1
|
Rab SO, Roopashree R, Altalbawy FMA, Kumar MR, Chahar M, Singh M, Kubaev A, Alamir HTA, Mohammed F, Kadhim AJ, Alhadrawi M. Phytochemicals and Their Nanoformulations for Targeting Hepatocellular Carcinoma: Exploring Potential and Targeting Strategies. Cell Biochem Funct 2024; 42:e70013. [PMID: 39521962 DOI: 10.1002/cbf.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Hepatocellular carcinoma (HCC) continues to pose a global health concern, necessitating the exploration of innovative therapeutic approaches. In the recent decade, targeting tumor stroma consisting of extracellular matrix (ECM), immune cells, vascular system, hypoxia, and also suppressive mechanisms in HCC has attracted interest in repressing tumor growth and metastasis. Phytochemicals have attained considerable attention because of their manifold biological effects and high capacity for anticancer activities. These chemical agents have shown the capability to modulate different cells and secretions within the stroma of malignancies. In recent years, the development of nanoformulations has further enhanced the therapeutic potential of phytochemicals by improving their solubility, bioavailability, and targeted delivery to tumor tissues. This review aims to provide an encyclopedic overview of the potential of phytochemicals and their nanoformulations as promising therapeutic strategies for targeting HCC. The review initially highlights the broad array of phytochemicals exhibiting potent anticancer properties, including flavonoids, alkaloids, terpenoids, and phenolic compounds, among others. Then, the nanoformulations and modification of these agents will be reviewed. Finally, we will review the latest experiments that have examined the modulation of HCC using adjuvant phytochemicals and their nanoformulations.
Collapse
Affiliation(s)
- Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Amarah, Maysan, Iraq
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Merwa Alhadrawi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
3
|
Sayın Ekinci N, Darbaş Ş, Uçar F. CXCR5+CD8+ Follicular Cytotoxic T Cell Biology and Its Relationship with Diseases. TURKISH JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4274/tji.galenos.2022.04796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Kretschmer L, Busch DH, Buchholz VR. A Single-Cell Perspective on Memory T-Cell Differentiation. Cold Spring Harb Perspect Biol 2021; 13:a038067. [PMID: 33903160 PMCID: PMC8411955 DOI: 10.1101/cshperspect.a038067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Memory differentiation of CD4 and CD8 T-cell populations has been extensively studied and many key molecular players and transcriptional networks have been identified. But how regulatory principles, identified on this population level, translate to immune responses that originate from single antigen-specific T cells is only now being elucidated. Here, we provide a short summary of the approaches used for mapping the fate of individual T cells and their progeny in vivo. We then highlight which major questions, with respect to memory T-cell differentiation, have been addressed by studying the development of single-cell-derived T-cell families during infection or vaccination. We discuss how fate decisions of single T cells are modulated by the affinity of their TCR and further shaped through a coregulation of T-cell differentiation and T-cell proliferation. These current findings indicate the early segregation into slowly dividing T central memory precursors (CMPs) and rapidly dividing non-CMPs, as a key event that separates the developmental paths of long- and short-lived T cells.
Collapse
Affiliation(s)
- Lorenz Kretschmer
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich 81675 , Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich 81675 , Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich 81675, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich 81675 , Germany
| |
Collapse
|
5
|
Zhou H, Yang J, Tian J, Wang S. CD8 + T Lymphocytes: Crucial Players in Sjögren's Syndrome. Front Immunol 2021; 11:602823. [PMID: 33584670 PMCID: PMC7876316 DOI: 10.3389/fimmu.2020.602823] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/10/2020] [Indexed: 01/14/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease associated with damage to multiple organs and glands. The most common clinical manifestations are dry eyes, dry mouth, and enlarged salivary glands. Currently, CD4+ T lymphocytes are considered to be key factors in the immunopathogenesis of pSS, but various studies have shown that CD8+ T lymphocytes contribute to acinar injury in the exocrine glands. Therefore, in this review, we discussed the classification and features of CD8+ T lymphocytes, specifically describing the role of CD8+ T lymphocytes in disease pathophysiology. Furthermore, we presented treatment strategies targeting CD8+ T cells to capitalize on the pathogenic and regulatory potential of CD8+ T lymphocytes in SS to provide promising new strategies for this inflammatory disease.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Fousteri G, Kuka M. The elusive identity of CXCR5 + CD8 T cells in viral infection and autoimmunity: Cytotoxic, regulatory, or helper cells? Mol Immunol 2020; 119:101-105. [PMID: 32007752 DOI: 10.1016/j.molimm.2020.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 01/11/2020] [Indexed: 02/07/2023]
Abstract
Our knowledge on the development and functions of CXCR5+ CD8 T cells is rudimentary when confronted to other extensively studied CD8 T cell subsets. A decade ago, it became apparent that CD8 T cells possess two additional and rather unexpected functional properties other than cytotoxicity, one involving what is known as B cell helper activity and the other involving suppression of self-reactive responses generally known as T cell regulation. Although these adaptive responses are well-known functions of CD4 T cells, they remain poorly understood in CD8 T cells. Thus far, three subsets of CXCR5+ CD8 T cells have been identified. The first subset of CXCR5+ CD8 T cells is present in chronic viral infections and is referred to as progenitors of exhausted T cells showing heightened proliferative and cytotoxic properties as compared to CXCR5- CD8 T cells. The second subset of CXCR5+ CD8 T cells functions as regulatory T cells that inhibit CD4 T follicular helper (Tfh) humoral responses and the development of autoantibodies. The third subset of CXCR5+ CD8 T cells was identified in mice with mutations in immunoregulatory genes (i.e. FOXP3 and IL-2-deficient mice) and involves CD8 T cells with Tfh-like properties that promote humoral autoimmunity through interaction with B cells. This review summarizes the phenotype, function, and differentiation of CXCR5+ CD8 T cells.
Collapse
Affiliation(s)
- Georgia Fousteri
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
7
|
Lämmermann T, Kastenmüller W. Concepts of GPCR-controlled navigation in the immune system. Immunol Rev 2020; 289:205-231. [PMID: 30977203 PMCID: PMC6487968 DOI: 10.1111/imr.12752] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
G‐protein–coupled receptor (GPCR) signaling is essential for the spatiotemporal control of leukocyte dynamics during immune responses. For efficient navigation through mammalian tissues, most leukocyte types express more than one GPCR on their surface and sense a wide range of chemokines and chemoattractants, leading to basic forms of leukocyte movement (chemokinesis, haptokinesis, chemotaxis, haptotaxis, and chemorepulsion). How leukocytes integrate multiple GPCR signals and make directional decisions in lymphoid and inflamed tissues is still subject of intense research. Many of our concepts on GPCR‐controlled leukocyte navigation in the presence of multiple GPCR signals derive from in vitro chemotaxis studies and lower vertebrates. In this review, we refer to these concepts and critically contemplate their relevance for the directional movement of several leukocyte subsets (neutrophils, T cells, and dendritic cells) in the complexity of mouse tissues. We discuss how leukocyte navigation can be regulated at the level of only a single GPCR (surface expression, competitive antagonism, oligomerization, homologous desensitization, and receptor internalization) or multiple GPCRs (synergy, hierarchical and non‐hierarchical competition, sequential signaling, heterologous desensitization, and agonist scavenging). In particular, we will highlight recent advances in understanding GPCR‐controlled leukocyte navigation by intravital microscopy of immune cells in mice.
Collapse
Affiliation(s)
- Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
8
|
Desai P, Tahiliani V, Hutchinson TE, Dastmalchi F, Stanfield J, Abboud G, Thomas PG, Ware CF, Song J, Croft M, Salek-Ardakani S. The TNF Superfamily Molecule LIGHT Promotes the Generation of Circulating and Lung-Resident Memory CD8 T Cells following an Acute Respiratory Virus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:2894-2904. [PMID: 29514949 PMCID: PMC5893426 DOI: 10.4049/jimmunol.1701499] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/12/2018] [Indexed: 12/15/2022]
Abstract
The transition of effector T cells or memory precursors into distinct long-lived memory T cell subsets is not well understood. Although many molecules made by APCs can contribute to clonal expansion and effector cell differentiation, it is not clear if clonal contraction and memory development is passive or active. Using respiratory virus infection, we found that CD8 T cells that cannot express the TNF family molecule lymphotoxin-like, exhibits inducible expression, competes with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes (LIGHT) are unimpaired in their initial response and clonally expand to form effector cell pools. Thereafter, LIGHT-deficient CD8 T cells undergo strikingly enhanced clonal contraction with resultant compromised accumulation of both circulating and tissue-resident memory cells. LIGHT expression at the peak of the effector response regulates the balance of several pro- and antiapoptotic genes, including Akt, and has a preferential impact on the development of the peripheral memory population. These results underscore the importance of LIGHT activity in programming memory CD8 T cell development, and suggest that CD8 effector T cells can dictate their own fate into becoming memory cells by expressing LIGHT.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Vikas Tahiliani
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Tarun E Hutchinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Farhad Dastmalchi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Jessica Stanfield
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Georges Abboud
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Carl F Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Shahram Salek-Ardakani
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610;
| |
Collapse
|
9
|
Oliveira G, Ruggiero E, Stanghellini MTL, Cieri N, D'Agostino M, D'Agostino M, Fronza R, Lulay C, Dionisio F, Mastaglio S, Greco R, Peccatori J, Aiuti A, Ambrosi A, Biasco L, Bondanza A, Lambiase A, Traversari C, Vago L, von Kalle C, Schmidt M, Bordignon C, Ciceri F, Bonini C. Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory. Sci Transl Med 2016; 7:317ra198. [PMID: 26659572 DOI: 10.1126/scitranslmed.aac8265] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Long-lasting immune protection from pathogens and cancer requires the generation of memory T cells able to survive long-term. To unravel the immunological requirements for long-term persistence of human memory T cells, we characterized and traced, over several years, T lymphocytes genetically modified to express the thymidine kinase (TK) suicide gene that were infused in 10 patients after haploidentical hematopoietic stem cell transplantation (HSCT). At 2 to 14 years after infusion and in the presence of a broad and resting immune system, we could still detect effectors/effector memory (TEM/EFF), central memory (TCM), and stem memory (TSCM) TK(+) cells, circulating at low but stable levels in all patients. Longitudinal analysis of cytomegalovirus (CMV)- and Flu-specific TK(+) cells indicated that antigen recognition was dominant in driving in vivo expansion and persistence at detectable levels. The amount of infused TSCM cells positively correlated with early expansion and with the absolute counts of long-term persisting gene-marked cells. By combining T cell sorting with sequencing of integration (IS), TCRα and TCRβ clonal markers, we showed that T cells retrieved long-term were enriched in clones originally shared in different memory T cell subsets, whereas dominant long-term clonotypes appeared to preferentially originate from infused TSCM and TCM clones. Together, these results indicate that long-term persistence of gene-modified memory T cells after haploidentical HSCT is influenced by antigen exposure and by the original phenotype of infused cells. Cancer adoptive immunotherapy might thus benefit from cellular products enriched in lymphocytes with an early-differentiated phenotype.
Collapse
Affiliation(s)
- Giacomo Oliveira
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-Immunotherapy of Cancer (PIBIC), San Raffaele Scientific Institute, Milan 20132, Italy. Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-Immunotherapy of Cancer (PIBIC), San Raffaele Scientific Institute, Milan 20132, Italy. Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg 69120, Germany
| | | | - Nicoletta Cieri
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-Immunotherapy of Cancer (PIBIC), San Raffaele Scientific Institute, Milan 20132, Italy
| | - Mattia D'Agostino
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-Immunotherapy of Cancer (PIBIC), San Raffaele Scientific Institute, Milan 20132, Italy. Vita-Salute San Raffaele University, Milan 20132, Italy
| | | | - Raffaele Fronza
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg 69120, Germany
| | - Christina Lulay
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg 69120, Germany
| | - Francesca Dionisio
- Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan 20132, Italy
| | - Sara Mastaglio
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-Immunotherapy of Cancer (PIBIC), San Raffaele Scientific Institute, Milan 20132, Italy. Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Raffaella Greco
- Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Jacopo Peccatori
- Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessandro Aiuti
- Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan 20132, Italy
| | | | - Luca Biasco
- Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan 20132, Italy
| | - Attilio Bondanza
- Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan 20132, Italy. Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, PIBIC, San Raffaele Scientific Institute, Milan 20132, Italy
| | | | | | - Luca Vago
- Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan 20132, Italy. Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg 69120, Germany
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg 69120, Germany
| | - Claudio Bordignon
- Vita-Salute San Raffaele University, Milan 20132, Italy. MolMed S.p.A, Milan 20132, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan 20132, Italy. Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan 20132, Italy. Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-Immunotherapy of Cancer (PIBIC), San Raffaele Scientific Institute, Milan 20132, Italy. Vita-Salute San Raffaele University, Milan 20132, Italy.
| |
Collapse
|
10
|
Affiliation(s)
- Veit R. Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 München, Germany; ,
| | - Ton N.M. Schumacher
- Division of Immunology, The Netherlands Cancer Institute (NKI), 1066 CX Amsterdam, The Netherlands;
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 München, Germany; ,
| |
Collapse
|
11
|
Heterogeneity in the Differentiation and Function of CD8+ T Cells. Arch Immunol Ther Exp (Warsz) 2014; 62:449-58. [DOI: 10.1007/s00005-014-0293-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/24/2014] [Indexed: 01/01/2023]
|
12
|
Rohr JC, Gerlach C, Kok L, Schumacher TN. Single cell behavior in T cell differentiation. Trends Immunol 2014; 35:170-7. [PMID: 24657362 DOI: 10.1016/j.it.2014.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 01/08/2023]
Abstract
Upon primary infection, naïve T cells that recognize their cognate antigen become activated, proliferate, and simultaneously differentiate into various subsets. A long-standing question in the field has been how this cellular diversification is achieved. Conceptually, diverse cellular output may either arise from every single cell or only from populations of naïve cells. Furthermore, such diversity may either be driven by cell-intrinsic heterogeneity or by external, niche-derived signals. In this review, we discuss how recently developed technologies have allowed the analysis of the mechanisms underlying T cell diversification at the single cell level. In addition, we outline the implications of this work on our understanding of the formation of immunological memory, and describe a number of unresolved key questions in this field.
Collapse
Affiliation(s)
- Jan C Rohr
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Carmen Gerlach
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Lianne Kok
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton N Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Buchholz VR, Gräf P, Busch DH. The smallest unit: effector and memory CD8(+) T cell differentiation on the single cell level. Front Immunol 2013; 4:31. [PMID: 23424063 PMCID: PMC3573211 DOI: 10.3389/fimmu.2013.00031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/26/2013] [Indexed: 12/16/2022] Open
Abstract
CD8+ T cell immune responses provide immediate protection against primary infection and durable memory capable of rapidly fighting off re-infection. Immediate protection and lasting memory are implemented by phenotypically and functionally distinct T cell subsets. While it is now widely accepted that these diverge from a common source of naïve T cells (Tn), the developmental relation and succession of effector and memory T cell subsets is still under intense debate. Recently, a distinct memory T cell subset has been suggested to possess stem cell-like features, sparking the hope to harness its capacity for self-renewal and diversification for successful therapy of chronic infections or malignant diseases. In this review we highlight current developmental models of memory generation, T cell subset diversification and T cell stemness. We discuss the importance of single cell monitoring techniques for adequately mapping these developmental processes and take a brief look at signaling components active in the putative stem cell-like memory T cell compartment.
Collapse
Affiliation(s)
- Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München Munich, Germany
| | | | | |
Collapse
|