, the rate of viral transmission, and effectiveness of vaccines. Some of these mutations occur in the receptor binding domain (RBD) of the spike protein that may change the affinity of the virus for the ACE2 receptor. In this study, several in silico techniques, such as MD and SMD simulations, were used to perform comparative studies to deeply understand the effect of mutation on structural and functional details of the interaction of the spike glycoprotein of SARS-CoV-2, with the ACE2 receptor. According to our results, the mutation in the RBD associated with the Omicron variant increase binding affinity of the virus to ACE2 when compared to wild type and Delta variants. We also observed that the flexibility of the spike protein of the Omicron variant was lower than in comparison to other variants. In summary, different mutations in variants of the virus can have an effect on the binding mechanism of the receptor binding domain of the virus with ACE2.
Collapse
Affiliation(s)
- Farzaneh Jafary
- Core Research Facilities (CRF), Isfahan University of Medical Science, Isfahan, Iran
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzane Abasi Joozdani
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Kiana Shahzamani
- Hepatitis Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sepideh Jafari
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź, Poland
| | - Hossein Mirhendi
- Core Research Facilities (CRF), Isfahan University of Medical Science, Isfahan, Iran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
24
|
Lu J, Rahman MI, Kazan IC, Halloran NR, Bobkov AA, Ozkan SB, Ghirlanda G. Engineering gain-of-function mutants of a WW domain by dynamics and structural analysis. Protein Sci 2023; 32:e4759. [PMID: 37574787 PMCID: PMC10464296 DOI: 10.1002/pro.4759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Proteins gain optimal fitness such as foldability and function through evolutionary selection. However, classical studies have found that evolutionarily designed protein sequences alone cannot guarantee foldability, or at least not without considering local contacts associated with the initial folding steps. We previously showed that foldability and function can be restored by removing frustration in the folding energy landscape of a model WW domain protein, CC16, which was designed based on Statistical Coupling Analysis (SCA). Substitutions ensuring the formation of five local contacts identified as "on-path" were selected using the closest homolog native folded sequence, N21. Surprisingly, the resulting sequence, CC16-N21, bound to Group I peptides, while N21 did not. Here, we identified single-point mutations that enable N21 to bind a Group I peptide ligand through structure and dynamic-based computational design. Comparison of the docked position of the CC16-N21/ligand complex with the N21 structure showed that residues at positions 9 and 19 are important for peptide binding, whereas the dynamic profiles identified position 10 as allosterically coupled to the binding site and exhibiting different dynamics between N21 and CC16-N21. We found that swapping these positions in N21 with matched residues from CC16-N21 recovers nature-like binding affinity to N21. This study validates the use of dynamic profiles as guiding principles for affecting the binding affinity of small proteins.
Collapse
Affiliation(s)
- Jin Lu
- Department of Physics and Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | | | - I. Can Kazan
- Department of Physics and Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | | | - Andrey A. Bobkov
- Conrad Prebys Center for Chemical GenomicsSanford Burnham Prebys Medical Discovery InstituteCaliforniaUSA
| | - S. Banu Ozkan
- Department of Physics and Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | | |
Collapse
|
25
|
Hoffstedt M, Stein MO, Baumann K, Wätzig H. Experimentally Observed Conformational Changes in Antibodies Due to Binding and Paratope-epitope Asymmetries. J Pharm Sci 2023; 112:2404-2411. [PMID: 37295605 DOI: 10.1016/j.xphs.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Understanding binding related changes in antibody conformations is important for epitope prediction and antibody refinement. The increase of available data in the PDB allowed a more detailed investigation of the conformational landscape for free and bound antibodies. A dataset containing a total of 835 unique PDB entries of antibodies that were crystallized in complex with their antigen and in a free state was constructed. It was examined for binding related conformation changes. We present further evidence supporting the theory of a pre-existing-equilibrium in experimental data. Multiple sequence alignments did not show binding induced tendencies in the solvent accessibility of residues in any specific position. Evaluating the changes in solvent accessibility per residue revealed a certain binding induced increase for several amino acids. Antibody-antigen interaction statistics were established and quantify a significant directional asymmetry between many interacting antibody and antigen residue pairs, especially a richness in tyrosine in the antibody epitope compared to its paratope. This asymmetry could potentially facilitate an increase in the success rate of computationally guided antibody refinement.
Collapse
Affiliation(s)
- Marc Hoffstedt
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Deutschland
| | - Matthias Oliver Stein
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Deutschland
| | - Knut Baumann
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Deutschland
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Deutschland
| |
Collapse
|
26
|
Tan XH, Chong WL, Lee VS, Abdullah S, Jasni K, Suarni SQ, Perera D, Sam IC, Chan YF. Substitution of Coxsackievirus A16 VP1 BC and EF Loop Altered the Protective Immune Responses in Chimera Enterovirus A71. Vaccines (Basel) 2023; 11:1363. [PMID: 37631931 PMCID: PMC10458053 DOI: 10.3390/vaccines11081363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a childhood disease caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Capsid loops are important epitopes for EV-A71 and CV-A16. Seven chimeric EV-A71 (ChiE71) involving VP1 BC (45.5% similarity), DE, EF, GH and HI loops, VP2 EF loop and VP3 GH loop (91.3% similarity) were substituted with corresponding CV-A16 loops. Only ChiE71-1-BC, ChiE71-1-EF, ChiE71-1-GH and ChiE71-3-GH were viable. EV-A71 and CV-A16 antiserum neutralized ChiE71-1-BC and ChiE71-1-EF. Mice immunized with inactivated ChiE71 elicited high IgG, IFN-γ, IL-2, IL-4 and IL-10. Neonatal mice receiving passive transfer of WT EV-A71, ChiE71-1-EF and ChiE71-1-BC immune sera had 100%, 80.0% and no survival, respectively, against lethal challenges with EV-A71, suggesting that the substituted CV-A16 loops disrupted EV-A71 immunogenicity. Passive transfer of CV-A16, ChiE71-1-EF and ChiE71-1-BC immune sera provided 40.0%, 20.0% and 42.9% survival, respectively, against CV-A16. One-day-old neonatal mice immunized with WT EV-A71, ChiE71-1-BC, ChiE71-1-EF and CV-A16 achieved 62.5%, 60.0%, 57.1%, and no survival, respectively, after the EV-A71 challenge. Active immunization using CV-A16 provided full protection while WT EV-A71, ChiE71-1-BC and ChiE71-1-EF immunization showed partial cross-protection in CV-A16 lethal challenge with survival rates of 50.0%, 20.0% and 40%, respectively. Disruption of a capsid loop could affect virus immunogenicity, and future vaccine design should include conservation of the enterovirus capsid loops.
Collapse
Affiliation(s)
- Xiu Hui Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| | - Wei Lim Chong
- Department of Chemistry, Center of Theoretical and Computational Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Center of Theoretical and Computational Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kartini Jasni
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Saiful Qushairi Suarni
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia;
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| |
Collapse
|
27
|
Jin H, Pan J, Zeng Q, Li Z, Jin Y, Sheng L. Competitive adsorption of binary negatively charged proteins in egg white during foam evolution: From bulk solution to air-water interface. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
28
|
Jones RD, Jones AM. Model of ligand-triggered information transmission in G-protein coupled receptor complexes. Front Endocrinol (Lausanne) 2023; 14:1111594. [PMID: 37361529 PMCID: PMC10286511 DOI: 10.3389/fendo.2023.1111594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/21/2023] [Indexed: 06/28/2023] Open
Abstract
We present a model for the effects of ligands on information transmission in G-Protein Coupled Receptor (GPCR) complexes. The model is built ab initio entirely on principles of statistical mechanics and tenets of information transmission theory and was validated in part using agonist-induced effector activity and signaling bias for the angiotensin- and adrenergic-mediated signaling pathways, with in vitro observations of phosphorylation sites on the C tail of the GPCR complex, and single-cell information-transmission experiments. The model extends traditional kinetic models that form the basis for many existing models of GPCR signaling. It is based on maximizing the rates of entropy production and information transmission through the GPCR complex. The model predicts that (1) phosphatase-catalyzed reactions, as opposed to kinase-catalyzed reactions, on the C-tail and internal loops of the GPCR are responsible for controlling the signaling activity, (2) signaling favors the statistical balance of the number of switches in the ON state and the number in the OFF state, and (3) biased-signaling response depends discontinuously on ligand concentration.
Collapse
Affiliation(s)
- Roger D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- European Centre for Living Technology, Ca’ Foscari University of Venice, Venice, Italy
- Systems Engineering and Research Center, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Alan M. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
29
|
Chen Y, Hu Y, Luo S, Wang X, Mao B, Chen Y, Xu J, Li Z, Zhou Q, Li W. Computer-aided engineering of CRISPR-Cas proteins for enhanced human genome editing. SCIENCE CHINA. LIFE SCIENCES 2023; 66:883-886. [PMID: 36542213 DOI: 10.1007/s11427-022-2237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Yangcan Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanping Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shengqiu Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinge Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bangwei Mao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhikun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
30
|
Lee JH, Chapman DV, Saltzman WM. Nanoparticle Targeting with Antibodies in the Central Nervous System. BME FRONTIERS 2023; 4:0012. [PMID: 37849659 PMCID: PMC10085254 DOI: 10.34133/bmef.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/19/2023] [Indexed: 10/19/2023] Open
Abstract
Treatments for disease in the central nervous system (CNS) are limited because of difficulties in agent penetration through the blood-brain barrier, achieving optimal dosing, and mitigating off-target effects. The prospect of precision medicine in CNS treatment suggests an opportunity for therapeutic nanotechnology, which offers tunability and adaptability to address specific diseases as well as targetability when combined with antibodies (Abs). Here, we review the strategies to attach Abs to nanoparticles (NPs), including conventional approaches of chemisorption and physisorption as well as attempts to combine irreversible Ab immobilization with controlled orientation. We also summarize trends that have been observed through studies of systemically delivered Ab-NP conjugates in animals. Finally, we discuss the future outlook for Ab-NPs to deliver therapeutics into the CNS.
Collapse
Affiliation(s)
| | | | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
31
|
Steiert F, Schultz P, Höfinger S, Müller TD, Schwille P, Weidemann T. Insights into receptor structure and dynamics at the surface of living cells. Nat Commun 2023; 14:1596. [PMID: 36949079 PMCID: PMC10033668 DOI: 10.1038/s41467-023-37284-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Evaluating protein structures in living cells remains a challenge. Here, we investigate Interleukin-4 receptor alpha (IL-4Rα) into which the non-canonical amino acid bicyclo[6.1.0]nonyne-lysine (BCNK) is incorporated by genetic code expansion. Bioorthogonal click labeling is performed with tetrazine-conjugated dyes. To quantify the reaction yield in situ, we develop brightness-calibrated ratiometric imaging, a protocol where fluorescent signals in confocal multi-color images are ascribed to local concentrations. Screening receptor mutants bearing BCNK in the extracellular domain uncovered site-specific variations of both click efficiency and Interleukin-4 binding affinity, indicating subtle well-defined structural perturbations. Molecular dynamics and continuum electrostatics calculations suggest solvent polarization to determine site-specific variations of BCNK reactivity. Strikingly, signatures of differential click efficiency, measured for IL-4Rα in ligand-bound and free form, mirror sub-angstrom deformations of the protein backbone at corresponding locations. Thus, click efficiency by itself represents a remarkably informative readout linked to protein structure and dynamics in the native plasma membrane.
Collapse
Affiliation(s)
- Frederik Steiert
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Department of Physics, Technical University Munich, 85748, Garching, Germany
| | - Peter Schultz
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Siegfried Höfinger
- VSC Research Center, TU Wien, Operngasse 11 / E057-09, 1040, Wien, Austria
- Department of Physics, Michigan Technological University, 1400 Townsend Drive, 49931, Houghton, MI, USA
| | - Thomas D Müller
- Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik - Botanik I, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Thomas Weidemann
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
32
|
Gavrilov Y, Prestel A, Lindorff-Larsen K, Teilum K. Slow conformational changes in the rigid and highly stable chymotrypsin inhibitor 2. Protein Sci 2023; 32:e4604. [PMID: 36807681 PMCID: PMC10031225 DOI: 10.1002/pro.4604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
Slow conformational changes are often directly linked to protein function. It is however less clear how such processes may perturb the overall folding stability of a protein. We previously found that the stabilizing double mutant L49I/I57V in the small protein chymotrypsin inhibitor 2 from barley led to distributed increased nanosecond and faster dynamics. Here we asked what effects the L49I and I57V substitutions, either individually or together, have on the slow conformational dynamics of CI2. We used 15 N CPMG spin relaxation dispersion experiments to measure the kinetics, thermodynamics and structural changes associated with slow conformational change in CI2. These changes result in an excited state that is populated to 4.3% at 1 °C. As the temperature is increased the population of the excited state decreases. Structural changes in the excited state are associated with residues that interact with water molecules that have well defined positions and are found at these positions in all crystal structures of CI2. The substitutions in CI2 have only little effect on the structure of the excited state whereas the stability of the excited state to some extent follows the stability of the main state. The minor state is thus most populated for the most stable CI2 variant and least populated for the least stable variant. We hypothesize that the interactions between the substituted residues and the well-ordered water molecules links subtle structural changes around the substituted residues to the region in the protein that experience slow conformational changes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yulian Gavrilov
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Present address: Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
33
|
Frixione E, Ruiz-Zamarripa L. Proteins turn "Proteans" - The over 40-year delayed paradigm shift in structural biology: From "native proteins in uniquely defined configurations" to "intrinsically disordered proteins". Biomol Concepts 2023; 14:bmc-2022-0030. [PMID: 37326425 DOI: 10.1515/bmc-2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
The current millennium brought up a revolutionary paradigm shift in molecular biology: many operative proteins, rather than being quasi-rigid polypeptide chains folded into unique configurations - as believed throughout most of the past century - are now known to be intrinsically disordered, dynamic, pleomorphic, and multifunctional structures with stochastic behaviors. Yet, part of this knowledge, including suggestions about possible mechanisms and plenty of evidence for the same, became available by the 1950s and 1960s to remain then nearly forgotten for over 40 years. Here, we review the main steps toward the classic notions about protein structures, as well as the neglected precedents of present views, discuss possible explanations for such long oblivion, and offer a sketch of the current panorama in this field.
Collapse
Affiliation(s)
- Eugenio Frixione
- Department of Cell Biology, Center for Research and Advanced Studies IPN (Cinvestav), Mexico City 07360, Mexico
| | - Lourdes Ruiz-Zamarripa
- Department of Cell Biology, Center for Research and Advanced Studies IPN (Cinvestav), Mexico City 07360, Mexico
| |
Collapse
|
34
|
Giri RP, Mukhopadhyay MK, Sanyal MK, Bose D, Chakrabarti A, Quan P, Bu W, Lin B. Structural Flexibility of Proteins Dramatically Alters Membrane Stability─A Novel Aspect of Lipid-Protein Interaction. J Phys Chem Lett 2022; 13:11430-11437. [PMID: 36468973 DOI: 10.1021/acs.jpclett.2c02971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Protein isoforms are structural variants with changes in the overall flexibility predominantly at the tertiary level. For membrane associated proteins, such structural flexibility or rigidity affects membrane stability by playing modulatory roles in lipid-protein interaction. Herein, we investigate the protein chain flexibility mediated changes in the mechanistic behavior of phospholipid model membranes in the presence of two well-known isoforms, erythroid (ER) and nonerythroid (NER) spectrin. We show dramatic alterations of membrane elasticity and stability induced by spectrin in the Langmuir monolayers of phosphatidylocholine (PC) and phosphatidylethanolamine (PE) by a combination of isobaric relaxation, surface pressure-area isotherm, X-ray scattering, and microscopy measurements. The NER spectrin drives all monolayers to possess an approximately equal stability, and that required 25-fold increase and 5-fold decrease of stability in PC and PE monolayers, respectively. The untilting transition of the PC membrane in the presence of NER spectrin observed in X-ray measurements can explain better membrane packing and stability.
Collapse
Affiliation(s)
- Rajendra P Giri
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
- Institute for Experimental and Applied Physics, Kiel University, 24118Kiel, Germany
| | - Mrinmay K Mukhopadhyay
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
| | - Milan K Sanyal
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
| | - Dipayan Bose
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
| | - Abhijit Chakrabarti
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational & Research Institute, Narendrapur, Kolkata700103, India
| | - Peiyu Quan
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois60637, United States
| | - Wei Bu
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois60637, United States
| | - Binhua Lin
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
35
|
Zhang Y, Liu X, Chen J. Toward Accurate Coarse-Grained Simulations of Disordered Proteins and Their Dynamic Interactions. J Chem Inf Model 2022; 62:4523-4536. [PMID: 36083825 PMCID: PMC9910785 DOI: 10.1021/acs.jcim.2c00974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) play crucial roles in cellular regulatory networks and are now recognized to often remain highly dynamic even in specific interactions and assemblies. Accurate description of these dynamic interactions is extremely challenging using atomistic simulations because of the prohibitive computational cost. Efficient coarse-grained approaches could offer an effective solution to overcome this bottleneck if they could provide an accurate description of key local and global properties of IDPs in both unbound and bound states. The recently developed hybrid-resolution (HyRes) protein model has been shown to be capable of providing a semiquantitative description of the secondary structure propensities of IDPs. Here, we show that greatly improved description of global structures and transient interactions can be achieved by introducing a solvent-accessible surface area-based implicit solvent term followed by reoptimization of effective interaction strengths. The new model, termed HyRes II, can semiquantitatively reproduce a wide range of local and global structural properties of a set of IDPs of various lengths and complexities. It can also distinguish the level of compaction between folded proteins and IDPs. In particular, applied to the disordered N-terminal transactivation domain (TAD) of tumor suppressor p53, HyRes II is able to recapitulate various nontrivial structural properties compared to experimental results, some of them to a level of accuracy that is almost comparable to results from atomistic explicit solvent simulations. Furthermore, we demonstrate that HyRes II can be used to simulate the dynamic interactions of TAD with the DNA-binding domain of p53, generating structural ensembles that are highly consistent with existing NMR data. We anticipate that HyRes II will provide an efficient and relatively reliable tool toward accurate coarse-grained simulations of dynamic protein interactions.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Xiaorong Liu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
36
|
Dankwah KO, Mohl JE, Begum K, Leung MY. What Makes GPCRs from Different Families Bind to the Same Ligand? Biomolecules 2022; 12:863. [PMID: 35883418 PMCID: PMC9313020 DOI: 10.3390/biom12070863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of cell-surface receptor proteins with important functions in signal transduction and often serve as therapeutic drug targets. With the rapidly growing public data on three dimensional (3D) structures of GPCRs and GPCR-ligand interactions, computational prediction of GPCR ligand binding becomes a convincing option to high throughput screening and other experimental approaches during the beginning phases of ligand discovery. In this work, we set out to computationally uncover and understand the binding of a single ligand to GPCRs from several different families. Three-dimensional structural comparisons of the GPCRs that bind to the same ligand revealed local 3D structural similarities and often these regions overlap with locations of binding pockets. These pockets were found to be similar (based on backbone geometry and side-chain orientation using APoc), and they correlate positively with electrostatic properties of the pockets. Moreover, the more similar the pockets, the more likely a ligand binding to the pockets will interact with similar residues, have similar conformations, and produce similar binding affinities across the pockets. These findings can be exploited to improve protein function inference, drug repurposing and drug toxicity prediction, and accelerate the development of new drugs.
Collapse
Affiliation(s)
- Kwabena Owusu Dankwah
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Jonathon E. Mohl
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA;
- Bioinformatics Program, The University of Texas at El Paso, El Paso, TX 79968, USA;
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Khodeza Begum
- Bioinformatics Program, The University of Texas at El Paso, El Paso, TX 79968, USA;
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ming-Ying Leung
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA;
- Bioinformatics Program, The University of Texas at El Paso, El Paso, TX 79968, USA;
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
37
|
Vermeer B, Schmid S. Can DyeCycling break the photobleaching limit in single-molecule FRET? NANO RESEARCH 2022; 15:9818-9830. [PMID: 35582137 PMCID: PMC9101981 DOI: 10.1007/s12274-022-4420-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 05/03/2023]
Abstract
Biomolecular systems, such as proteins, crucially rely on dynamic processes at the nanoscale. Detecting biomolecular nanodynamics is therefore key to obtaining a mechanistic understanding of the energies and molecular driving forces that control biomolecular systems. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique to observe in real-time how a single biomolecule proceeds through its functional cycle involving a sequence of distinct structural states. Currently, this technique is fundamentally limited by irreversible photobleaching, causing the untimely end of the experiment and thus, a narrow temporal bandwidth of ≤ 3 orders of magnitude. Here, we introduce "DyeCycling", a measurement scheme with which we aim to break the photobleaching limit in smFRET. We introduce the concept of spontaneous dye replacement by simulations, and as an experimental proof-of-concept, we demonstrate the intermittent observation of a single biomolecule for one hour with a time resolution of milliseconds. Theoretically, DyeCycling can provide > 100-fold more information per single molecule than conventional smFRET. We discuss the experimental implementation of DyeCycling, its current and fundamental limitations, and specific biological use cases. Given its general simplicity and versatility, DyeCycling has the potential to revolutionize the field of time-resolved smFRET, where it may serve to unravel a wealth of biomolecular dynamics by bridging from milliseconds to the hour range. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s12274-022-4420-5 and is accessible for authorized users.
Collapse
Affiliation(s)
- Benjamin Vermeer
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Sonja Schmid
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
38
|
Chakrabarti P, Chakravarty D. Intrinsically disordered proteins/regions and insight into their biomolecular interactions. Biophys Chem 2022; 283:106769. [DOI: 10.1016/j.bpc.2022.106769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
|
39
|
Protein Fluctuations in Response to Random External Forces. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Elastic network models (ENMs) have been widely used in the last decades to investigate protein motions and dynamics. There the intrinsic fluctuations based on the isolated structures are obtained from the normal modes of these elastic networks, and they generally show good agreement with the B-factors extracted from X-ray crystallographic experiments, which are commonly considered to be indicators of protein flexibility. In this paper, we propose a new approach to analyze protein fluctuations and flexibility, which has a more appropriate physical basis. It is based on the application of random forces to the protein ENM to simulate the effects of collisions of solvent on a protein structure. For this purpose, we consider both the Cα-atom coarse-grained anisotropic network model (ANM) and an elastic network augmented with points included for the crystallized waters. We apply random forces to these protein networks everywhere, as well as only on the protein surface alone. Despite the randomness of the directions of the applied perturbations, the computed average displacements of the protein network show a remarkably good agreement with the experimental B-factors. In particular, for our set of 919 protein structures, we find that the highest correlation with the B-factors is obtained when applying forces to the external surface of the water-augmented ANM (an overall gain of 3% in the Pearson’s coefficient for the entire dataset, with improvements up to 30% for individual proteins), rather than when evaluating the fluctuations obtained from the normal modes of a standard Cα-atom coarse-grained ANM. It follows that protein fluctuations should be considered not just as the intrinsic fluctuations of the internal dynamics, but also equally well as responses to external solvent forces, or as a combination of both.
Collapse
|
40
|
Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins. Biochem Soc Trans 2022; 50:541-554. [PMID: 35129612 DOI: 10.1042/bst20210499] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) and multidomain proteins with flexible linkers show a high level of structural heterogeneity and are best described by ensembles consisting of multiple conformations with associated thermodynamic weights. Determining conformational ensembles usually involves the integration of biophysical experiments and computational models. In this review, we discuss current approaches to determine conformational ensembles of IDPs and multidomain proteins, including the choice of biophysical experiments, computational models used to sample protein conformations, models to calculate experimental observables from protein structure, and methods to refine ensembles against experimental data. We also provide examples of recent applications of integrative conformational ensemble determination to study IDPs and multidomain proteins and suggest future directions for research in the field.
Collapse
|
41
|
Molecular Simulations of Intrinsically Disordered Proteins and Their Binding Mechanisms. Methods Mol Biol 2022; 2376:343-362. [PMID: 34845619 DOI: 10.1007/978-1-0716-1716-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) lack well-defined secondary or tertiary structures in solution but are found to be involved in a wide range of critical cellular processes that highlight their functional importance. IDPs usually undergo folding upon binding to their targets. Such binding coupled to folding behavior has widened our perspective on the protein structure-dynamics-function paradigm in molecular biology. However, characterizing the folding upon binding mechanism of IDPs experimentally remains quite challenging. Molecular simulations emerge as a potentially powerful tool that offers information complementary to experiments. Here we present a general computational framework for the molecular simulations of IDP folding upon binding processes that combines all-atom molecular dynamics (MD) and coarse-grained simulations. The classical all-atom molecular dynamics approach using GPU acceleration allows the researcher to explore the properties of the IDP conformational ensemble, whereas coarse-grained structure-based models implemented with parameters carefully calibrated to available experimental measurements can be used to simulate the entire folding upon binding process. We also discuss a set of tools for the analysis of MD trajectories and describe the details of the computational protocol to follow so that it can be adapted by the user to study any IDP in isolation and in complex with partners.
Collapse
|
42
|
Petrotchenko EV, Borchers CH. Protein Chemistry Combined with Mass Spectrometry for Protein Structure Determination. Chem Rev 2021; 122:7488-7499. [PMID: 34968047 DOI: 10.1021/acs.chemrev.1c00302] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The advent of soft-ionization mass spectrometry for biomolecules has opened up new possibilities for the structural analysis of proteins. Combining protein chemistry methods with modern mass spectrometry has led to the emergence of the distinct field of structural proteomics. Multiple protein chemistry approaches, such as surface modification, limited proteolysis, hydrogen-deuterium exchange, and cross-linking, provide diverse and often orthogonal structural information on the protein systems studied. Combining experimental data from these various structural proteomics techniques provides a more comprehensive examination of the protein structure and increases confidence in the ultimate findings. Here, we review various types of experimental data from structural proteomics approaches with an emphasis on the use of multiple complementary mass spectrometric approaches to provide experimental constraints for the solving of protein structures.
Collapse
Affiliation(s)
- Evgeniy V Petrotchenko
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
43
|
Bonet LFS, Loureiro JP, Pereira GRC, Da Silva ANR, De Mesquita JF. Molecular dynamics and protein frustration analysis of human fused in Sarcoma protein variants in Amyotrophic Lateral Sclerosis type 6: An In Silico approach. PLoS One 2021; 16:e0258061. [PMID: 34587215 PMCID: PMC8480726 DOI: 10.1371/journal.pone.0258061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disorder. The disease is characterized by degeneration of upper and lower motor neurons, leading to death usually within five years after the onset of symptoms. While most cases are sporadic, 5%-10% of cases can be associated with familial inheritance, including ALS type 6, which is associated with mutations in the Fused in Sarcoma (FUS) gene. This work aimed to evaluate how the most frequent ALS-related mutations in FUS, R521C, R521H, and P525L affect the protein structure and function. We used prediction algorithms to analyze the effects of the non-synonymous single nucleotide polymorphisms and performed evolutionary conservation analysis, protein frustration analysis, and molecular dynamics simulations. Most of the prediction algorithms classified the three mutations as deleterious. All three mutations were predicted to reduce protein stability, especially the mutation R521C, which was also predicted to increase chaperone binding tendency. The protein frustration analysis showed an increase in frustration in the interactions involving the mutated residue 521C. Evolutionary conservation analysis showed that residues 521 and 525 of human FUS are highly conserved sites. The molecular dynamics results indicate that protein stability could be compromised in all three mutations. They also affected the exposed surface area and protein compactness. The analyzed mutations also displayed high flexibility in most residues in all variants, most notably in the interaction site with the nuclear import protein of FUS.
Collapse
Affiliation(s)
- L. F. S. Bonet
- Department of Genetics and Molecular Biology, Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. P. Loureiro
- Department of Genetics and Molecular Biology, Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G. R. C. Pereira
- Department of Genetics and Molecular Biology, Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A. N. R. Da Silva
- Department of Genetics and Molecular Biology, Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. F. De Mesquita
- Department of Genetics and Molecular Biology, Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Haghdoust F, Molakarimi M, Mirshahi M, Sajedi RH. Engineering aequorin to improve thermostability through rigidifying flexible sites. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Gijsbers A, Zhang Y, Gao Y, Peters PJ, Ravelli RBG. Mycobacterium tuberculosis ferritin: a suitable workhorse protein for cryo-EM development. Acta Crystallogr D Struct Biol 2021; 77:1077-1083. [PMID: 34342280 PMCID: PMC8329864 DOI: 10.1107/s2059798321007233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022] Open
Abstract
The use of cryo-EM continues to expand worldwide and calls for good-quality standard proteins with simple protocols for their production. Here, a straightforward expression and purification protocol is presented that provides an apoferritin, bacterioferritin B (BfrB), from Mycobacterium tuberculosis with high yield and purity. A 2.12 Å resolution cryo-EM structure of BfrB is reported, showing the typical cage-like oligomer constituting of 24 monomers related by 432 symmetry. However, it also contains a unique C-terminal extension (164-181), which loops into the cage region of the shell and provides extra stability to the protein. Part of this region was ambiguous in previous crystal structures but could be built within the cryo-EM map. These findings and this protocol could serve the growing cryo-EM community in characterizing and pushing the limits of their electron microscopes and workflows.
Collapse
Affiliation(s)
- Abril Gijsbers
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Yue Zhang
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Ye Gao
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Peter J. Peters
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Raimond B. G. Ravelli
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
46
|
Atsavapranee B, Stark CD, Sunden F, Thompson S, Fordyce PM. Fundamentals to function: Quantitative and scalable approaches for measuring protein stability. Cell Syst 2021; 12:547-560. [PMID: 34139165 DOI: 10.1016/j.cels.2021.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Folding a linear chain of amino acids into a three-dimensional protein is a complex physical process that ultimately confers an impressive range of diverse functions. Although recent advances have driven significant progress in predicting three-dimensional protein structures from sequence, proteins are not static molecules. Rather, they exist as complex conformational ensembles defined by energy landscapes spanning the space of sequence and conditions. Quantitatively mapping the physical parameters that dictate these landscapes and protein stability is therefore critical to develop models that are capable of predicting how mutations alter function of proteins in disease and informing the design of proteins with desired functions. Here, we review the approaches that are used to quantify protein stability at a variety of scales, from returning multiple thermodynamic and kinetic measurements for a single protein sequence to yielding indirect insights into folding across a vast sequence space. The physical parameters derived from these approaches will provide a foundation for models that extend beyond the structural prediction to capture the complexity of conformational ensembles and, ultimately, their function.
Collapse
Affiliation(s)
| | - Catherine D Stark
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Fanny Sunden
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Samuel Thompson
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94110, USA.
| |
Collapse
|
47
|
Fogalli GB, Line SRP. Estimating the Influence of Physicochemical and Biochemical Property Indexes on Selection for Amino Acids Usage in Eukaryotic Cells. J Mol Evol 2021; 89:257-268. [PMID: 33760966 DOI: 10.1007/s00239-021-10003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/10/2021] [Indexed: 11/26/2022]
Abstract
Proteins can evolve by accumulating changes on amino acid sequences. These changes are mainly caused by missense mutations on its DNA coding sequences. Mutations with neutral or positive effects on fitness can be maintained while deleterious mutations tend to be eliminated by natural selection. Amino acid changes are influenced by the biophysical, chemical, and biological properties of amino acids. There is a multiplicity of amino acid properties that can influence the function and expression of proteins. Amino acid properties can be expressed into numerical indexes, which can help to predict functional and structural aspects of proteins and allow statistical inferences of selection pressure on amino acid usage. The accuracy of these analyses may be compromised by the existence of several numerical indexes that measure the same amino acid property, and the lack of objective parameters to determine the most accurate and biologically relevant index. In the present study, the gradient consistency test was used in order to estimate the magnitude of directional selection imparted by amino acid biochemical and biophysical properties on protein evolution.
Collapse
Affiliation(s)
- Giovani B Fogalli
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Campinas, Brazil
| | - Sergio R P Line
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Campinas, Brazil.
| |
Collapse
|
48
|
Shauer A, Shor O, Wei J, Elitzur Y, Kucherenko N, Wang R, Chen SRW, Einav Y, Luria D. Novel RyR2 Mutation (G3118R) Is Associated With Autosomal Recessive Ventricular Fibrillation and Sudden Death: Clinical, Functional, and Computational Analysis. J Am Heart Assoc 2021; 10:e017128. [PMID: 33686871 PMCID: PMC8174198 DOI: 10.1161/jaha.120.017128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The cardiac ryanodine receptor type 2 (RyR2) is a large homotetramer, located in the sarcoplasmic reticulum (SR), which releases Ca2+ from the SR during systole. The molecular mechanism underlying Ca2+ sensing and gating of the RyR2 channel in health and disease is only partially elucidated. Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT1) is the most prevalent syndrome caused by RyR2 mutations. Methods and Results This study involves investigation of a family with 4 cases of ventricular fibrillation and sudden death and physiological tests in HEK 293 cells and normal mode analysis (NMA) computation. We found 4 clinically affected members who were homozygous for a novel RyR2 mutation, G3118R, whereas their heterozygous relatives are asymptomatic. G3118R is located in the periphery of the protein, far from the mutation hotspot regions. HEK293 cells harboring G3118R mutation inhibited Ca2+ release in response to increasing doses of caffeine, but decreased the termination threshold for store‐overload‐induced Ca2+ release, thus increasing the fractional Ca2+ release in response to increasing extracellular Ca2+. NMA showed that G3118 affects RyR2 tetramer in a dose‐dependent manner, whereas in the model of homozygous mutant RyR2, the highest entropic values are assigned to the pore and the central regions of the protein. Conclusions RyR2 G3118R is related to ventricular fibrillation and sudden death in recessive mode of inheritance and has an effect of gain of function on the protein. Despite a peripheral location, it has an allosteric effect on the stability of central and pore regions in a dose‐effect manner.
Collapse
Affiliation(s)
- Ayelet Shauer
- Heart Institute Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Oded Shor
- Heart Institute Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Jinhong Wei
- Department of Physiology and Pharmacology The Libin Cardiovascular Institute of AlbertaUniversity of Calgary Alberta Canada
| | - Yair Elitzur
- Heart Institute Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Nataly Kucherenko
- Biochemistry and Molecular Biology Tel Aviv University Tel Aviv Israel
| | - Ruiwu Wang
- Department of Physiology and Pharmacology The Libin Cardiovascular Institute of AlbertaUniversity of Calgary Alberta Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology The Libin Cardiovascular Institute of AlbertaUniversity of Calgary Alberta Canada
| | - Yulia Einav
- Faculty of Engineering Holon Institute of Technology Holon Israel
| | - David Luria
- Heart Institute Hadassah-Hebrew University Medical Center Jerusalem Israel
| |
Collapse
|
49
|
Omolabi KF, Agoni C, Olotu FA, Soliman ME. ‘Finding the needle in the haystack’- will natural products fit for purpose in the treatment of cryptosporidiosis? – A theoretical perspective. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1895435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Kehinde F. Omolabi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Fisayo A. Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E.S. Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
50
|
Pathak JA, Nugent S, Bender MF, Roberts CJ, Curtis RJ, Douglas JF. Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal Antibodies. Polymers (Basel) 2021; 13:601. [PMID: 33671342 PMCID: PMC7922252 DOI: 10.3390/polym13040601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
The Huggins coefficient kH is a well-known metric for quantifying the increase in solution viscosity arising from intermolecular interactions in relatively dilute macromolecular solutions, and there has been much interest in this solution property in connection with developing improved antibody therapeutics. While numerous kH measurements have been reported for select monoclonal antibodies (mAbs) solutions, there has been limited study of kH in terms of the fundamental molecular interactions that determine this property. In this paper, we compare measurements of the osmotic second virial coefficient B22, a common metric of intermolecular and interparticle interaction strength, to measurements of kH for model antibody solutions. This comparison is motivated by the seminal work of Russel for hard sphere particles having a short-range "sticky" interparticle interaction, and we also compare our data with known results for uncharged flexible polymers having variable excluded volume interactions because proteins are polypeptide chains. Our observations indicate that neither the adhesive hard sphere model, a common colloidal model of globular proteins, nor the familiar uncharged flexible polymer model, an excellent model of intrinsically disordered proteins, describes the dependence of kH of these antibodies on B22. Clearly, an improved understanding of protein and ion solvation by water as well as dipole-dipole and charge-dipole effects is required to understand the significance of kH from the standpoint of fundamental protein-protein interactions. Despite shortcomings in our theoretical understanding of kH for antibody solutions, this quantity provides a useful practical measure of the strength of interprotein interactions at elevated protein concentrations that is of direct significance for the development of antibody formulations that minimize the solution viscosity.
Collapse
Affiliation(s)
- Jai A. Pathak
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Sean Nugent
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Michael F. Bender
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Christopher J. Roberts
- Colburn Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA;
| | - Robin J. Curtis
- Department of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Jack F. Douglas
- Materials Science and Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8544, USA
| |
Collapse
|