1
|
Zhang H, Zhou X, Wang X, Zheng J, Feng Y. A Methyl-Accepting Chemotaxis Protein MCP-5685 Associated with Indole Synthesis in Pantoea ananatis YJ76 Influences its Plant Growth-Promoting Potential and Adaptability to Stress Conditions. Curr Microbiol 2025; 82:281. [PMID: 40327119 DOI: 10.1007/s00284-025-04252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
Pantoea ananatis YJ76 is a predominant endophytic diazotrophic bacterium isolated from rice, which can produce indole as a signal to improve stress resistance, colonization, and growth-promoting effect on the host. Methyl-accepting chemotaxis proteins (MCPs) are the main chemoreceptor in bacteria and participate in regulating various cellular activities. By constructing an mTn5 transposon mutant library of YJ76, we screened out a mutant with decreased indole production. And its ability to resist stresses and starvation, as well as colonizing and growth-promoting effect on host rice plants, was inhibited. Using the hiTAIL-PCR technique combined the genome re-sequencing, the mutation site was identified as the mcp-5685 gene with a length of 1545 bp. Bioinformatics analysis and chemotaxis experiments showed that the MCP encoded by mcp-5685 had L-serine chemotaxis functions, revealing the mechanism of the gene encoding protein to drive L-serine uptake, a key component for tryptophan synthesis, and thus promote indole synthesis in the regulatory pathways for indole synthesis. Starting from the upstream regulation direction of indole synthesis, this study breaks through the previous researching limitation of focusing only on the downstream physiological function regulation of indole and provides new ideas for studying the indole signal.
Collapse
Affiliation(s)
- Haotian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinyi Zhou
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xueying Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jing Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
2
|
Kinateder T, Drexler L, Duran C, Osuna S, Sterner R. A naturally occurring standalone TrpB enzyme provides insights into allosteric communication within tryptophan synthase. Protein Sci 2025; 34:e70103. [PMID: 40100167 PMCID: PMC11917138 DOI: 10.1002/pro.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Allosteric regulation of catalytic activity is a widespread property of multi-enzyme complexes. The tryptophan synthase is a prototypical allosteric enzyme where the constituting α (TrpA) and β (TrpB) subunits mutually activate each other in a manner that is incompletely understood. Experimental and computational studies have shown that LBCA-TrpB from the last bacterial common ancestor contains six residues (Res6) distal from the active site that allow for high stand-alone catalytic activity in the absence of a TrpA subunit. In the present study, a database search revealed that Res6 is also present in the extant plTrpB from Pelodictyon luteolum. The plTrpB enzyme showed a high stand-alone activity and only a moderate activation by plTrpA. The replacement of LBCA-Res6 in plTrpB with the consensus residues from a multiple sequence alignment yielded plTrpB-con, which showed a dramatically decreased stand-alone activity but was strongly stimulated by plTrpA. These findings suggest that the effect of these six key allosteric residues is largely independent of the protein context within a specific TrpB enzyme. Analysis of the conformational landscapes of plTrpB and plTrpB-con revealed that plTrpB in isolation displays efficient closure of both the active site and the communication (COMM) domain. In contrast, these catalytically competent states are destabilized in plTrpB-con but can be recovered by the addition of plTrpA. A correlation-based shortest path map (SPM) analysis reveals that the catalytically and allosterically relevant domains-specifically, the COMM domain in TrpB and loops 2 and 6 in TrpA-are tightly interconnected exclusively in plTrpA:plTrpB-con.
Collapse
Affiliation(s)
- Thomas Kinateder
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
| | - Lukas Drexler
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
| | - Cristina Duran
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
| |
Collapse
|
3
|
Li G, Dong S, Liu C, Yang J, Rensen PCN, Wang Y. Serotonin signaling to regulate energy metabolism: a gut microbiota perspective. LIFE METABOLISM 2025; 4:loae039. [PMID: 39926388 PMCID: PMC11803461 DOI: 10.1093/lifemeta/loae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 02/11/2025]
Abstract
Serotonin is one of the most potent gastrointestinal, peripheral, and neuronal signaling molecules and plays a key role in regulating energy metabolism. Accumulating evidence has shown the complex interplay between gut microbiota and host energy metabolism. In this review, we summarize recent findings on the role of gut microbiota in serotonin metabolism and discuss the complicated mechanisms by which serotonin, working in conjunction with the gut microbiota, affects total body energy metabolism in the host. Gut microbiota affects serotonin synthesis, storage, release, transport, and catabolism. In addition, serotonin plays an indispensable role in regulating host energy homeostasis through organ crosstalk and microbe-host communication, particularly with a wide array of serotonergic effects mediated by diverse serotonin receptors with unique tissue specificity. This fresh perspective will help broaden the understanding of serotonergic signaling in modulating energy metabolism, thus shedding light on the design of innovative serotonin-targeting strategies to treat metabolic diseases.
Collapse
Affiliation(s)
- Guoli Li
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Sijing Dong
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Chunhao Liu
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jing Yang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Patrick C N Rensen
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Yanan Wang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
4
|
Charette M, Rosenblum C, Shade O, Deiters A. Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion. Chem Rev 2025; 125:1663-1717. [PMID: 39928721 PMCID: PMC11869211 DOI: 10.1021/acs.chemrev.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 02/12/2025]
Abstract
Conditional control of protein activity is important in order to elucidate the particular functions and interactions of proteins, their regulators, and their substrates, as well as their impact on the behavior of a cell or organism. Optical control provides a perhaps optimal means of introducing spatiotemporal control over protein function as it allows for tunable, rapid, and noninvasive activation of protein activity in its native environment. One method of introducing optical control over protein activity is through the introduction of photocaged and photoswitchable noncanonical amino acids (ncAAs) through genetic code expansion in cells and animals. Genetic incorporation of photoactive ncAAs at key residues in a protein provides a tool for optical activation, or sometimes deactivation, of protein activity. Importantly, the incorporation site can typically be rationally selected based on structural, mechanistic, or computational information. In this review, we comprehensively summarize the applications of photocaged lysine, tyrosine, cysteine, serine, histidine, glutamate, and aspartate derivatives, as well as photoswitchable phenylalanine analogues. The extensive and diverse list of proteins that have been placed under optical control demonstrates the broad applicability of this methodology.
Collapse
Affiliation(s)
- Maura Charette
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Wu P, Yuan Y, Ma Z, Zhang K, Deng L, Ren H, Yang W, Wang W. Comparative transcriptome profiling reveals the mechanism of increasing lysine and tryptophan content through pyramiding opaque2, opaque16 and waxy1 genes in maize. BREEDING SCIENCE 2024; 74:311-323. [PMID: 39872326 PMCID: PMC11769590 DOI: 10.1270/jsbbs.23051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/25/2024] [Indexed: 01/30/2025]
Abstract
To explore the molecular mechanism behind maize grain quality and use of different gene stacking to improve the nutritional quality of grain, marker-assisted selection (MAS) was used to select three recessive mutant lines containing o2o16wx, along with the double-recessive mutant lines containing o2o16, o2wx, and o16wx. The resulting seeds were taken for transcriptome sequencing analysis 18 days after pollination (DAP). Results: Compared with the recurrent parent genes, in the lysine synthesis pathway, the gene pyramiding lines (o2o16wx, o2wx, and o16wx) revealed that the gene encoding aspartate kinase (AK) was up-regulated and promoted lysine synthesis. In the lysine degradation pathway, 'QCL8010_1' (o2o16wx) revealed that the gene encoding saccharopine dehydrogenase (LKR/SDH) was down-regulated. In addition, the gene pyramiding lines (o2o16wx, o2o16, and o16wx) indicated that the gene encoding 2-oxoglutarate dehydrogenase E1 component (OGDH) was down-regulated, inhibiting the degradation of lysine. In the tryptophan synthesis pathway, the genes encoding anthranilate synthase (AS), anthranilate synthase (APT), and tryptophan synthase (TS) were up-regulated (in o2o16wx, o2o16, o2wx, and o16wx), and promote tryptophan synthesis. In the tryptophan degradation pathway, it was revealed that the genes encoding indole-3-producing oxidase (IAAO) and indole-3-pyruvate monooxygenase (YUCCA) were down-regulated. These results provide a reference for revealing the mechanism of the o2, o16, and wx with different gene pyramiding to improve grain quality in maize.
Collapse
Affiliation(s)
- Peizhen Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yanli Yuan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Zhoujie Ma
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Kaiwu Zhang
- Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou Province, China
- Key Laboratory of Maize Biology and Genetic Breeding in Karst Mountainous Region (Ministry of Agriculture and Rural Affairs), Guiyang, 550006, Guizhou Province, China
| | - Lei Deng
- Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou Province, China
- Key Laboratory of Maize Biology and Genetic Breeding in Karst Mountainous Region (Ministry of Agriculture and Rural Affairs), Guiyang, 550006, Guizhou Province, China
| | - Hong Ren
- Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou Province, China
- Key Laboratory of Maize Biology and Genetic Breeding in Karst Mountainous Region (Ministry of Agriculture and Rural Affairs), Guiyang, 550006, Guizhou Province, China
| | - Wenpeng Yang
- Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou Province, China
- Key Laboratory of Maize Biology and Genetic Breeding in Karst Mountainous Region (Ministry of Agriculture and Rural Affairs), Guiyang, 550006, Guizhou Province, China
| | - Wei Wang
- Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou Province, China
- Key Laboratory of Maize Biology and Genetic Breeding in Karst Mountainous Region (Ministry of Agriculture and Rural Affairs), Guiyang, 550006, Guizhou Province, China
| |
Collapse
|
6
|
Drago VN, Devos JM, Blakeley MP, Forsyth VT, Parks JM, Kovalevsky A, Mueser TC. Neutron diffraction from a microgravity-grown crystal reveals the active site hydrogens of the internal aldimine form of tryptophan synthase. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101827. [PMID: 38645802 PMCID: PMC11027755 DOI: 10.1016/j.xcrp.2024.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Pyridoxal 5'-phosphate (PLP), the biologically active form of vitamin B6, is an essential cofactor in many biosynthetic pathways. The emergence of PLP-dependent enzymes as drug targets and biocatalysts, such as tryptophan synthase (TS), has underlined the demand to understand PLP-dependent catalysis and reaction specificity. The ability of neutron diffraction to resolve the positions of hydrogen atoms makes it an ideal technique to understand how the electrostatic environment and selective protonation of PLP regulates PLP-dependent activities. Facilitated by microgravity crystallization of TS with the Toledo Crystallization Box, we report the 2.1 Å joint X-ray/neutron (XN) structure of TS with PLP in the internal aldimine form. Positions of hydrogens were directly determined in both the α- and β-active sites, including PLP cofactor. The joint XN structure thus provides insight into the selective protonation of the internal aldimine and the electrostatic environment of TS necessary to understand the overall catalytic mechanism.
Collapse
Affiliation(s)
- Victoria N. Drago
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Juliette M. Devos
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 38000 Grenoble, France
| | - Matthew P. Blakeley
- Large Scale Structures Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - V. Trevor Forsyth
- Faculty of Medicine, Lund University, and LINXS Institute for Advanced Neutron and X-ray Science, Lund, Sweden
| | - Jerry M. Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy C. Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
- Lead contact
| |
Collapse
|
7
|
Martins NF, Viana MJA, Maigret B. Fungi Tryptophan Synthases: What Is the Role of the Linker Connecting the α and β Structural Domains in Hemileia vastatrix TRPS? A Molecular Dynamics Investigation. Molecules 2024; 29:756. [PMID: 38398508 PMCID: PMC10893352 DOI: 10.3390/molecules29040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Tryptophan synthase (TRPS) is a complex enzyme responsible for tryptophan biosynthesis. It occurs in bacteria, plants, and fungi as an αββα heterotetramer. Although encoded by independent genes in bacteria and plants, in fungi, TRPS is generated by a single gene that concurrently expresses the α and β entities, which are linked by an elongated peculiar segment. We conducted 1 µs all-atom molecular dynamics simulations on Hemileia vastatrix TRPS to address two questions: (i) the role of the linker segment and (ii) the comparative mode of action. Since there is not an experimental structure, we started our simulations with homology modeling. Based on the results, it seems that TRPS makes use of an already-existing tunnel that can spontaneously move the indole moiety from the α catalytic pocket to the β one. Such behavior was completely disrupted in the simulation without the linker. In light of these results and the αβ dimer's low stability, the full-working TRPS single genes might be the result of a particular evolution. Considering the significant losses that Hemileia vastatrix causes to coffee plantations, our next course of action will be to use the TRPS to look for substances that can block tryptophan production and therefore control the disease.
Collapse
Affiliation(s)
- Natália F Martins
- EMBRAPA Agroindústria Tropical, Planalto do Pici, Fortaleza 60511-110, CE, Brazil
| | - Marcos J A Viana
- EMBRAPA Agroindústria Tropical, Planalto do Pici, Fortaleza 60511-110, CE, Brazil
| | - Bernard Maigret
- LORIA, UMR 7504 CNRS, Université de Lorraine, 54000 Vandoeuvre les Nancy, France
| |
Collapse
|
8
|
Jadhav A, Bajaj A, Xiao Y, Markandey M, Ahuja V, Kashyap PC. Role of Diet-Microbiome Interaction in Gastrointestinal Disorders and Strategies to Modulate Them with Microbiome-Targeted Therapies. Annu Rev Nutr 2023; 43:355-383. [PMID: 37380178 PMCID: PMC10577587 DOI: 10.1146/annurev-nutr-061121-094908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Diet is an important determinant of health and consequently is often implicated in the development of disease, particularly gastrointestinal (GI) diseases, given the high prevalence of meal-related symptoms. The mechanisms underlying diet-driven pathophysiology are not well understood, but recent studies suggest that gut microbiota may mediate the effect of diet on GI physiology. In this review, we focus primarily on two distinct GI diseases where the role of diet has been best studied: irritable bowel syndrome and inflammatory bowel disease. We discuss how the concurrent and sequential utilization of dietary nutrients by the host and gut microbiota determines the eventual bioactive metabolite profiles in the gut and the biological effect of these metabolites on GI physiology. We highlight several concepts that can be gleaned from these findings, such as how distinct effects of an individual metabolite can influence diverse GI diseases, the effect of similar dietary interventions on multiple disease states, and the need for extensive phenotyping and data collection to help make personalized diet recommendations.
Collapse
Affiliation(s)
- Ajita Jadhav
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA;
| | - Aditya Bajaj
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India;
| | - Yang Xiao
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA;
| | - Manasvini Markandey
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India;
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India;
| | - Purna C Kashyap
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA;
| |
Collapse
|
9
|
Mehrabi P, Sung S, von Stetten D, Prester A, Hatton CE, Kleine-Döpke S, Berkes A, Gore G, Leimkohl JP, Schikora H, Kollewe M, Rohde H, Wilmanns M, Tellkamp F, Schulz EC. Millisecond cryo-trapping by the spitrobot crystal plunger simplifies time-resolved crystallography. Nat Commun 2023; 14:2365. [PMID: 37185266 PMCID: PMC10130016 DOI: 10.1038/s41467-023-37834-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/01/2023] [Indexed: 05/17/2023] Open
Abstract
We introduce the spitrobot, a protein crystal plunger, enabling reaction quenching via cryo-trapping with a time-resolution in the millisecond range. Protein crystals are mounted on canonical micromeshes on an electropneumatic piston, where the crystals are kept in a humidity and temperature-controlled environment, then reactions are initiated via the liquid application method (LAMA) and plunging into liquid nitrogen is initiated after an electronically set delay time to cryo-trap intermediate states. High-magnification images are automatically recorded before and after droplet deposition, prior to plunging. The SPINE-standard sample holder is directly plunged into a storage puck, enabling compatibility with high-throughput infrastructure. Here we demonstrate binding of glucose and 2,3-butanediol in microcrystals of xylose isomerase, and of avibactam and ampicillin in microcrystals of the extended spectrum beta-lactamase CTX-M-14. We also trap reaction intermediates and conformational changes in macroscopic crystals of tryptophan synthase to demonstrate that the spitrobot enables insight into catalytic events.
Collapse
Affiliation(s)
- Pedram Mehrabi
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany.
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
| | - Sihyun Sung
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - David von Stetten
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Andreas Prester
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Caitlin E Hatton
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | - Stephan Kleine-Döpke
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | - Alexander Berkes
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | - Gargi Gore
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | | | - Hendrik Schikora
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Martin Kollewe
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Holger Rohde
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Friedjof Tellkamp
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
| | - Eike C Schulz
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany.
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
10
|
Bobylev EO, Ruijter J, Poole DA, Mathew S, de Bruin B, Reek JNH. Effector Regulated Catalytic Cyclization of Alkynoic Acids Using Pt 2 L 4 Cages. Angew Chem Int Ed Engl 2023; 62:e202218162. [PMID: 36779628 DOI: 10.1002/anie.202218162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/14/2023]
Abstract
Metabolic pathways are highly regulated by effector molecules that influences the rate of enzymatic reactions. Inspired by the catalytic regulation found in living cells, we report a Pt2 L4 cage of which the activity can be controlled by effectors that bind inside the cage. The cage shows catalytic activity in the lactonization of alkynoic acids, with the reaction rates dependent on the effector guest bound in the cage. Some effector guests enhance the rate of the lactonization by up to 19-fold, whereas one decreases it by 5-fold. When mixtures of specific substrates are used, both starting materials and products act as guests for the Pt2 L4 cage, enhancing its catalytic activity for one substrate while reducing its activity for the other. The reported regulatory behavior obtained by the addition of effector molecules paves the way to the development of more complex, metabolic-like catalyst systems.
Collapse
Affiliation(s)
- Eduard O Bobylev
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Julian Ruijter
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - David A Poole
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Simon Mathew
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Hiefinger C, Mandl S, Wieland M, Kneuttinger A. Rational design, production and in vitro analysis of photoxenoproteins. Methods Enzymol 2023; 682:247-288. [PMID: 36948704 DOI: 10.1016/bs.mie.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In synthetic biology, the artificial control of proteins by light is of growing interest since it enables the spatio-temporal regulation of downstream molecular processes. This precise photocontrol can be established by the site-directed incorporation of photo-sensitive non-canonical amino acids (ncAAs) into proteins, which generates so-called photoxenoproteins. Photoxenoproteins can be engineered using ncAAs that facilitate the irreversible activation or reversible regulation of their activity upon irradiation. In this chapter, we provide a general outline of the engineering process based on the current methodological state-of-the-art to obtain artificial photocontrol in proteins using the ncAAs o-nitrobenzyl-O-tyrosine as example for photocaged ncAAs (irreversible), and phenylalanine-4'-azobenzene as example for photoswitchable ncAAs (reversible). We thereby focus on the initial design as well as the production and characterization of photoxenoproteins in vitro. Finally, we outline the analysis of photocontrol under steady-state and non-steady-state conditions using the allosteric enzyme complexes imidazole glycerol phosphate synthase and tryptophan synthase as examples.
Collapse
Affiliation(s)
- Caroline Hiefinger
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sabrina Mandl
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Mona Wieland
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Andrea Kneuttinger
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
12
|
Ghosh RK, Hilario E, Chang CEA, Mueller LJ, Dunn MF. Allosteric regulation of substrate channeling: Salmonella typhimurium tryptophan synthase. Front Mol Biosci 2022; 9:923042. [PMID: 36172042 PMCID: PMC9512447 DOI: 10.3389/fmolb.2022.923042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of the synthesis of L-tryptophan (L-Trp) in enteric bacteria begins at the level of gene expression where the cellular concentration of L-Trp tightly controls expression of the five enzymes of the Trp operon responsible for the synthesis of L-Trp. Two of these enzymes, trpA and trpB, form an αββα bienzyme complex, designated as tryptophan synthase (TS). TS carries out the last two enzymatic processes comprising the synthesis of L-Trp. The TS α-subunits catalyze the cleavage of 3-indole D-glyceraldehyde 3′-phosphate to indole and D-glyceraldehyde 3-phosphate; the pyridoxal phosphate-requiring β-subunits catalyze a nine-step reaction sequence to replace the L-Ser hydroxyl by indole giving L-Trp and a water molecule. Within αβ dimeric units of the αββα bienzyme complex, the common intermediate indole is channeled from the α site to the β site via an interconnecting 25 Å-long tunnel. The TS system provides an unusual example of allosteric control wherein the structures of the nine different covalent intermediates along the β-reaction catalytic path and substrate binding to the α-site provide the allosteric triggers for switching the αββα system between the open (T) and closed (R) allosteric states. This triggering provides a linkage that couples the allosteric conformational coordinate to the covalent chemical reaction coordinates at the α- and β-sites. This coupling drives the α- and β-sites between T and R conformations to achieve regulation of substrate binding and/or product release, modulation of the α- and β-site catalytic activities, prevention of indole escape from the confines of the active sites and the interconnecting tunnel, and synchronization of the α- and β-site catalytic activities. Here we review recent advances in the understanding of the relationships between structure, function, and allosteric regulation of the complex found in Salmonella typhimurium.
Collapse
Affiliation(s)
- Rittik K. Ghosh
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Leonard J. Mueller
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| | - Michael F. Dunn
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| |
Collapse
|
13
|
Nonthakaew N, Panbangred W, Songnuan W, Intra B. Plant growth-promoting properties of Streptomyces spp. isolates and their impact on mung bean plantlets’ rhizosphere microbiome. Front Microbiol 2022; 13:967415. [PMID: 36090067 PMCID: PMC9453592 DOI: 10.3389/fmicb.2022.967415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Phytophthora is an important, highly destructive pathogen of many plants, which causes considerable crop loss, especially durians in Thailand. In this study, we selectively isolated Streptomyces from the rhizosphere soil with a potent anti-oomycete activity against Phytophthora palmivora CbP03. Two strains (SNN087 and SNN289) demonstrated exceptional plant growth-promoting properties in pot experiment. Both strains promoted mung bean (Vigna radiate) growth effectively in both sterile and non-sterile soils. Metagenomic analysis revealed that Streptomyces sp. SNN289 may modify the rhizosphere microbial communities, especially promoting microbes beneficial for plant growth. The relative abundance of bacterial genera Bacillus, Sphingomonas, Arthrobacter, and Pseudarthrobacter, and fungal genera Coprinellus and Chaetomium were noticeably increased, whereas a genus Fusarium was slightly reduced. Interestingly, Streptomyces sp. SNN289 exhibited an exploratory growth, which allows it to survive in a highly competitive environment. Based on whole genome sequence analysis combined with an ANI and dDDH values, this strain should be classifiable as a new species. Functional annotation was also used to characterize plant-beneficial genes in SNN087 and SNN289 genomes for production of siderophores, 3-indole acetic acid (IAA), ammonia, and solubilized phosphate. AntiSMASH genome analysis and preliminary annotation revealed biosynthetic gene clusters with possible secondary metabolites. These findings emphasize the potential for application of strain SNN289 as a bioinoculant for sustainable agricultural practice.
Collapse
Affiliation(s)
- Napawit Nonthakaew
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Osaka Collaborative Research Center for Bioscience and Biotechnology, Mahidol University-Osaka, Bangkok, Thailand
| | - Watanalai Panbangred
- Research, Innovation, and Partnerships Office (Office of the President), King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Wisuwat Songnuan
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Osaka Collaborative Research Center for Bioscience and Biotechnology, Mahidol University-Osaka, Bangkok, Thailand
- *Correspondence: Bungonsiri Intra,
| |
Collapse
|
14
|
Correale J, Hohlfeld R, Baranzini SE. The role of the gut microbiota in multiple sclerosis. Nat Rev Neurol 2022; 18:544-558. [PMID: 35931825 DOI: 10.1038/s41582-022-00697-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
During the past decade, research has revealed that the vast community of micro-organisms that inhabit the gut - known as the gut microbiota - is intricately linked to human health and disease, partly as a result of its influence on systemic immune responses. Accumulating evidence demonstrates that these effects on immune function are important in neuroinflammatory diseases, such as multiple sclerosis (MS), and that modulation of the microbiome could be therapeutically beneficial in these conditions. In this Review, we examine the influence that the gut microbiota have on immune function via modulation of serotonin production in the gut and through complex interactions with components of the immune system, such as T cells and B cells. We then present evidence from studies in mice and humans that these effects of the gut microbiota on the immune system are important in the development and course of MS. We also consider how strategies for manipulating the composition of the gut microbiota could be used to influence disease-related immune dysfunction and form the basis of a new class of therapeutics. The strategies discussed include the use of probiotics, supplementation with bacterial metabolites, transplantation of faecal matter or defined microbial communities, and dietary intervention. Carefully designed studies with large human cohorts will be required to gain a full understanding of the microbiome changes involved in MS and to develop therapeutic strategies that target these changes.
Collapse
Affiliation(s)
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sergio E Baranzini
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
|
16
|
de Gracia Retamosa M, Ruiz‐Olalla A, Agirre M, de Cózar A, Bello T, Cossío FP. Additive and Emergent Catalytic Properties of Dimeric Unnatural Amino Acid Derivatives: Aldol and Conjugate Additions. Chemistry 2021; 27:15671-15687. [PMID: 34453455 PMCID: PMC9293019 DOI: 10.1002/chem.202102394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 01/14/2023]
Abstract
Different densely substituted L- and D-proline esters were prepared by asymmetric (3+2) cycloaddition reactions catalyzed by conveniently selected EhuPhos chiral ligands. The γ-nitro-2-alkoxycarbonyl pyrrolidines thus obtained in either their endo or exo forms were functionalized and coupled to yield the corresponding γ-dipeptides. The catalytic properties of these latter dimers were examined using aldol and conjugate additions as case studies. When aldol reactions were analyzed, an additive behavior in terms of stereocontrol was observed on going from the monomers to the dimers. In contrast, in the case of the conjugate additions between ketones and nitroalkenes, the monomers did not catalyze this reaction, whereas the different γ-dipeptides promoted the formation of the corresponding Michael adducts. Therefore, in this latter case emergent catalytic properties were observed for these novel γ-dipeptides based on unnatural proline derivatives. Under certain conditions stoichiometric amounts of ketone, acid and nitroalkene), formation of N-acyloxy-2-oxooctahydro-1H-indoles was observed.
Collapse
Affiliation(s)
- María de Gracia Retamosa
- Donostia International Physics Center (DIPC)P° Manuel Lardizabal 420018Donostia/San SebastiánSpain
- Departamento de Química Orgánica I and Instituto de Innovaciónen Química Avanzada (ORFEO-CINQA)University of the Basque Country (UPV/EHU)P° Manuel Lardizabal 320018Donostia/San SebastiánSpain
- Present address: Departamento de Química Orgánica and Centro de Innovación en Químca Avanzada (ORFEO-CINQA)Instituto de Síntesis OrgánicaUniversidad de Alicante03080AlicanteSpain
| | - Andrea Ruiz‐Olalla
- Departamento de Química Orgánica I and Instituto de Innovaciónen Química Avanzada (ORFEO-CINQA)University of the Basque Country (UPV/EHU)P° Manuel Lardizabal 320018Donostia/San SebastiánSpain
| | - Maddalen Agirre
- Departamento de Química Orgánica I and Instituto de Innovaciónen Química Avanzada (ORFEO-CINQA)University of the Basque Country (UPV/EHU)P° Manuel Lardizabal 320018Donostia/San SebastiánSpain
- Present address: CIC Energigune, Parque Tecnológico de Álava01510Vitoria/GasteizSpain.
| | - Abel de Cózar
- Departamento de Química Orgánica I and Instituto de Innovaciónen Química Avanzada (ORFEO-CINQA)University of the Basque Country (UPV/EHU)P° Manuel Lardizabal 320018Donostia/San SebastiánSpain
- Ikerbasque, Basque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
| | - Tamara Bello
- Departamento de Química Orgánica I and Instituto de Innovaciónen Química Avanzada (ORFEO-CINQA)University of the Basque Country (UPV/EHU)P° Manuel Lardizabal 320018Donostia/San SebastiánSpain
| | - Fernando P. Cossío
- Donostia International Physics Center (DIPC)P° Manuel Lardizabal 420018Donostia/San SebastiánSpain
- Departamento de Química Orgánica I and Instituto de Innovaciónen Química Avanzada (ORFEO-CINQA)University of the Basque Country (UPV/EHU)P° Manuel Lardizabal 320018Donostia/San SebastiánSpain
| |
Collapse
|
17
|
Serotonin Exposure Improves Stress Resistance, Aggregation, and Biofilm Formation in the Probiotic Enterococcus faecium NCIMB10415. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of the microbiota–gut–brain axis in maintaining a healthy status is well recognized. In this bidirectional flux, the influence of host hormones on gut bacteria is crucial. However, data on commensal/probiotics are scarce since most reports analyzed the effects of human bioactive compounds on opportunistic strains, highlighting the risk of increased pathogenicity under stimulation. The present investigation examined the modifications induced by 5HT, a tryptophan-derived molecule abundant in the intestine, on the probiotic Enterococcus faecium NCIMB10415. Specific phenotypic modifications concerning the probiotic potential and possible effects of treated bacteria on dendritic cells were explored together with the comparative soluble proteome evaluation. Increased resistance to bile salts and ampicillin in 5HT-stimulated conditions relate with overexpression of specific proteins (among which Zn-beta-lactamases, a Zn-transport protein and a protein involved in fatty acid incorporation into the membrane). Better auto-aggregating properties and biofilm-forming aptitude are consistent with enhanced QS peptide transport. Concerning interaction with the host, E. faecium NCIMB10415 enhanced dendritic cell maturation, but no significant differences were observed between 5HT-treated and untreated bacteria; meanwhile, after 5HT exposure, some moonlight proteins possibly involved in tissue adhesion were found in higher abundance. Finally, the finding in stimulated conditions of a higher abundance of VicR, a protein involved in two-component signal transduction system (VicK/R), suggests the existence of a possible surface receptor (VicK) for 5HT sensing in the strain studied. These overall data indicate that E. faecium NCIMB10415 modifies its physiology in response to 5HT by improving bacterial interactions and resistance to stressors.
Collapse
|
18
|
Yokoyama R, de Oliveira MVV, Kleven B, Maeda HA. The entry reaction of the plant shikimate pathway is subjected to highly complex metabolite-mediated regulation. THE PLANT CELL 2021; 33:671-696. [PMID: 33955484 PMCID: PMC8136874 DOI: 10.1093/plcell/koaa042] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/19/2020] [Indexed: 05/22/2023]
Abstract
The plant shikimate pathway directs bulk carbon flow toward biosynthesis of aromatic amino acids (AAAs, i.e. tyrosine, phenylalanine, and tryptophan) and numerous aromatic phytochemicals. The microbial shikimate pathway is feedback inhibited by AAAs at the first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DHS). However, AAAs generally do not inhibit DHS activities from plant extracts and how plants regulate the shikimate pathway remains elusive. Here, we characterized recombinant Arabidopsis thaliana DHSs (AthDHSs) and found that tyrosine and tryptophan inhibit AthDHS2, but not AthDHS1 or AthDHS3. Mixing AthDHS2 with AthDHS1 or 3 attenuated its inhibition. The AAA and phenylpropanoid pathway intermediates chorismate and caffeate, respectively, strongly inhibited all AthDHSs, while the arogenate intermediate counteracted the AthDHS1 or 3 inhibition by chorismate. AAAs inhibited DHS activity in young seedlings, where AthDHS2 is highly expressed, but not in mature leaves, where AthDHS1 is predominantly expressed. Arabidopsis dhs1 and dhs3 knockout mutants were hypersensitive to tyrosine and tryptophan, respectively, while dhs2 was resistant to tyrosine-mediated growth inhibition. dhs1 and dhs3 also had reduced anthocyanin accumulation under high light stress. These findings reveal the highly complex regulation of the entry reaction of the plant shikimate pathway and lay the foundation for efforts to control the production of AAAs and diverse aromatic natural products in plants.
Collapse
Affiliation(s)
- Ryo Yokoyama
- Department of Botany, University of Wisconsin–Madison, 430 Lincoln Dr. Madison, WI 53706, USA
| | - Marcos V V de Oliveira
- Department of Botany, University of Wisconsin–Madison, 430 Lincoln Dr. Madison, WI 53706, USA
| | - Bailey Kleven
- Department of Botany, University of Wisconsin–Madison, 430 Lincoln Dr. Madison, WI 53706, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin–Madison, 430 Lincoln Dr. Madison, WI 53706, USA
| |
Collapse
|
19
|
Simeth NA, Kinateder T, Rajendran C, Nazet J, Merkl R, Sterner R, König B, Kneuttinger AC. Towards Photochromic Azobenzene-Based Inhibitors for Tryptophan Synthase. Chemistry 2021; 27:2439-2451. [PMID: 33078454 PMCID: PMC7898615 DOI: 10.1002/chem.202004061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/16/2020] [Indexed: 01/25/2023]
Abstract
Light regulation of drug molecules has gained growing interest in biochemical and pharmacological research in recent years. In addition, a serious need for novel molecular targets of antibiotics has emerged presently. Herein, the development of a photocontrollable, azobenzene-based antibiotic precursor towards tryptophan synthase (TS), an essential metabolic multienzyme complex in bacteria, is presented. The compound exhibited moderately strong inhibition of TS in its E configuration and five times lower inhibition strength in its Z configuration. A combination of biochemical, crystallographic, and computational analyses was used to characterize the inhibition mode of this compound. Remarkably, binding of the inhibitor to a hitherto-unconsidered cavity results in an unproductive conformation of TS leading to noncompetitive inhibition of tryptophan production. In conclusion, we created a promising lead compound for combatting bacterial diseases, which targets an essential metabolic enzyme, and whose inhibition strength can be controlled with light.
Collapse
Affiliation(s)
- Nadja A. Simeth
- Institute for Organic ChemistryDepartment of Chemistry and PharmacyUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
- Stratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Thomas Kinateder
- Institute for Biophysics and Physical BiochemistryRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Chitra Rajendran
- Institute for Biophysics and Physical BiochemistryRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Julian Nazet
- Institute for Biophysics and Physical BiochemistryRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Rainer Merkl
- Institute for Biophysics and Physical BiochemistryRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Reinhard Sterner
- Institute for Biophysics and Physical BiochemistryRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Burkhard König
- Institute for Organic ChemistryDepartment of Chemistry and PharmacyUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Andrea C. Kneuttinger
- Institute for Biophysics and Physical BiochemistryRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| |
Collapse
|
20
|
|
21
|
Scarsella E, Segato J, Zuccaccia D, Swanson KS, Stefanon B. An application of nuclear magnetic resonance spectroscopy to study faecal canine metabolome. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1925602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Elisa Scarsella
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Jacopo Segato
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Daniele Zuccaccia
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Kelly S. Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bruno Stefanon
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| |
Collapse
|
22
|
Miyagi M, Wilson R, Saigusa D, Umeda K, Saijo R, Hager CL, Li Y, McCormick T, Ghannoum MA. Indole-3-acetic acid synthesized through the indole-3-pyruvate pathway promotes Candida tropicalis biofilm formation. PLoS One 2020; 15:e0244246. [PMID: 33332404 PMCID: PMC7746184 DOI: 10.1371/journal.pone.0244246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
We previously found that the elevated abundance of the fungus Candida tropicalis is positively correlated with the bacteria Escherichia coli and Serratia marcescens in Crohn’s disease patients and the three pathogens, when co-cultured, form a robust mixed-species biofilm. The finding suggests that these three pathogens communicate and promote biofilm formation, possibly through secretion of small signaling molecules. To identify candidate signaling molecules, we carried out a metabolomic analysis of the single-species and triple-species cultures of the three pathogens. This analysis identified 15 metabolites that were highly increased in the triple-species culture. One highly induced metabolite was indole-3-acetic acid (IAA), which has been shown to induce filamentation of certain fungi. We thus tested the effect of IAA on biofilm formation of C. tropicalis and demonstrated that IAA promotes biofilm formation of C. tropicalis. Then, we carried out isotope tracing experiments using 13C-labeled-tryptophan as a precursor to uncover the biosynthesis pathway of IAA in C. tropicalis. The results indicated that C. tropicalis synthesizes IAA through the indole-3-pyruvate pathway. Further studies using inhibitors of the indole-3-pyruvate pathway are warranted to decipher the mechanisms by which IAA influences biofilm formation.
Collapse
Affiliation(s)
- Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (MM); (MAG)
| | - Rachel Wilson
- Department of Dermatology, Center for Medical Mycology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Keiko Umeda
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Reina Saijo
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Christopher L. Hager
- Department of Dermatology, Center for Medical Mycology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yuejin Li
- Department of Dermatology, Center for Medical Mycology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Thomas McCormick
- Department of Dermatology, Center for Medical Mycology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mahmoud A. Ghannoum
- Department of Dermatology, Center for Medical Mycology, Case Western Reserve University, Cleveland, Ohio, United States of America
- University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- * E-mail: (MM); (MAG)
| |
Collapse
|
23
|
Hilario E, Fan L, Mueller LJ, Dunn MF. PCR Mutagenesis, Cloning, Expression, Fast Protein Purification Protocols and Crystallization of the Wild Type and Mutant Forms of Tryptophan Synthase. J Vis Exp 2020. [PMID: 33044464 DOI: 10.3791/61839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Structural studies with tryptophan synthase (TS) bienzyme complex (α2β2 TS) from Salmonella typhimurium have been performed to better understand its catalytic mechanism, allosteric behavior, and details of the enzymatic transformation of substrate to product in PLP-dependent enzymes. In this work, a novel expression system to produce the isolated α- and isolated β-subunit allowed the purification of high amounts of pure subunits and α2β2 StTS complex from the isolated subunits within 2 days. Purification was carried out by affinity chromatography followed by cleavage of the affinity tag, ammonium sulfate precipitation, and size exclusion chromatography (SEC). To better understand the role of key residues at the enzyme β-site, site-direct mutagenesis was performed in prior structural studies. Another protocol was created to purify the wild type and mutant α2β2 StTS complexes. A simple, fast and efficient protocol using ammonium sulfate fractionation and SEC allowed purification of α2β2 StTS complex in a single day. Both purification protocols described in this work have considerable advantages when compared with previous protocols to purify the same complex using PEG 8000 and spermine to crystalize the α2β2 StTS complex along the purification protocol. Crystallization of wild type and some mutant forms occurs under slightly different conditions, impairing the purification of some mutants using PEG 8000 and spermine. To prepare crystals suitable for x-ray crystallographic studies several efforts were made to optimize crystallization, crystal quality and cryoprotection. The methods presented here should be generally applicable for purification of tryptophan synthase subunits and wild type and mutant α2β2 StTS complexes.
Collapse
Affiliation(s)
- Eduardo Hilario
- Department of Chemistry, University of California-Riverside;
| | - Li Fan
- Department of Biochemistry, University of California-Riverside
| | | | - Michael F Dunn
- Department of Biochemistry, University of California-Riverside
| |
Collapse
|
24
|
Misra BB, Das V, Landi M, Abenavoli MR, Araniti F. Short-term effects of the allelochemical umbelliferone on Triticum durum L. metabolism through GC-MS based untargeted metabolomics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110548. [PMID: 32771160 DOI: 10.1016/j.plantsci.2020.110548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/21/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The present study used untargeted metabolomics to investigate the short-term metabolic changes induced in wheat seedlings by the specialized metabolite umbelliferone, an allelochemical. We used 10 day-old wheat seedlings treated with 104 μM umbelliferone over a time course experiment covering 6 time points (0 h, 6 h, 12 h, 24 h, 48 h, and 96 h), and compared the metabolomic changes to control (mock-treated) plants. Using gas chromatography mass spectrometry (GCMS)-based metabolomics, we obtained quantitative data on 177 metabolites that were derivatized (either derivatized singly or multiple times) or not, representing 139 non-redundant (unique) metabolites. Of these 139 metabolites, 118 were associated with a unique Human Metabolome Database (HMDB) identifier, while 113 were associated with a Kyoto Encyclopedia of Genes and Genomes (KEGG) identifier. Relative quantification of these metabolites across the time-course of umbelliferone treatment revealed 22 compounds (sugars, fatty acids, secondary metabolites, organic acids, and amino acids) that changed significantly (repeated measures ANOVA, P-value < 0.05) over time. Using multivariate partial least squares discriminant analysis (PLS-DA), we showed the grouping of samples based on time-course across the control and umbelliferone-treated plants, whereas the metabolite-metabolite Pearson correlations revealed tightly formed clusters of umbelliferone-derived metabolites, fatty acids, amino acids, and carbohydrates. Also, the time-course umbelliferone treatment revealed that phospho-l-serine, maltose, and dehydroquinic acid were the top three metabolites showing highest importance in discrimination among the time-points. Overall, the biochemical changes converge towards a mechanistic explanation of the plant metabolic responses induced by umbelliferone. In particular, the perturbation of metabolites involved in tryptophan metabolism, as well as the imbalance of the shikimate pathways, which are strictly interconnected, were significantly altered by the treatment, suggesting a possible mechanism of action of this natural compound.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, 27157, NC, USA.
| | - Vivek Das
- Novo Nordisk Research Center Seattle, Inc, Seattle, WA, USA
| | - M Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - M R Abenavoli
- Department AGRARIA, University Mediterranea of Reggio Calabria, Località Feo di Vito, SNC I-89124, Reggio Calabria RC, Italy
| | - Fabrizio Araniti
- Department AGRARIA, University Mediterranea of Reggio Calabria, Località Feo di Vito, SNC I-89124, Reggio Calabria RC, Italy.
| |
Collapse
|
25
|
Isolation and Antibacterial Activity of Indole Alkaloids from Pseudomonas aeruginosa UWI-1. Molecules 2020; 25:molecules25163744. [PMID: 32824432 PMCID: PMC7464872 DOI: 10.3390/molecules25163744] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 02/02/2023] Open
Abstract
In this study, we report the first isolation of three antibiotic indole alkaloid compounds from a Pseudomonad bacterium, Pseudomonas aeruginosa UWI-1. The bacterium was batch fermented in a modified Luria Broth medium and compounds were solvent extracted and isolated by bioassay-guided fractionation. The three compounds were identified as (1) tris(1H-indol-3-yl) methylium, (2) bis(indol-3-yl) phenylmethane, and (3) indolo (2, 1b) quinazoline-6, 12 dione. A combination of 1D and 2D NMR, high-resolution mass spectrometry data and comparison from related data from the literature was used to determine the chemical structures of the compounds. Compounds 1–3 were evaluated in vitro for their antimicrobial activities against a wide range of microorganisms using the broth microdilution technique. Compounds 1 and 2 displayed antibacterial activity against only Gram-positive pathogens, although 1 had significantly lower minimum inhibitory concentration (MIC) values than 2. Compound 3 displayed potent broad-spectrum antimicrobial activity against a range of Gram positive and negative bacteria. Several genes identified from the genome of P. aeruginosa UWI-1 were postulated to contribute to the biosynthesis of these compounds and we attempted to outline a possible route for bacterial synthesis. This study demonstrated the extended metabolic capability of Pseudomonas aeruginosa in synthesizing new chemotypes of bioactive compounds.
Collapse
|
26
|
Michalska K, Chang C, Maltseva NI, Jedrzejczak R, Robertson GT, Gusovsky F, McCarren P, Schreiber SL, Nag PP, Joachimiak A. Allosteric inhibitors of Mycobacterium tuberculosis tryptophan synthase. Protein Sci 2020; 29:779-788. [PMID: 31930594 PMCID: PMC7020977 DOI: 10.1002/pro.3825] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Global dispersion of multidrug resistant bacteria is very common and evolution of antibiotic-resistance is occurring at an alarming rate, presenting a formidable challenge for humanity. The development of new therapeuthics with novel molecular targets is urgently needed. Current drugs primarily affect protein, nucleic acid, and cell wall synthesis. Metabolic pathways, including those involved in amino acid biosynthesis, have recently sparked interest in the drug discovery community as potential reservoirs of such novel targets. Tryptophan biosynthesis, utilized by bacteria but absent in humans, represents one of the currently studied processes with a therapeutic focus. It has been shown that tryptophan synthase (TrpAB) is required for survival of Mycobacterium tuberculosis in macrophages and for evading host defense, and therefore is a promising drug target. Here we present crystal structures of TrpAB with two allosteric inhibitors of M. tuberculosis tryptophan synthase that belong to sulfolane and indole-5-sulfonamide chemical scaffolds. We compare our results with previously reported structural and biochemical studies of another, azetidine-containing M. tuberculosis tryptophan synthase inhibitor. This work shows how structurally distinct ligands can occupy the same allosteric site and make specific interactions. It also highlights the potential benefit of targeting more variable allosteric sites of important metabolic enzymes.
Collapse
Affiliation(s)
- Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
| | - Changsoo Chang
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
| | - Natalia I. Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
| | - Gregory T. Robertson
- Colorado State UniversityMycobacteria Research Laboratories, Department of Microbiology, Immunology and PathologyFort CollinsColorado
| | | | | | | | - Partha P. Nag
- Broad Institute of MIT and HarvardCambridgeMassachusetts
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIllinois
| |
Collapse
|
27
|
Michalska K, Kowiel M, Bigelow L, Endres M, Gilski M, Jaskolski M, Joachimiak A. 3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase. Acta Crystallogr D Struct Biol 2020; 76:166-175. [PMID: 32038047 PMCID: PMC7008512 DOI: 10.1107/s2059798320000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/08/2020] [Indexed: 02/10/2023] Open
Abstract
Tryptophan synthase catalyzes the last two steps of tryptophan biosynthesis in plants, fungi and bacteria. It consists of two protein chains, designated α and β, encoded by trpA and trpB genes, that function as an αββα complex. Structural and functional features of tryptophan synthase have been extensively studied, explaining the roles of individual residues in the two active sites in catalysis and allosteric regulation. TrpA serves as a model for protein-folding studies. In 1969, Jackson and Yanofsky observed that the typically monomeric TrpA forms a small population of dimers. Dimerization was postulated to take place through an exchange of structural elements of the monomeric chains, a phenomenon later termed 3D domain swapping. The structural details of the TrpA dimer have remained unknown. Here, the crystal structure of the Streptococcus pneumoniae TrpA homodimer is reported, demonstrating 3D domain swapping in a TIM-barrel fold for the first time. The N-terminal domain comprising the H0-S1-H1-S2 elements is exchanged, while the hinge region corresponds to loop L2 linking strand S2 to helix H2'. The structural elements S2 and L2 carry the catalytic residues Glu52 and Asp63. As the S2 element is part of the swapped domain, the architecture of the catalytic apparatus in the dimer is recreated from two protein chains. The homodimer interface overlaps with the α-β interface of the tryptophan synthase αββα heterotetramer, suggesting that the 3D domain-swapped dimer cannot form a complex with the β subunit. In the crystal, the dimers assemble into a decamer comprising two pentameric rings.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Marcin Kowiel
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Lance Bigelow
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Michael Endres
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Miroslaw Gilski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
28
|
Saha J, Saha BK, Pal Sarkar M, Roy V, Mandal P, Pal A. Comparative Genomic Analysis of Soil Dwelling Bacteria Utilizing a Combinational Codon Usage and Molecular Phylogenetic Approach Accentuating on Key Housekeeping Genes. Front Microbiol 2019; 10:2896. [PMID: 31921071 PMCID: PMC6928123 DOI: 10.3389/fmicb.2019.02896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/02/2019] [Indexed: 01/02/2023] Open
Abstract
Soil is a diversified and complex ecological niche, home to a myriad of microorganisms particularly bacteria. The physico-chemical complexities of soil results in a plethora of physiological variations to exist within the different types of soil dwelling bacteria, giving rise to a wide variation in genome structure and complexity. This serves as an attractive proposition to analyze and compare the genome of a large number soil bacteria to comprehend their genome complexity and evolution. In this study a combination of codon usage and molecular phylogenetics of the whole genome and key housekeeping genes like infB (translation initiation factor 2), trpB (tryptophan synthase, beta subunit), atpD (ATP synthase, beta subunit), and rpoB (RNA polymerase, beta subunit) of 92 soil bacterial species spread across the entire eubacterial domain and residing in different soil types was performed. The results indicated the direct relationship of genome size with codon bias and coding frequency in the studied bacteria. The codon usage profile demonstrated by the gene trpB was found to be relatively different from the rest of the housekeeping genes with a large number of bacteria having a greater percentage of genes with Nc values less than the Nc of trpB. The results from the overall codon usage bias profile also depicted that the codon usage bias in the key housekeeping genes of soil bacteria was majorly due to selectional pressure and not mutation. The analysis of hydrophobicity of the gene product encoded by the rpoB coding sequences demonstrated tight clustering across all the soil bacteria suggesting conservation of protein structure for maintenance of form and function. The phylogenetic affinities inferred using 16S rRNA gene and the housekeeping genes demonstrated conflicting signals with trpB gene being the noisiest one. The housekeeping gene atpD was found to depict the least amount of evolutionary change in the soil bacteria considered in this study except in two Clostridium species. The phylogenetic and codon usage analysis of the soil bacteria consistently demonstrated the relatedness of Azotobacter chroococcum with different species of the genus Pseudomonas.
Collapse
Affiliation(s)
- Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Barnan K. Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Monalisha Pal Sarkar
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Vivek Roy
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Parimal Mandal
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| |
Collapse
|
29
|
Kneuttinger AC, Zwisele S, Straub K, Bruckmann A, Busch F, Kinateder T, Gaim B, Wysocki VH, Merkl R, Sterner R. Light-Regulation of Tryptophan Synthase by Combining Protein Design and Enzymology. Int J Mol Sci 2019; 20:E5106. [PMID: 31618845 PMCID: PMC6829457 DOI: 10.3390/ijms20205106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 01/24/2023] Open
Abstract
The spatiotemporal control of enzymes by light is of growing importance for industrial biocatalysis. Within this context, the photo-control of allosteric interactions in enzyme complexes, common to practically all metabolic pathways, is particularly relevant. A prominent example of a metabolic complex with a high application potential is tryptophan synthase from Salmonella typhimurium (TS), in which the constituting TrpA and TrpB subunits mutually stimulate each other via a sophisticated allosteric network. To control TS allostery with light, we incorporated the unnatural amino acid o-nitrobenzyl-O-tyrosine (ONBY) at seven strategic positions of TrpA and TrpB. Initial screening experiments showed that ONBY in position 58 of TrpA (aL58ONBY) inhibits TS activity most effectively. Upon UV irradiation, ONBY decages to tyrosine, largely restoring the capacity of TS. Biochemical characterization, extensive steady-state enzyme kinetics, and titration studies uncovered the impact of aL58ONBY on the activities of TrpA and TrpB and identified reaction conditions under which the influence of ONBY decaging on allostery reaches its full potential. By applying those optimal conditions, we succeeded to directly light-activate TS(aL58ONBY) by a factor of ~100. Our findings show that rational protein design with a photo-sensitive unnatural amino acid combined with extensive enzymology is a powerful tool to fine-tune allosteric light-activation of a central metabolic enzyme complex.
Collapse
Affiliation(s)
- Andrea C Kneuttinger
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Stefanie Zwisele
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Kristina Straub
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Astrid Bruckmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Florian Busch
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Thomas Kinateder
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Barbara Gaim
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
30
|
Consalvi S, Scarpecci C, Biava M, Poce G. Mycobacterial tryptophan biosynthesis: A promising target for tuberculosis drug development? Bioorg Med Chem Lett 2019; 29:126731. [PMID: 31627992 DOI: 10.1016/j.bmcl.2019.126731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 12/25/2022]
Abstract
The biosynthetic pathways of amino acids are attractive targets for drug development against pathogens with an intracellular behavior like M. tuberculosis (Mtb). Indeed, while in the macrophages Mtb has restricted access to amino acids such as tryptophan (Trp). Auxotrophic Mtb strains, with mutations in the Trp biosynthetic pathway, showed reduced intracellular survival in cultured human and murine macrophages and failed to cause the disease in immunocompetent and immunocompromised mice. Herein we present recent efforts in the discovery of Trp biosynthesis inhibitors.
Collapse
Affiliation(s)
- Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Cristina Scarpecci
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Mariangela Biava
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
31
|
Bai ST, Sinha V, Kluwer AM, Linnebank PR, Abiri Z, Dydio P, Lutz M, de Bruin B, Reek JNH. Effector responsive hydroformylation catalysis. Chem Sci 2019; 10:7389-7398. [PMID: 31489161 PMCID: PMC6713872 DOI: 10.1039/c9sc02558h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/15/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a supramolecular rhodium complex that can form dimeric or monomeric Rh-species catalytically active in hydroformylation, depending on the binding of effectors within the integrated DIM-receptor. X-ray crystal structures, in situ (high-pressure (HP)) spectroscopy studies, and molecular modelling studies show that in the absence of effectors, the preferred Rh-species formed is the dimer, of which two ligands coordinate to two rhodium metals. Importantly, upon binding guest molecules, -effectors-, to the DIM-receptor under hydroformylation conditions, the monomeric Rh-active species is formed, as evidenced by a combination of in situ HP NMR and IR spectroscopy studies and molecular modelling. As the monomeric complex has different catalytic properties from the dimeric complex, we effectively generate a catalytic system of which the properties respond to the presence of effectors, reminiscent of how the properties of proteins are regulated in nature. Indeed, catalytic and kinetic experiments show that both the selectivity and activity of this supramolecular catalytic system can be influenced in the hydroformylation of 1-octene using acetate as an effector that shift the equilibrium from the dimeric to monomeric species.
Collapse
Affiliation(s)
- Shao-Tao Bai
- Homogeneous Supramolecular and Bio-inspired Catalysis , Van't Hoff Institute for Molecular Sciences (HIMS) , University of Amsterdam (UvA) , Science Park 904 , 1098 XH Amsterdam , The Netherlands .
| | - Vivek Sinha
- Homogeneous Supramolecular and Bio-inspired Catalysis , Van't Hoff Institute for Molecular Sciences (HIMS) , University of Amsterdam (UvA) , Science Park 904 , 1098 XH Amsterdam , The Netherlands .
| | | | - Pim R Linnebank
- Homogeneous Supramolecular and Bio-inspired Catalysis , Van't Hoff Institute for Molecular Sciences (HIMS) , University of Amsterdam (UvA) , Science Park 904 , 1098 XH Amsterdam , The Netherlands .
| | - Zohar Abiri
- InCatT B.V. , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Paweł Dydio
- Homogeneous Supramolecular and Bio-inspired Catalysis , Van't Hoff Institute for Molecular Sciences (HIMS) , University of Amsterdam (UvA) , Science Park 904 , 1098 XH Amsterdam , The Netherlands .
| | - Martin Lutz
- Bijvoet Center for Biomolecular Research , Utrecht University , The Netherlands
| | - Bas de Bruin
- Homogeneous Supramolecular and Bio-inspired Catalysis , Van't Hoff Institute for Molecular Sciences (HIMS) , University of Amsterdam (UvA) , Science Park 904 , 1098 XH Amsterdam , The Netherlands .
| | - Joost N H Reek
- Homogeneous Supramolecular and Bio-inspired Catalysis , Van't Hoff Institute for Molecular Sciences (HIMS) , University of Amsterdam (UvA) , Science Park 904 , 1098 XH Amsterdam , The Netherlands .
- InCatT B.V. , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| |
Collapse
|
32
|
Michalska K, Gale J, Joachimiak G, Chang C, Hatzos-Skintges C, Nocek B, Johnston SE, Bigelow L, Bajrami B, Jedrzejczak RP, Wellington S, Hung DT, Nag PP, Fisher SL, Endres M, Joachimiak A. Conservation of the structure and function of bacterial tryptophan synthases. IUCRJ 2019; 6:649-664. [PMID: 31316809 PMCID: PMC6608616 DOI: 10.1107/s2052252519005955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Tryptophan biosynthesis is one of the most characterized processes in bacteria, in which the enzymes from Salmonella typhimurium and Escherichia coli serve as model systems. Tryptophan synthase (TrpAB) catalyzes the final two steps of tryptophan biosynthesis in plants, fungi and bacteria. This pyridoxal 5'-phosphate (PLP)-dependent enzyme consists of two protein chains, α (TrpA) and β (TrpB), functioning as a linear αββα heterotetrameric complex containing two TrpAB units. The reaction has a complicated, multistep mechanism resulting in the β-replacement of the hydroxyl group of l-serine with an indole moiety. Recent studies have shown that functional TrpAB is required for the survival of pathogenic bacteria in macrophages and for evading host defense. Therefore, TrpAB is a promising target for drug discovery, as its orthologs include enzymes from the important human pathogens Streptococcus pneumoniae, Legionella pneumophila and Francisella tularensis, the causative agents of pneumonia, legionnaires' disease and tularemia, respectively. However, specific biochemical and structural properties of the TrpABs from these organisms have not been investigated. To fill the important phylogenetic gaps in the understanding of TrpABs and to uncover unique features of TrpAB orthologs to spearhead future drug-discovery efforts, the TrpABs from L. pneumophila, F. tularensis and S. pneumoniae have been characterized. In addition to kinetic properties and inhibitor-sensitivity data, structural information gathered using X-ray crystallo-graphy is presented. The enzymes show remarkable structural conservation, but at the same time display local differences in both their catalytic and allosteric sites that may be responsible for the observed differences in catalysis and inhibitor binding. This functional dissimilarity may be exploited in the design of species-specific enzyme inhibitors.
Collapse
Affiliation(s)
- Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Jennifer Gale
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Grazyna Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Changsoo Chang
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Catherine Hatzos-Skintges
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
| | - Boguslaw Nocek
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | - Lance Bigelow
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Besnik Bajrami
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Robert P. Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | - Deborah T. Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Partha P. Nag
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | | | - Michael Endres
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
33
|
Ammonia generation by tryptophan synthase drives a key genetic difference between genital and ocular Chlamydia trachomatis isolates. Proc Natl Acad Sci U S A 2019; 116:12468-12477. [PMID: 31097582 DOI: 10.1073/pnas.1821652116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A striking difference between genital and ocular clinical isolates of Chlamydia trachomatis is that only the former express a functional tryptophan synthase and therefore can synthesize tryptophan by indole salvage. Ocular isolates uniformly cannot use indole due to inactivating mutations within tryptophan synthase, indicating a selection against maintaining this enzyme in the ocular environment. Here, we demonstrate that this selection occurs in two steps. First, specific indole derivatives, produced by the human gut microbiome and present in serum, rapidly induce expression of C. trachomatis tryptophan synthase, even under conditions of tryptophan sufficiency. We demonstrate that these indole derivatives function by acting as de-repressors of C. trachomatis TrpR. Second, trp operon de-repression is profoundly deleterious when infected cells are in an indole-deficient environment, because in the absence of indole, tryptophan synthase deaminates serine to pyruvate and ammonia. We have used biochemical and genetic approaches to demonstrate that expression of wild-type tryptophan synthase is required for the bactericidal production of ammonia. Pertinently, although these indole derivatives de-repress the trpRBA operon of C. trachomatis strains with trpA or trpB mutations, no ammonia is produced, and no deleterious effects are observed. Our studies demonstrate that tryptophan synthase can catalyze the ammonia-generating β-elimination reaction within any live bacterium. Our results also likely explain previous observations demonstrating that the same indole derivatives inhibit the growth of other pathogenic bacterial species, and why high serum levels of these indole derivatives are favorable for the prognosis of diseased conditions associated with bacterial dysbiosis.
Collapse
|
34
|
Jazani NH, Savoj J, Lustgarten M, Lau WL, Vaziri ND. Impact of Gut Dysbiosis on Neurohormonal Pathways in Chronic Kidney Disease. Diseases 2019; 7:diseases7010021. [PMID: 30781823 PMCID: PMC6473882 DOI: 10.3390/diseases7010021] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a worldwide major health problem. Traditional risk factors for CKD are hypertension, obesity, and diabetes mellitus. Recent studies have identified gut dysbiosis as a novel risk factor for the progression CKD and its complications. Dysbiosis can worsen systemic inflammation, which plays an important role in the progression of CKD and its complications such as cardiovascular diseases. In this review, we discuss the beneficial effects of the normal gut microbiota, and then elaborate on how alterations in the biochemical environment of the gastrointestinal tract in CKD can affect gut microbiota. External factors such as dietary restrictions, medications, and dialysis further promote dysbiosis. We discuss the impact of an altered gut microbiota on neuroendocrine pathways such as the hypothalamus⁻pituitary⁻adrenal axis, the production of neurotransmitters and neuroactive compounds, tryptophan metabolism, and the cholinergic anti-inflammatory pathway. Finally, therapeutic strategies including diet modification, intestinal alpha-glucosidase inhibitors, prebiotics, probiotics and synbiotics are reviewed.
Collapse
Affiliation(s)
- Nima H Jazani
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| | - Javad Savoj
- Department of Internal Medicine, Riverside Community Hospital, University of California-Riverside School of Medicine, Riverside, CA 92501, USA.
| | - Michael Lustgarten
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | - Wei Ling Lau
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| | - Nosratola D Vaziri
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
35
|
Raboni S, Marchetti M, Faggiano S, Campanini B, Bruno S, Marchesani F, Margiotta M, Mozzarelli A. The Energy Landscape of Human Serine Racemase. Front Mol Biosci 2019; 5:112. [PMID: 30687716 PMCID: PMC6333871 DOI: 10.3389/fmolb.2018.00112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Human serine racemase is a pyridoxal 5′-phosphate (PLP)-dependent dimeric enzyme that catalyzes the reversible racemization of L-serine and D-serine and their dehydration to pyruvate and ammonia. As D-serine is the co-agonist of the N-methyl-D-aspartate receptors for glutamate, the most abundant excitatory neurotransmitter in the brain, the structure, dynamics, function, regulation and cellular localization of serine racemase have been investigated in detail. Serine racemase belongs to the fold-type II of the PLP-dependent enzyme family and structural models from several orthologs are available. The comparison of structures of serine racemase co-crystallized with or without ligands indicates the presence of at least one open and one closed conformation, suggesting that conformational flexibility plays a relevant role in enzyme regulation. ATP, Mg2+, Ca2+, anions, NADH and protein interactors, as well as the post-translational modifications nitrosylation and phosphorylation, finely tune the racemase and dehydratase activities and their relative reaction rates. Further information on serine racemase structure and dynamics resulted from the search for inhibitors with potential therapeutic applications. The cumulative knowledge on human serine racemase allowed obtaining insights into its conformational landscape and into the mechanisms of cross-talk between the effector binding sites and the active site.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Council, Pisa, Italy
| | | | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Council, Pisa, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
36
|
Ihekweazu FD, Versalovic J. Development of the Pediatric Gut Microbiome: Impact on Health and Disease. Am J Med Sci 2018; 356:413-423. [PMID: 30384950 PMCID: PMC6268214 DOI: 10.1016/j.amjms.2018.08.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota are important in human growth and development. Microbial composition may yield insights into the temporal development of microbial communities and vulnerabilities to disorders of microbial ecology such as recurrent Clostridium difficile infection. Discoveries of key microbiome features of carbohydrate and amino acid metabolism are lending new insights into possible therapies or preventative strategies for inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). In this review, we summarize the current understanding of the development of the pediatric gastrointestinal microbiome, the influence of the microbiome on the developing brain through the gut-brain axis, and the impact of dysbiosis on disease development. Dysbiosis is explored in the context of pediatric allergy and asthma, recurrent C. difficile infection, IBD, IBS, and metabolic disorders. The central premise is that the human intestinal microbiome plays a vital role in health and disease, beginning in the prenatal period and extending throughout childhood.
Collapse
Affiliation(s)
- Faith D. Ihekweazu
- Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Texas Children’s Hospital, 1102 Bates St., Houston, TX, 77030, USA.
| | - James Versalovic
- Pediatric Pathology and Immunology, Baylor College of Medicine, Texas Children’s Hospital 1102 Bates St., Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Tu P, Bian X, Chi L, Gao B, Ru H, Knobloch TJ, Weghorst CM, Lu K. Characterization of the Functional Changes in Mouse Gut Microbiome Associated with Increased Akkermansia muciniphila Population Modulated by Dietary Black Raspberries. ACS OMEGA 2018; 3:10927-10937. [PMID: 30288460 PMCID: PMC6166222 DOI: 10.1021/acsomega.8b00064] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Gut microbiome plays an essential role in host health through host-gut microbiota metabolic interactions. Desirable modulation of beneficial gut bacteria, such as Akkermansia muciniphila, can confer health benefits by altering microbiome-related metabolic profiles. The purpose of this study is to examine the effects of a black raspberry-rich diet to reshape the gut microbiome by selectively boosting A. muciniphila population in C57BL/6J mice. Remarkable changes of the mouse gut microbiome were revealed at both compositional and functional levels with an expected increase of A. muciniphila in concert with a profound impact on multiple gut microbiome-related functions, including vitamin biosynthesis, aromatic amino acid metabolism, carbohydrate metabolism, and oxidative stress. These functional alterations in the gut microbiome by an easily accessed freeze-dried black raspberry-supplemented diet may provide novel insights on the improvement of human health via gut microbiome modulation.
Collapse
Affiliation(s)
- Pengcheng Tu
- Department
of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27519, United States
| | - Xiaoming Bian
- Department
of Environmental Health Science, University
of Georgia, Athens, Georgia 30602, United States
| | - Liang Chi
- Department
of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27519, United States
| | - Bei Gao
- Department
of Environmental Health Science, University
of Georgia, Athens, Georgia 30602, United States
| | - Hongyu Ru
- Department
of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27519, United States
| | - Thomas J. Knobloch
- Division of Environmental
Health Sciences, College of Public Health and Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher M. Weghorst
- Division of Environmental
Health Sciences, College of Public Health and Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kun Lu
- Department
of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27519, United States
| |
Collapse
|
38
|
Schramma KR, Forneris CC, Caruso A, Seyedsayamdost MR. Mechanistic Investigations of Lysine-Tryptophan Cross-Link Formation Catalyzed by Streptococcal Radical S-Adenosylmethionine Enzymes. Biochemistry 2018; 57:461-468. [PMID: 29320164 DOI: 10.1021/acs.biochem.7b01147] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptide is a ribosomally synthesized and post-translationally modified peptide with a unique cyclization motif consisting of an intramolecular lysine-tryptophan cross-link. Three radical S-adenosylmethionine enzymes, StrB, AgaB, and SuiB from different species of Streptococcus, have been shown to install this modification onto their respective precursor peptides in a leader-dependent fashion. Herein, we conduct detailed investigations to differentiate among several plausible mechanistic proposals, specifically addressing radical versus electrophilic addition to the indole during cross-link formation, the role of substrate side chains in binding in the enzyme active site, and the identity of the catalytic base in the reaction cycle. Our results are consistent with a radical electrophilic aromatic substitution mechanism for the key carbon-carbon bond-forming step. They also elaborate on other mechanistic features that underpin this unique and synthetically challenging post-translational modification.
Collapse
Affiliation(s)
- Kelsey R Schramma
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Clarissa C Forneris
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Alessio Caruso
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States.,Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
39
|
Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J Vasc Surg 2017; 68:1552-1562.e7. [PMID: 29248242 DOI: 10.1016/j.jvs.2017.09.029] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/17/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Multiple studies have shown that gut microbes contribute to atherosclerosis, and there is mounting evidence that microbial metabolism of dietary nutrients influences pathophysiology. We hypothesized that indole- and phenyl-derived metabolites that originate solely or in part from bacterial sources would differ between patients with advanced atherosclerosis and age- and sex-matched controls without clinically apparent atherosclerosis. METHODS Plasma from the advanced atherosclerosis cohort (n = 100) was from patients who underwent carotid endarterectomy, open infrainguinal leg revascularization, or major leg amputation for critical limb ischemia. The controls (n = 22) were age- and sex-matched participants who had no peripheral arterial disease or history of stroke or myocardial infarction. Patients with chronic kidney disease were excluded. Metabolites and internal standards were measured using high-performance liquid chromatography and tandem mass spectrometry. RESULTS Plasma metabolite concentrations differed significantly between the advanced atherosclerosis and control cohorts. After adjustment for traditional atherosclerosis risk factors, indole (odds ratio [OR], 0.84; 95% confidence interval [CI], 0.75-0.95; P = .004), tryptophan (OR, <0.001; 95% CI, <0.001-0.003; P < .001), indole-3-propionic acid (OR, 0.27; 95% CI, 0.019-0.91; P = .02), and indole-3-aldehyde (OR, 0.12; 95% CI, 0.014-0.92; P = .04) concentrations negatively associated with advanced atherosclerosis, whereas the kynurenine/tryptophan ratio (OR, 61.7; 95% CI, 1.9->999; P = .02) was positively associated. Furthermore, tryptophan and indole-3-propionic acid concentrations (Spearman coefficients of 0.63 and 0.56, respectively; P < .001) correlated with the ankle-brachial index, a surrogate for overall atherosclerotic disease burden. Fourteen patients experienced a major postoperative cardiac complication within 30 days in the advanced atherosclerosis cohort, which was associated with baseline kynurenine/tryptophan ratio (P = .001) and hippuric acid (P = .03). In a multivariate analysis, only the kynurenine/tryptophan ratio remained significantly associated with a postoperative cardiac complication (OR, 44.1; 95% CI, 3.3-587.1; P = .004). Twenty patients in the advanced atherosclerosis cohort experienced a major adverse cardiac event during the follow-up period, which was associated with hippuric acid (P = .002) and the kynurenine/tryptophan ratio (P < .001) at baseline. Both hippuric acid and the kynurenine/tryptophan ratio were independently associated with a major adverse cardiac event in multivariate analyses that included diabetes mellitus. CONCLUSIONS Specific microbe-derived metabolite signatures associate with advanced human atherosclerosis and postoperative cardiac complications. We suggest that these metabolites are potential novel biomarkers for atherosclerotic disease burden and that further investigation into mechanistic links between defined microbial metabolic pathways and cardiovascular disease is warranted.
Collapse
|
40
|
Loutchko D, Eisbach M, Mikhailov AS. Stochastic thermodynamics of a chemical nanomachine: The channeling enzyme tryptophan synthase. J Chem Phys 2017; 146:025101. [DOI: 10.1063/1.4973544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 2017; 112:399-412. [DOI: 10.1016/j.neuropharm.2016.07.002] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
|
42
|
Asai T, Matsukawa T, Kajiyama S. Metabolomic analysis of primary metabolites in citrus leaf during defense responses. J Biosci Bioeng 2016; 123:376-381. [PMID: 27789172 DOI: 10.1016/j.jbiosc.2016.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 12/18/2022]
Abstract
Mechanical damage is one of the unavoidable environmental stresses to plant growth and development. Plants induce a variety of reactions which defend against natural enemies and/or heal the wounded sites. Jasmonic acid (JA) and salicylic acid (SA), defense-related plant hormones, are well known to be involved in induction of defense reactions and play important roles as signal molecules. However, defense related metabolites are so numerous and diverse that roles of individual compounds are still to be elucidated. In this report, we carried out a comprehensive analysis of metabolic changes during wound response in citrus plants which are one of the most commercially important fruit tree families. Changes in amino acid, sugar, and organic acid profiles in leaves were surveyed after wounding, JA and SA treatments using gas chromatography-mass spectrometry (GC/MS) in seven citrus species, Citrus sinensis, Citrus limon, Citrus paradisi, Citrus unshiu, Citrus kinokuni, Citrus grandis, and Citrus hassaku. GC/MS data were applied to multivariate analyses including hierarchical cluster analysis (HCA), primary component analysis (PCA), and orthogonal partial least squares-discriminant analysis (OPLS-DA) to extract stress-related compounds. HCA showed the amino acid cluster including phenylalanine and tryptophan, suggesting that amino acids in this cluster are concertedly regulated during responses against treatments. OPLS-DA exhibited that tryptophan was accumulated after wounding and JA treatments in all species tested, while serine was down regulated. Our results suggest that tryptophan and serine are common biomarker candidates in citrus plants for wound stress.
Collapse
Affiliation(s)
- Tomonori Asai
- Graduated School of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Tetsuya Matsukawa
- Graduated School of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan; Experimental Farm, Kinki University, Yuasa-cho, Arida-gun, Wakayama, 643-0004, Japan
| | - Shin'ichiro Kajiyama
- Graduated School of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan.
| |
Collapse
|
43
|
Loutchko D, Gonze D, Mikhailov AS. Single-Molecule Stochastic Analysis of Channeling Enzyme Tryptophan Synthase. J Phys Chem B 2016; 120:2179-86. [PMID: 26863529 DOI: 10.1021/acs.jpcb.5b12229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The channeling enzyme tryptophan synthase provides a paradigmatic example of a chemical nanomachine. It possesses two active centers and, as a single molecule, catalyzes 13 different reaction steps with a complex pattern of allosteric regulation and with an intermediate product channeled from one active center to another. Here, the first single-molecule stochastic model of the enzyme is proposed and analyzed. All its transition rate constants were deduced from the experimental data available, and no fitting parameters were thus employed. Numerical simulations reveal strong correlations in the states of the active centers and the emergent synchronization of intramolecular processes in tryptophan synthase.
Collapse
Affiliation(s)
- Dimitri Loutchko
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society , 14195 Berlin, Germany
| | - Didier Gonze
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles , 1050 Brussels, Belgium
| | - Alexander S Mikhailov
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society , 14195 Berlin, Germany.,Department of Mathematical and Life Sciences, Hiroshima University , 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
44
|
Fernandes JDS, Martho K, Tofik V, Vallim MA, Pascon RC. The Role of Amino Acid Permeases and Tryptophan Biosynthesis in Cryptococcus neoformans Survival. PLoS One 2015; 10:e0132369. [PMID: 26162077 PMCID: PMC4498599 DOI: 10.1371/journal.pone.0132369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/14/2015] [Indexed: 01/25/2023] Open
Abstract
Metabolic diversity is an important factor during microbial adaptation to different environments. Among metabolic processes, amino acid biosynthesis has been demonstrated to be relevant for survival for many microbial pathogens, whereas the association between pathogenesis and amino acid uptake and recycling are less well-established. Cryptococcus neoformans is an opportunistic fungal pathogen with many habitats. As a result, it faces frequent metabolic shifts and challenges during its life cycle. Here we studied the C. neoformans tryptophan biosynthetic pathway and found that the pathway is essential. RNAi indicated that interruptions in the biosynthetic pathway render strains inviable. However, auxotroph complementation can be partially achieved by tryptophan uptake when a non preferred nitrogen source and lower growth temperature are applied, suggesting that amino acid permeases may be the target of nitrogen catabolism repression (NCR). We used bioinformatics to search for amino acid permeases in the C. neoformans and found eight potential global permeases (AAP1 to AAP8). The transcriptional profile of them revealed that they are subjected to regulatory mechanisms which are known to respond to nutritional status in other fungi, such as (i) quality of nitrogen (Nitrogen Catabolism Repression, NCR) and carbon sources (Carbon Catabolism Repression, CCR), (ii) amino acid availability in the extracellular environment (SPS-sensing) and (iii) nutritional deprivation (Global Amino Acid Control, GAAC). This study shows that C. neoformans has fewer amino acid permeases than other model yeasts, and that these proteins may be subjected to complex regulatory mechanisms. Our data suggest that the C. neoformans tryptophan biosynthetic pathway is an excellent pharmacological target. Furthermore, inhibitors of this pathway cause Cryptococcus growth arrest in vitro.
Collapse
Affiliation(s)
- João Daniel Santos Fernandes
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Laboratório de Interações Microbianas (Laboratory 29), Rua Arthur Ridel, 275, 09972–270, Bairro Eldorado, Diadema, SP, Brazil
- Universidade de São Paulo, Avenida Prof. Lineu Prestes, 2415 Edifício ICB – III, Cidade Universitária, CEP 05508–900, São Paulo, SP, Brazil
| | - Kevin Martho
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Laboratório de Interações Microbianas (Laboratory 29), Rua Arthur Ridel, 275, 09972–270, Bairro Eldorado, Diadema, SP, Brazil
| | - Veridiana Tofik
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Laboratório de Interações Microbianas (Laboratory 29), Rua Arthur Ridel, 275, 09972–270, Bairro Eldorado, Diadema, SP, Brazil
| | - Marcelo A. Vallim
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Laboratório de Interações Microbianas (Laboratory 29), Rua Arthur Ridel, 275, 09972–270, Bairro Eldorado, Diadema, SP, Brazil
| | - Renata C. Pascon
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Laboratório de Interações Microbianas (Laboratory 29), Rua Arthur Ridel, 275, 09972–270, Bairro Eldorado, Diadema, SP, Brazil
- * E-mail:
| |
Collapse
|
45
|
Zhang W, Zhang H, Zhang T, Fan H, Hao Q. Protein-complex structure completion using IPCAS (Iterative Protein Crystal structure Automatic Solution). ACTA ACUST UNITED AC 2015; 71:1487-92. [PMID: 26143920 DOI: 10.1107/s1399004715008597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/02/2015] [Indexed: 11/10/2022]
Abstract
Protein complexes are essential components in many cellular processes. In this study, a procedure to determine the protein-complex structure from a partial molecular-replacement (MR) solution is demonstrated using a direct-method-aided dual-space iterative phasing and model-building program suite, IPCAS (Iterative Protein Crystal structure Automatic Solution). The IPCAS iteration procedure involves (i) real-space model building and refinement, (ii) direct-method-aided reciprocal-space phase refinement and (iii) phase improvement through density modification. The procedure has been tested with four protein complexes, including two previously unknown structures. It was possible to use IPCAS to build the whole complex structure from one or less than one subunit once the molecular-replacement method was able to give a partial solution. In the most challenging case, IPCAS was able to extend to the full length starting from less than 30% of the complex structure, while conventional model-building procedures were unsuccessful.
Collapse
Affiliation(s)
- Weizhe Zhang
- Department of Physiology, University of Hong Kong, Hong Kong
| | - Hongmin Zhang
- Department of Physiology, University of Hong Kong, Hong Kong
| | - Tao Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | - Haifu Fan
- Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | - Quan Hao
- Department of Physiology, University of Hong Kong, Hong Kong
| |
Collapse
|
46
|
Abstract
Covering: up to 2014. Prenylated indole alkaloids comprise a large and structurally diverse family of natural products that often display potent biological activities. In recent years a large family of prenyltransferases that install prenyl groups onto the indole core have been discovered. While the vast majority of these enzymes are evolutionarily related and share a common protein fold, they are remarkably versatile in their ability to catalyze reverse and normal prenylations at all positions on the indole ring. This highlight article will focus on recent studies of the mechanisms utilized by indole prenyltransferases. While all of the prenylation reactions may follow a direct electrophilic aromatic substitution mechanism, studies of structure and reactivity suggest that in some cases prenylation may first occur at the nucleophilic C-3 position, and subsequent rearrangements then generate the final product.
Collapse
Affiliation(s)
- Martin E Tanner
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, V6T 1Z1, British Columbia, Canada.
| |
Collapse
|
47
|
Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Irritable bowel syndrome: A microbiome-gut-brain axis disorder? World J Gastroenterol 2014; 20:14105-14125. [PMID: 25339800 PMCID: PMC4202342 DOI: 10.3748/wjg.v20.i39.14105] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/18/2014] [Accepted: 05/26/2014] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is an extremely prevalent but poorly understood gastrointestinal disorder. Consequently, there are no clear diagnostic markers to help diagnose the disorder and treatment options are limited to management of the symptoms. The concept of a dysregulated gut-brain axis has been adopted as a suitable model for the disorder. The gut microbiome may play an important role in the onset and exacerbation of symptoms in the disorder and has been extensively studied in this context. Although a causal role cannot yet be inferred from the clinical studies which have attempted to characterise the gut microbiota in IBS, they do confirm alterations in both community stability and diversity. Moreover, it has been reliably demonstrated that manipulation of the microbiota can influence the key symptoms, including abdominal pain and bowel habit, and other prominent features of IBS. A variety of strategies have been taken to study these interactions, including probiotics, antibiotics, faecal transplantations and the use of germ-free animals. There are clear mechanisms through which the microbiota can produce these effects, both humoral and neural. Taken together, these findings firmly establish the microbiota as a critical node in the gut-brain axis and one which is amenable to therapeutic interventions.
Collapse
|
48
|
Marchetti M, Bruno S, Campanini B, Bettati S, Peracchi A, Mozzarelli A. Regulation of human serine racemase activity and dynamics by halides, ATP and malonate. Amino Acids 2014; 47:163-73. [PMID: 25331425 DOI: 10.1007/s00726-014-1856-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/09/2014] [Indexed: 02/03/2023]
Abstract
D-Serine is a non-proteinogenic amino acid that acts as a co-agonist of the NMDA receptors in the central nervous system. D-Serine is produced by human serine racemase (hSR), a homodimeric pyridoxal 5'-phosphate (PLP)-dependent enzyme that also catalyzes the physiologically relevant β-elimination of both L- and D-serine to pyruvate and ammonia. After improving the protein purification yield and stability, which had so far limited the biochemical characterization of hSR, we found that the catalytic activity is affected by halides, in the order fluoride > chloride > bromide. On the contrary, iodide elicited a complete inhibition, accompanied by a modulation of the tautomeric equilibrium of the internal aldimine. We also investigated the reciprocal effects of ATP and malonate, an inhibitor that reversibly binds at the active site, 20 Å away from the ATP-binding site. ATP increased ninefold the affinity of hSR for malonate and malonate increased 100-fold that of ATP, confirming an allosteric interaction between the two binding sites. To further investigate this allosteric communication, we probed the active site accessibility by quenching of the coenzyme fluorescence in the absence and presence of ATP. We found that ATP stabilizes a closed conformation of the external aldimine Schiff base, suggesting a possible mechanism for ATP-induced hSR activation.
Collapse
|
49
|
Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 2014; 277:32-48. [PMID: 25078296 DOI: 10.1016/j.bbr.2014.07.027] [Citation(s) in RCA: 1253] [Impact Index Per Article: 113.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 12/14/2022]
Abstract
The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders.
Collapse
|
50
|
Pang J, Scrutton NS, Sutcliffe MJ. Quantum Mechanics/Molecular Mechanics Studies on the Mechanism of Action of Cofactor Pyridoxal 5′-Phosphate in Ornithine 4,5-Aminomutase. Chemistry 2014; 20:11390-401. [DOI: 10.1002/chem.201402759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Indexed: 02/02/2023]
|