1
|
Louit A, Beaudet MJ, Gros-Louis F, Berthod F. Tissue-engineered in vitro modeling of the impact of Schwann cells in amyotrophic lateral sclerosis. Biotechnol Bioeng 2022; 119:1938-1948. [PMID: 35289393 DOI: 10.1002/bit.28083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 11/06/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons (MN). To investigate whether Schwann cells could be involved in the disease pathogenesis, we developed a tissue-engineered 3D in vitro model that combined MNs cocultured with astrocytes and microglia seeded on top of a collagen sponge populated with epineurium fibroblasts to enable 3D axonal migration. C2C12 myoblasts were seeded underneath the sponge in presence or absence of Schwann cells. To reproduce an ALS cellular microenvironment, MNs, astrocytes and microglia were extracted from SOD1G93A mice recapitulating many aspects of the human disease. This 3D ALS in vitro model was compared with a 3D control made of cells isolated from SOD1WT mice. We showed that normal Schwann cells strongly enhanced MN axonal migration in the 3D control model but had no effect in the ALS model. However, ALS-derived Schwann cells isolated from SOD1G93A mice failed to significantly improve axonal migration in both models. These results suggest that a cell therapy using healthy Schwann cells may not be effective in promoting axonal regeneration in ALS. In addition, this 3D ALS model could be used to study the impact of other cell types on ALS by various combinations of normal and diseased cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aurélie Louit
- LOEX, Centre de recherche du CHU de Québec-Université Laval
| | | | - François Gros-Louis
- LOEX, Centre de recherche du CHU de Québec-Université Laval.,Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - François Berthod
- LOEX, Centre de recherche du CHU de Québec-Université Laval.,Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
2
|
Kuruş M, Akbari S, Eskier D, Bursalı A, Ergin K, Erdal E, Karakülah G. Transcriptome Dynamics of Human Neuronal Differentiation From iPSC. Front Cell Dev Biol 2022; 9:727747. [PMID: 34970540 PMCID: PMC8712770 DOI: 10.3389/fcell.2021.727747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The generation and use of induced pluripotent stem cells (iPSCs) in order to obtain all differentiated adult cell morphologies without requiring embryonic stem cells is one of the most important discoveries in molecular biology. Among the uses of iPSCs is the generation of neuron cells and organoids to study the biological cues underlying neuronal and brain development, in addition to neurological diseases. These iPSC-derived neuronal differentiation models allow us to examine the gene regulatory factors involved in such processes. Among these regulatory factors are long non-coding RNAs (lncRNAs), genes that are transcribed from the genome and have key biological functions in establishing phenotypes, but are frequently not included in studies focusing on protein coding genes. Here, we provide a comprehensive analysis and overview of the coding and non-coding transcriptome during multiple stages of the iPSC-derived neuronal differentiation process using RNA-seq. We identify previously unannotated lncRNAs via genome-guided de novo transcriptome assembly, and the distinct characteristics of the transcriptome during each stage, including differentially expressed and stage specific genes. We further identify key genes of the human neuronal differentiation network, representing novel candidates likely to have critical roles in neurogenesis using coexpression network analysis. Our findings provide a valuable resource for future studies on neuronal differentiation.
Collapse
Affiliation(s)
- Meltem Kuruş
- Department of Histology and Embryology, Faculty of Medicine, Izmir Katip Çelebi University, Izmir, Turkey
| | | | - Doğa Eskier
- İzmir Biomedicine and Genome Center, İzmir, Turkey.,İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| | | | - Kemal Ergin
- Department of Histology and Embryology, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Esra Erdal
- İzmir Biomedicine and Genome Center, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center, İzmir, Turkey.,İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
3
|
Gupta S, Butler SJ. Getting in touch with your senses: Mechanisms specifying sensory interneurons in the dorsal spinal cord. WIREs Mech Dis 2021; 13:e1520. [PMID: 34730293 PMCID: PMC8459260 DOI: 10.1002/wsbm.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022]
Abstract
The spinal cord is functionally and anatomically divided into ventrally derived motor circuits and dorsally derived somatosensory circuits. Sensory stimuli originating either at the periphery of the body, or internally, are relayed to the dorsal spinal cord where they are processed by distinct classes of sensory dorsal interneurons (dIs). dIs convey sensory information, such as pain, heat or itch, either to the brain, and/or to the motor circuits to initiate the appropriate response. They also regulate the intensity of sensory information and are the major target for the opioid analgesics. While the developmental mechanisms directing ventral and dorsal cell fates have been hypothesized to be similar, more recent research has suggested that dI fates are specified by novel mechanisms. In this review, we will discuss the molecular events that specify dorsal neuronal patterning in the spinal cord, thereby generating diverse dI identities. We will then discuss how this molecular understanding has led to the development of robust stem cell methods to derive multiple spinal cell types, including the dIs, and the implication of these studies for treating spinal cord injuries and neurodegenerative diseases. This article is categorized under: Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Samantha J. Butler
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Intellectual and Developmental Disabilities Research CenterUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
4
|
Zujur D, Kanke K, Onodera S, Tani S, Lai J, Azuma T, Xin X, Lichtler AC, Rowe DW, Saito T, Tanaka S, Masaki H, Nakauchi H, Chung UI, Hojo H, Ohba S. Stepwise strategy for generating osteoblasts from human pluripotent stem cells under fully defined xeno-free conditions with small-molecule inducers. Regen Ther 2020; 14:19-31. [PMID: 31988991 PMCID: PMC6965656 DOI: 10.1016/j.reth.2019.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/20/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023] Open
Abstract
Clinically relevant human induced pluripotent stem cell (hiPSC) derivatives require efficient protocols to differentiate hiPSCs into specific lineages. Here we developed a fully defined xeno-free strategy to direct hiPSCs toward osteoblasts within 21 days. The strategy successfully achieved the osteogenic induction of four independently derived hiPSC lines by a sequential use of combinations of small-molecule inducers. The induction first generated mesodermal cells, which subsequently recapitulated the developmental expression pattern of major osteoblast genes and proteins. Importantly, Col2.3-Cherry hiPSCs subjected to this strategy strongly expressed the cherry fluorescence that has been observed in bone-forming osteoblasts in vivo. Moreover, the protocol combined with a three-dimensional (3D) scaffold was suitable for the generation of a xeno-free 3D osteogenic system. Thus, our strategy offers a platform with significant advantages for bone biology studies and it will also contribute to clinical applications of hiPSCs to skeletal regenerative medicine.
Collapse
Affiliation(s)
- Denise Zujur
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kosuke Kanke
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Shoichiro Tani
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jenny Lai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Xiaonan Xin
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Alexander C Lichtler
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - David W Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Taku Saito
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Masaki
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hironori Hojo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Ohba
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Marotta N, Kim S, Krainc D. Organoid and pluripotent stem cells in Parkinson's disease modeling: an expert view on their value to drug discovery. Expert Opin Drug Discov 2020; 15:427-441. [PMID: 31899983 DOI: 10.1080/17460441.2020.1703671] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Parkinson's disease is a devastating neurodegenerative disorder preferentially involving loss of dopaminergic neurons in the substantia nigra, leading to typical motor symptoms. While there are still no therapeutics to modify disease course, recent work using induced pluripotent stem cell (iPSC) and 3D brain organoid models have provided further insight into Parkinson's disease pathogenesis and potential therapeutic targets.Areas covered: This review highlights the generation of iPSC neurons and neural organoids as models for studying Parkinson's disease. It further discusses the recent work using patient-derived neurons from both familial and sporadic forms of Parkinson's to study disease pathogenic phenotypes and pathways. It additionally provides an evaluation of iPSC neurons and organoid models for therapeutic development in Parkinson's.Expert opinion: The use of Parkinson's disease patient-derived neurons and organoids provides us with the exciting opportunity to directly investigate pathogenic mechanisms and test drug compounds in human neurons. Future studies will involve generating more sophisticated models of brain organoids, studying neuronal pathways using larger patient cohorts, and routinely assessing therapeutics in these models.
Collapse
Affiliation(s)
- Nick Marotta
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
Darabi S, Tiraihi T, Nazm Bojnordi M, Ghasemi Hamidabadi H, Rezaei N, Zahiri M, Alizadeh R. Trans-Differentiation of Human Dental Pulp Stem Cells Into Cholinergic-Like Neurons Via Nerve Growth Factor. Basic Clin Neurosci 2019; 10:609-617. [PMID: 32477478 PMCID: PMC7253808 DOI: 10.32598/bcn.10.6.609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/10/2018] [Accepted: 07/13/2019] [Indexed: 01/09/2023] Open
Abstract
Introduction: Cell therapy has been widely considered as a therapeutic approach for neurodegenerative diseases and nervous system damage. Cholinergic neurons as one of the most important neurons that play a significant role in controlling emotions, mobility, and autonomic systems. In this study, Human Dental Pulp Stem Cells (hDPSCs) were differentiated into the cholinergic neurons by β-mercaptoethanol in the preinduction phase and also by the nerve growth factor (NGF) in the induction phase. Methods: The hDPSCs were evaluated for CD73, CD31, CD34, and Oct-4. Concentration-time relationships for NGF were assessed by evaluating the viability rate of cells and the immune response to nestin, neurofilament 160, microtubule-associated protein-2, and choline acetyltransferase. Results: The hDPSCs had a negative response to CD34 and CD31. The optimal dose for the NGF was 50 ng/mL seven days after the induction when the highest percentage of expressing markers for the Cholinergic neurons (ChAT) was detected. Conclusion: The results of this study provided a method for producing cholinergic neurons by hDPSCs, which can be used in cytotherapy for degenerative diseases of the nervous system and also spinal cord injury.
Collapse
Affiliation(s)
- Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Taki Tiraihi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran
| | - Maryam Nazm Bojnordi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Rezaei
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Zheng Z, Li C, Ha P, Chang GX, Yang P, Zhang X, Kim JK, Jiang W, Pang X, Berthiaume EA, Mills Z, Haveles CS, Chen E, Ting K, Soo C. CDKN2B upregulation prevents teratoma formation in multipotent fibromodulin-reprogrammed cells. J Clin Invest 2019; 129:3236-3251. [PMID: 31305260 PMCID: PMC6668700 DOI: 10.1172/jci125015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Tumorigenicity is a well-documented risk to overcome for pluripotent or multipotent cell applications in regenerative medicine. To address the emerging demand for safe cell sources in tissue regeneration, we established a novel, protein-based reprogramming method that does not require genome integration or oncogene activation to yield multipotent fibromodulin (FMOD)-reprogrammed (FReP) cells from dermal fibroblasts. When compared with induced pluripotent stem cells (iPSCs), FReP cells exhibited a superior capability for bone and skeletal muscle regeneration with markedly less tumorigenic risk. Moreover, we showed that the decreased tumorigenicity of FReP cells was directly related to an upregulation of cyclin-dependent kinase inhibitor 2B (CDKN2B) expression during the FMOD reprogramming process. Indeed, sustained suppression of CDKN2B resulted in tumorigenic, pluripotent FReP cells that formed teratomas in vivo that were indistinguishable from iPSC-derived teratomas. These results highlight the pivotal role of CDKN2B in cell fate determination and tumorigenic regulation and reveal an alternative pluripotent/multipotent cell reprogramming strategy that solely uses FMOD protein.
Collapse
Affiliation(s)
- Zhong Zheng
- Division of Growth and Development, School of Dentistry, and
| | - Chenshuang Li
- Division of Growth and Development, School of Dentistry, and
| | - Pin Ha
- Division of Growth and Development, School of Dentistry, and
| | - Grace X. Chang
- David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Pu Yang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xinli Zhang
- Division of Growth and Development, School of Dentistry, and
| | - Jong Kil Kim
- Division of Growth and Development, School of Dentistry, and
| | - Wenlu Jiang
- Division of Growth and Development, School of Dentistry, and
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Pang
- Division of Growth and Development, School of Dentistry, and
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatology Hospital of Chongqing Medical University, Chongqing, China
| | | | - Zane Mills
- Department of Ecology and Evolutionary Biology, and
| | | | - Eric Chen
- Division of Growth and Development, School of Dentistry, and
| | - Kang Ting
- Division of Growth and Development, School of Dentistry, and
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA, Los Angeles, California, USA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
8
|
Zhang F, Liu CL, Tong MM, Zhao Z, Chen SQ. Both Wnt/β-catenin and ERK5 signaling pathways are involved in BDNF-induced differentiation of pluripotent stem cells into neural stem cells. Neurosci Lett 2019; 708:134345. [PMID: 31229623 DOI: 10.1016/j.neulet.2019.134345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/28/2019] [Accepted: 06/19/2019] [Indexed: 01/27/2023]
Abstract
Although brain-derived neurotrophic factor (BDNF) induces the differentiation of induced pluripotent stem cells (iPSCs) into neural stem cells (NSCs), its exact mechanism remains unelucidated. Wnt/β-catenin and ERK5 are two important signalling pathways of the Wnt and MAPK signalling cascades and are speculated to be closely related to the differentiation of cells. In this study, we reported the role of the Wnt/β-catenin and ERK5 signalling pathways on the BDNF-induced differentiation of iPSCs into NSCs. We examined the expression of β-catenin and p-ERK5 using small interfering RNA (siRNA)-induced silencing of β-catenin and ERK genes. We found that BDNF significantly improved the efficiency of iPSC differentiation and that the expression of β-catenin and p-ERK5 in the BDNF culture medium was significantly upregulated. Furthermore, we found that the expression of the β-catenin component was downregulated by siRNA-β-catenin, and the expression of the p-ERK5 component was downregulated by siRNA-ERK5. Flow cytometry showed that the differentiation rate of iPSCs was also significantly decreased by RNA interference. The results suggested that the Wnt/β-catenin and ERK5 signalling pathways are activated in the process of BDNF-induced iPSC differentiation. Interestingly, our study showed that siRNA-ERK5 not only inhibits the activity of the ERK5 signalling pathway but also partially controls the activity of the Wnt/β-catenin signalling pathway. The results suggested that the Wnt/β-catenin and ERK5 signalling pathways are not independently involved in the process of BDNF-induced iPSC differentiation. Our study showed that BDNF promotes the differentiation of iPSCs into NSCs by activating the Wnt/β-catenin and ERK5 signalling pathways, and an interconnected relationship may exist between the Wnt/β-catenin and ERK5 signalling pathways.
Collapse
Affiliation(s)
- Fan Zhang
- Stem cells research center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China
| | - Chen-Lu Liu
- Stem cells research center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China
| | - Ming-Min Tong
- Stem cells research center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China
| | - Zhong Zhao
- Neurology department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China
| | - Shuang-Qing Chen
- Stem cells research center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China.
| |
Collapse
|
9
|
Little D, Ketteler R, Gissen P, Devine MJ. Using stem cell-derived neurons in drug screening for neurological diseases. Neurobiol Aging 2019; 78:130-141. [PMID: 30925301 DOI: 10.1016/j.neurobiolaging.2019.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/22/2022]
Abstract
Induced pluripotent stem cells and their derivatives have become an important tool for researching disease mechanisms. It is hoped that they could be used to discover new therapies by providing the most reliable and relevant human in vitro disease models for drug discovery. This review will summarize recent efforts to use stem cell-derived neurons for drug screening. We also explain the current hurdles to using these cells for high-throughput pharmaceutical screening and developments that may help overcome these hurdles. Finally, we critically discuss whether induced pluripotent stem cell-derived neurons will come to fruition as a model that is regularly used to screen for drugs to treat neurological diseases.
Collapse
Affiliation(s)
- Daniel Little
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Michael J Devine
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
10
|
You Y, Wang X, Li S, Zhao X, Zhang X. Exome sequencing reveals a novel MFN2 missense mutation in a Chinese family with Charcot-Marie-Tooth type 2A. Exp Ther Med 2018; 16:2281-2286. [PMID: 30210586 PMCID: PMC6122517 DOI: 10.3892/etm.2018.6513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) is a group of inherited peripheral neuropathies. To date, mutations in >80 genes are reportedly associated with CMT. Protein mitofusin 2 encoded by MFN2 serves an essential role in mitochondrial fusion and regulation of apoptosis, which has previously been reported to be highly associated with an axonal form of neuropathy (CMT2A). In the present study, a large Chinese family with severe CMT was reported and a genetic analysis of the disease was performed. A detailed physical examination for CMT was performed in 13 family members and electrophysiological examinations were performed in 3 affected family members. Whole-exome sequencing was performed on the proband, and the suspected variants were identified by Sanger sequencing. The pathogenicity of mutation was verified by restriction fragment length polymorphism analysis in the family followed by a bioinformatics analysis. A novel c.1190G>C; p.(R397P) mutation in the MFN2 gene was identified in the proband, and co-segregated between genotype and phenotype in the family. The substituted amino acid changed the hydrophobicity and charge characteristics of the mitofusin 2 coiled-coiled domain; thus it may affect its biological function. In summary, a novel pathogenic mutation was identified in a Chinese family with CMT, which expands the phenotypic and mutational spectrum of CMT2A, and provides evidence for prenatal interventions and more precise pharmacological treatments to this family.
Collapse
Affiliation(s)
- Yi You
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiaodong Wang
- Department of Paediatric Orthopaedics, The Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Shan Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Xue Zhang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
11
|
Kang S, Chen X, Gong S, Yu P, Yau S, Su Z, Zhou L, Yu J, Pan G, Shi L. Characteristic analyses of a neural differentiation model from iPSC-derived neuron according to morphology, physiology, and global gene expression pattern. Sci Rep 2017; 7:12233. [PMID: 28947763 PMCID: PMC5612987 DOI: 10.1038/s41598-017-12452-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) can differentiate into neural progenitor cells (NPC) under proper conditions. NPC can be used as a model and is a useful tool for disease mechanism exploration and drug screening. However, the characteristics of the cells in various stages from NPC to functional neurons have not been fully described. This study investigated the characteristics of iPSC-derived NPCs during differentiation. Morphological characteristics of the NPCs, including soma area, neurite length, and the number of neurite branches, were examined on selected differentiation days. Physiological functions were assessed by recordings of sodium current, spontaneous excitatory postsynaptic current (sEPSC), and spontaneous inhibitory postsynaptic current (sIPSC). Furthermore, gene expression patterns were assessed with RNA-seq. We found that NPCs derived from iPSCs can be differentiated into glutamatergic and gabaergic neurons. Cell growth peaked during differentiation day 7–12, as the soma area decreased after day 12, growth cone and the number of branches peaked at day 9 and decreased afterwards; whereas a functional synapse formed after day 23. RNA-seq analysis found that a differential expression pattern emerged by day 7. Overall, the study provides a framework for the differentiation process of hiPSC-derived NPCs.
Collapse
Affiliation(s)
- Sai Kang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration, Ministry of Education of PRC, Jinan University, Guangzhou, China
| | - Xiaoxia Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration, Ministry of Education of PRC, Jinan University, Guangzhou, China
| | - Siyi Gong
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration, Ministry of Education of PRC, Jinan University, Guangzhou, China
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration, Ministry of Education of PRC, Jinan University, Guangzhou, China
| | - SukYu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Zhenghui Su
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration, Ministry of Education of PRC, Jinan University, Guangzhou, China
| | - Jiandong Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration, Ministry of Education of PRC, Jinan University, Guangzhou, China.
| | - Guangjin Pan
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Lingling Shi
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration, Ministry of Education of PRC, Jinan University, Guangzhou, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
12
|
Matsushita M, Nakatake Y, Arai I, Ibata K, Kohda K, Goparaju SK, Murakami M, Sakota M, Chikazawa-Nohtomi N, Ko SBH, Kanai T, Yuzaki M, Ko MSH. Neural differentiation of human embryonic stem cells induced by the transgene-mediated overexpression of single transcription factors. Biochem Biophys Res Commun 2017; 490:296-301. [PMID: 28610919 DOI: 10.1016/j.bbrc.2017.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/10/2017] [Indexed: 10/19/2022]
Abstract
Pluripotent human embryonic stem cells (hESCs) can differentiate into multiple cell lineages, thus, providing one of the best platforms to study molecular mechanisms during cell differentiation. Recently, we have reported rapid and efficient differentiation of hESCs into functional neurons by introducing a cocktail of synthetic mRNAs encoding five transcription factors (TFs): NEUROG1, NEUROG2, NEUROG3, NEUROD1, and NEUROD2. Here we further tested a possibility that even single transcription factors, when expressed ectopically, can differentiate hESCs into neurons. To this end, we established hESC lines in which each of these TFs can be overexpressed by the doxycycline-inducible piggyBac vector. The overexpression of any of these five TFs indeed caused a rapid and rather uniform differentiation of hESCs, which were identified as neurons based on their morphologies, qRT-PCR, and immunohistochemistry. Furthermore, calcium-imaging analyses and patch clamp recordings demonstrated that these differentiated cells are electrophysiologically functional. Interestingly, neural differentiations occurred despite the cell culture conditions that rather promote the maintenance of the undifferentiated state. These results indicate that over-expression of each of these five TFs can override the pluripotency-specific gene network and force hESCs to differentiate into neurons.
Collapse
Affiliation(s)
- Misako Matsushita
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yuhki Nakatake
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Itaru Arai
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Keiji Ibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kazuhisa Kohda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Sravan K Goparaju
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Miyako Murakami
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Miki Sakota
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Nana Chikazawa-Nohtomi
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shigeru B H Ko
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Minoru S H Ko
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| |
Collapse
|
13
|
Darvishi M, Tiraihi T, Mesbah-Namin SA, Delshad A, Taheri T. Motor Neuron Transdifferentiation of Neural Stem Cell from Adipose-Derived Stem Cell Characterized by Differential Gene Expression. Cell Mol Neurobiol 2017; 37:275-289. [PMID: 27107758 PMCID: PMC11482063 DOI: 10.1007/s10571-016-0368-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/24/2016] [Indexed: 02/04/2023]
Abstract
Adipose-derived stem cells (ADSC) are adult stem cells which can be induced into motor neuron-like cells (MNLC) with a preinduction-induction protocol. The purpose of this study is to generate MNLC from neural stem cells (NSC) derived from ADSC. The latter were isolated from the perinephric regions of Sprague-Dawley rats, transdifferentiated into neurospheres (NS) using B27, EGF, and bFGF. After generating NSC from the NS, they induced into MNLC by treating them with Shh and RA, then with GDNF, CNTF, BDNF, and NT-3. The ADSC lineage was evaluated by its mesodermal differentiation and was characterized by immunostaining with CD90, CD105, CD49d, CD106, CD31, CD45, and stemness genes (Oct4, Nanog, and Sox2). The NS and the NSC were evaluated by immunostaining with nestin, NF68, and Neurod1, while the MNLC were evaluated by ISLET1, Olig2, and HB9 genes. The efficiency of MNLC generation was more than 95 ± 1.4 % (mean ± SEM). The in vitro generated myotubes were innervated by the MNLC. The induced ADSC adopted multipolar motor neuron morphology, and they expressed ISLET1, Olig2, and HB9. We conclude that ADSC can be induced into motor neuron phenotype with high efficiency, associated with differential expression of the motor neuron gene. The release of MNLC synaptic vesicles was demonstrated by FM1-43, and they were immunostained with synaptophysin. This activity was correlated with the intracellular calcium ion shift and membrane depolarization upon stimulation as was demonstrated by the calcium indicator and the voltage-sensitive dye, respectively.
Collapse
Affiliation(s)
- Marzieh Darvishi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| | - Taki Tiraihi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran.
| | - Seyed A Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Taher Taheri
- Shefa Neurosciences Research Center, Khatam Al-Anbia Hospital, Tehran, Iran
| |
Collapse
|
14
|
Human Cord Blood-Derived CD133 +/C-Kit +/Lin - Cells Have Bipotential Ability to Differentiate into Mesenchymal Stem Cells and Outgrowth Endothelial Cells. Stem Cells Int 2016; 2016:7162160. [PMID: 28074098 PMCID: PMC5203918 DOI: 10.1155/2016/7162160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023] Open
Abstract
Recent evidence suggests that mononuclear cells (MNCs) derived from bone marrow and cord blood can differentiate into mesenchymal stem cells (MSCs) or outgrowth endothelial cells (OECs). However, controversy exists as to whether MNCs have the pluripotent capacity to differentiate into MSCs or OECs or are a mixture of cell lineage-determined progenitors of MSCs or OECs. Here, using CD133+/C-kit+/Lin− mononuclear cells (CKL− cells) isolated from human umbilical cord blood using magnetic cell sorting, we characterized the potency of MNC differentiation. We first found that CKL− cells cultured with conditioned medium of OECs or MSCs differentiated into OECs or MSCs and this differentiation was also induced by cell-to-cell contact. When we cultured single CKL− cells on OEC- or MSC-conditioned medium, the cells differentiated morphologically and genetically into OEC- or MSC-like cells, respectively. Moreover, we confirmed that OECs or MSCs differentiated from CKL− cells had the ability to form capillary-like structures in Matrigel and differentiate into osteoblasts, chondrocytes, and adipocytes. Finally, using microarray analysis, we identified specific factors of OECs or MSCs that could potentially be involved in the differentiation fate of CKL− cells. Together, these results suggest that cord blood-derived CKL− cells possess at least bipotential differentiation capacity toward MSCs or OECs.
Collapse
|
15
|
Barral S, Kurian MA. Utility of Induced Pluripotent Stem Cells for the Study and Treatment of Genetic Diseases: Focus on Childhood Neurological Disorders. Front Mol Neurosci 2016; 9:78. [PMID: 27656126 PMCID: PMC5012159 DOI: 10.3389/fnmol.2016.00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/15/2016] [Indexed: 12/15/2022] Open
Abstract
The study of neurological disorders often presents with significant challenges due to the inaccessibility of human neuronal cells for further investigation. Advances in cellular reprogramming techniques, have however provided a new source of human cells for laboratory-based research. Patient-derived induced pluripotent stem cells (iPSCs) can now be robustly differentiated into specific neural subtypes, including dopaminergic, inhibitory GABAergic, motorneurons and cortical neurons. These neurons can then be utilized for in vitro studies to elucidate molecular causes underpinning neurological disease. Although human iPSC-derived neuronal models are increasingly regarded as a useful tool in cell biology, there are a number of limitations, including the relatively early, fetal stage of differentiated cells and the mainly two dimensional, simple nature of the in vitro system. Furthermore, clonal variation is a well-described phenomenon in iPSC lines. In order to account for this, robust baseline data from multiple control lines is necessary to determine whether a particular gene defect leads to a specific cellular phenotype. Over the last few years patient-derived neural cells have proven very useful in addressing several mechanistic questions related to central nervous system diseases, including early-onset neurological disorders of childhood. Many studies report the clinical utility of human-derived neural cells for testing known drugs with repurposing potential, novel compounds and gene therapies, which then can be translated to clinical reality. iPSCs derived neural cells, therefore provide great promise and potential to gain insight into, and treat early-onset neurological disorders.
Collapse
Affiliation(s)
- Serena Barral
- Neurogenetics Group, Molecular Neurosciences, UCL Institute of Child Health,University College London London, UK
| | - Manju A Kurian
- Neurogenetics Group, Molecular Neurosciences, UCL Institute of Child Health,University College LondonLondon, UK; Department of Neurology, Great Ormond Street HospitalLondon, UK
| |
Collapse
|
16
|
Spitalieri P, Talarico RV, Botta A, Murdocca M, D'Apice MR, Orlandi A, Giardina E, Santoro M, Brancati F, Novelli G, Sangiuolo F. Generation of Human Induced Pluripotent Stem Cells from Extraembryonic Tissues of Fetuses Affected by Monogenic Diseases. Cell Reprogram 2016; 17:275-87. [PMID: 26474030 DOI: 10.1089/cell.2015.0003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The generation of human induced pluripotent stem cells (hiPSCs) derived from an autologous extraembryonic fetal source is an innovative personalized regenerative technology that can transform own-self cells into embryonic stem-like ones. These cells are regarded as a promising candidate for cell-based therapy, as well as an ideal target for disease modeling and drug discovery. Thus, hiPSCs enable researchers to undertake studies for treating diseases or for future applications of in utero therapy. We used a polycistronic lentiviral vector (hSTEMCCA-loxP) encoding OCT4, SOX2, KLF4, and cMYC genes and containing loxP sites, excisible by Cre recombinase, to reprogram patient-specific fetal cells derived from prenatal diagnosis for several genetic disorders, such as myotonic dystrophy type 1 (DM1), β-thalassemia (β-Thal), lymphedema-distichiasis syndrome (LDS), spinal muscular atrophy (SMA), cystic fibrosis (CF), as well as from wild-type (WT) fetal cells. Because cell types tested to create hiPSCs influence both the reprogramming process efficiency and the kinetics, we used chorionic villus (CV) and amniotic fluid (AF) cells, demonstrating how they represent an ideal cell resource for a more efficient generation of hiPSCs. The successful reprogramming of both CV and AF cells into hiPSCs was confirmed by specific morphological, molecular, and immunocytochemical markers and also by their teratogenic potential when inoculated in vivo. We further demonstrated the stability of reprogrammed cells over 10 and more passages and their capability to differentiate into the three embryonic germ layers, as well as into neural cells. These data suggest that hiPSCs-CV/AF can be considered a valid cellular model to accomplish pathogenesis studies and therapeutic applications.
Collapse
Affiliation(s)
- Paola Spitalieri
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Rosa V Talarico
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Annalisa Botta
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Michela Murdocca
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | | | - Augusto Orlandi
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Emiliano Giardina
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,3 Molecular Genetics Laboratory UILDM , Santa Lucia Foundation, Rome, 00142, Italy
| | | | - Francesco Brancati
- 2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| | - Giuseppe Novelli
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| | - Federica Sangiuolo
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| |
Collapse
|
17
|
Ichiyanagi N, Fujimori K, Yano M, Ishihara-Fujisaki C, Sone T, Akiyama T, Okada Y, Akamatsu W, Matsumoto T, Ishikawa M, Nishimoto Y, Ishihara Y, Sakuma T, Yamamoto T, Tsuiji H, Suzuki N, Warita H, Aoki M, Okano H. Establishment of In Vitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells. Stem Cell Reports 2016; 6:496-510. [PMID: 26997647 PMCID: PMC4834049 DOI: 10.1016/j.stemcr.2016.02.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disorder. Although its neuropathology is well understood, the cellular and molecular mechanisms are yet to be elucidated due to limitations in the currently available human genetic data. In this study, we generated induced pluripotent stem cells (iPSC) from two familial ALS (FALS) patients with a missense mutation in the fused-in sarcoma (FUS) gene carrying the heterozygous FUS H517D mutation, and isogenic iPSCs with the homozygous FUS H517D mutation by genome editing technology. These cell-derived motor neurons mimicked several neurodegenerative phenotypes including mis-localization of FUS into cytosolic and stress granules under stress conditions, and cellular vulnerability. Moreover, exon array analysis using motor neuron precursor cells (MPCs) combined with CLIP-seq datasets revealed aberrant gene expression and/or splicing pattern in FALS MPCs. These results suggest that iPSC-derived motor neurons are a useful tool for analyzing the pathogenesis of human motor neuron disorders.
Collapse
Affiliation(s)
- Naoki Ichiyanagi
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Koki Fujimori
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Yano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata 951-8510, Japan.
| | - Chikako Ishihara-Fujisaki
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takefumi Sone
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Yohei Okada
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Nagakute, Aichi 480-1195, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Graduated School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takuya Matsumoto
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshinori Nishimoto
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasuharu Ishihara
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Hitomi Tsuiji
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
18
|
Puttonen KA, Ruponen M, Naumenko N, Hovatta OH, Tavi P, Koistinaho J. Generation of Functional Neuromuscular Junctions from Human Pluripotent Stem Cell Lines. Front Cell Neurosci 2015; 9:473. [PMID: 26696831 PMCID: PMC4672046 DOI: 10.3389/fncel.2015.00473] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/20/2015] [Indexed: 12/12/2022] Open
Abstract
Several neuromuscular diseases involve dysfunction of neuromuscular junctions (NMJs), yet there are no patient-specific human models for electrophysiological characterization of NMJ. We seeded cells of neurally-induced embryoid body-like spheres derived from induced pluripotent stem cell (iPSC) or embryonic stem cell (ESC) lines as monolayers without basic fibroblast factor (bFGF) and observed differentiation of neuronal as well as spontaneously contracting, multinucleated skeletal myotubes. The myotubes showed striation, immunoreactivity for myosin heavy chain, actin bundles typical for myo-oriented cells, and generated spontaneous and evoked action potentials (APs). The myogenic differentiation was associated with expression of MyoD1, myogenin and type I ryanodine receptor. Neurons formed end plate like structures with strong binding of α-bungarotoxin, a marker of nicotinic acetylcholine receptors highly expressed in the postsynaptic membrane of NMJs, and expressed SMI-32, a motoneuron marker, as well as SV2, a marker for synapses. Pharmacological stimulation of cholinergic receptors resulted in strong depolarization of myotube membrane and raised Ca2+ concentration in sarcoplasm, while electrical stimulation evoked Ca2+ transients in myotubes. Stimulation of motoneurons with N-Methyl-D-aspartate resulted in reproducible APs in myotubes and end plates displayed typical mEPPs and tonic activity depolarizing myotubes of about 10 mV. We conclude that simultaneous differentiation of neurons and myotubes from patient-specific iPSCs or ESCs results also in the development of functional NMJs. Our human model of NMJ may serve as an important tool to investigate normal development, mechanisms of diseases and novel drug targets involving NMJ dysfunction and degeneration.
Collapse
Affiliation(s)
- Katja A Puttonen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| | - Marika Ruponen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland ; School of Pharmacy, University of Eastern Finland Kuopio, Finland
| | - Nikolay Naumenko
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| | - Outi H Hovatta
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet Stockholm, Sweden
| | - Pasi Tavi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| |
Collapse
|
19
|
Stem cell therapy for spinal cord injury: The use of oligodendrocytes and motor neurons derived from human embryonic stem cells. TRANSLATIONAL RESEARCH IN ANATOMY 2015. [DOI: 10.1016/j.tria.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
20
|
Alves CJ, Dariolli R, Jorge FM, Monteiro MR, Maximino JR, Martins RS, Strauss BE, Krieger JE, Callegaro D, Chadi G. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Front Cell Neurosci 2015; 9:289. [PMID: 26300727 PMCID: PMC4523944 DOI: 10.3389/fncel.2015.00289] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/14/2015] [Indexed: 01/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. The most prevalent sporadic ALS form is not genetically inherited. Attempts to translate therapeutic strategies have failed because the described mechanisms of disease are based on animal models carrying specific gene mutations and thus do not address sporadic ALS. In order to achieve a better approach to study the human disease, human induced pluripotent stem cell (hiPSC)-differentiated motor neurons were obtained from motor nerve fibroblasts of sporadic ALS and non-ALS subjects using the STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus system and submitted to microarray analyses using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function and biological process-related genes through Gene Ontology. REVIGO highlighted the related functions mRNA and DNA binding, GTP binding, transcription (co)-repressor activity, lipoprotein receptor binding, synapse organization, intracellular transport, mitotic cell cycle and cell death. KEGG showed pathways associated with Parkinson's disease and oxidative phosphorylation, highlighting iron homeostasis, neurotrophic functions, endosomal trafficking and ERK signaling. The analysis of most dysregulated genes and those representative of the majority of categorized genes indicates a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. In conclusion, iPSC-derived motor neurons from motor nerve fibroblasts of sporadic ALS patients may recapitulate key mechanisms of neurodegeneration and may offer an opportunity for translational investigation of sporadic ALS. Large gene profiling of differentiated motor neurons from sporadic ALS patients highlights mitochondrial participation in the establishment of autonomous mechanisms associated with sporadic ALS.
Collapse
Affiliation(s)
- Chrystian J Alves
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Frederico M Jorge
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Matheus R Monteiro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Jessica R Maximino
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Roberto S Martins
- Department of Neurosurgery, Surgical Center of Functional Neurosurgery, Clinics Hospital of University of São Paulo São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, University of São Paulo School of Medicine São Paulo, Brazil
| | - José E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Dagoberto Callegaro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| |
Collapse
|
21
|
Haidet-Phillips AM, Maragakis NJ. Neural and glial progenitor transplantation as a neuroprotective strategy for Amyotrophic Lateral Sclerosis (ALS). Brain Res 2015; 1628:343-350. [PMID: 26187754 DOI: 10.1016/j.brainres.2015.06.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/12/2015] [Accepted: 06/23/2015] [Indexed: 12/14/2022]
Abstract
ALS is a neurodegenerative disease with a prevalence rate of up to 7.4/100,000 and the overall risk of developing ALS over a lifetime is 1:400. Most patients die from respiratory failure following a course of progressive weakness. To date, only one traditional pharmaceutical agent-riluzole, has been shown to afford a benefit on survival but numerous pharmaceutical interventions have been studied in preclinical models of ALS without subsequent translation to patient efficacy. Despite the relative selectivity of motor neuron cell death, animal and tissue culture models of familial ALS suggest that non-neuronal cells significantly contribute to neuronal dysfunction and death. Early efforts to transplant stem cells had focused on motor neuron replacement. More practically for this aggressive neurodegenerative disease, recent studies, preclinical efforts, and early clinical trials have focused on the transplantation of neural stem cells, mesenchymal stem cells, or glial progenitors. Using transgenic mouse or rat models of ALS, a number of studies have shown neuroprotection through a variety of different mechanisms that have included neurotrophic factor secretion, glutamate transporter regulation, and modulation of neuroinflammation, among others. However, given that cell replacement could involve a number of biologically relevant factors, identifying the key pathway(s) that may contribute to neuroprotection remains a challenge. Nevertheless, given the abundant data supporting the interplay between non-neuronal cell types and motor neuron disease propagation, the replacement of disease-carrying host cells by normal cells may be sufficient to confer neuroprotection. Key preclinical issues that currently are being addressed include the most appropriate methods and routes for delivery of cells to disease-relevant regions of the neuraxis, cell survival and migration, and tracking the cells following transplantation. Central to the initial development of stem cell transplantation into patients with ALS is the demonstration that transplanted cells lack tumorigenicity and have the appropriate biodistribution to ensure the safety of ALS patients receiving these therapies. Here, we review preclinical and clinical studies focusing on the transplantation of neural and glial progenitor cells as a promising neuroprotective therapy for ALS. The rationale for stem cell transplantation for neuroprotection, proof-of-concept animal studies, and current challenges facing translation of these therapies to the clinic is presented. Lastly, we discuss advancements on the horizon including induced pluripotent stem cell technology and developments for cellular tracking and detection post-transplantation. With the safe completion of the first-in-human Phase I clinical trial for intraspinal stem cell transplantation for ALS in the United States, the time is ripe for stem cell therapies to be translated to the clinic and excitingly, evaluated for neuroprotection for ALS. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Amanda M Haidet-Phillips
- Department of Neurology, Johns Hopkins University, 250.10 Rangos Building, 855 North Wolfe St., Baltimore, MD 21205, United States
| | - Nicholas J Maragakis
- Department of Neurology, Johns Hopkins University, 250.10 Rangos Building, 855 North Wolfe St., Baltimore, MD 21205, United States.
| |
Collapse
|
22
|
Stuppia G, Rizzo F, Riboldi G, Del Bo R, Nizzardo M, Simone C, Comi GP, Bresolin N, Corti S. MFN2-related neuropathies: Clinical features, molecular pathogenesis and therapeutic perspectives. J Neurol Sci 2015; 356:7-18. [PMID: 26143526 DOI: 10.1016/j.jns.2015.05.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022]
Abstract
Mitofusin 2 (MFN2) is a GTPase dynamin-like protein of the outer mitochondrial membrane, encoded in the nuclear genome by the MFN2 gene located on the short (p) arm of chromosome 1. MFN2 protein is involved in several intracellular pathways, but is mainly involved in a network that has an essential role in several mitochondrial functions, including fusion, axonal transport, interorganellar communication and mitophagy. Mutations in the gene encoding MFN2 are associated with Charcot-Marie-Tooth disease type 2A (CMT2A), a neurological disorder characterized by a wide clinical phenotype that involves the central and peripheral nervous system. Here, we present the clinical, genetic and neuropathological features of human diseases associated with MFN2 mutations. We also report proposed pathogenic mechanisms through which MFN2 mutations likely contribute to the development of neurodegeneration. MFN2-related disorders may occur more frequently than previously considered, and they may represent a paradigm for the study of the defective mitochondrial dynamics that seem to play a significant role in the molecular and cellular pathogenesis of common neurodegenerative diseases; thus they may also lead to the identification of related therapeutic targets.
Collapse
Affiliation(s)
- Giulia Stuppia
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Federica Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giulietta Riboldi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Chiara Simone
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
23
|
Corti S, Faravelli I, Cardano M, Conti L. Human pluripotent stem cells as tools for neurodegenerative and neurodevelopmental disease modeling and drug discovery. Expert Opin Drug Discov 2015; 10:615-29. [PMID: 25891144 DOI: 10.1517/17460441.2015.1037737] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Although intensive efforts have been made, effective treatments for neurodegenerative and neurodevelopmental diseases have not been yet discovered. Possible reasons for this include the lack of appropriate disease models of human neurons and a limited understanding of the etiological and neurobiological mechanisms. Recent advances in pluripotent stem cell (PSC) research have now opened the path to the generation of induced pluripotent stem cells (iPSCs) starting from somatic cells, thus offering an unlimited source of patient-specific disease-relevant neuronal cells. AREAS COVERED In this review, the authors focus on the use of human PSC-derived cells in modeling neurological disorders and discovering of new drugs and provide their expert perspectives on the field. EXPERT OPINION The advent of human iPSC-based disease models has fuelled renewed enthusiasm and enormous expectations for insights of disease mechanisms and identification of more disease-relevant and novel molecular targets. Human PSCs offer a unique tool that is being profitably exploited for high-throughput screening (HTS) platforms. This process can lead to the identification and optimization of molecules/drugs and thus move forward new pharmacological therapies for a wide range of neurodegenerative and neurodevelopmental conditions. It is predicted that improvements in the production of mature neuronal subtypes, from patient-specific human-induced pluripotent stem cells and their adaptation to culture, to HTS platforms will allow the increased exploitation of human pluripotent stem cells in drug discovery programs.
Collapse
Affiliation(s)
- Stefania Corti
- University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico , via Francesco Sforza 35, Milan 20122 , Italy +39 02 55033817 ;
| | | | | | | |
Collapse
|
24
|
Differentiation Potential of Human Chorion-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells in Two- and Three-Dimensional Culture Systems. Mol Neurobiol 2015; 53:1862-1872. [PMID: 25790953 DOI: 10.1007/s12035-015-9129-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/22/2015] [Indexed: 12/29/2022]
Abstract
Many people worldwide suffer from motor neuron-related disorders such as amyotrophic lateral sclerosis and spinal cord injuries. Recently, several attempts have been made to recruit stem cells to modulate disease progression in ALS and also regenerate spinal cord injuries. Chorion-derived mesenchymal stem cells (C-MSCs), used to be discarded as postpartum medically waste product, currently represent a class of cells with self renewal property and immunomodulatory capacity. These cells are able to differentiate into mesodermal and nonmesodermal lineages such as neural cells. On the other hand, gelatin, as a simply denatured collagen, is a suitable substrate for cell adhesion and differentiation. It has been shown that electrospinning of scaffolds into fibrous structure better resembles the physiological microenvironment in comparison with two-dimensional (2D) culture system. Since there is no report on potential of human chorion-derived MSCs to differentiate into motor neuron cells in two- and three-dimensional (3D) culture systems, we set out to determine the effect of retinoic acid (RA) and sonic hedgehog (Shh) on differentiation of human C-MSCs into motor neuron-like cells cultured on tissue culture plates (2D) and electrospun nanofibrous gelatin scaffold (3D).
Collapse
|
25
|
Brennan KM, Shy ME. New and emerging treatments of Charcot–Marie–Tooth disease. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1009037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Song SJ, Mao XG, Wang C, Han AG, Yan M, Xue XY. LGR5/GPR49 is implicated in motor neuron specification in nervous system. Neurosci Lett 2014; 584:135-40. [PMID: 25451725 DOI: 10.1016/j.neulet.2014.09.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/03/2014] [Accepted: 09/29/2014] [Indexed: 01/02/2023]
Abstract
The biological roles of stem cell marker LGR5, the receptor for the Wnt-agonistic R-spondins, for nervous system are poorly known. Bioinformatics analysis in normal human brain tissues revealed that LGR5 is closely related with neuron development and functions. Interestingly, LGR5 and its ligands R-spondins (RSPO2 and RSPO3) are specifically highly expressed in projection motor neurons in the spinal cord, brain stem and cerebral. Inhibition of Notch activity in neural stem cells (NSCs) increased the percentage of neuronal cells and promoted LGR5 expression, while activation of Notch signal decreased neuronal cells and inhibited the LGR5 expression. Furthermore, knockdown of LGR5 inhibited the expression of neuronal markers MAP2, NeuN, GAP43, SYP and CHRM3, and also reduced the expression of genes that program the identity of motor neurons, including Isl1, Lhx3, PHOX2A, TBX20 and NEUROG2. Our data demonstrated that LGR5 is highly expressed in motor neurons in nervous system and is involved in their development by regulating transcription factors that program motor neuron identity.
Collapse
Affiliation(s)
- Shao-jun Song
- Department of Neurosurgery, PLA 254 Hospital, Tianjin, China; Department of Neurosurgery, Hinan Branch of Chinese PLA General Hospital, Haitang Harbor, Sanya, Hainan Province 572013, China.
| | - Xing-gang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| | - Chao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - An-guo Han
- Department of Neurosurgery, PLA 254 Hospital, Tianjin, China
| | - Ming Yan
- Department of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiao-yan Xue
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
27
|
Faravelli I, Riboldi G, Nizzardo M, Simone C, Zanetta C, Bresolin N, Comi GP, Corti S. Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cell Mol Life Sci 2014; 71:3257-68. [PMID: 24699704 PMCID: PMC11113626 DOI: 10.1007/s00018-014-1613-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/26/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3-5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application.
Collapse
Affiliation(s)
- Irene Faravelli
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Giulietta Riboldi
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Monica Nizzardo
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Chiara Simone
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Chiara Zanetta
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Nereo Bresolin
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Giacomo P. Comi
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
28
|
Armijo E, Soto C, Davis BR. HIV/AIDS: modified stem cells in the spotlight. Cell Mol Life Sci 2014; 71:2641-9. [PMID: 24509823 PMCID: PMC11113296 DOI: 10.1007/s00018-014-1572-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 12/18/2022]
Abstract
Since HIV/AIDS was first recognized in 1981, an urgent need has existed for the development of novel therapeutic strategies to treat the disease. Due to the current antiretroviral therapy not being curative, human stem cell-based therapeutic intervention has emerged as an approach for its treatment. Genetically modified hematopoietic stem cells (HSCs) possess the potential to self-renew, reconstitute the immune system with HIV-resistant cells, and thus control, or even eliminate, viral replication. However, HSCs may be difficult to isolate in sufficient number from HIV-infected individuals for transplantation and/or re-infusion of autologous HSCs preparations would also include some contaminating HIV-infected cells. Furthermore, since genetic modification of HSCs is not completely efficient, the risk of providing unprotected immune cells to become new targets for HIV to infect could contribute to continued immune system failure. Therefore, induced pluripotent stem cells (iPSCs) should be considered a new potential source of cells to be engineered for HIV resistance and subsequently differentiated into clonal anti-HIV HSCs or hematopoietic progeny for transplant. In this article, we provide an overview of the current possible cellular therapies for treating HIV/AIDS.
Collapse
Affiliation(s)
- Enrique Armijo
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, 77030, TX, USA,
| | | | | |
Collapse
|
29
|
Jiang X, Nai MH, Lim CT, Le Visage C, Chan JKY, Chew SY. Polysaccharide nanofibers with variable compliance for directing cell fate. J Biomed Mater Res A 2014; 103:959-68. [DOI: 10.1002/jbm.a.35237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Xu Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University; Singapore 138642
| | - Mui Hoon Nai
- Mechanobiology Institute, National University of Singapore; Singapore 117411
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore; Singapore 117411
- Department of Bioengineering; National University of Singapore; Singapore 117576
| | - Catherine Le Visage
- Inserm, U791, LIOAD, Center for Osteoarticular and Dental Tissue Engineering, University of Nantes; Nantes France
| | - Jerry K. Y. Chan
- Department of Obstetrics and Gynecology; Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore; Singapore 119074
- Department of Reproductive Medicine; KK Women's and Children's Hospital; Singapore 229899
- Cancer & Stem Cell Biology Program; Duke-NUS Graduate Medical School; Singapore
| | - Sing Yian Chew
- School of Chemical & Biomedical Engineering, Nanyang Technological University; Singapore 138642
| |
Collapse
|
30
|
Kanke K, Masaki H, Saito T, Komiyama Y, Hojo H, Nakauchi H, Lichtler AC, Takato T, Chung UI, Ohba S. Stepwise differentiation of pluripotent stem cells into osteoblasts using four small molecules under serum-free and feeder-free conditions. Stem Cell Reports 2014; 2:751-60. [PMID: 24936463 PMCID: PMC4050355 DOI: 10.1016/j.stemcr.2014.04.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 11/29/2022] Open
Abstract
Pluripotent stem cells are a promising tool for mechanistic studies of tissue development, drug screening, and cell-based therapies. Here, we report an effective and mass-producing strategy for the stepwise differentiation of mouse embryonic stem cells (mESCs) and mouse and human induced pluripotent stem cells (miPSCs and hiPSCs, respectively) into osteoblasts using four small molecules (CHIR99021 [CHIR], cyclopamine [Cyc], smoothened agonist [SAG], and a helioxanthin-derivative 4-(4-methoxyphenyl)pyrido[4′,3′:4,5]thieno[2,3-b]pyridine-2-carboxamide [TH]) under serum-free and feeder-free conditions. The strategy, which consists of mesoderm induction, osteoblast induction, and osteoblast maturation phases, significantly induced expressions of osteoblast-related genes and proteins in mESCs, miPSCs, and hiPSCs. In addition, when mESCs defective in runt-related transcription factor 2 (Runx2), a master regulator of osteogenesis, were cultured by the strategy, they molecularly recapitulated osteoblast phenotypes of Runx2 null mice. The present strategy will be a platform for biological and pathological studies of osteoblast development, screening of bone-augmentation drugs, and skeletal regeneration. Osteoblasts were differentiated from pluripotent stem cells under defined conditions The strategy utilizes four small molecule inducers with no serum or feeder cells The strategy comprises mesoderm induction and subsequent osteoblast induction The strategy can at least partially recapitulate physiological osteoblast development
Collapse
Affiliation(s)
- Kosuke Kanke
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan ; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideki Masaki
- Japan Science Technology Agency, ERATO, Nakauchi Stem Cell and Organ Regeneration Project, The University of Tokyo, Tokyo 108-8639, Japan ; Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Taku Saito
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan ; Department of Bone and Cartilage Regenerative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuske Komiyama
- Intensive Care Unit, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiromitsu Nakauchi
- Japan Science Technology Agency, ERATO, Nakauchi Stem Cell and Organ Regeneration Project, The University of Tokyo, Tokyo 108-8639, Japan ; Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Alexander C Lichtler
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tsuyoshi Takato
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ung-Il Chung
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan ; Department of Bioengineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shinsuke Ohba
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan ; Department of Bioengineering, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Compagnucci C, Nizzardo M, Corti S, Zanni G, Bertini E. In vitro neurogenesis: development and functional implications of iPSC technology. Cell Mol Life Sci 2014; 71:1623-39. [PMID: 24252976 PMCID: PMC11113522 DOI: 10.1007/s00018-013-1511-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 12/21/2022]
Abstract
Neurogenesis is the developmental process regulating cell proliferation of neural stem cells, determining their differentiation into glial and neuronal cells, and orchestrating their organization into finely regulated functional networks. Can this complex process be recapitulated in vitro using induced pluripotent stem cell (iPSC) technology? Can neurodevelopmental and neurodegenerative diseases be modeled using iPSCs? What is the potential of iPSC technology in neurobiology? What are the recent advances in the field of neurological diseases? Since the applications of iPSCs in neurobiology are based on the capacity to regulate in vitro differentiation of human iPSCs into different neuronal subtypes and glial cells, and the possibility of obtaining iPSC-derived neurons and glial cells is based on and hindered by our poor understanding of human embryonic development, we reviewed current knowledge on in vitro neural differentiation from a developmental and cellular biology perspective. We highlight the importance to further advance our understanding on the mechanisms controlling in vivo neurogenesis in order to efficiently guide neurogenesis in vitro for cell modeling and therapeutical applications of iPSCs technology.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Department of Neurosciences, Bambino Gesù Children's Research Hospital, IRCCS, 0165, Rome, Italy,
| | | | | | | | | |
Collapse
|
32
|
Qu Q, Li D, Louis KR, Li X, Yang H, Sun Q, Crandall SR, Tsang S, Zhou J, Cox CL, Cheng J, Wang F. High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nat Commun 2014; 5:3449. [PMID: 24622388 DOI: 10.1038/ncomms4449] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 02/13/2014] [Indexed: 01/21/2023] Open
Abstract
Efficient derivation of large-scale motor neurons (MNs) from human pluripotent stem cells is central to the understanding of MN development, modelling of MN disorders in vitro and development of cell-replacement therapies. Here we develop a method for rapid (20 days) and highly efficient (~70%) differentiation of mature and functional MNs from human pluripotent stem cells by tightly modulating neural patterning temporally at a previously undefined primitive neural progenitor stage. This method also allows high-yield (>250%) MN production in chemically defined adherent cultures. Furthermore, we show that Islet-1 is essential for formation of mature and functional human MNs, but, unlike its mouse counterpart, does not regulate cell survival or suppress the V2a interneuron fate. Together, our discoveries improve the strategy for MN derivation, advance our understanding of human neural specification and MN development, and provide invaluable tools for human developmental studies, drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Qiuhao Qu
- 1] Department of Cell and Developmental Biology, South Goodwin Avenue, Urbana, Illinois 61801, USA [2] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Dong Li
- 1] Department of Cell and Developmental Biology, South Goodwin Avenue, Urbana, Illinois 61801, USA [2] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kathleen R Louis
- Department of Molecular Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiangzhen Li
- 1] Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China [2] Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hong Yang
- 1] Department of Cell and Developmental Biology, South Goodwin Avenue, Urbana, Illinois 61801, USA [2] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Qinyu Sun
- 1] Department of Cell and Developmental Biology, South Goodwin Avenue, Urbana, Illinois 61801, USA [2] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Shane R Crandall
- Department of Molecular Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Stephanie Tsang
- 1] Department of Cell and Developmental Biology, South Goodwin Avenue, Urbana, Illinois 61801, USA [2] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300200, China
| | - Charles L Cox
- Department of Molecular Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Fei Wang
- 1] Department of Cell and Developmental Biology, South Goodwin Avenue, Urbana, Illinois 61801, USA [2] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
33
|
Srikanth P, Young-Pearse TL. Stem cells on the brain: modeling neurodevelopmental and neurodegenerative diseases using human induced pluripotent stem cells. J Neurogenet 2014; 28:5-29. [PMID: 24628482 PMCID: PMC4285381 DOI: 10.3109/01677063.2014.881358] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seven years have passed since the initial report of the generation of induced pluripotent stem cells (iPSCs) from adult human somatic cells, and in the intervening time the field of neuroscience has developed numerous disease models using this technology. Here, we review progress in the field and describe both the advantages and potential pitfalls of modeling neurodegenerative and neurodevelopmental diseases using this technology. We include tables with information on neural differentiation protocols and studies that developed human iPSC lines to model neurological diseases. We also discuss how one can: investigate effects of genetic mutations with iPSCs, examine cell fate-specific phenotypes, best determine the specificity of a phenotype, and bring in vivo relevance to this in vitro technique.
Collapse
Affiliation(s)
- Priya Srikanth
- Center for Neurologic Diseases, Brigham and Women's Hospital , Boston, Massachusetts , USA
| | | |
Collapse
|
34
|
Francius C, Clotman F. Generating spinal motor neuron diversity: a long quest for neuronal identity. Cell Mol Life Sci 2014; 71:813-29. [PMID: 23765105 PMCID: PMC11113339 DOI: 10.1007/s00018-013-1398-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 03/26/2023]
Abstract
Understanding how thousands of different neuronal types are generated in the CNS constitutes a major challenge for developmental neurobiologists and is a prerequisite before considering cell or gene therapies of nervous lesions or pathologies. During embryonic development, spinal motor neurons (MNs) segregate into distinct subpopulations that display specific characteristics and properties including molecular identity, migration pattern, allocation to specific motor columns, and innervation of defined target. Because of the facility to correlate these different characteristics, the diversification of spinal MNs has become the model of choice for studying the molecular and cellular mechanisms underlying the generation of multiple neuronal populations in the developing CNS. Therefore, how spinal motor neuron subpopulations are produced during development has been extensively studied during the last two decades. In this review article, we will provide a comprehensive overview of the genetic and molecular mechanisms that contribute to the diversification of spinal MNs.
Collapse
Affiliation(s)
- Cédric Francius
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, 55 Avenue Hippocrate, Box (B1.55.11), 1200 Brussels, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, 55 Avenue Hippocrate, Box (B1.55.11), 1200 Brussels, Belgium
| |
Collapse
|
35
|
Kiris E, Kota KP, Burnett JC, Soloveva V, Kane CD, Bavari S. Recent developments in cell-based assays and stem cell technologies for botulinum neurotoxin research and drug discovery. Expert Rev Mol Diagn 2014; 14:153-68. [PMID: 24450833 DOI: 10.1586/14737159.2014.867808] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Botulinum neurotoxins (BoNTs) are exceptionally potent inhibitors of neurotransmission, causing muscle paralysis and respiratory failure associated with the disease botulism. Currently, no drugs are available to counter intracellular BoNT poisoning. To develop effective medical treatments, cell-based assays provide a valuable system to identify novel inhibitors in a time- and cost-efficient manner. Consequently, cell-based systems including immortalized cells, primary neurons and stem cell-derived neurons have been established. Stem cell-derived neurons are highly sensitive to BoNT intoxication and represent an ideal model to study the biological effects of BoNTs. Robust immunoassays are used to quantify BoNT activity and play a central role during inhibitor screening. In this review, we examine recent progress in physiologically relevant cell-based assays and high-throughput screening approaches for the identification of both direct and indirect BoNT inhibitors.
Collapse
Affiliation(s)
- Erkan Kiris
- Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA
| | | | | | | | | | | |
Collapse
|
36
|
Engraftment of mouse embryonic stem cells differentiated by default leads to neuroprotection, behaviour revival and astrogliosis in parkinsonian rats. PLoS One 2013; 8:e72501. [PMID: 24069147 PMCID: PMC3772067 DOI: 10.1371/journal.pone.0072501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
We report here protection against rotenone-induced behavioural dysfunction, striatal dopamine depletion and nigral neuronal loss, following intra-striatal transplantation of neurons differentiated from murine embryonic stem cells (mES). mES maintained in serum free medium exhibited increase in neuronal, and decrease in stem cell markers by 7th and 10th days as revealed by RT-PCR and immunoblot analyses. Tyrosine hydroxylase, NURR1, PITX3, LMX1b and c-RET mRNA showed a significant higher expression in differentiated cells than in mES. Dopamine level was increased by 3-fold on 10th day as compared to 7 days differentiated cells. Severity of rotenone-induced striatal dopamine loss was attenuated, and amphetamine-induced unilateral rotations were significantly reduced in animals transplanted with 7 days differentiated cells, but not in animals that received undifferentiated ES transplant. However, the ratio of contralateral to ipsilateral swings in elevated body swing test was significantly reduced in both the transplanted groups, as compared to control. Striatal grafts exhibited the presence of tyrosine hydroxylase positive cells, and the percentage of dopaminergic neurons in the substantia nigra was also found to be higher in the ipsilateral side of 7 days and mES grafted animals. Increased expression of CD11b and IBA-1, suggested a significant contribution of these microglia-derived factors in controlling the limited survival of the grafted cells. Astrocytosis in the grafted striatum, and significant increase in the levels of glial cell line derived neurotrophic factor may have contributed to the recovery observed in the hemiparkinsonian rats following transplantation.
Collapse
|
37
|
Farnsworth SL, Qiu Z, Mishra A, Hornsby PJ. Directed neural differentiation of induced pluripotent stem cells from non-human primates. Exp Biol Med (Maywood) 2013; 238:276-84. [PMID: 23598973 DOI: 10.1177/1535370213482442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Induced pluripotent stem cells (iPS cells) are important for the future development of regenerative medicine involving autologous cell therapy. Before autologous cell therapy can be applied to human patients, suitable animal models must be developed, and in this context non-human primate models are critical. We previously characterized several lines of marmoset iPS cells derived from newborn skin fibroblasts. In the present studies, we explored methods for the directed differentiation of marmoset iPS cells in the neuroectodermal lineage. In this process we used an iterative process in which combinations of small molecules and protein factors were tested for their effects on mRNA levels of genes that are markers for the neuroectodermal lineage. This iterative process identified combinations of chemicals/factors that substantially improved the degree of marker gene expression over the initially tested combinations. This approach should be generally valuable in the directed differentiation of pluripotent cells for experimental cell therapy.
Collapse
Affiliation(s)
- Steven L Farnsworth
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
38
|
Lupo G, Novorol C, Smith JR, Vallier L, Miranda E, Alexander M, Biagioni S, Pedersen RA, Harris WA. Multiple roles of Activin/Nodal, bone morphogenetic protein, fibroblast growth factor and Wnt/β-catenin signalling in the anterior neural patterning of adherent human embryonic stem cell cultures. Open Biol 2013; 3:120167. [PMID: 23576785 PMCID: PMC3718331 DOI: 10.1098/rsob.120167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several studies have successfully produced a variety of neural cell types from human embryonic stem cells (hESCs), but there has been limited systematic analysis of how different regional identities are established using well-defined differentiation conditions. We have used adherent, chemically defined cultures to analyse the roles of Activin/Nodal, bone morphogenetic protein (BMP), fibroblast growth factor (FGF) and Wnt/β-catenin signalling in neural induction, anteroposterior patterning and eye field specification in hESCs. We show that either BMP inhibition or activation of FGF signalling is required for effective neural induction, but these two pathways have distinct outcomes on rostrocaudal patterning. While BMP inhibition leads to specification of forebrain/midbrain positional identities, FGF-dependent neural induction is associated with strong posteriorization towards hindbrain/spinal cord fates. We also demonstrate that Wnt/β-catenin signalling is activated during neural induction and promotes acquisition of neural fates posterior to forebrain. Therefore, inhibition of this pathway is needed for efficient forebrain specification. Finally, we provide evidence that the levels of Activin/Nodal and BMP signalling have a marked influence on further forebrain patterning and that constitutive inhibition of these pathways represses expression of eye field genes. These results show that the key mechanisms controlling neural patterning in model vertebrate species are preserved in adherent, chemically defined hESC cultures and reveal new insights into the signals regulating eye field specification.
Collapse
Affiliation(s)
- Giuseppe Lupo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Modeling the blood-brain barrier using stem cell sources. Fluids Barriers CNS 2013; 10:2. [PMID: 23305164 PMCID: PMC3564868 DOI: 10.1186/2045-8118-10-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/13/2012] [Indexed: 12/18/2022] Open
Abstract
The blood–brain barrier (BBB) is a selective endothelial interface that controls trafficking between the bloodstream and brain interstitial space. During development, the BBB arises as a result of complex multicellular interactions between immature endothelial cells and neural progenitors, neurons, radial glia, and pericytes. As the brain develops, astrocytes and pericytes further contribute to BBB induction and maintenance of the BBB phenotype. Because BBB development, maintenance, and disease states are difficult and time-consuming to study in vivo, researchers often utilize in vitro models for simplified analyses and higher throughput. The in vitro format also provides a platform for screening brain-penetrating therapeutics. However, BBB models derived from adult tissue, especially human sources, have been hampered by limited cell availability and model fidelity. Furthermore, BBB endothelium is very difficult if not impossible to isolate from embryonic animal or human brain, restricting capabilities to model BBB development in vitro. In an effort to address some of these shortcomings, advances in stem cell research have recently been leveraged for improving our understanding of BBB development and function. Stem cells, which are defined by their capacity to expand by self-renewal, can be coaxed to form various somatic cell types and could in principle be very attractive for BBB modeling applications. In this review, we will describe how neural progenitor cells (NPCs), the in vitro precursors to neurons, astrocytes, and oligodendrocytes, can be used to study BBB induction. Next, we will detail how these same NPCs can be differentiated to more mature populations of neurons and astrocytes and profile their use in co-culture modeling of the adult BBB. Finally, we will describe our recent efforts in differentiating human pluripotent stem cells (hPSCs) to endothelial cells with robust BBB characteristics and detail how these cells could ultimately be used to study BBB development and maintenance, to model neurological disease, and to screen neuropharmaceuticals.
Collapse
|
40
|
Salani S, Donadoni C, Rizzo F, Bresolin N, Comi GP, Corti S. Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an in vitro model and for therapy of muscular dystrophies. J Cell Mol Med 2012; 16:1353-64. [PMID: 22129481 PMCID: PMC3823206 DOI: 10.1111/j.1582-4934.2011.01498.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders characterized by progressive muscle wasting and weakness likely associated with exhaustion of muscle regeneration potential. At present, no cures or efficacious treatments are available for these diseases, but cell transplantation could be a potential therapeutic strategy. Transplantation of myoblasts using satellite cells or other myogenic cell populations has been attempted to promote muscle regeneration, based on the hypothesis that the donor cells repopulate the muscle and contribute to its regeneration. Embryonic stem cells (ESCs) and more recently induced pluripotent stem cells (iPSCs) could generate an unlimited source of differentiated cell types, including myogenic cells. Here we review the literature regarding the generation of myogenic cells considering the main techniques employed to date to elicit efficient differentiation of human and murine ESCs or iPSCs into skeletal muscle. We also critically analyse the possibility of using these cellular populations as an alternative source of myogenic cells for cell therapy of MDs.
Collapse
Affiliation(s)
- Sabrina Salani
- Department of Neurological Sciences, Dino Ferrari Centre, University of Milan, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Lukovic D, Moreno Manzano V, Stojkovic M, Bhattacharya SS, Erceg S. Concise Review: Human Pluripotent Stem Cells in the Treatment of Spinal Cord Injury. Stem Cells 2012; 30:1787-92. [DOI: 10.1002/stem.1159] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Zheng Z, Jian J, Zhang X, Zara JN, Yin W, Chiang M, Liu Y, Wang J, Pang S, Ting K, Soo C. Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin. Biomaterials 2012; 33:5821-31. [PMID: 22622142 DOI: 10.1016/j.biomaterials.2012.04.049] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/21/2012] [Indexed: 01/01/2023]
Abstract
Pluripotent and/or multipotent stem cell-based therapeutics are a vital component of tissue engineering and regenerative medicine. The generation or isolation of safer and readily available stem cell sources will significantly aid clinical applications. We report here a technique using a single molecule, recombinant human fibromodulin protein (FMOD), to reprogram human fibroblasts into multipotent cells. Like virally-induced pluripotent stem (iPS) cells, FMOD reprogrammed (FReP) cells express pluripotency markers, form embryoid bodies (EBs), and differentiate into ectoderm, mesoderm, and endoderm derivatives in vitro. Notably, FReP cells regenerate muscle and bone tissues but do not generate teratomas in vivo. Unlike iPS cells, undifferentiated FReP cells proliferate slowly and express low proto-oncogene c-MYC and unexpectedly high levels of cyclin-dependent kinase inhibitors p15(Ink4B) and p21(WAF1/Cip1). Remarkably, in a fashion reminiscent of quiescent stem cells, the slow replicative phenotype of undifferentiated FReP cells reverses after differentiation induction, with differentiating FReP cells proliferating faster and expressing less p15(Ink4B) and p21(WAF1/Cip1) than differentiating iPS cells. Overall, single protein, FMOD-based, cell reprograming bypasses the risks of mutation, gene instability, and malignancy associated with genetically-modified iPS cells, and provides an alternative strategy for engineering patient-specific multipotent cells for basic research and therapeutic application.
Collapse
Affiliation(s)
- Zhong Zheng
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA 90095-1759, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
De Filippis L, Binda E. Concise review: self-renewal in the central nervous system: neural stem cells from embryo to adult. Stem Cells Transl Med 2012. [PMID: 23197809 DOI: 10.5966/sctm.2011-0045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The recent discovery of neural stem cells (NSCs) in the adult mammalian brain has fostered a plethora of translational and preclinical studies to investigate future therapeutic approaches for the cure of neurodegenerative diseases. These studies are finally at the clinical stage, and some of them are already under way. The definition of a bona fide stem cell has long been the object of much debate focused on the establishment of standard and univocal criteria to distinguish between stem and progenitor cells. It is commonly accepted that NSCs have to fulfill two basic requirements, the capacity for long-term self-renewal and the potential for differentiation, which account for their physiological role, namely central nervous system tissue homeostasis. Strategies such as immortalization or reprogramming of somatic cells to the embryonic-like stage of pluripotency indicate the relevance of extensive self-renewal ability of NSCs either in vitro or in vivo. Moreover, the discovery of stem-like tumor cells in brain tumors, such as gliomas, accompanied by the isolation of these cells through the same paradigm used for related healthy cells, has provided further evidence of the key role that self-renewal plays in the development and progression of neurodegenerative diseases and cancer. In this review we provide an overview of the current understanding of the self-renewal capacity of nontransformed human NSCs, with or without immortalization or reprogramming, and of stem-like tumor cells, referring to both research and therapeutic studies.
Collapse
Affiliation(s)
- Lidia De Filippis
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Italy.
| | | |
Collapse
|
44
|
Zhou XL, Sullivan GJ, Sun P, Park IH. Humanized murine model for HBV and HCV using human induced pluripotent stem cells. Arch Pharm Res 2012; 35:261-9. [PMID: 22370780 DOI: 10.1007/s12272-012-0206-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 12/23/2022]
Abstract
Infection of hepatitis B virus (HBV) and hepatitis C virus (HCV) results in heterogeneous outcomes from acute asymptomatic infection to chronic infection leading to cirrhosis and hepatocellular carcinoma (HCC). In vitro models using animal hepatocytes, human HCC cell lines, or in vivo transgenic mouse models have contributed invaluably to understanding the pathogenesis of HBV and HCV. A humanized mouse model made by reconstitution of human primary hepatocytes in the liver of the immunodeficient mouse provides a novel experimental opportunity which mimics the in vivo growth of the human hepatocytes. The limited access to primary human hepatocytes necessitated the search for other cellular sources, such as pluripotent stem cells. Human embryonic stem cells (hESCs) have the features of self-renewal and pluripotency and differentiate into cells of all three germ layers, including hepatocytes. Humaninduced pluripotent stem cells (iPSCs) derived from the patient's or individual's own cells provide a novel opportunity to generate hepatocyte-like cells with the defined genetic composition. Here, we will review the current perspective of the models used for HBV and HCV study, and introduce the personalized mouse model using human iPSCs. This novel mouse model will facilitate the direct investigation of HBV and HCV in human hepatocytes as well as probing the genetic influence on the susceptibility of hepatocytes to HBV and HCV.
Collapse
Affiliation(s)
- Xiao-Ling Zhou
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
45
|
Induction of adipose-derived stem cell into motoneuron-like cells using selegiline as preinducer. Brain Res 2012; 1440:23-33. [PMID: 22284617 DOI: 10.1016/j.brainres.2011.12.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/14/2011] [Accepted: 12/26/2011] [Indexed: 12/12/2022]
Abstract
Cell therapy is one of the approaches taken to treatment of spinal cord disorders. In this study, adipose-derived stem cells (ADSCs) were induced to form motoneuron-like cells (MNLCs) using selegiline as preinducer, as well as Shh and all trans-retinoic acid (RA) as inducers. Selegiline was reported to induce the embryonic stem cells and bone marrow stromal cells into neuronal phenotype. ADSCs were evaluated using CD90, CD44, CD 49d, CD106, CD31, CD45, lipogenesis and osteogenesis. Dose response and time course studies were used in selecting the optimal concentration for selegiline using the percentage of viable cells (PVC) and percentages of immunoreactive cells (PIC) to nestin and neurofilament 68. Accordingly, such studies were used in selecting the optimal dose for RA using PVC and PIC to islet-1 and oligo-2. The expression of islet-1, oligo-2 and HLXB9 was evaluated using RT-PCR and immunocytochemistry. Real-time PCR was utilized in order to quantify the expression of islet-1, oligo-2 and HLXB9. ADSCs were immunoreactive to CD90, CD44 and CD 49d with consistent differentiation osteogenic and lipogenic cells. The optimal concentrations of selegiline and RA were 10⁻⁹ mM and 2 × 10⁻⁸ M, respectively. After two days, MNLCs showed high oligo-2 expression. MNLCs innervated myotubes; also, the release rate of synaptic vesicles using FM1-43 followed exponential decay model, and this rate in the induced MNLCs was approximately three times of that in the preinduced cells.
Collapse
|
46
|
Berry JD, Cudkowicz ME. New considerations in the design of clinical trials for amyotrophic lateral sclerosis. CLINICAL INVESTIGATION 2011; 1:1375-1389. [PMID: 22545191 PMCID: PMC3335743 DOI: 10.4155/cli.11.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease caused by loss of motor neurons. Its pathophysiology remains unknown, but progress has been made in understanding its genetic and biochemical basis. Clinical trialists are working to translate basic science successes into human trials with more efficiency, in the hope of finding successful treatments. In the future, new preclinical models, including patient-derived stem cells may augment transgenic animal models as preclinical tools. Biomarker discovery projects aim to identify markers of disease onset and progression for use in clinical trials. New trial designs are reducing study time, improving efficiency and helping to keep pace with the increasing rate of basic and translational discoveries. Ongoing trials with novel designs are paving the way for amyotrophic lateral sclerosis clinical research.
Collapse
Affiliation(s)
- James D Berry
- Massachusetts General Hospital, Department of Neurology, Neurology Clinical Trials Unit, 149 Thirteenth Street, Suite 2274, Charlestown, MA 02129, USA
| | - Merit E Cudkowicz
- Massachusetts General Hospital, Department of Neurology, Neurology Clinical Trials Unit, 149 Thirteenth Street, Suite 2274, Charlestown, MA 02129, USA
| |
Collapse
|
47
|
Saporta MA, Grskovic M, Dimos JT. Induced pluripotent stem cells in the study of neurological diseases. Stem Cell Res Ther 2011; 2:37. [PMID: 21936964 PMCID: PMC3308034 DOI: 10.1186/scrt78] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Five years after their initial derivation from mouse somatic cells, induced pluripotent stem (iPS) cells are an important tool for the study of neurological diseases. By offering an unlimited source of patient-specific disease-relevant neuronal and glial cells, iPS cell-based disease models hold enormous promise for identification of disease mechanisms, discovery of molecular targets and development of phenotypic screens for drug discovery. The present review focuses on the recent advancements in modeling neurological disorders, including the demonstration of disease-specific phenotypes in iPS cell-derived neurons generated from patients with spinal muscular atrophy, familial dysautonomia, Rett syndrome, schizophrenia and Parkinson disease. The ability of this approach to detect treatment effects from known therapeutic compounds has also been demonstrated, providing proof of principle for the use of iPS cell-derived cells in drug discovery.
Collapse
Affiliation(s)
- Mario A Saporta
- iPierian, Inc,, 951 Gateway Blvd, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
48
|
Current world literature. Curr Opin Neurol 2011; 24:511-6. [PMID: 21900773 DOI: 10.1097/wco.0b013e32834be5c1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Lin M, Pedrosa E, Shah A, Hrabovsky A, Maqbool S, Zheng D, Lachman HM. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS One 2011; 6:e23356. [PMID: 21915259 PMCID: PMC3168439 DOI: 10.1371/journal.pone.0023356] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/12/2011] [Indexed: 02/01/2023] Open
Abstract
Genome-wide expression analysis using next generation sequencing (RNA-Seq) provides an opportunity for in-depth molecular profiling of fundamental biological processes, such as cellular differentiation and malignant transformation. Differentiating human neurons derived from induced pluripotent stem cells (iPSCs) provide an ideal system for RNA-Seq since defective neurogenesis caused by abnormalities in transcription factors, DNA methylation, and chromatin modifiers lie at the heart of some neuropsychiatric disorders. As a preliminary step towards applying next generation sequencing using neurons derived from patient-specific iPSCs, we have carried out an RNA-Seq analysis on control human neurons. Dramatic changes in the expression of coding genes, long non-coding RNAs (lncRNAs), pseudogenes, and splice isoforms were seen during the transition from pluripotent stem cells to early differentiating neurons. A number of genes that undergo radical changes in expression during this transition include candidates for schizophrenia (SZ), bipolar disorder (BD) and autism spectrum disorders (ASD) that function as transcription factors and chromatin modifiers, such as POU3F2 and ZNF804A, and genes coding for cell adhesion proteins implicated in these conditions including NRXN1 and NLGN1. In addition, a number of novel lncRNAs were found to undergo dramatic changes in expression, one of which is HOTAIRM1, a regulator of several HOXA genes during myelopoiesis. The increase we observed in differentiating neurons suggests a role in neurogenesis as well. Finally, several lncRNAs that map near SNPs associated with SZ in genome wide association studies also increase during neuronal differentiation, suggesting that these novel transcripts may be abnormally regulated in a subgroup of patients.
Collapse
Affiliation(s)
- Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Abhishek Shah
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anastasia Hrabovsky
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shahina Maqbool
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Herbert M. Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
50
|
Pedrosa E, Sandler V, Shah A, Carroll R, Chang C, Rockowitz S, Guo X, Zheng D, Lachman HM. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet 2011; 25:88-103. [PMID: 21797804 DOI: 10.3109/01677063.2011.597908] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Induced pluripotent stem cell (iPSC) technology has the potential to transform regenerative medicine. It also offers a powerful tool for establishing in vitro models of disease, in particular, for neuropsychiatric disorders where live human neurons are essentially impossible to procure. Using iPSCs derived from three schizophrenia (SZ) patients, one of whom has 22q11.2del (velocardiofacial syndrome; VCFS), the authors developed a culture system to study SZ on a molecular and cellular level. SZ iPSCs were differentiated into functional, primarily glutamatergic neurons that were able to fire action potentials after ∼8 weeks in culture. Early differentiating neurons expressed a number of transcription factors/chromatin remodeling proteins and synaptic proteins relevant to SZ pathogenesis, including ZNF804A, RELN, CNTNAP2, CTNNA2, SMARCA2, and NRXN1. Although a small number of lines were developed in this preliminary study, the SZ line containing 22q11.2del showed a significant delay in the reduction of endogenous OCT4 and NANOG expression that normally occurs during differentiation. Constitutive expression of OCT4 has been observed in Dgcr8-deficient mouse embryonic stem cells (mESCs); DGCR8 maps to the 22q11.2-deleted region. These findings demonstrate that the method of inducing neural differentiation employed is useful for disease modeling in SZ and that the transition of iPSCs with 22q11.2 deletions towards a differentiated state may be marked by subtle changes in expression of pluripotency-associated genes.
Collapse
Affiliation(s)
- Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York 10416, USA
| | | | | | | | | | | | | | | | | |
Collapse
|