1
|
Yue Y, Chan W, Zhang J, Liu J, Wang M, Hao L, Wang J. Activation of receptor-interacting protein 3-mediated necroptosis accelerates periodontitis in mice. Oral Dis 2024; 30:2485-2496. [PMID: 37518945 DOI: 10.1111/odi.14693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE To investigate the involvement and role of receptor-interacting protein 3 (RIP3)-mediated necroptosis in periodontitis. METHODS A periodontitis murine model was established by oral infection with Porphyromonas gingivalis, and activation of necroptosis pathway was identified by immunohistochemistry. Adeno-associated virus was used to knock down Rip3 and the effect of Rip3 knockdown on periodontal inflammation was examined by Micro-CT, qRT-PCR and histological staining. In vitro, P. gingivalis-LPS was used to infect fibroblast cell line L929 and siRNA was used to knock down Rip3. Necroptosis pathway signalling and inflammation in cells were detected by cell viability and death assay, Western Blot, qRT-PCR and immunofluorescence analysis. RESULTS Phosphorylation of RIP3 and mixed lineage kinase domain-like protein (MLKL) was increased in the periodontal ligament of mice infected with P. gingivalis. RIP3 knockdown reduced osteoclastogenesis and inflammatory cytokines in the periodontal area, and alleviated alveolar bone loss in vivo. In vitro, P. gingivalis-LPS-induced RIP3-mediated necroptosis in L929 cells, and knockdown of RIP3 by siRNA decreased the expression of inflammatory cytokines. CONCLUSION RIP3-mediated necroptosis is activated in periodontitis and blocking necroptosis alleviates disease progression, indicating that RIP3 may be a potential target for periodontitis treatment.
Collapse
Affiliation(s)
- Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weicheng Chan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhang
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jie Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiajia Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Tashkandi HM, Althagafy HS, Jaber FA, Alamri T, Al-Abbas NS, Shaer NA, Harakeh S, Hassanein EHM. Vinpocetine mitigates methotrexate-induced duodenal intoxication by modulating NF-κB, JAK1/STAT-3, and RIPK1/RIPK3/MLKL signals. Immunopharmacol Immunotoxicol 2024; 46:11-19. [PMID: 37493389 DOI: 10.1080/08923973.2023.2239491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES Methotrexate (MTX) is an antimetabolite agent widely used to manage a variety of tumors and autoimmune diseases. Nonetheless, MTX-induced intestinal intoxication is a serious adverse effect limiting its clinical utility. Inflammation and oxidative stress are possible mechanisms for MTX-induced intestinal toxicity. Vinpocetine (VNP) is a derivative of the alkaloid vincamine with potent anti-inflammatory and antioxidant effects. The current study investigated the protective intestinal impact of VNP in attenuating MTX-induced intestinal intoxication in rats. MATERIALS AND METHODS VNP was administered orally in a dose of 20 mg/kg, while MTX was injected intraperitoneal in a dose of 20 mg/kg. RESULTS VNP administration attenuated drastic histological changes induced by MTX and preserved both normal villus and crypt histology. VNP significantly attenuated oxidative injury by upregulating intestinal Nrf2 and HO-1 expression. VNP attenuated inflammation by reducing MPO, NO2-, TNF-α, and IL-1β levels mediated by downregulating NF-κB, NDAPH-oxidase, IRF3, p-JAK-1, and p-STAT-3 expressions. Moreover, VNP potently counteracted intestinal necroptosis by effectively downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins. CONCLUSION Therefore, VNP may represent a promising approach that can attenuate intestinal toxicity in patients receiving MTX.
Collapse
Affiliation(s)
- Hanaa M Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nouf S Al-Abbas
- Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nehad A Shaer
- Department of Chemistry, Al Lieth University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
3
|
Gallemí-Pérez A, Tarantola M. Electric Cell-Substrate Impedance Sensing as a Tool to Characterize Wound Healing Dynamics. Methods Mol Biol 2024; 2828:119-145. [PMID: 39147975 DOI: 10.1007/978-1-0716-4023-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The electric cell-substrate impedance sensing (ECIS) is a well-established technique that allows for the real-time monitoring of cell cultures growing on gold-electrodes embedded in culture dishes. Its foundation lays on the insulating effect that cells present against the free-flow of electrons, as these passive electrical properties generate a characteristic complex impedance spectrum when a small-amplitude, non-invasive alternating current (AC) is provided through the electrodes, the living cells, and the culture media in the culture ware. In addition, it possesses the ability to create a wound that is highly confined to the electrode area by simply increasing the amplitude of the AC current in dependence of the pre-resistor strength for a defined pulse duration and at a specific frequency. Therefore, it represents a controlled and reproducible tool to carry out in vitro wound healing experiments. Accordingly, in this methods protocol, the use of the ECIS will be described in the context of the wound healing research: cardiac 3T3 fibroblasts will be wounded and their recovery dynamics analyzed based on the typical methodologies applied to the processing of ECIS data. In addition, cellular micromotions will be evaluated. Finally, fluorescence immunostaining of ECIS samples will be described in order to showcase the potential of the ECIS in combination with other well-established techniques to add further knowledge depth to the understanding of the complex wound healing dynamics.
Collapse
Affiliation(s)
- Aina Gallemí-Pérez
- Max Planck Institute for Dynamics and Self-Organisation, Göttingen, Germany.
| | - Marco Tarantola
- Max Planck Institute for Dynamics and Self-Organisation, Göttingen, Germany
| |
Collapse
|
4
|
Zhao WJ, Fan CL, Hu XM, Ban XX, Wan H, He Y, Zhang Q, Xiong K. Regulated Cell Death of Retinal Ganglion Cells in Glaucoma: Molecular Insights and Therapeutic Potentials. Cell Mol Neurobiol 2023; 43:3161-3178. [PMID: 37338781 PMCID: PMC11410022 DOI: 10.1007/s10571-023-01373-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Glaucoma is a group of diseases characterized by the degeneration of retinal ganglion cells (RGCs) and progressive, irreversible vision loss. High intraocular pressure (IOP) heightens the likelihood of glaucoma and correlates with RGC loss. While the current glaucoma therapy prioritizes lower the IOP; however, RGC, and visual loss may persist even when the IOP is well-controlled. As such, discovering and creating IOP-independent neuroprotective strategies for safeguard RGCs is crucial for glaucoma management. Investigating and clarifying the mechanism behind RGC death to counteract its effects is a promising direction for glaucoma control. Empirical studies of glaucoma reveal the role of multiple regulated cell death (RCD) pathways in RGC death. This review delineates the RCD of RGCs following IOP elevation and optic nerve damage and discusses the substantial benefits of mitigating RCD in RGCs in preserving visual function.
Collapse
Affiliation(s)
- Wen-Juan Zhao
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Chun-Ling Fan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China
| | - Ye He
- Changsha Aier Eye Hospital, Hunan Province, No. 188, Furong Road, Furong District, Changsha City, 410015, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Hunan Province, No. 172, Tongzipo Road, Yuelu District, Changsha City, 410013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 410013, China.
| |
Collapse
|
5
|
Dvoriantchikova G, Adis E, Lypka K, Ivanov D. Various Forms of Programmed Cell Death Are Concurrently Activated in the Population of Retinal Ganglion Cells after Ischemia and Reperfusion. Int J Mol Sci 2023; 24:9892. [PMID: 37373037 DOI: 10.3390/ijms24129892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Retinal ischemia-reperfusion (IR)-which ultimately results in retinal ganglion cell (RGC) death-is a common cause of visual impairment and blindness worldwide. IR results in various types of programmed cell death (PCD), which are of particular importance since they can be prevented by inhibiting the activity of their corresponding signaling cascades. To study the PCD pathways in ischemic RGCs, we used a mouse model of retinal IR and a variety of approaches including RNA-seq analysis, knockout animals, and animals treated with an iron chelator. In our RNA-seq analysis, we utilized RGCs isolated from retinas 24 h after IR. In ischemic RGCs, we found increased expression of many genes that regulate apoptosis, necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos. Our data indicate that genetic ablation of death receptors protects RGCs from IR. We showed that the signaling cascades regulating ferrous iron (Fe2+) metabolism undergo significant changes in ischemic RGCs, leading to retinal damage after IR. This data suggests that the activation of death receptors and increased Fe2+ production in ischemic RGCs promote the simultaneous activation of apoptosis, necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos pathways. Thus, a therapy is needed that concurrently regulates the activity of the multiple PCD pathways to reduce RGC death after IR.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Emily Adis
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karin Lypka
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
6
|
Furuta Y, Zhou Z. How do necrotic cells expose phosphatidylserine to attract their predators—What’s unique and what’s in common with apoptotic cells. Front Cell Dev Biol 2023; 11:1170551. [PMID: 37091984 PMCID: PMC10113483 DOI: 10.3389/fcell.2023.1170551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Phosphatidylserine (PS) is a lipid component of the plasma membrane. It is asymmetrically distributed to the inner leaflet in live cells. In cells undergoing apoptosis, phosphatidylserine is exposed to the outer surfaces. The exposed phosphatidylserine acts as an evolutionarily conserved “eat-me” signal that attracts neighboring engulfing cells in metazoan organisms, including the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and mammals. During apoptosis, the exposure of phosphatidylserine to the outer surface of a cell is driven by the membrane scramblases and flippases, the activities of which are regulated by caspases. Cells undergoing necrosis, a kind of cell death frequently associated with cellular injuries and morphologically distinct from apoptosis, were initially believed to allow passive exposure of phosphatidylserine through membrane rupture. Later studies revealed that necrotic cells actively expose phosphatidylserine before any rupture occurs. A recent study in C. elegans further reported that the calcium ion (Ca2+) plays an essential role in promoting the exposure of phosphatidylserine on the surfaces of necrotic cells. These findings indicate that necrotic and apoptotic cells, which die through different molecular mechanisms, use common and unique mechanisms for promoting the exposure of the same “eat me” signal. This article will review the mechanisms regulating the exposure of phosphatidylserine on the surfaces of necrotic and apoptotic cells and highlight their similarities and differences.
Collapse
|
7
|
Soliman NA, Abdel Ghafar MT, AbuoHashish NA, Ibrahim MA, Eid AM, El-Gohary RM, Abo El Gheit RE, Elshamy AM. The Possible Role of Naringenin in the Prevention of Alcohol-Induced Neurochemical and Neurobehavioral Deficits. Neurochem Res 2023; 48:537-550. [PMID: 36242717 PMCID: PMC9892097 DOI: 10.1007/s11064-022-03775-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/05/2023]
Abstract
Chronic alcohol consumption is associated with progressive/irreversible neurodegeneration. However, there is not a clear understanding of its discrete pathophysiology or therapeutic intervention. The present study aimed to investigate the protective effect of the natural citrus flavonoid, naringenin (NAG), against alcohol-induced neurodegeneration in the brain cerebral cortex. Thirty-two male albino rats were randomly divided into four equal groups (eight rats each): control group (I); NAG-treated group (II); alcohol-intoxicated group (III) and alcohol + NAG co-treated group (IV). Brain nuclear factor erythroid 2-related factor 2 and receptor-interacting protein kinase 3 expression were assessed by real-time polymerase chain reaction. NAD(P)H quinone oxidoreductase 1 activity and malondialdehyde, reduced glutathione, mixed lineage kinase-like protein, phosphorylated glycogen synthase kinase 3 beta, and ciliary neurotrophic factor levels were all measured biochemically. B-cell lymphoma 2 expression was assessed by immunohistochemistry. A histopathological examination and neurobehavioral tests were performed. The alcohol-treated group showed a significant increase in oxidative stress and necroptosis biomarkers with a significant reduction in neuroprotective proteins. NAG co-administration effectively ameliorated cognitive dysfunction with an apparent neuroprotective effect by targeting various signaling pathways, including nuclear factor erythroid 2-related factor/NAD(P)H quinone oxidoreductase 1, anti-oxidant capacity, attenuated necroptosis, and upregulated neuroprotective ciliary neurotrophic factor. The study findings suggest NAG as a possible management strategy for alcohol-induced neurodegeneration.
Collapse
Affiliation(s)
- Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Muhammad T Abdel Ghafar
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Aljaysh St, Medical Campus, Tanta, 31511, Egypt.
| | | | - Marwa A Ibrahim
- Department of Histology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Asmaa M Eid
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rehab M El-Gohary
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Amira M Elshamy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Jin J, Shan Y, Zhang L, Wu Z, Wu S, Sun M, Bao W. Pterostilbene Ameliorates Fumonisin B1-Induced Cytotoxic Effect by Interfering in the Activation of JAK/STAT Pathway. Antioxidants (Basel) 2022; 11:antiox11122360. [PMID: 36552567 PMCID: PMC9774891 DOI: 10.3390/antiox11122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Fumonisin B1 (FB1) is a mycotoxin that poses a great threat to agricultural production and the health of humans and animals. Pterostilbene (PTE) is a natural plant polyphenolic compound with good anti-inflammatory, antioxidant and cell regeneration effects, yet its effectiveness in treating FB1-induced cytotoxicity remains to be explored. In this study, we used porcine alveolar macrophages (3D4/21) as a model to characterize the cytotoxicity induced by FB1, and to investigate the potential alleviating effect of PTE on FB1-induced cytotoxicity. We demonstrate that FB1 induces cytotoxicity, apoptosis, pro-inflammatory cytokine production and mitochondrial damage, which can be largely recovered by PTE treatment, suggesting the promising application of PTE to treat FB1-induced damage. Mechanistically, FB1 activates the JAK/STAT signaling pathway, while PTE attenuates FB1-induced cytotoxicity through the inhibition of key JAK/STAT genes such as JAK2 and STAT3. Overall, our study characterized the molecular mechanism for FB1-induced cytotoxicity and found PTE to be a promising component which can alleviate FB1-induced cytotoxicity by interfering in the activation of JAK/STAT pathway.
Collapse
Affiliation(s)
- Jian Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yiyi Shan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhengchang Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mingan Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.S.); (W.B.)
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.S.); (W.B.)
| |
Collapse
|
9
|
Ye D, Xu Y, Shi Y, Fan M, Lu P, Bai X, Feng Y, Hu C, Cui K, Tang X, Liao J, Huang W, Xu F, Liang X, Huang J. Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model. J Pineal Res 2022; 73:e12828. [PMID: 36031799 DOI: 10.1111/jpi.12828] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Acute ocular hypertension (AOH) is the most important characteristic of acute glaucoma, which can lead to retinal ganglion cell (RGC) death and permanent vision loss. So far, approved effective therapy is still lacking in acute glaucoma. PANoptosis (pyroptosis, apoptosis, and necroptosis), which consists of three key modes of programmed cell death-apoptosis, necroptosis, and pyroptosis-may contribute to AOH-induced RGC death. Previous studies have demonstrated that melatonin (N-acetyl-5-methoxytryptamine) exerts a neuroprotective effect in many retinal degenerative diseases. However, whether melatonin is anti-PANoptotic and neuroprotective in the progression of acute glaucoma remains unclear. Thus, this study aimed to explore the role of melatonin in AOH retinas and its underlying mechanisms. The results showed that melatonin treatment attenuated the loss of ganglion cell complex thickness, retinal nerve fiber layer thickness, and RGC after AOH injury, and improved the amplitudes of a-wave, b-wave, and oscillatory potentials in the electroretinogram. Additionally, the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells was decreased, and the upregulation of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 and p-Bad were inhibited after melatonin administration. Meanwhile, both the expression and activation of MLKL, RIP1, and RIP3, along with the number of PI-positive cells, were reduced in melatonin-treated mice, and p-RIP3 was in both RGC and microglia/macrophage after AOH injury. Furthermore, melatonin reduced the expression of NLRP3, ASC, cleaved caspase-1, gasdermin D (GSDMD), and cleaved GSDMD, and decreased the number of Iba1/interleukin-1β-positive cells. In conclusion, melatonin ameliorated retinal structure, prevented retinal dysfunction after AOH, and exerted a neuroprotective effect via inhibition of PANoptosis in AOH retinas.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chenyang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Liao
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Wei Huang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Fan Xu
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
10
|
Liu M, Li H, Yang R, Ji D, Xia X. GSK872 and necrostatin-1 protect retinal ganglion cells against necroptosis through inhibition of RIP1/RIP3/MLKL pathway in glutamate-induced retinal excitotoxic model of glaucoma. J Neuroinflammation 2022; 19:262. [PMID: 36289519 PMCID: PMC9608931 DOI: 10.1186/s12974-022-02626-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 11/14/2022] Open
Abstract
Background Glaucoma, the major cause of irreversible blindness worldwide, is characterized by progressive degeneration of retinal ganglion cells (RGCs). Current treatments for glaucoma only slow or partially prevent the disease progression, failing to prevent RGCs death and visual field defects completely. Glutamate excitotoxicity via N-methyl-d-aspartic acid (NMDA) receptors plays a vital role in RGCs death in glaucoma, which is often accompanied by oxidative stress and NLRP3 inflammasome activation. However, the exact mechanisms remain unclear. Methods The glutamate-induced R28 cell excitotoxicity model and NMDA-induced mouse glaucoma model were established in this study. Cell counting kit-8, Hoechst 33342/PI dual staining and lactate dehydrogenase release assay were performed to evaluate cell viability. Annexin V-FITC/PI double staining was used to detect apoptosis and necrosis rate. Reactive oxygen species (ROS) and glutathione (GSH) were used to detect oxidative stress in R28 cells. Levels of proinflammatory cytokines were measured by qRT-PCR. Transmission electron microscopy (TEM) was used to detect necroptotic morphological changes in RGCs. Retinal RGCs numbers were detected by immunofluorescence. Hematoxylin and eosin staining was used to detect retinal morphological changes. The expression levels of RIP1, RIP3, MLKL and NLRP3 inflammasome-related proteins were measured by immunofluorescence and western blotting. Results We found that glutamate excitotoxicity induced necroptosis in RGCs through activation of the RIP1/RIP3/MLKL pathway in vivo and in vitro. Administration of the RIP3 inhibitor GSK872 and RIP1 inhibitor necrostatin-1 (Nec-1) prevented glutamate-induced RGCs loss, retinal damage, neuroinflammation, overproduction of ROS and a decrease in GSH. Furthermore, after suppression of the RIP1/RIP3/MLKL pathway by GSK872 and Nec-1, glutamate-induced upregulation of key proteins involved in NLRP3 inflammasome activation, including NLRP3, pro-caspase-1, cleaved-caspase-1, and interleukin-1β (IL-1β), was markedly inhibited. Conclusions Our findings suggest that the RIP1/RIP3/MLKL pathway mediates necroptosis of RGCs and regulates NLRP3 inflammasome activation induced by glutamate excitotoxicity. Moreover, GSK872 and Nec-1 can protect RGCs from necroptosis and suppress NLRP3 inflammasome activation through inhibition of RIP1/RIP3/MLKL pathway, conferring a novel neuroprotective treatment for glaucoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02626-4.
Collapse
Affiliation(s)
- Mengyuan Liu
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| | - Haibo Li
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| | - Rongliang Yang
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| | - Dan Ji
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| | - Xiaobo Xia
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| |
Collapse
|
11
|
Dvoriantchikova G, Lypka KR, Adis EV, Ivanov D. Multiple types of programmed necrosis such as necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos contribute simultaneously to retinal damage after ischemia-reperfusion. Sci Rep 2022; 12:17152. [PMID: 36229563 PMCID: PMC9561687 DOI: 10.1038/s41598-022-22140-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/10/2022] [Indexed: 01/04/2023] Open
Abstract
Ischemia-reperfusion (IR) injury is implicated in a large array of pathological conditions in the retina. Increasing experimental evidence suggests that programmed necrosis makes a significant contribution to inflammation and retinal damage triggered by IR. Since there are many types of programmed necrosis, it is important to identify those involved in retinal IR to determine the correct treatment. To this end, we used a mouse model of retinal IR and a variety of approaches including RNA-seq data analysis. Our RNA-seq data revealed the rapid development of ischemic pathology in the retina during the first 24 h after reperfusion. We found that at least four types of programmed necrosis including necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos are simultaneously involved in retinal IR. Our data suggest that the high activity of the TNF pathway at the early stage of retinal IR leads to early activation of necroptosis while significant activity of other types of programmed necrosis appears later. Our results indicate that TNF, glutamate, and ferrous iron generated by Steap3 may be key players concurrently triggering at least necroptosis, oxytosis/ferroptosis, and parthanatos in ischemic retinal ganglion cells (RGCs). Thus, multiple signaling cascades involved in programmed necrosis should be synchronously targeted for therapeutic purposes to treat retinal IR.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- grid.26790.3a0000 0004 1936 8606Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Ave, Miami, FL 33136 USA
| | - Karin Rose Lypka
- grid.26790.3a0000 0004 1936 8606Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Ave, Miami, FL 33136 USA
| | - Emily Victoria Adis
- grid.26790.3a0000 0004 1936 8606Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Ave, Miami, FL 33136 USA
| | - Dmitry Ivanov
- grid.26790.3a0000 0004 1936 8606Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Ave, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
12
|
Tang X, Fan X, Xu T, He Y, Chi Q, Li Z, Li S. Polystyrene nanoplastics exacerbated lipopolysaccharide-induced necroptosis and inflammation via the ROS/MAPK pathway in mice spleen. ENVIRONMENTAL TOXICOLOGY 2022; 37:2552-2565. [PMID: 35833596 DOI: 10.1002/tox.23618] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Plastics are novel environmental pollutants with potential threats to the ecosystem. At least 5.25 trillion plastic particles in the environment, of which nanoplastics are <100 nm in diameter. Polystyrene nanoplastics (PS-NPs) exposure damaged the spleen's immune function. Lipopolysaccharide (LPS) induced other toxicants to damage cells and organs, triggering inflammation. However, the mechanism of PS-NPs aggravated LPS-induced spleen injury remains unclear. In this study, the PS-NPs or/and LPS mice exposure model was replicated by intraperitoneal injection of PS-NPs or/and LPS, and PS-NPs or/and LPS were exposed to RAW264.7 cells. The histopathological and ultrastructural changes of the mice spleen were observed by H&E staining and transmission electron microscope. Western Blot, qRT-PCR, and fluorescent probes staining were used to detect reactive oxygen species (ROS), oxidative stress indicators, inflammatory factors, and necroptosis-related indicators in mice spleen and RAW264.7 cells. The results showed that PS-NPs or LPS induced oxidative stress, activated the MAPK pathway, and eventually caused necroptosis and inflammation in mice spleen and RAW264.7 cells. Compared with the single treatment group, the changes in PS-NPs + LPS group were more obvious. Furthermore, ROS inhibitor N-Acetyl-L-cysteine (NAC) significantly inhibited the activation of the mitogen-activated protein kinase (MAPK) signaling pathway caused by co-treatment of PS-NPs and LPS, reducing necroptosis and inflammation. The results demonstrated that PS-NPs promoted LPS-induced spleen necroptosis and inflammation in mice through the ROS/MAPK pathway. This study increases the data on the damage of PS-NPs to the organism and expands the research ideas and clues.
Collapse
Affiliation(s)
- Xinyu Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xue Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Tong Xu
- College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Yujiao He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhe Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
13
|
Naseri Kouzehgarani G, Kandel ME, Sakakura M, Dupaty JS, Popescu G, Gillette MU. Circadian Volume Changes in Hippocampal Glia Studied by Label-Free Interferometric Imaging. Cells 2022; 11:2073. [PMID: 35805157 PMCID: PMC9265588 DOI: 10.3390/cells11132073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
Complex brain functions, including learning and memory, arise in part from the modulatory role of astrocytes on neuronal circuits. Functionally, the dentate gyrus (DG) exhibits differences in the acquisition of long-term potentiation (LTP) between day and night. We hypothesize that the dynamic nature of astrocyte morphology plays an important role in the functional circuitry of hippocampal learning and memory, specifically in the DG. Standard microscopy techniques, such as differential interference contrast (DIC), present insufficient contrast for detecting changes in astrocyte structure and function and are unable to inform on the intrinsic structure of the sample in a quantitative manner. Recently, gradient light interference microscopy (GLIM) has been developed to upgrade a DIC microscope with quantitative capabilities such as single-cell dry mass and volume characterization. Here, we present a methodology for combining GLIM and electrophysiology to quantify the astrocyte morphological behavior over the day-night cycle. Colocalized measurements of GLIM and fluorescence allowed us to quantify the dry masses and volumes of hundreds of astrocytes. Our results indicate that, on average, there is a 25% cell volume reduction during the nocturnal cycle. Remarkably, this cell volume change takes place at constant dry mass, which suggests that the volume regulation occurs primarily through aqueous medium exchange with the environment.
Collapse
Affiliation(s)
- Ghazal Naseri Kouzehgarani
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA;
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
| | - Mikhail E. Kandel
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Masayoshi Sakakura
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Joshua S. Dupaty
- Department of Biomedical Engineering, Mercer University, Macon, GA 31207, USA;
| | - Gabriel Popescu
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Martha U. Gillette
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA;
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| |
Collapse
|
14
|
Lett K, Zhang Y, Nishimura N. Neurological and Inflammatory Effects of Radio Frequency and Cryoablation in a Rat Sciatic Nerve Model of Submucosal Nerve Ablation. Am J Rhinol Allergy 2022; 36:628-637. [PMID: 35522210 DOI: 10.1177/19458924221099377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Minimally-invasive ablation with radio frequency (RF) and cryoablation have been widely adopted to treat conditions with aberrant neural activity such as excessive mucus production in rhinitis, but neurological and inflammatory effects on treated tissues are poorly understood. OBJECTIVE To gain an understanding of the physiological changes caused by nerve ablation using RF and cryoablation devices. METHODS Using clinical devices for rhinitis treatment that ablate nerves with access from the nasal cavity, we applied temperature-controlled RF and cryoablation to rat sciatic nerves. To model the ablation through mucosal tissue similarly to the rhinitis procedure, RF ablation and cryoablation were applied through a layer of muscle. RESULTS Both ablation techniques induced acute and sustained neurodegeneration visualized with histological sections at two days and one month after treatment. After both treatments, rats showed a change in muscle tone, but small increases in sensitivity measured by a von Frey test were only observed 2 days after cryoablation and one month after the RF ablation. Both treatments caused reductions in nerve conduction velocity at one month after treatment. Inflammation in treated nerves and surrounding tissues that persisted to one month. CONCLUSIONS The two neurolytic devices used in the clinic work similarly by axonal disintegration and which leads to disruption of electrical signals. The data suggest that these methods are effective methods of nerve ablation that could be used to treat diseases related to elevated neuron activity such as rhinitis.
Collapse
Affiliation(s)
- Kawasi Lett
- Peter E. and Nancy C. Meinig School of Biomedical Engineering, 5922Cornell University, Ithaca, NY, USA
| | - Yuying Zhang
- Peter E. and Nancy C. Meinig School of Biomedical Engineering, 5922Cornell University, Ithaca, NY, USA
| | - Nozomi Nishimura
- Peter E. and Nancy C. Meinig School of Biomedical Engineering, 5922Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Liu J, Hong M, Li Y, Chen D, Wu Y, Hu Y. Programmed Cell Death Tunes Tumor Immunity. Front Immunol 2022; 13:847345. [PMID: 35432318 PMCID: PMC9005769 DOI: 10.3389/fimmu.2022.847345] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
The demise of cells in various ways enables the body to clear unwanted cells. Studies over the years revealed distinctive molecular mechanisms and functional consequences of several key cell death pathways. Currently, the most intensively investigated programmed cell death (PCD) includes apoptosis, necroptosis, pyroptosis, ferroptosis, PANoptosis, and autophagy, which has been discovered to play crucial roles in modulating the immunosuppressive tumor microenvironment (TME) and determining clinical outcomes of the cancer therapeutic approaches. PCD can play dual roles, either pro-tumor or anti-tumor, partly depending on the intracellular contents released during the process. PCD also regulates the enrichment of effector or regulatory immune cells, thus participating in fine-tuning the anti-tumor immunity in the TME. In this review, we focused primarily on apoptosis, necroptosis, pyroptosis, ferroptosis, PANoptosis, and autophagy, discussed the released molecular messengers participating in regulating their intricate crosstalk with the immune response in the TME, and explored the immunological consequence of PCD and its implications in future cancer therapy developments.
Collapse
Affiliation(s)
- Jing Liu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Minjing Hong
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yijia Li
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Dan Chen
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Tumor Necrosis Factor-α Mediates Lung Injury in the Early Phase of Endotoxemia. Pharmaceuticals (Basel) 2022; 15:ph15030287. [PMID: 35337084 PMCID: PMC8953981 DOI: 10.3390/ph15030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
Endotoxemia induces lung injury. We assessed the therapeutic efficacy between triple cytokine (tumor necrosis factor-α [TNF-α], interleukin-1β [IL-1β], and IL-6) inhibition (mediated by KCF18 peptide) and single cytokine (TNF-α) inhibition (mediated by SEM18 peptide) on alleviating lung injury in the early phase of endotoxemia. Mice receiving endotoxin (Endo group), endotoxin plus KCF18 (EKCF group), or endotoxin plus SEM18 (ESEM) were monitored and euthanized at 24 h after endotoxin. Our data demonstrated altered lung function (decreases in tidal volume, minute ventilation, and dynamic compliance; and by contrast, increases in airway resistance and end expiration work) and histology (increases in injury scores, leukocyte infiltration, vascular permeability, and tissue water content) in the Endo group with significant protection observed in the EKCF and ESEM groups (all p < 0.05). Levels of inflammation (macrophage activation and cytokine upregulations), oxidation (lipid peroxidation), necroptosis, pyroptosis, and apoptosis in EKCF and ESEM groups were comparable and all were significantly lower than in the Endo group (all p < 0.05). These data demonstrate that single cytokine TNF-α inhibition can achieve therapeutic effects similar to triple cytokines TNF-α, IL-1β, and IL-6 inhibition on alleviating endotoxin-induced lung injury, indicating that TNF-α is the major cytokine in mediating lung injury in the early phase of endotoxemia.
Collapse
|
17
|
Di Giuseppe D, Scarfì S, Alessandrini A, Bassi AM, Mirata S, Almonti V, Ragazzini G, Mescola A, Filaferro M, Avallone R, Vitale G, Scognamiglio V, Gualtieri AF. Acute cytotoxicity of mineral fibres observed by time-lapse video microscopy. Toxicology 2022; 466:153081. [PMID: 34953976 DOI: 10.1016/j.tox.2021.153081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023]
Abstract
Inhalation of mineral fibres is associated with the onset of an inflammatory activity in the lungs and the pleura responsible for the development of fatal malignancies. It is known that cell damage is a necessary step for triggering the inflammatory response. However, the mechanisms by which mineral fibres exert cytotoxic activity are not fully understood. In this work, the kinetics of the early cytotoxicity mechanisms of three mineral fibres (i.e., chrysotile, crocidolite and fibrous erionite) classified as carcinogenic by the International Agency for Research on Cancer, was determined for the first time in a comparative manner using time-lapse video microscopy coupled with in vitro assays. All tests were performed using the THP-1 cell line, differentiated into M0 macrophages (M0-THP-1) and exposed for short times (8 h) to 25 μg/mL aliquots of chrysotile, crocidolite and fibrous erionite. The toxic action of fibrous erionite on M0-THP-1 cells is manifested since the early steps (2 h) of the experiment while the cytotoxicity of crocidolite and chrysotile gradually increases during the time span of the experiment. Chrysotile and crocidolite prompt cell death mainly via apoptosis, while erionite exposure is also probably associated to a necrotic-like effect. The potential mechanisms underlying these different toxicity behaviours are discussed in the light of the different morphological, and chemical-physical properties of the three fibres.
Collapse
Affiliation(s)
- Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy; CNR-Nanoscience Institute-S3, Modena, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Serena Mirata
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Vanessa Almonti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Gregorio Ragazzini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy; CNR-Nanoscience Institute-S3, Modena, Italy
| | | | - Monica Filaferro
- Department of Biomedical, Metabolic and Neural Sciences, The University of Modena and Reggio Emilia, Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Vitale
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Scognamiglio
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
18
|
Yang Y, Wang L, Zhang H, Luo L. Mixed lineage kinase domain-like pseudokinase-mediated necroptosis aggravates periodontitis progression. J Mol Med (Berl) 2022; 100:77-86. [PMID: 34647144 DOI: 10.1007/s00109-021-02126-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
Necroptosis is a form of cell death that is reportedly involved in the pathogenesis of periodontitis. The role of Mlkl-involved necroptosis remains unclear. Herein, this project aimed to explore the role of MLKL-mediated necroptosis in periodontitis in vitro and in vivo. Expression of RIPK3, MLKL, and phosphorylated MLKL was observed in gingival tissues obtained from healthy subjects or patients with periodontitis. The cell viability of Porphyromonas gingivalis lipopolysaccharide (LPS-Pg)-treated cells was detected. In wild type or Mlkl deficiency mice with ligature-induced periodontitis, alveolar bone loss and osteoclast activation were assessed. mRNA levels of inflammatory cytokines in bone marrow-derived macrophages were tested by qRT-PCR. Increased expression of RIPK3, MLKL, and phosphorylated MLKL was observed in gingival tissues obtained from patients with periodontitis. Porphyromonas gingivalis lipopolysaccharide (LPS-Pg)-treated cells developed necroptosis after caspase inhibition and negatively regulated the NF-κB signaling pathway. In mice with ligature-induced periodontitis, Mlkl deficiency reduced alveolar bone loss and weakened osteoclast activation. Furthermore, genetic ablation of Mlkl in LPS-Pg-treated bone marrow-derived macrophages increased the mRNA levels of tumor necrosis factor-α, interleukin (Il)-1β, Il-6, cyclooxygenase 2, matrix metalloproteinase 9, and receptor activator of nuclear factor kappa-B ligand. Our data indicated that MLKL-mediated necroptosis aggravates the development of periodontitis in a Mlkl-deficient mouse. This will provide a new sight for the understanding of etiology and therapies of periodontitis. KEY MESSAGES: MLKL expression was up-regulated in inflamed human gingival tissue. Mlkl deficiency affected the progression of periodontitis. Necroptosis played a major role in mice periodontitis model. Knockout of Mlkl had a significant effect on inflammatory responses.
Collapse
Affiliation(s)
- Yanan Yang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Periodontics, School of Stomatology, Tongji University, Shanghai, China
| | - Lingxia Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lijun Luo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Periodontics, School of Stomatology, Tongji University, Shanghai, China.
| |
Collapse
|
19
|
Udomruk S, Orrapin S, Pruksakorn D, Chaiyawat P. Size distribution of cell-free DNA in oncology. Crit Rev Oncol Hematol 2021; 166:103455. [PMID: 34464717 DOI: 10.1016/j.critrevonc.2021.103455] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-specific, circulating cell-free DNA (cfDNA) in liquid biopsy test is a novel promising biomarker in the advancement of cancer management, including early diagnosis, screening, prognosis, identification of actionable targets, and serial tumor monitoring. The specific size pattern of DNA fragments derived from cancer cells is observed to differ from that of cfDNA fragments shed by non-cancer cells. Research into the physiological and biological properties of cfDNA reveals the molecular signature carried by each cfDNA fragments, which can reflect their tissue origins, as well as the mutational profiles with significant genetic alterations. Understanding the fragmentation and size distribution of cfDNA might be a valuable hotspot in liquid biopsy research, with the potential to drive innovation in oncology.
Collapse
Affiliation(s)
- Sasimol Udomruk
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Musculoskeletal Science and Translational Research Center (MSTR), Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Santhasiri Orrapin
- Musculoskeletal Science and Translational Research Center (MSTR), Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Musculoskeletal Science and Translational Research Center (MSTR), Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Orthopedics, Faculty of Medicine, Chiang Mai University, 110 Intawaroros, Sriphoom, Muang, Chiang Mai 50200, Thailand.
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Musculoskeletal Science and Translational Research Center (MSTR), Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
20
|
Shih HJ, Chang CY, Chiang M, Le VL, Hsu HJ, Huang CJ. Simultaneous Inhibition of Three Major Cytokines and Its Therapeutic Effects: A Peptide-Based Novel Therapy against Endotoxemia in Mice. J Pers Med 2021; 11:jpm11050436. [PMID: 34065201 PMCID: PMC8161041 DOI: 10.3390/jpm11050436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Three major cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, mediate endotoxemia-induced liver injury. With the similar structures to the binding domains of the three cytokines to their cognate receptors, the novel peptide KCF18 can simultaneously inhibit TNF-α, IL-1β, and IL-6. We elucidated whether KCF18 can alleviate injury of liver in endotoxemic mice. Adult male mice (BALB/cJ) were intraperitoneally (i.p.) administered lipopolysaccharide (LPS, 15 mg/kg; LPS group) or LPS with KCF18 (LKCF group). Mice in the LKCF group received KCF18 (i.p.) at 2 h (0.6 mg/kg), 4 h (0.3 mg/kg), 6 h (0.3 mg/kg), and 8 h (0.3mg/kg) after LPS administration. Mice were sacrificed after receiving LPS for 24 h. Our results indicated that the binding levels of the three cytokines to their cognate receptors in liver tissues in the LKCF group were significantly lower than those in the LPS group (all p < 0.05). The liver injury level, as measured by performing functional and histological analyses and by determining the tissue water content and vascular permeability (all p < 0.05), was significantly lower in the LKCF group than in the LPS group. Similarly, the levels of inflammation (macrophage activation, cytokine upregulation, and leukocyte infiltration), oxidation, necroptosis, pyroptosis, and apoptosis (all p < 0.05) in liver tissues in the LKCF group were significantly lower than those in the LPS group. In conclusion, the KCF18 peptide–based simultaneous inhibition of TNF-α, IL-1β, and IL-6 can alleviate liver injury in mice with endotoxemia.
Collapse
Affiliation(s)
- Hung-Jen Shih
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Urology, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chao-Yuan Chang
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Milton Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.C.); (V.L.L.)
| | - Van Long Le
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.C.); (V.L.L.)
- Department of Anesthesiology and Critical Care, Hue University of Medicine and Pharmacy, Hue City 52000, Vietnam
| | - Hao-Jen Hsu
- Department of Life Sciences, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: (H.-J.H.); (C.-J.H.)
| | - Chun-Jen Huang
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.C.); (V.L.L.)
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (H.-J.H.); (C.-J.H.)
| |
Collapse
|
21
|
Furuta Y, Pena-Ramos O, Li Z, Chiao L, Zhou Z. Calcium ions trigger the exposure of phosphatidylserine on the surface of necrotic cells. PLoS Genet 2021; 17:e1009066. [PMID: 33571185 PMCID: PMC7904182 DOI: 10.1371/journal.pgen.1009066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/24/2021] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Intracellular Ca2+ level is under strict regulation through calcium channels and storage pools including the endoplasmic reticulum (ER). Mutations in certain ion channel subunits, which cause mis-regulated Ca2+ influx, induce the excitotoxic necrosis of neurons. In the nematode Caenorhabditis elegans, dominant mutations in the DEG/ENaC sodium channel subunit MEC-4 induce six mechanosensory (touch) neurons to undergo excitotoxic necrosis. These necrotic neurons are subsequently engulfed and digested by neighboring hypodermal cells. We previously reported that necrotic touch neurons actively expose phosphatidylserine (PS), an “eat-me” signal, to attract engulfing cells. However, the upstream signal that triggers PS externalization remained elusive. Here we report that a robust and transient increase of cytoplasmic Ca2+ level occurs prior to the exposure of PS on necrotic touch neurons. Inhibiting the release of Ca2+ from the ER, either pharmacologically or genetically, specifically impairs PS exposure on necrotic but not apoptotic cells. On the contrary, inhibiting the reuptake of cytoplasmic Ca2+ into the ER induces ectopic necrosis and PS exposure. Remarkably, PS exposure occurs independently of other necrosis events. Furthermore, unlike in mutants of DEG/ENaC channels, in dominant mutants of deg-3 and trp-4, which encode Ca2+ channels, PS exposure on necrotic neurons does not rely on the ER Ca2+ pool. Our findings indicate that high levels of cytoplasmic Ca2+ are necessary and sufficient for PS exposure. They further reveal two Ca2+-dependent, necrosis-specific pathways that promote PS exposure, a “two-step” pathway initiated by a modest influx of Ca2+ and further boosted by the release of Ca2+ from the ER, and another, ER-independent, pathway. Moreover, we found that ANOH-1, the worm homolog of mammalian phospholipid scramblase TMEM16F, is necessary for efficient PS exposure in thapsgargin-treated worms and trp-4 mutants, like in mec-4 mutants. We propose that both the ER-mediated and ER-independent Ca2+ pathways promote PS externalization through activating ANOH-1. Necrosis is a type of cell death that exhibits distinct morphological features such as cell and organelle swelling. Necrotic cells expose phosphatidylserine (PS)–a type of phospholipid—on their outer surfaces. Receptor molecules on phagocytes detect PS on necrotic cells and subsequently initiate the engulfment process. As necrosis is associated with stroke, cancer, neurodegenerative diseases, and heart diseases, studying necrotic cell clearance has important medical relevance. In the model organism the nematode C. elegans, we previously identified membrane proteins that promote the exposure of PS on necrotic cell surfaces by studying neurons that are induced to undergo necrosis by dominant mutations in ion channels. Here, in C. elegans, we have discovered that the necrotic insults trigger an increase of the cytoplasmic calcium ion (Ca2+), which in turn promotes PS externalization on necrotic cell surfaces. Furthermore, we have identified two different mechanisms that increase cytoplasmic Ca2+ levels, one dependent on the Ca2+ contribution from the endoplasmic reticulum (ER), the other independent of the ER. The Ca2+ signal targets ANOH-1, a worm homolog of mammalian proteins capable of externalizing PS, for promoting PS exposure on necrotic cells. Our findings reveal novel upstream regulatory mechanisms that promote necrotic cell clearance in animals.
Collapse
Affiliation(s)
- Yoshitaka Furuta
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- School of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | - Omar Pena-Ramos
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zao Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lucia Chiao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
Patil AA, Bhor SA, Rhee WJ. Cell death in culture: Molecular mechanisms, detections, and inhibition strategies. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Chang CY, Hsu HJ, Foo J, Shih HJ, Huang CJ. Peptide-Based TNF-α-Binding Decoy Therapy Mitigates Lipopolysaccharide-Induced Liver Injury in Mice. Pharmaceuticals (Basel) 2020; 13:ph13100280. [PMID: 33003495 PMCID: PMC7600127 DOI: 10.3390/ph13100280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
A peptide named SEM18, possessing structural similarity to the binding site of tumor necrosis factor (TNF)-α to TNF receptor 1 (TNFR1), was designed. We investigated whether the SEM18 peptide can mitigate lipopolysaccharide (LPS)-induced liver injury in mice. Adult male Balb/cJ mice received LPS (15 mg/kg; LPS group) or LPS plus SEM18 (LSEM group). Control groups were run simultaneously. At 2 h after LPS, the first dose of SEM18 (0.3 mg/kg) was administered, followed by three supplemental doses of SEM18 (0.15 mg/kg, every 2 h). At 24 h after LPS, surviving mice were euthanized for analyses. Compared with the LPS group, binding of TNF-α to TNFR1 in liver tissues was significantly lower in the LSEM group (p < 0.001). Plasma concentrations of aspartate transaminase and alanine transaminase, as well as Suzuki’s scores (liver damage assessment), wet/dry weight ratios, levels of polymorphonuclear neutrophil infiltration, and levels of mitochondrial injury in liver tissues, of the LSEM group were significantly lower than in the LPS group (all p < 0.05). Levels of necroptosis, pyroptosis, apoptosis, and autophagy upregulation in liver tissues in the LSEM group were also significantly lower than in the LPS group (all p < 0.05). Notably, exogenous TNF-α counteracted these effects of SEM18. SEM18 peptide mitigates LPS-induced liver injury in mice.
Collapse
Affiliation(s)
- Chao-Yuan Chang
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (C.-Y.C.); (J.F.)
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, College of Medicine, Tzu Chi University, Hualien 970, Taiwan;
| | - Jossen Foo
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (C.-Y.C.); (J.F.)
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Hung-Jen Shih
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (H.-J.S.); (C.-J.H.)
| | - Chun-Jen Huang
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (C.-Y.C.); (J.F.)
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (H.-J.S.); (C.-J.H.)
| |
Collapse
|
24
|
Moslemi M, Khodagholi F, Asadi S, Rafiei S, Motamedi F. Oxytocin protects against 3-NP induced learning and memory impairment in rats: Sex differences in behavioral and molecular responses to the context of prenatal stress. Behav Brain Res 2020; 379:112354. [PMID: 31733312 DOI: 10.1016/j.bbr.2019.112354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
Learning and memory impairment manifests years before the onset of motor impairments in Huntington's disease (HD). Oxytocin (OXT), as a neurohypophyseal neuropeptide has a key role in both learning and memory. Hence, we investigated possible protective effect of OXT on instrumental fear conditioning memory impairment by 3-Nitropropionic acid (3-NP) induced HD, considering sex and prenatal stress effects. Pregnant Wistar rats were exposed to restraint stress for 45 min three times a day, from the gestational day 8 to parturition. 3-NP was injected intraperitoneally (20 mg/kg) for 5-7 days after OXT (10 μg/μl. icv) injection in the male and female offspring rats respectively. One day after the last 3-NP injection, the rotarod and passive avoidance task were conducted. As the key molecular determinants in metabolism and memory processes, we measured the activity of acetylcholinesterase (AChE) and the amount of receptor interacting protein3 (RIP3) in the hippocampus, prefrontal cortex, striatum and amygdala using spectrophotometry and western blotting respectively. Besides, the activity of glutamate dehydrogenase was measured (GDH) as a chain between metabolism and memory formation. The results indicated that OXT improved learning and memory impairment caused by 3-NP or prenatal stress in both sexes. It was along with a significant decrease in the level of RIP3, AChE and GDH activities. However, in the presence of prenatal stress, the OXT could improve 3-NP induced learning and memory impairments just in female rats. So it could be suggested as an effective neurotherapeutic agent in diseases such as HD, but its sex and context dependency should be considered carefully.
Collapse
Affiliation(s)
- Mehdi Moslemi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sareh Asadi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrbanoo Rafiei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Caspase-8 Regulates Endoplasmic Reticulum Stress-Induced Necroptosis Independent of the Apoptosis Pathway in Auditory Cells. Int J Mol Sci 2019; 20:ijms20235896. [PMID: 31771290 PMCID: PMC6928907 DOI: 10.3390/ijms20235896] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of this study is to elucidate the detailed mechanism of endoplasmic reticulum (ER) stress-induced auditory cell death based on the function of the initiator caspases and molecular complex of necroptosis. Here, we demonstrated that ER stress initiates not only caspase-9-dependent intrinsic apoptosis along with caspase-3, but also receptor-interacting serine/threonine kinase (RIPK)1-dependent necroptosis in auditory cells. We observed the ultrastructural characteristics of both apoptosis and necroptosis in tunicamycin-treated cells under transmission electron microscopy (TEM). We demonstrated that ER stress-induced necroptosis was dependent on the induction of RIPK1, negatively regulated by caspase-8 in auditory cells. Our data suggested that ER stress-induced intrinsic apoptosis depends on the induction of caspase-9 along with caspase-3 in auditory cells. The results of this study reveal that necroptosis could exist for the alternative backup cell death route of apoptosis in auditory cells under ER stress. Interestingly, our data results in a surge in the recognition that therapies aimed at the inner ear protection effect by caspase inhibitors like zVAD-fmk might arrest apoptosis but can also have the unanticipated effect of promoting necroptosis. Thus, RIPK1-dependent necroptosis would be a new therapeutic target for the treatment of sensorineural hearing loss due to ER stress.
Collapse
|
26
|
Barbosa LA, Fiuza PP, Borges LJ, Rolim FA, Andrade MB, Luz NF, Quintela-Carvalho G, Lima JB, Almeida RP, Chan FK, Bozza MT, Borges VM, Prates DB. RIPK1-RIPK3-MLKL-Associated Necroptosis Drives Leishmania infantum Killing in Neutrophils. Front Immunol 2018; 9:1818. [PMID: 30154785 PMCID: PMC6102393 DOI: 10.3389/fimmu.2018.01818] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Necroptosis is a pro-inflammatory cell death, which happens in the context of caspase-8 inhibition, allowing activation of the receptor interacting protein kinase 1-receptor interacting protein kinase 3-mixed lineage kinase domain-like (RIPK1-RIPK3-MLKL) axis. Recently, necroptosis has emerged as a key component of resistance against pathogens including infected macrophage by Leishmania infantum, the ethiologic agent of Visceral leishmaniasis (VL). VL is the most severe form of Leishmaniasis, characterized by systemic inflammation and neutropenia. However, the role of neutrophil cell death in VL has not been characterized. Here, we showed that VL patients exhibited increased lactate dehydrogenase levels in the serum, a hallmark of cell death and tissue damage. We investigated the effect of necroptosis in neutrophil infection in vitro. Human neutrophils pretreated with zVAD-fmk (pan-caspase inhibitor) and zIETD-fmk (caspase-8 inhibitor) increased reactive oxygen species (ROS) level in response to Leishmania infection, which is associated with necroptotic cell death. MLKL, an important effector molecule downstream of necroptosis pathway, was also required for Leishmania killing. Moreover, in absence of caspases-8, murine neutrophils displayed loss of membrane integrity, higher levels of ROS, and decreased L. infantum viability. Pharmacological inhibition of RIPK1 or RIPK3 increased parasite survival when caspase-8 was blocked. Electron microscopy assays revealed morphological features associated with necroptotic death in L. infantum infected-neutrophils pretreated with caspase inhibitor, whereas infected cells pretreated with RIPK1 and RIPK3 inhibitors did not show ultra-structural alterations in membrane integrity and presented viable Leishmania within parasitophorous vacuoles. Taken together, these findings suggest that inhibition of caspase-8 contributes to elimination of L. infantum in neutrophils by triggering necroptosis. Thus, targeting necroptosis may represent a new strategy to control Leishmania replication.
Collapse
Affiliation(s)
| | | | | | | | | | - Nivea F Luz
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Graziele Quintela-Carvalho
- Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia Baiano, Santa Inês, Brazil
| | - Jonilson B Lima
- Centro de Ciências Biológicas e da Saúde, Universidade do Oeste da Bahia, Barreiras, Brazil
| | - Roque P Almeida
- Departamento de Medicina, Universidade Federal de Sergipe, Aracaju, Brazil
| | - Francis K Chan
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - Marcelo T Bozza
- Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valeria M Borges
- Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Deboraci B Prates
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Departamento de Biomorfologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
27
|
Morris G, Walker AJ, Berk M, Maes M, Puri BK. Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists. Mol Neurobiol 2018; 55:5767-5786. [PMID: 29052145 PMCID: PMC5994217 DOI: 10.1007/s12035-017-0793-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/26/2017] [Indexed: 02/08/2023]
Abstract
In the first part, the following mechanisms involved in different forms of cell death are considered, with a view to identifying potential therapeutic targets: tumour necrosis factor receptors (TNFRs) and their engagement by tumour necrosis factor-alpha (TNF-α); poly [ADP-ribose] polymerase (PARP)-1 cleavage; the apoptosis signalling kinase (ASK)-c-Jun N-terminal kinase (JNK) axis; lysosomal permeability; activation of programmed necrotic cell death; oxidative stress, caspase-3 inhibition and parthanatos; activation of inflammasomes by reactive oxygen species and the development of pyroptosis; oxidative stress, calcium dyshomeostasis and iron in the development of lysosomal-mediated necrosis and lysosomal membrane permeability; and oxidative stress, lipid peroxidation, iron dyshomeostasis and ferroptosis. In the second part, there is a consideration of the role of lethal and sub-lethal activation of these pathways in the pathogenesis and pathophysiology of neurodegenerative and neuroprogressive disorders, with particular reference to the TNF-α-TNFR signalling axis; dysregulation of ASK-1-JNK signalling; prolonged or chronic PARP-1 activation; the role of pyroptosis and chronic inflammasome activation; and the roles of lysosomal permeabilisation, necroptosis and ferroptosis. Finally, it is suggested that, in addition to targeting oxidative stress and inflammatory processes generally, neuropsychiatric disorders may respond to therapeutic targeting of TNF-α, PARP-1, the Nod-like receptor NLRP3 inflammasome and the necrosomal molecular switch receptor-interacting protein kinase-3, since their widespread activation can drive and/or exacerbate peripheral inflammation and neuroinflammation even in the absence of cell death. To this end, the use is proposed of a combination of the tetracycline derivative minocycline and N-acetylcysteine as adjunctive treatment for a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- G Morris
- , Bryn Road Seaside 87, Llanelli, Wales, , SA15 2LW, UK
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - A J Walker
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - M Berk
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - M Maes
- School of Medicine, Deakin University, Geelong, 3220, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - B K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, W12 0HS, UK.
| |
Collapse
|
28
|
Chen Q, Kang J, Fu C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther 2018; 3:18. [PMID: 29967689 PMCID: PMC6026494 DOI: 10.1038/s41392-018-0018-5] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Cell death is an essential biological process for physiological growth and development. Three classical forms of cell death-apoptosis, autophagy, and necrosis-display distinct morphological features by activating specific signaling pathways. With recent research advances, we have started to appreciate that these cell death processes can cross-talk through interconnecting, even overlapping, signaling pathways, and the final cell fate is the result of the interplay of different cell death programs. This review provides an insight into the independence of and associations among these three types of cell death and explores the significance of cell death under the specific conditions of human diseases, particularly neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Qi Chen
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China
| | - Jian Kang
- 3Cancer Signalling Laboratory, Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan street, Melbourne, VIC 3000 Australia
| | - Caiyun Fu
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China.,4Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA 94158 USA.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014 China
| |
Collapse
|
29
|
Schmidt J, Kuzyniak W, Berkholz J, Steinemann G, Ogbodu R, Hoffmann B, Nouailles G, Gürek AG, Nitzsche B, Höpfner M. Novel zinc‑ and silicon‑phthalocyanines as photosensitizers for photodynamic therapy of cholangiocarcinoma. Int J Mol Med 2018; 42:534-546. [PMID: 29693115 DOI: 10.3892/ijmm.2018.3620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/09/2018] [Indexed: 11/05/2022] Open
Abstract
Photodynamic therapy (PDT) has emerged as an effective and minimally invasive cancer treatment modality. In the present study, two novel phthalocyanines, tetra‑triethyleneoxysulfonyl substituted zinc phthalocyanine (ZnPc) and dihydroxy‑2,9(10),16(17),23(24)‑tetrakis(4,7,10‑trioxaundecan‑1‑sulfonyl) silicon phthalocyanine (Pc32), were investigated as photosensitizers (PS) for PDT of cholangiocarcinoma (CC). ZnPc showed a pronounced dose‑dependent and predominantly cytoplasmic accumulation in EGI‑1 and TFK‑1 CC cell lines. Pc32 also accumulated in the CC cells, but this was less pronounced. Without photoactivation, the PS did not exhibit any antiproliferative or cytotoxic effects. Upon photoactivation, ZnPc induced the formation of reactive oxygen species (ROS) and immediate phototoxicity, leading to a dose‑dependent decrease in cell proliferation, and an induction of mitochondria‑driven apoptosis and cell cycle arrest of EGI‑1 and TFK‑1 cells. Although photoactivated Pc32 also induced ROS formation in the two cell lines, the extent was less marked, compared with that induced by ZnPc‑PDT, and pronounced antipoliferative effects occurred only in the less differentiated EGI‑1 cells, whereas the more differentiated TFK‑1 cells did not show sustained growth inhibition upon Pc32‑PDT induction. In vivo examinations on the antiangiogenic potency of the novel PS were performed using chorioallantoic membrane (CAM) assays, which revealed reduced angiogenic sprouting with a concomitant increase in nonperfused regions and degeneration of the vascular network of the CAM following induction with ZnPc‑PDT only. The study demonstrated the pronounced antiproliferative and antiangiogenic potency of ZnPc as a novel PS for PDT, meriting further elucidation as a promising PS for the photodynamic treatment of CC.
Collapse
Affiliation(s)
- Jacob Schmidt
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Weronika Kuzyniak
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Janine Berkholz
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Gustav Steinemann
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Racheal Ogbodu
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Björn Hoffmann
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases and Pulmonary Medicine, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Ayşe Gül Gürek
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
| | - Bianca Nitzsche
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| |
Collapse
|
30
|
Gandamalla D, Lingabathula H, Yellu N. Nano titanium exposure induces dose- and size-dependent cytotoxicity on human epithelial lung and colon cells. Drug Chem Toxicol 2018; 42:24-34. [PMID: 29611443 DOI: 10.1080/01480545.2018.1452930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The productions as well as use of Titanium dioxide nanoparticles (TNPs) were rapidly increasing in the present nano-world. The TNP becomes an inevitable part our daily life in the form of cosmeceutical, bio-medical, and nano-pharmaceutical applications. The TNPs are either inhaled or ingested into the human body through common routes of exposure like the lungs and the oral-gastrointestinal tract (GIT). Human lung and colon were exposed to test particles, TNP 18 nm (TNP 18), TNP 30 nm (TNP 30), and TNP 87 nm (TNP 87) with a dose range 0.1-100 µg/ml. The effect of exposure was determined using MTT, LDH, and DCFH-DA methods. The TNP 18, TNP 30, and TNP 87 significantly (p < 0.001) reduced cell viability in a dose- and a size-dependent manner in 60 and 100 µg/ml. The lowest IC50 values 21.80 and 24.83 µg/ml were observed in A549 and Caco-2 for the smallest size, TNP 18. Further, for TNP 30, IC50 values were 23.30 and 28.59 µg/ml compared to Nano QTZ 43.82 and 45.86 µg/ml. The EC25 values of LDH leakage were 5.83 and 9.50 µg/ml for TNP 18 in lung and colon cells. Besides, ROS levels increased significantly at doses 60 (p < 0.01) and 100 (p < 0.001) µg/ml in two cells. The smaller size particle, TNP 18 has produced a significant (p < 0.05) toxic effect at the lowest dose i.e., 10 µg/ml. Therefore, we conclude that TNP 18, TNP 30, and TNP 87 induced a dose- and size-dependent cytotoxicity via decreased cell viability, increased LDH and ROS levels by in vitro methods.
Collapse
Affiliation(s)
- Durgaiah Gandamalla
- a Department of Pharmacology and Toxicology , University College of Pharmaceutical Sciences, Kakatiya University , Warangal , India
| | - Harikiran Lingabathula
- a Department of Pharmacology and Toxicology , University College of Pharmaceutical Sciences, Kakatiya University , Warangal , India
| | - Narsimhareddy Yellu
- a Department of Pharmacology and Toxicology , University College of Pharmaceutical Sciences, Kakatiya University , Warangal , India
| |
Collapse
|
31
|
Necroptosis in neurodegenerative diseases: a potential therapeutic target. Cell Death Dis 2017; 8:e2905. [PMID: 28661482 PMCID: PMC5520937 DOI: 10.1038/cddis.2017.286] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/13/2017] [Accepted: 05/17/2017] [Indexed: 02/08/2023]
Abstract
Neurodegenerative diseases are a group of chronic progressive disorders characterized by neuronal loss. Necroptosis, a recently discovered form of programmed cell death, is a cell death mechanism that has necrosis-like morphological characteristics. Necroptosis activation relies on the receptor-interacting protein (RIP) homology interaction motif (RHIM). A variety of RHIM-containing proteins transduce necroptotic signals from the cell trigger to the cell death mediators RIP3 and mixed lineage kinase domain-like protein (MLKL). RIP1 plays a particularly important and complex role in necroptotic cell death regulation ranging from cell death activation to inhibition, and these functions are often cell type and context dependent. Increasing evidence suggests that necroptosis plays an important role in the pathogenesis of neurodegenerative diseases. Moreover, small molecules such as necrostatin-1 are thought inhibit necroptotic signaling pathway. Understanding the precise mechanisms underlying necroptosis and its interactions with other cell death pathways in neurodegenerative diseases could provide significant therapeutic insights. The present review is aimed at summarizing the molecular mechanisms of necroptosis and highlighting the emerging evidence on necroptosis as a major driver of neuron cell death in neurodegenerative diseases.
Collapse
|
32
|
Linkermann A. Nonapoptotic cell death in acute kidney injury and transplantation. Kidney Int 2017; 89:46-57. [PMID: 26759047 DOI: 10.1016/j.kint.2015.10.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
Acute tubular necrosis causes a loss of renal function, which clinically presents as acute kidney failure (AKI). The biochemical signaling pathways that trigger necrosis have been investigated in detail over the past 5 years. It is now clear that necrosis (regulated necrosis, RN) represents a genetically driven process that contributes to the pathophysiology of AKI. RN pathways such as necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-induced regulated necrosis (MPT-RN) may be mechanistically distinct, and the relative contributions to overall organ damage during AKI in living organisms largely remain elusive. In a synchronized manner, some necrotic programs induce the breakdown of tubular segments and multicellular functional units, whereas others are limited to killing single cells in the tubular compartment. Importantly, the means by which a renal cell dies may have implications for the subsequent inflammatory response. In this review, the recent advances in the field of renal cell death in AKI and key enzymes that might serve as novel therapeutic targets will be discussed. As a consequence of the interference with RN, the immunogenicity of dying cells in AKI in renal transplants will be diminished, rendering inhibitors of RN indirect immunosuppressive agents.
Collapse
Affiliation(s)
- Andreas Linkermann
- Clinic for Nephrology and Hypertension and Georges-Köhler-Haus for Biomedical Research and Transplantation, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
33
|
Miller MA, Zachary JF. Mechanisms and Morphology of Cellular Injury, Adaptation, and Death 1. PATHOLOGIC BASIS OF VETERINARY DISEASE 2017. [PMCID: PMC7171462 DOI: 10.1016/b978-0-323-35775-3.00001-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Li Z, Zhou Z. How are necrotic cells recognized by their predators? WORM 2015; 5:e1120400. [PMID: 27073733 PMCID: PMC4805362 DOI: 10.1080/21624054.2015.1120400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022]
Abstract
Necrosis is a type of cell death often caused by cell injury and is linked to human diseases including neuron degeneration, stroke, and cancer. Cells undergoing necrosis are engulfed and degraded by engulfing cells, their predators. The mechanisms by which necrotic cells are recognized and removed remain elusive. Here we comment on our recent findings that reveal new molecular mechanisms of necrotic-cell recognition. Through studying the C. elegans touch neurons undergoing excitotoxic necrosis, we identified a receptor/ligand pair that enables engulfing cells to recognize necrotic neurons. The phagocytic receptor CED-1 is activated through interaction with its ligand phosphatidylserine (PS), exposed on the surface of necrotic cells. Furthermore, against the common belief that necrotic cells have ruptured plasma membrane, we found that necrotic C. elegans touch neurons actively present PS on their outer surfaces while maintaining plasma membrane integrity. We further identified 2 mechanisms governing the presentation of PS, one of which is shared with cells undergoing apoptosis, a “cell suicide” event, whereas the other is unique to necrotic neurons. The influx of Ca2+, a key necrosis-triggering factor, is implicated in activating a neuronal PS-scramblase for PS exposure. We propose that the mechanisms controlling PS-exposure and necrotic-cell recognition by engulfing cells are likely conserved from worms to humans.
Collapse
Affiliation(s)
- Zao Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine , Houston, TX, USA
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine , Houston, TX, USA
| |
Collapse
|
35
|
Kumar R, Kumar Pate S, Rami Reddy B, Bhatt M, Karthik K, Gandham RK, Singh Mali Y, Dhama K. Apoptosis and Other Alternate Mechanisms of Cell Death. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajava.2015.646.668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Zhu Y, Cui H, Gan H, Xia Y, Wang L, Wang Y, Sun Y. Necroptosis mediated by receptor interaction protein kinase 1 and 3 aggravates chronic kidney injury of subtotal nephrectomised rats. Biochem Biophys Res Commun 2015; 461:575-81. [PMID: 25907058 DOI: 10.1016/j.bbrc.2015.03.164] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 11/16/2022]
Abstract
Necroptosis, an alternative mode of programmed cell death, has crucial pathophysiological roles in many diseases, but its effect on chronic kidney disease (CKD) is poorly understood. Therefore, we assessed necroptosis and its pathophysiological effects in a widely used remnant-kidney rat model. We found that necroptotic cell death and the highest level of receptor interaction protein kinase 1 (RIP1) and receptor interaction protein kinase 3 (RIP3), critical signalling molecules for necroptosis, appeared 8 weeks after subtotal nephrectomy (SNX) surgery. After treatment with Necrostatin-1 (Nec-1), renal function and renal pathologic changes were significantly improved; the overexpression of RIP1, RIP3, mixed lineage kinase domain-like (MLKL) and dynamin-related protein 1 (Drp1) was reduced; and necroptosis was inhibited. These results indicated that necroptosis mediated by RIP1 and RIP3 participates in the loss of renal cells of subtotal nephrectomised rats and might be one of main causes of the excessive loss of renal cells during the sustained progression of renal fibrosis.
Collapse
Affiliation(s)
- Yongjun Zhu
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongwang Cui
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yunfeng Xia
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lizhen Wang
- Department of Pathology, Wannan Medical College, Wuhu, China
| | - Yuxuan Wang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Sun
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Necrotic Cells Actively Attract Phagocytes through the Collaborative Action of Two Distinct PS-Exposure Mechanisms. PLoS Genet 2015; 11:e1005285. [PMID: 26061275 PMCID: PMC4464654 DOI: 10.1371/journal.pgen.1005285] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/14/2015] [Indexed: 11/19/2022] Open
Abstract
Necrosis, a kind of cell death closely associated with pathogenesis and genetic programs, is distinct from apoptosis in both morphology and mechanism. Like apoptotic cells, necrotic cells are swiftly removed from animal bodies to prevent harmful inflammatory and autoimmune responses. In the nematode Caenorhabditis elegans, gain-of-function mutations in certain ion channel subunits result in the excitotoxic necrosis of six touch neurons and their subsequent engulfment and degradation inside engulfing cells. How necrotic cells are recognized by engulfing cells is unclear. Phosphatidylserine (PS) is an important apoptotic-cell surface signal that attracts engulfing cells. Here we observed PS exposure on the surface of necrotic touch neurons. In addition, the phagocytic receptor CED-1 clusters around necrotic cells and promotes their engulfment. The extracellular domain of CED-1 associates with PS in vitro. We further identified a necrotic cell-specific function of CED-7, a member of the ATP-binding cassette (ABC) transporter family, in promoting PS exposure. In addition to CED-7, anoctamin homolog-1 (ANOH-1), the C. elegans homolog of the mammalian Ca(2+)-dependent phospholipid scramblase TMEM16F, plays an independent role in promoting PS exposure on necrotic cells. The combined activities from CED-7 and ANOH-1 ensure efficient exposure of PS on necrotic cells to attract their phagocytes. In addition, CED-8, the C. elegans homolog of mammalian Xk-related protein 8 also makes a contribution to necrotic cell-removal at the first larval stage. Our work indicates that cells killed by different mechanisms (necrosis or apoptosis) expose a common "eat me" signal to attract their phagocytic receptor(s); furthermore, unlike what was previously believed, necrotic cells actively present PS on their outer surfaces through at least two distinct molecular mechanisms rather than leaking out PS passively.
Collapse
|
38
|
Zhang Z, Wang M, Zhou L, Feng X, Cheng J, Yu Y, Gong Y, Zhu Y, Li C, Tian L, Huang Q. Increased HMGB1 and cleaved caspase-3 stimulate the proliferation of tumor cells and are correlated with the poor prognosis in colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:51. [PMID: 25986235 PMCID: PMC4446854 DOI: 10.1186/s13046-015-0166-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022]
Abstract
Background Dying tumor cells after irradiation could promote the proliferation of living tumor cells might cause tumor relapse and treatment failure. Our previous study showed that activated caspase-3 after irradiation probably participates in tumor repopulation. In this study, we investigated whether high mobility group box 1(HMGB1) is also involved in tumor repopulation. Methods Colorectal tumor cells were irradiated. The cleaved caspase-3 (CC3) in irradiated tumor cells and HMGB1 in the supernatant of irradiated tumor cells were detected by Western blot. A large number of irradiated colorectal tumor cells (feeder cells) were then co-cultured with a small number of luciferase-labeled living colorectal tumor cells (reporter cells) and proliferation of reporter cells was measured by bioluminescence imaging. The CC3 and HMGB1 protein expression in colorectal tumor and peritumoral tissues were detected by immunohistochemistry and their correlation with prognosis were analyzed. Results The irradiated colorectal tumor cells underwent apoptosis and necrosis and produced CC3 in tumor cells and HMGB1 in the supernatant of cultured cells. The increased expression of secretory HMGB1 correlated with CC3 level and proliferating cell nuclear antigen (PCNA) after irradiation in vitro. The irradiated dying cells remarkably stimulated living tumor cell proliferation. Interestedly, immunohistochemistry staining showed that positive HMGB1, CC3, and Ki67 expression were significantly higher in colorectal tumor tissues than in peritumoral tissues (p <0.01). The Kaplan-Meier survival analysis revealed that high HMGB1, CC3, and Ki67 levels were significantly associated with poor prognosis (p <0.05, p <0.01). Multivariate analysis using Cox proportional hazards model showed that TNM staging and HMGB1 were independent prognostic factors in patients with colorectal cancer (CRC) (p <0.01, p <0.001). Conclusion Both apoptotic and necrotic cells could stimulate proliferation of living tumor cells, and the increased expression of CC3 and HMGB1 in tumor cells could be new markers for poor prognosis in colorectal cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0166-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhengxiang Zhang
- The Comprehensive Cancer Center & Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China.
| | - Min Wang
- The Department of Surgery, The Branch Hospital of Shanghai General Hospital, Shanghai, 200080, China.
| | - Ling Zhou
- The Department of Surgery, The Branch Hospital of Shanghai General Hospital, Shanghai, 200080, China.
| | - Xiao Feng
- The Comprehensive Cancer Center & Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China.
| | - Jin Cheng
- The Comprehensive Cancer Center & Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China.
| | - Yang Yu
- The Comprehensive Cancer Center & Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China.
| | - Yanping Gong
- Experimental Research Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China.
| | - Ying Zhu
- The Department of Surgery, The Branch Hospital of Shanghai General Hospital, Shanghai, 200080, China.
| | - Chuanyuan Li
- Department of Dermatology, Medical Center, Duke University, Durham, NC, 27710, USA.
| | - Ling Tian
- Experimental Research Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China.
| | - Qian Huang
- The Comprehensive Cancer Center & Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China.
| |
Collapse
|
39
|
Chronic Treatment with a Water-Soluble Extract from the Culture Medium of Ganoderma lucidum Mycelia Prevents Apoptosis and Necroptosis in Hypoxia/Ischemia-Induced Injury of Type 2 Diabetic Mouse Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:865986. [PMID: 25945116 PMCID: PMC4402482 DOI: 10.1155/2015/865986] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 02/03/2015] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes mellitus has been known to increase systemic oxidative stress by chronic hyperglycemia and visceral obesity and aggravate cerebral ischemic injury. On the basis of our previous study regarding a water-soluble extract from the culture medium of Ganoderma lucidum mycelia (designed as MAK), which exerts antioxidative and neuroprotective effects, the present study was conducted to evaluate the preventive effects of MAK on apoptosis and necroptosis (a programmed necrosis) induced by hypoxia/ischemia (H/I) in type 2 diabetic KKAy mice. H/I was induced by a combination of unilateral common carotid artery ligation with hypoxia (8% O2 for 20 min) and subsequent reoxygenation. Pretreatment with MAK (1 g/kg, p.o.) for a week significantly reduced H/I-induced neurological deficits and brain infarction volume assessed at 24 h of reoxygenation. Histochemical analysis showed that MAK significantly suppressed superoxide production, neuronal cell death, and vacuolation in the ischemic penumbra, which was accompanied by a decrease in the numbers of TUNEL- or cleaved caspase-3-positive cells. Furthermore, MAK decreased the expression of receptor-interacting protein kinase 3 mRNA and protein, a key molecule for necroptosis. These results suggest that MAK confers resistance to apoptotic and necroptotic cell death and relieves H/I-induced cerebral ischemic injury in type 2 diabetic mice.
Collapse
|
40
|
Liu T, Bao YH, Wang Y, Jiang JY. The role of necroptosis in neurosurgical diseases. ACTA ACUST UNITED AC 2015; 48:292-8. [PMID: 25714887 PMCID: PMC4418358 DOI: 10.1590/1414-431x20144310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Programmed necrosis or necroptosis is an alternative form of cell death that is
executed through a caspase-independent pathway. Necroptosis has been implicated in
many pathological conditions. Genetic or pharmacological inhibition of necroptotic
signaling has been shown to confer neuroprotection after traumatic and ischemic brain
injury. Therefore, the necroptotic pathway represents a potential target for
neurological diseases that are managed by neurosurgeons. In this review, we summarize
recent advances in the understanding of necroptotic signaling pathways and explore
the role of necroptotic cell death in craniocerebral trauma, brain tumors, and
cerebrovascular diseases.
Collapse
Affiliation(s)
- T Liu
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Y H Bao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Y Wang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - J Y Jiang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
41
|
Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps. PLoS Pathog 2015; 11:e1004643. [PMID: 25659141 PMCID: PMC4450068 DOI: 10.1371/journal.ppat.1004643] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) were initially considered as critical for innate immunity to viruses. However, our group has shown that pDCs bind to and inhibit the growth of Aspergillus fumigatus hyphae and that depletion of pDCs renders mice hypersusceptible to experimental aspergillosis. In this study, we examined pDC receptors contributing to hyphal recognition and downstream events in pDCs stimulated by A. fumigatus hyphae. Our data show that Dectin-2, but not Dectin-1, participates in A. fumigatus hyphal recognition, TNF-α and IFN-α release, and antifungal activity. Moreover, Dectin-2 acts in cooperation with the FcRγ chain to trigger signaling responses. In addition, using confocal and electron microscopy we demonstrated that the interaction between pDCs and A. fumigatus induced the formation of pDC extracellular traps (pETs) containing DNA and citrullinated histone H3. These structures closely resembled those of neutrophil extracellular traps (NETs). The microarray analysis of the pDC transcriptome upon A. fumigatus infection also demonstrated up-regulated expression of genes associated with apoptosis as well as type I interferon-induced genes. Thus, human pDCs directly recognize A. fumigatus hyphae via Dectin-2; this interaction results in cytokine release and antifungal activity. Moreover, hyphal stimulation of pDCs triggers a distinct pattern of pDC gene expression and leads to pET formation.
Collapse
|
42
|
Dvoriantchikova G, Ivanov D. Tumor necrosis factor-alpha mediates activation of NF-κB and JNK signaling cascades in retinal ganglion cells and astrocytes in opposite ways. Eur J Neurosci 2014; 40:3171-8. [PMID: 25160799 PMCID: PMC4205188 DOI: 10.1111/ejn.12710] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor-alpha (TNF) is an important mediator of the innate immune response in the retina. TNF can activate various signaling cascades, including NF-κB, nuclear factor kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways. The harmful role of these pathways, as well as of TNF, has previously been shown in several retinal neurodegenerative conditions including glaucoma and retinal ischemia. However, TNF and TNF-regulated signaling cascades are capable not only of mediating neurotoxicity, but of being protective. We performed this study to delineate the beneficial and detrimental effects of TNF signaling in the retina. To this end, we used TNF-treated primary retinal ganglion cell (RGC) and astrocyte cultures. Levels of expression of NF-κB subunits in RGCs and astrocytes were evaluated by quantitative RT-PCR (qRT-PCR) and Western blot (WB) analysis. NF-κB and JNK activity in TNF-treated cells was determined in a time-dependent manner using ELISA and WB. Gene expression in TNF-treated astrocytes was measured by qRT-PCR. We found that NF-κB family members were present in RGCs and astrocytes at the mRNA and protein levels. RGCs failed to activate NF-κB in the presence of TNF, a phenomenon that was associated with sustained JNK activation and RGC death. However, TNF initiated the activation of NF-κB and mediated transient JNK activation in astrocytes. These events were associated with glial survival and increased expression of neurotoxic pro-inflammatory factors. Our findings suggest that, in the presence of TNF, NF-κB and JNK signaling cascades are activated in opposite ways in RGCs and astrocytes. These events can directly and indirectly facilitate RGC death.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | | |
Collapse
|
43
|
Zhang A, Mao X, Li L, Tong Y, Huang Y, Lan Y, Jiang H. Necrostatin-1 inhibits Hmgb1-IL-23/IL-17 pathway and attenuates cardiac ischemia reperfusion injury. Transpl Int 2014; 27:1077-85. [PMID: 24810904 DOI: 10.1111/tri.12349] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/13/2014] [Accepted: 05/05/2014] [Indexed: 02/02/2023]
Abstract
Ischemia reperfusion (IR) injury is a major issue in cardiac transplantation and inflammatory processes play a major role in myocardial IR injury. Necrostatin-1 (Nec-1) is a small molecule capable of inhibiting RIP1 kinase activity and attenuates inflammation-mediated tissue injury. In our study, hearts of C57Bl/6 mice were flushed and stored in cold Bretschneider solution for 8 h and then transplanted into syngeneic recipients. We found that Nec-1 decreased cardiomyocyte necrosis and recruitment of neutrophils and macrophages. Troponin T (TnT) production on 24 h after myocardial IR injury was reduced by Nec-1 administration. Cardiac output at 60 mmHg of afterload pressure was significantly increased in hearts with Nec-1 administration and the cardiac allograft survival in Nec-1-treated animals was significantly prolonged (MST = 90 days in IR + Nec-1 group, P < 0.05 as compared with IR group, MST = 83.5 days). Nec-1 treatment attenuated ROS generation and increased expression of NOS2 and COX-2. The expression of Hmgb1, IL-23, and IL-17A were also decreased with Nec-1 administration. Furthermore, the decreased TnT expression induced by Nec-1 was abrogated with exogenous Hmgb1 administration. In conclusion, Nec-1 played a protective role in cardiomyocyte IR injury, and this was associated with inhibited Hmgb1-IL-23/IL-17 pathway.
Collapse
Affiliation(s)
- Anbin Zhang
- Department of Rheumatology and Immunology, Xiangyang Central Hospital, Hubei University of Arts and Science, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Dvoriantchikova G, Degterev A, Ivanov D. Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia-reperfusion-induced retinal damage. Exp Eye Res 2014; 123:1-7. [PMID: 24751757 DOI: 10.1016/j.exer.2014.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/31/2014] [Accepted: 04/10/2014] [Indexed: 12/17/2022]
Abstract
Retinal ischemia-reperfusion (IR) injury remains a common cause of blindness and has a final pathway of retinal ganglion cell (RGC) death by apoptosis and necrosis. RGC apoptosis was intensively studied in IR injury, while RGC necrosis did not receive nearly enough consideration since it was viewed as an accidental and unregulated cellular event. However, there is evidence that necrosis, like apoptosis, can be implemented by a programmed mechanism. In this study, we tested the role of RGC programmed necrosis (necroptosis) in IR-induced retinal injury. We employed the mouse model of retinal IR injury for in vivo experiments. The oxygen and glucose deprivation (OGD) model was used as an IR model in vitro. Primary RGCs were isolated by an immunopanning technique. Necrostatin 1 (Nec1) was used to inhibit necroptosis in in vitro and in vivo experiments. The changes in gene expression were assessed by quantitative RT-PCR. The distribution of proteins in the retina and in RGC cultures was evaluated by immunohistochemistry and immunocytochemistry, respectively. Our data suggest that proteins (Ripk1 and Ripk3), which initiate necroptosis, were present in normal and ischemic RGCs. Treatment with Nec1 significantly reduced retinal damage after IR. Increased RGC survival and reduced RGC necrosis following OGD were observed in Nec1-treated cultures. We found significantly reduced expression of genes coding pro-inflammatory markers Il1b, Ccl5, Cxcl10, Nos2 and Cybb in Nec1-treated ischemic retinas. Thus, our findings suggest that RGC necroptosis contributes to retinal damage after IR through direct loss of cells and induction of associated inflammatory responses.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexei Degterev
- Department of Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
45
|
Abstract
Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses.
Collapse
Affiliation(s)
- Claudia N Paiva
- Departamento de Imunologia, Instituto de Microbiologia , CCS Bloco D, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
46
|
Affiliation(s)
- Andreas Linkermann
- Division of Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
47
|
Lau A, Wang S, Jiang J, Haig A, Pavlosky A, Linkermann A, Zhang ZX, Jevnikar AM. RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival. Am J Transplant 2013; 13:2805-2818. [PMID: 24103001 DOI: 10.1111/ajt.12447] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/12/2013] [Accepted: 07/02/2013] [Indexed: 01/25/2023]
Abstract
Kidney transplant injury occurs with ischemia and alloimmunity. Members of the receptor interacting protein kinase family (RIPK1,3) are key regulators of "necroptosis," a newly recognized, regulated form of necrosis. Necroptosis and apoptosis death appear to be counterbalanced as caspase-8 inhibition can divert death from apoptosis to necrosis. Inhibition of necroptosis in donor organs to limit injury has not been studied in transplant models. In this study, necroptosis was triggered in caspase inhibited tubular epithelial cells (TEC) exposed to tumor necrosis factor alpha in vitro, while RIPK1 inhibition with necrostatin-1 or use of RIPK3(-/-) TEC, prevented necroptosis. In vivo, short hairpin RNA silencing of caspase-8 in donor B6 mouse kidneys increased necroptosis, enhanced high-mobility group box 1 release, reduced renal function and accelerated rejection when transplanted into BALB/c recipients. Using ethidium homodimer perfusion to assess necrosis in vivo, necrosis was abrogated in RIPK3(-/-) kidneys postischemia. Following transplantation, recipients receiving RIPK3(-/-) kidneys had longer survival (p = 0.002) and improved renal function (p = 0.03) when compared to controls. In summary, we show for the first time that RIPK3-mediated necroptosis in donor kidneys can promote inflammatory injury, and has a major impact on renal ischemia-reperfusion injury and transplant survival. We suggest inhibition of necroptosis in donor organs may similarly provide a major clinical benefit.
Collapse
Affiliation(s)
- A Lau
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada; Department of Pathology, Western University, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Moquin DM, McQuade T, Chan FKM. CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One 2013; 8:e76841. [PMID: 24098568 PMCID: PMC3788787 DOI: 10.1371/journal.pone.0076841] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 09/04/2013] [Indexed: 12/21/2022] Open
Abstract
Background Necroptosis/programmed necrosis is initiated by a macro-molecular protein complex termed the necrosome. Receptor interacting protein kinase 1 (RIPK1/RIP1) and RIP3 are key components of the necrosome. TNFα is a prototypic inducer of necrosome activation, and it is widely believed that deubiquitination of RIP1 at the TNFR-1 signaling complex precedes transition of RIP1 into the cytosol where it forms the RIP1-RIP3 necrosome. Cylindromatosis (CYLD) is believed to promote programmed necrosis by facilitating RIP1 deubiquitination at this membrane receptor complex. Methodology/Principal Findings We demonstrate that RIP1 is indeed the primary target of CYLD in TNFα-induced programmed necrosis. We observed that CYLD does not regulate RIP1 ubiquitination at the TNF receptor. TNF and zVAD-induced programmed necrosis was highly attenuated in CYLD-/- cells. However, in the presence of cycloheximide or SMAC mimetics, programmed necrosis was only moderately reduced in CYLD-/- cells. Under the latter conditions, RIP1-RIP3 necrosome formation is only delayed, but not abolished in CYLD-/- cells. We further demonstrate that RIP1 within the NP-40 insoluble necrosome is ubiquitinated and that CYLD regulates RIP1 ubiquitination in this compartment. Hence, RIP1 ubiquitination in this late-forming complex is greatly increased in CYLD-/- cells. Increased RIP1 ubiquitination impairs RIP1 and RIP3 phosphorylation, a signature of kinase activation. Conclusions/Significance Our results show that CYLD regulates RIP1 ubiquitination in the TNFα-induced necrosome, but not in the TNFR-1 signaling complex. In cells sensitized to programmed necrosis with SMAC mimetics, CYLD is not essential for necrosome assembly. Since SMAC mimetics induces the loss of the E3 ligases cIAP1 and cIAP2, reduced RIP1 ubiquitination could lead to reduced requirement for CYLD to remove ubiquitin chains from RIP1 in the TNFR-1 complex. As increased RIP1 ubiquitination in the necrosome correlates with impaired RIP1 and RIP3 phosphorylation and function, these results suggest that CYLD controls RIP1 kinase activity during necrosome assembly.
Collapse
Affiliation(s)
- David M. Moquin
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Thomas McQuade
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Francis Ka-Ming Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
49
|
Qu G, Liu S, Zhang S, Wang L, Wang X, Sun B, Yin N, Gao X, Xia T, Chen JJ, Jiang GB. Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS NANO 2013; 7:5732-45. [PMID: 23734789 DOI: 10.1021/nn402330b] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene and graphene-based nanomaterials display novel and beneficial chemical, electrical, mechanical, and optical characteristics, which endow these nanomaterials with promising applications in a wide spectrum of areas such as electronics and biomedicine. However, its toxicity on health remains unknown and is of great concern. In the present study, we demonstrated that graphene oxide (GO) induced necrotic cell death to macrophages. This toxicity is mediated by activation of toll-like receptor 4 (TLR4) signaling and subsequently in part via autocrine TNF-α production. Inhibition of TLR4 signaling with a selective inhibitor prevented cell death nearly completely. Furthermore, TLR4-deficient bone marrow-derived macrophages were resistant to GO-triggered necrosis. Similarly, GO did not induce necrosis of HEK293T/TLR4-null cells. Macrophagic cell death upon GO treatment was partially attributed to RIP1-RIP3 complex-mediated programmed necrosis downstream of TNF-α induction. Additionally, upon uptake into macrophages, GO accumulated primarily in cytoplasm causing dramatic morphologic alterations and a significant reduction of the macrophagic ability in phagocytosis. However, macrophagic uptake of GO may not be required for induction of necrosis. GO exposure also caused a large increase of intracellular reactive oxygen species (ROS), which contributed to the cause of cell death. The combined data reveal that interaction of GO with TLR4 is the predominant molecular mechanism underlying GO-induced macrophagic necrosis; also, cytoskeletal damage and oxidative stress contribute to decreased viability and function of macrophages upon GO treatment.
Collapse
Affiliation(s)
- Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Linkermann A, De Zen F, Weinberg J, Kunzendorf U, Krautwald S. Programmed necrosis in acute kidney injury. Nephrol Dial Transplant 2013; 27:3412-9. [PMID: 22942173 DOI: 10.1093/ndt/gfs373] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Programmed cell death (PCD) had been widely used synonymously to caspase-mediated apoptosis until caspase-independent cell death was described. Identification of necrosis as a regulated process in ischaemic conditions has recently changed our understanding of PCD. At least three pathways of programmed necrosis (PN) have been identified. First, receptor-interacting protein kinase 3 (RIP3)-dependent necroptosis causes organ failure following stroke, myocardial infarction and renal ischaemia/reperfusion injury. Necroptosis can be mediated either by a large intracellular caspase-8-containing signalling complex called the ripoptosome or by the RIP1-/RIP3-containing necroptosome and is controlled by a caspase-8/FLICE inhibitory protein(long) heterodimer at least in the latter case. Second, mitochondrial permeability transition mediates apoptotic or necrotic stimuli and depends on the mitochondrial protein cyclophilin D. The third PN pathway involves the poly(ADP-ribose) polymerase-calpain axis that contributes to acute kidney injury (AKI). Preclinical interference with the PN pathways therefore raises expectations for the future treatment of ischaemic conditions. In this brief review, we aim to summarize the clinically relevant PCD pathways and to transfer the basic science data to settings of AKI. We conclude that pathologists were quite right to refer to ischaemic kidney injury as 'acute tubular necrosis'.
Collapse
|