1
|
El Hamaoui D, Marchelli A, Gandrille S, Reboul E, Stepanian A, Palmier B, Jovine L, Lebrin F, Smadja DM, Bernabeu C, Denis CV, Gaussem P, Pasquali S, Kauskot A, Rossi E. Thrombin cleaves membrane-bound endoglin potentially contributing to the heterogeneity of circulating endoglin in preeclampsia. Commun Biol 2025; 8:316. [PMID: 40011679 DOI: 10.1038/s42003-025-07751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/15/2025] [Indexed: 02/28/2025] Open
Abstract
Increased levels of soluble endoglin (sEng) are found in serum, plasma, and urine of preeclampsia patients. sEng is released from membrane-bound endoglin through the proteolytic activity of metalloproteases, but its structural heterogeneity suggests the involvement of additional proteases. Considering the roles of thrombin and sEng in preeclampsia pathogenesis, we investigated whether thrombin cleaves endoglin. Sequence analysis revealed a conserved peptide in endoglin similar to the α-thrombin cleavage site of protease-activated receptor-1. Western blot analysis of plasma from preeclamptic women showed endoglin fragments consistent with thrombin-mediated cleavage. Incubation of purified endoglin with thrombin generated specific fragments, whose N- and C-terminal sequencing confirmed the predicted cleavage sites. Furthermore, thrombin treatment of endoglin-expressing cells released sEng and reduced cell surface endoglin. These findings suggest that multiple protease-targeted cleavage sites lead to the generation of sEng fragments, which may reflect endothelial dysfunction and preeclampsia progression.
Collapse
Affiliation(s)
- Divina El Hamaoui
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Aurore Marchelli
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Sophie Gandrille
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
- Service d'hématologie biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Etienne Reboul
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Alain Stepanian
- Service d'Hématologie biologique, Hôpital Saint-Eloi - 80 avenue Augustin Fliche - F-34090, Montpellier, France
| | - Bruno Palmier
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Luca Jovine
- Karolinska Institutet, Department of Medicine (MedH), Blickagången 16, SE-141 83, Huddinge, Sweden
| | - Franck Lebrin
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI Paris-PSL, CNRS UMR8063, F-75015, Paris, France
| | - David M Smadja
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
- Service d'hématologie biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| | - Cecile V Denis
- HITh, Unite Mixte de Recherche 1176 INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Pascale Gaussem
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
- Service d'hématologie biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Samuela Pasquali
- Laboratoire Biologie Fonctionnelle et Adaptative, INSERM ERL1133 F-75013, Paris, France
| | - Alexandre Kauskot
- HITh, Unite Mixte de Recherche 1176 INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Elisa Rossi
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France.
| |
Collapse
|
2
|
Raj S, Sarangi P, Goyal D, Kumar H. The Hidden Hand in White Matter: Pericytes and the Puzzle of Demyelination. ACS Pharmacol Transl Sci 2024; 7:2912-2923. [PMID: 39421660 PMCID: PMC11480894 DOI: 10.1021/acsptsci.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024]
Abstract
Disruption of myelin, the fatty sheath-insulating nerve fibers in the white matter, blocks or slows the rapid transmission of electrical signals along nerve cells and contributes to several neurodegenerative diseases such as multiple sclerosis. Traditionally, research has focused on neuronal dysfunction as the primary factor, including autoimmunity, infections, inflammation, and genetic disorders causing demyelination. However, recent insights emphasize the critical role of pericytes, non-neuronal cells that regulate blood flow and maintain the health of blood vessels within white matter. This Perspective explores the principal mechanisms through which pericyte dysfunction contributes to damage and demyelination, including impaired communication with neurons (neurovascular uncoupling), excessive formation of scar tissue (fibrosis), and the infiltration of detrimental substances from the bloodstream. Understanding these mechanisms of pericyte-driven demyelination may lead to the creation of new therapeutic strategies for tackling a range of neurodegenerative conditions.
Collapse
Affiliation(s)
- Siddharth Raj
- Department of Pharmacology
and Toxicology, National Institute of Pharmaceutical
Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India, 382355
| | - Priyabrata Sarangi
- Department of Pharmacology
and Toxicology, National Institute of Pharmaceutical
Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India, 382355
| | - Divya Goyal
- Department of Pharmacology
and Toxicology, National Institute of Pharmaceutical
Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India, 382355
| | - Hemant Kumar
- Department of Pharmacology
and Toxicology, National Institute of Pharmaceutical
Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India, 382355
| |
Collapse
|
3
|
Shabani Z, Do Prado LB, Zhang R, Zhu W, Shaligram SS, Yadav A, Wang C, Su H. Increasing Endoglin Deletion in Endothelial Cells Exacerbates the Severity of Brain Arteriovenous Malformation in Mouse. Biomedicines 2024; 12:1691. [PMID: 39200156 PMCID: PMC11352040 DOI: 10.3390/biomedicines12081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Endoglin (ENG) mutation causes type 1 hereditary hemorrhagic telangiectasia (HHT1). HHT1 patients have arteriovenous malformations (AVMs) in multiple organs, including the brain. In mice, Eng deletion induced by R26RCreER or SM22αCre leads to AVM development in the brain and other organs. We hypothesized that an increase in Eng- negative ECs will enhance AVM severity. To increase EC Eng deletion, we used a codon-improved cre (icre), which is more potent in recombination of the floxed alleles than the wild-type (WT) cre. R26RCreER;Engf/f mice that have a Rosa promoter driving and tamoxifen (TM)-inducible WT cre expression globally, and PdgfbiCreER;Engf/f mice that have a Pdgfb promoter driving and TM-inducible icre expression in ECs were treated with three intra-peritoneal injections of TM (2.5 mg/25 g of body weight) to delete Eng globally or in the ECs. AAV-VEGF was stereotactically injected into the brain to induce brain focal angiogenesis and brain AVM. We found that icre caused more Eng deletion in the brain, indicated by a lower level of Eng proteins (p < 0.001) and fewer Eng-positive ECs (p = 0.01) than mice with WT cre. Mice with icre-mediated Eng deletion have more abnormal vessels (p = 0.02), CD68+ macrophages (p = 0.002), and hemorrhage (p = 0.04) and less vascular pericyte and smooth muscle coverage than mice with WT cre. In addition, arteriovenous shunts were detected in the intestines of icre mice, a phenotype that has not been detected in WT cre mice before. RNA-seq analysis showed that 8 out of the 10 top upregulated pathways identified by gene ontology (GO) analysis are related to inflammation. Therefore, the increase in Eng deletion in ECs exacerbates AVM severity, which is associated with enhanced inflammation. Strategies that can reduce Eng-negative ECs could be used to develop new therapies to reduce AVM severity for HHT1 patients.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Leandro Barbosa Do Prado
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Rui Zhang
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Wan Zhu
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Sonali S. Shaligram
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Alka Yadav
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Calvin Wang
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Hughes CCW, Fang J, Hatch C, Andrejecsk J, Trigt WV, Juat D, Chen YH, Matsumoto S, Lee A. A Microphysiological HHT-on-a-Chip Platform Recapitulates Patient Vascular Lesions. RESEARCH SQUARE 2024:rs.3.rs-4578507. [PMID: 38947000 PMCID: PMC11213165 DOI: 10.21203/rs.3.rs-4578507/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT) is a rare congenital disease in which fragile vascular malformations (VM) - including small telangiectasias and large arteriovenous malformations (AVMs) - focally develop in multiple organs. There are few treatment options and no cure for HHT. Most HHT patients are heterozygous for loss-of-function mutations affecting Endoglin (ENG) or Alk1 (ACVRL1); however, why loss of these genes manifests as VMs remains poorly understood. To complement ongoing work in animal models, we have developed a fully human, cell-based microphysiological model based on our Vascularized Micro-organ (VMO) platform (the HHT-VMO) that recapitulates HHT patient VMs. Using inducible ACVRL1 -knockdown, we control timing and extent of endogenous Alk1 expression in primary human endothelial cells (EC). Resulting HHT-VMO VMs develop over several days. Interestingly, in chimera experiments AVM-like lesions can be comprised of both Alk1-intact and Alk1-deficient EC, suggesting possible cell non-autonomous effects. Single cell RNA sequencing data are consistent with microvessel pruning/regression as contributing to AVM formation, while loss of PDGFB implicates mural cell recruitment. Finally, lesion formation is blocked by the VEGFR inhibitor pazopanib, mirroring positive effects of this drug in patients. In summary, we have developed a novel HHT-on-a-chip model that faithfully reproduces HHT patient lesions and that can be used to better understand HHT disease biology and identify potential new HHT drugs.
Collapse
|
5
|
Fang JS, Hatch CJ, Andrejecsk J, Trigt WV, Juat DJ, Chen YH, Matsumoto S, Lee AP, Hughes CCW. A Microphysiological HHT-on-a-Chip Platform Recapitulates Patient Vascular Lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584490. [PMID: 38559155 PMCID: PMC10979959 DOI: 10.1101/2024.03.11.584490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT) is a rare congenital disease in which fragile vascular malformations focally develop in multiple organs. These can be small (telangiectasias) or large (arteriovenous malformations, AVMs) and may rupture leading to frequent, uncontrolled bleeding. There are few treatment options and no cure for HHT. Most HHT patients are heterozygous for loss-of-function mutations for Endoglin (ENG) or Alk1 (ACVRL1), however, why loss of these genes manifests as vascular malformations remains poorly understood. To complement ongoing work in animal models, we have developed a microphysiological system model of HHT. Based on our existing vessel-on-a-chip (VMO) platform, our fully human cell-based HHT-VMO recapitulates HHT patient vascular lesions. Using inducible ACVRL1 (Alk1)-knockdown, we control timing and extent of endogenous Alk1 expression in primary human endothelial cells (EC) in the HHT-VMO. HHT-VMO vascular lesions develop over several days, and are dependent upon timing of Alk1 knockdown. Interestingly, in chimera experiments AVM-like lesions can be comprised of both Alk1-intact and Alk1-deficient EC, suggesting possible cell non-autonomous effects. Single cell RNA sequencing data are consistent with microvessel pruning/regression as contributing to AVM formation, while loss of PDGFB expression implicates mural cell recruitment. Finally, lesion formation is blocked by the VEGFR inhibitor pazopanib, mirroring the positive effects of this drug in patients. In summary, we have developed a novel HHT-on-a-chip model that faithfully reproduces HHT patient lesions and that is sensitive to a treatment effective in patients. The VMO-HHT can be used to better understand HHT disease biology and identify potential new HHT drugs. Significance This manuscript describes development of an organ-on-a-chip model of Hereditary Hemorrhagic Telangiectasia (HHT), a rare genetic disease involving development of vascular malformations. Our VMO-HHT model produces vascular malformations similar to those seen in human HHT patients, including small (telangiectasias) and large (arteriovenous malformations) lesions. We show that VMO-HHT lesions are sensitive to a drug, pazopanib, that appears to be effective in HHT human patients. We further use the VMO-HHT platform to demonstrate that there is a critical window during vessel formation in which the HHT gene, Alk1, is required to prevent vascular malformation. Lastly, we show that lesions in the VMO-HHT model are comprised of both Alk1-deficient and Alk1-intact endothelial cells.
Collapse
|
6
|
Rossi E, Bernabeu C. Novel vascular roles of human endoglin in pathophysiology. J Thromb Haemost 2023; 21:2327-2338. [PMID: 37315795 DOI: 10.1016/j.jtha.2023.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Endoglin, alias CD105, is a human membrane glycoprotein highly expressed in vascular endothelial cells. It is involved in angiogenesis and angiogenesis-related diseases, including the rare vascular pathology known as hereditary hemorrhagic telangiectasia type 1. Although endoglin acts as an accessory receptor for members of the transforming growth factor-β family, in recent years, emerging evidence has shown a novel functional role for this protein beyond the transforming growth factor-β system. In fact, endoglin has been found to be an integrin counterreceptor involved in endothelial cell adhesion processes during pathological inflammatory conditions and primary hemostasis. Furthermore, a circulating form of endoglin, also named as soluble endoglin, whose levels are abnormally increased in different pathological conditions, such as preeclampsia, seems to act as an antagonist of membrane-bound endoglin and as a competitor of the fibrinogen-integrin interaction in platelet-dependent thrombus formation. These studies suggest that membrane-bound endoglin and circulating endoglin are important components involved in vascular homeostasis and hemostasis.
Collapse
Affiliation(s)
- Elisa Rossi
- Université Paris Cité, INSERM U1140, Innovative Therapies in Haemostasis, Paris, France.
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
7
|
Rossi E, Pericacho M, Kauskot A, Gamella-Pozuelo L, Reboul E, Leuci A, Egido-Turrion C, El Hamaoui D, Marchelli A, Fernández FJ, Margaill I, Vega MC, Gaussem P, Pasquali S, Smadja DM, Bachelot-Loza C, Bernabeu C. Soluble endoglin reduces thrombus formation and platelet aggregation via interaction with αIIbβ3 integrin. J Thromb Haemost 2023; 21:1943-1956. [PMID: 36990159 DOI: 10.1016/j.jtha.2023.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND The circulating form of human endoglin (sEng) is a cleavage product of membrane-bound endoglin present on endothelial cells. Because sEng encompasses an RGD motif involved in integrin binding, we hypothesized that sEng would be able to bind integrin αIIbβ3, thereby compromising platelet binding to fibrinogen and thrombus stability. METHODS In vitro human platelet aggregation, thrombus retraction, and secretion-competition assays were performed in the presence of sEng. Surface plasmon resonance (SPR) binding and computational (docking) analyses were carried out to evaluate protein-protein interactions. A transgenic mouse overexpressing human sEng (hsEng+) was used to measure bleeding/rebleeding, prothrombin time (PT), blood stream, and embolus formation after FeCl3-induced injury of the carotid artery. RESULTS Under flow conditions, supplementation of human whole blood with sEng led to a smaller thrombus size. sEng inhibited platelet aggregation and thrombus retraction, interfering with fibrinogen binding, but did not affect platelet activation. SPR binding studies demonstrated that the specific interaction between αIIbβ3 and sEng and molecular modeling showed a good fitting between αIIbβ3 and sEng structures involving the endoglin RGD motif, suggesting the possible formation of a highly stable αIIbβ3/sEng. hsEng+ mice showed increased bleeding time and number of rebleedings compared to wild-type mice. No differences in PT were denoted between genotypes. After FeCl3 injury, the number of released emboli in hsEng+ mice was higher and the occlusion was slower compared to controls. CONCLUSIONS Our results demonstrate that sEng interferes with thrombus formation and stabilization, likely via its binding to platelet αIIbβ3, suggesting its involvement in primary hemostasis control.
Collapse
Affiliation(s)
- Elisa Rossi
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France.
| | - Miguel Pericacho
- Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain
| | - Alexandre Kauskot
- HITh, INSERM UMR-S 1176, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Luis Gamella-Pozuelo
- Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain; Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Etienne Reboul
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Alexandre Leuci
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | | | - Divina El Hamaoui
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Aurore Marchelli
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Francisco J Fernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Isabelle Margaill
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - M Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pascale Gaussem
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France; Service d'hématologie biologique, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Samuela Pasquali
- Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), UMR8038 CNRS, Paris, France
| | - David M Smadja
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France; Service d'hématologie biologique, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Laboratory of Biosurgical Research, Carpentier Foundation, Paris, France
| | | | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Wen T, Duan Y, Gao D, Zhang X, Zhang X, Liang L, Yang Z, Zhang P, Zhang J, Sun J, Feng Y, Zheng Q, Han H, Yan X. miR-342-5p promotes vascular smooth muscle cell phenotypic transition through a negative-feedback regulation of Notch signaling via targeting FOXO3. Life Sci 2023:121828. [PMID: 37270171 DOI: 10.1016/j.lfs.2023.121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
AIM Under various pathological conditions such as cancer, vascular smooth muscle cells (vSMCs) transit their contractile phenotype into phenotype(s) characterized by proliferation and secretion, a process called vSMC phenotypic transition (vSMC-PT). Notch signaling regulates vSMC development and vSMC-PT. This study aims to elucidate how the Notch signal is regulated. MAIN METHODS Gene-modified mice with a SM22α-CreERT2 transgene were generated to activate/block Notch signaling in vSMCs. Primary vSMCs and MOVAS cells were cultured in vitro. RNA-seq, qRT-PCR and Western blotting were used to evaluated gene expression level. EdU incorporation, Transwell and collagen gel contraction assays were conducted to determine the proliferation, migration and contraction, respectively. KEY FINDINGS Notch activation upregulated, while Notch blockade downregulated, miR-342-5p and its host gene Evl in vSMCs. However, miR-342-5p overexpression promoted vSMC-PT as shown by altered gene expression profile, increased migration and proliferation, and decreased contraction, while miR-342-5p blockade exhibited the opposite effects. Moreover, miR-342-5p overexpression significantly suppressed Notch signaling, and Notch activation partially abolished miR-342-5p-induced vSMC-PT. Mechanically, miR-342-5p directly targeted FOXO3, and FOXO3 overexpression rescued miR-342-5p-induced Notch repression and vSMC-PT. In a simulated tumor microenvironment, miR-342-5p was upregulated by tumor cell-derived conditional medium (TCM), and miR-342-5p blockade abrogated TCM-induced vSMC-PT. Meanwhile, conditional medium from miR-342-5p-overexpressing vSMCs significantly enhanced tumor cell proliferation, while miR-342-5p blockade had the opposite effects. Consistently, in a co-inoculation tumor model, miR-342-5p blockade in vSMCs significantly delayed tumor growth. SIGNIFICANCE miR-342-5p promotes vSMC-PT through a negative-feedback regulation of Notch signaling via downregulating FOXO3, which could be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Ting Wen
- Faculty of Life Sciences, Northwest University, Xi'an 710069, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yanyan Duan
- Faculty of Life Sciences, Northwest University, Xi'an 710069, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Dan Gao
- Faculty of Life Sciences, Northwest University, Xi'an 710069, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Xinxin Zhang
- College of Pulmonary and Critical Care Medicine, The 8th Medical Centre of Chinese PLA General Hospital, Beijing 100091, China
| | - Xiaoyan Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Peiran Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jiayulin Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jiaxing Sun
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yixuan Feng
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, Shenzhen 518020, China.
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
Ruiz-Llorente L, Ruiz-Rodríguez MJ, Savini C, González-Muñoz T, Riveiro-Falkenbach E, Rodríguez-Peralto JL, Peinado H, Bernabeu C. Correlation Between Endoglin and Malignant Phenotype in Human Melanoma Cells: Analysis of hsa-mir-214 and hsa-mir-370 in Cells and Their Extracellular Vesicles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:253-272. [PMID: 37093432 DOI: 10.1007/978-3-031-26163-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Endoglin (CD105) is an auxiliary receptor of transforming growth factor (TGF)-β family members that is expressed in human melanomas. It is heterogeneously expressed by primary and metastatic melanoma cells, and endoglin targeting as a therapeutic strategy for melanoma tumors is currently been explored. However, its involvement in tumor development and malignancy is not fully understood. Here, we find that endoglin expression correlates with malignancy of primary melanomas and cultured melanoma cell lines. Next, we have analyzed the effect of ectopic endoglin expression on two miRNAs (hsa-mir-214 and hsa-mir-370), both involved in melanoma tumor progression and endoglin regulation. We show that compared with control cells, overexpression of endoglin in the WM-164 melanoma cell line induces; (i) a significant increase of hsa-mir-214 levels in small extracellular vesicles (EVs) as well as an increased trend in cells; and (ii) significantly lower levels of hsa-mir-370 in the EVs fractions, whereas no significant differences were found in cells. As hsa-mir-214 and hsa-mir-370 are not just involved in melanoma tumor progression, but they can also target endoglin-expressing endothelial cells in the tumor vasculature, these results suggest a complex and differential regulatory mechanism involving the intracellular and extracellular signaling of hsa-mir-214 and hsa-mir-370 in melanoma development and progression.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| | - María Jesús Ruiz-Rodríguez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Claudia Savini
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Teresa González-Muñoz
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Erica Riveiro-Falkenbach
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - José L Rodríguez-Peralto
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| |
Collapse
|
10
|
Arthur HM, Roman BL. An update on preclinical models of hereditary haemorrhagic telangiectasia: Insights into disease mechanisms. Front Med (Lausanne) 2022; 9:973964. [PMID: 36250069 PMCID: PMC9556665 DOI: 10.3389/fmed.2022.973964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Endoglin (ENG) is expressed on the surface of endothelial cells (ECs) where it efficiently binds circulating BMP9 and BMP10 ligands to initiate activin A receptor like type 1 (ALK1) protein signalling to protect the vascular architecture. Patients heterozygous for ENG or ALK1 mutations develop the vascular disorder known as hereditary haemorrhagic telangiectasia (HHT). Many patients with this disorder suffer from anaemia, and are also at increased risk of stroke and high output heart failure. Recent work using animal models of HHT has revealed new insights into cellular and molecular mechanisms causing this disease. Loss of the ENG (HHT1) or ALK1 (HHT2) gene in ECs leads to aberrant arteriovenous connections or malformations (AVMs) in developing blood vessels. Similar phenotypes develop following combined EC specific loss of SMAD1 and 5, or EC loss of SMAD4. Taken together these data point to the essential role of the BMP9/10-ENG-ALK1-SMAD1/5-SMAD4 pathway in protecting the vasculature from AVMs. Altered directional migration of ECs in response to shear stress and increased EC proliferation are now recognised as critical factors driving AVM formation. Disruption of the ENG/ALK1 signalling pathway also affects EC responses to vascular endothelial growth factor (VEGF) and crosstalk between ECs and vascular smooth muscle cells. It is striking that the vascular lesions in HHT are both localised and tissue specific. Increasing evidence points to the importance of a second genetic hit to generate biallelic mutations, and the sporadic nature of such somatic mutations would explain the localised formation of vascular lesions. In addition, different pro-angiogenic drivers of AVM formation are likely to be at play during the patient’s life course. For example, inflammation is a key driver of vessel remodelling in postnatal life, and may turn out to be an important driver of HHT disease. The current wealth of preclinical models of HHT has led to increased understanding of AVM development and revealed new therapeutic approaches to treat AVMs, and form the topic of this review.
Collapse
Affiliation(s)
- Helen M. Arthur
- Biosciences Institute, Centre for Life, University of Newcastle, Newcastle, United Kingdom
- *Correspondence: Helen M. Arthur,
| | - Beth L. Roman
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Klostranec JM, Krings T. Cerebral neurovascular embryology, anatomic variations, and congenital brain arteriovenous lesions. J Neurointerv Surg 2022; 14:910-919. [PMID: 35169032 DOI: 10.1136/neurintsurg-2021-018607] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Cerebral neurovascular development is a complex and coordinated process driven by the changing spatial and temporal metabolic demands of the developing brain. Familiarity with the process is helpful in understanding neurovascular anatomic variants and congenital arteriovenous shunting lesions encountered in endovascular neuroradiological practice. Herein, the processes of vasculogenesis and angiogenesis are reviewed, followed by examination of the morphogenesis of the cerebral arterial and venous systems. Common arterial anatomic variants are reviewed with an emphasis on their development. Finally, endothelial genetic mutations affecting angiogenesis are examined to consider their probable role in the development of three types of congenital brain arteriovenous fistulas: vein of Galen malformations, pial arteriovenous fistulas, and dural sinus malformations.
Collapse
Affiliation(s)
- Jesse M Klostranec
- Department of Neuroradiology, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada .,McGill University Health Centre, Montreal, Quebec, Canada
| | - Timo Krings
- Division of Neuroradiology, Department of Medical Imaging and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Nejmanová I, Vitverová B, Eissazadeh S, Tripská K, Igreja Sa IC, Hyšpler R, Němečkova I, Pericacho M, Nachtigal P. High Soluble Endoglin Levels Affect Aortic Vascular Function during Mice Aging. J Cardiovasc Dev Dis 2021; 8:jcdd8120173. [PMID: 34940528 PMCID: PMC8703792 DOI: 10.3390/jcdd8120173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
Endoglin is a 180 kDa transmembrane glycoprotein that was demonstrated to be present in two different endoglin forms, namely membrane endoglin (Eng) and soluble endoglin (sEng). Increased sEng levels in the circulation have been detected in atherosclerosis, arterial hypertension, and type II diabetes mellitus. Moreover, sEng was shown to aggravate endothelial dysfunction when combined with a high-fat diet, suggesting it might be a risk factor for the development of endothelial dysfunction in combination with other risk factors. Therefore, this study hypothesized that high sEng levels exposure for 12 months combined with aging (an essential risk factor of atherosclerosis development) would aggravate vascular function in mouse aorta. Male transgenic mice with high levels of human sEng in plasma (Sol-Eng+) and their age-matched male transgenic littermates that do not develop high soluble endoglin (Control) on a chow diet were used. The aging process was initiated to contribute to endothelial dysfunction/atherosclerosis development, and it lasted 12 months. Wire myograph analysis showed impairment contractility in the Sol-Eng+ group when compared to the control group after KCl and PGF2α administration. Endothelium-dependent responsiveness to Ach was not significantly different between these groups. Western blot analysis revealed significantly decreased protein expression of Eng, p-eNOS, and ID1 expression in the Sol-Eng+ group compared to the control group suggesting reduced Eng signaling. In conclusion, we demonstrated for the first time that long-term exposure to high levels of sEng during aging results in alteration of vasoconstriction properties of the aorta, reduced eNOS phosphorylation, decreased Eng expression, and altered Eng signaling. These findings suggest that sEng can be considered a risk factor for the development of vascular dysfunction during aging and a potential therapeutical target for pharmacological intervention.
Collapse
Affiliation(s)
- Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (I.N.); (B.V.); (S.E.); (K.T.); (I.C.I.S.); (I.N.)
| | - Barbora Vitverová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (I.N.); (B.V.); (S.E.); (K.T.); (I.C.I.S.); (I.N.)
| | - Samira Eissazadeh
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (I.N.); (B.V.); (S.E.); (K.T.); (I.C.I.S.); (I.N.)
| | - Katarina Tripská
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (I.N.); (B.V.); (S.E.); (K.T.); (I.C.I.S.); (I.N.)
| | - Ivone Cristina Igreja Sa
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (I.N.); (B.V.); (S.E.); (K.T.); (I.C.I.S.); (I.N.)
| | - Radomír Hyšpler
- Centrum for Research and Development, University Hospital, 500 05 Hradec Kralove, Czech Republic;
| | - Ivana Němečkova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (I.N.); (B.V.); (S.E.); (K.T.); (I.C.I.S.); (I.N.)
| | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain;
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (I.N.); (B.V.); (S.E.); (K.T.); (I.C.I.S.); (I.N.)
- Correspondence:
| |
Collapse
|
13
|
Tessier S, Lipton BA, Ido F, Longo S, Nanda S. Pathogenesis and therapy of arteriovenous malformations: A case report and narrative review. Int J Crit Illn Inj Sci 2021; 11:167-176. [PMID: 34760664 PMCID: PMC8547675 DOI: 10.4103/ijciis.ijciis_127_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/24/2020] [Accepted: 01/05/2021] [Indexed: 12/03/2022] Open
Abstract
Arteriovenous malformations (AVMs) are abnormal communications between arteries and veins that lack intervening capillary beds. They have been described in almost every organ in the body, emerging sporadically or as part of well-described syndromes. Hereditary hemorrhagic telangiectasia (HHT) is a rare, progressive, and lifelong disease characterized by AVMs and recurrent hemorrhaging. In the last 2 decades, significant advances have been made in understanding the pathogenesis of this condition. The accumulation of knowledge has led to a natural evolution of therapy, from open surgery to endovascular procedures, and now to a role for medications in certain AVMs. Here, we review a case of HHT and describe the most up-to-date clinical practice, including diagnosis of HHT, subtypes of HHT, and medical therapy.
Collapse
Affiliation(s)
- Steven Tessier
- Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Brooke A Lipton
- Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Firas Ido
- Department of Pulmonary and Critical Care, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Santo Longo
- Department of Pathology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Sudip Nanda
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA
| |
Collapse
|
14
|
Ruiz-Llorente L, Vega MC, Fernández FJ, Langa C, Morrell NW, Upton PD, Bernabeu C. Generation of a Soluble Form of Human Endoglin Fused to Green Fluorescent Protein. Int J Mol Sci 2021; 22:ijms222011282. [PMID: 34681942 PMCID: PMC8539536 DOI: 10.3390/ijms222011282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023] Open
Abstract
Endoglin (Eng, CD105) is a type I membrane glycoprotein that functions in endothelial cells as an auxiliary receptor for transforming growth factor β (TGF-β)/bone morphogenetic protein (BMP) family members and as an integrin ligand, modulating the vascular pathophysiology. Besides the membrane-bound endoglin, there is a soluble form of endoglin (sEng) that can be generated by the action of the matrix metalloproteinase (MMP)-14 or -12 on the juxtamembrane region of its ectodomain. High levels of sEng have been reported in patients with preeclampsia, hypercholesterolemia, atherosclerosis and cancer. In addition, sEng is a marker of cardiovascular damage in patients with hypertension and diabetes, plays a pathogenic role in preeclampsia, and inhibits angiogenesis and tumor proliferation, migration, and invasion in cancer. However, the mechanisms of action of sEng have not yet been elucidated, and new tools and experimental approaches are necessary to advance in this field. To this end, we aimed to obtain a fluorescent form of sEng as a new tool for biological imaging. Thus, we cloned the extracellular domain of endoglin in the pEGFP-N1 plasmid to generate a fusion protein with green fluorescent protein (GFP), giving rise to pEGFP-N1/Eng.EC. The recombinant fusion protein was characterized by transient and stable transfections in CHO-K1 cells using fluorescence microscopy, SDS-PAGE, immunodetection, and ELISA techniques. Upon transfection with pEGFP-N1/Eng.EC, fluorescence was readily detected in cells, indicating that the GFP contained in the recombinant protein was properly folded into the cytosol. Furthermore, as evidenced by Western blot analysis, the secreted fusion protein yielded the expected molecular mass and displayed a specific fluorescent signal. The fusion protein was also able to bind to BMP9 and BMP10 in vitro. Therefore, the construct described here could be used as a tool for functional in vitro studies of the extracellular domain of endoglin.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (L.R.-L.); (M.C.V.); (F.J.F.); (C.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (L.R.-L.); (M.C.V.); (F.J.F.); (C.L.)
| | - Francisco J. Fernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (L.R.-L.); (M.C.V.); (F.J.F.); (C.L.)
| | - Carmen Langa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (L.R.-L.); (M.C.V.); (F.J.F.); (C.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (N.W.M.); (P.D.U.)
| | - Paul D. Upton
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (N.W.M.); (P.D.U.)
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (L.R.-L.); (M.C.V.); (F.J.F.); (C.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
15
|
Rossi E, Kauskot A, Saller F, Frezza E, Poirault-Chassac S, Lokajczyk A, Bourdoncle P, Saubaméa B, Gaussem P, Pericacho M, Bobe R, Bachelot-Loza C, Pasquali S, Bernabeu C, Smadja DM. Endoglin Is an Endothelial Housekeeper against Inflammation: Insight in ECFC-Related Permeability through LIMK/Cofilin Pathway. Int J Mol Sci 2021; 22:ijms22168837. [PMID: 34445542 PMCID: PMC8396367 DOI: 10.3390/ijms22168837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Endoglin (Eng) is an endothelial cell (EC) transmembrane glycoprotein involved in adhesion and angiogenesis. Eng mutations result in vessel abnormalities as observed in hereditary hemorrhagic telangiectasia of type 1. The role of Eng was investigated in endothelial functions and permeability under inflammatory conditions, focusing on the actin dynamic signaling pathway. Endothelial Colony-Forming Cells (ECFC) from human cord blood and mouse lung/aortic EC (MLEC, MAEC) from Eng+/+ and Eng+/- mice were used. ECFC silenced for Eng with Eng-siRNA and ctr-siRNA were used to test tubulogenesis and permeability +/- TNFα and +/- LIM kinase inhibitors (LIMKi). In silico modeling of TNFα-Eng interactions was carried out from PDB IDs 5HZW and 5HZV. Calcium ions (Ca2+) flux was studied by Oregon Green 488 in epifluorescence microscopy. Levels of cofilin phosphorylation and tubulin post-translational modifications were evaluated by Western blot. F-actin and actin-tubulin distribution/co-localization were evaluated in cells by confocal microscopy. Eng silencing in ECFCs resulted in a decrease of cell sprouting by 50 ± 15% (p < 0.05) and an increase in pseudo-tube width (41 ± 4.5%; p < 0.001) compared to control. Upon TNFα stimulation, ECFC Eng-siRNA displayed a significant higher permeability compared to ctr-siRNA (p < 0.01), which is associated to a higher Ca2+ mobilization (p < 0.01). Computational analysis suggested that Eng mitigated TNFα activity. F-actin polymerization was significantly increased in ECFC Eng-siRNA, MAEC+/-, and MLEC+/- compared to controls (p < 0.001, p < 0.01, and p < 0.01, respectively) as well as actin/tubulin distribution (p < 0.01). Furthermore, the inactive form of cofilin (P-cofilin at Ser3) was significantly decreased by 36.7 ± 4.8% in ECFC Eng-siRNA compared to ctr-siRNA (p < 0.001). Interestingly, LIMKi reproduced the absence of Eng on TNFα-induced ECFC-increased permeability. Our data suggest that Eng plays a critical role in the homeostasis regulation of endothelial cells under inflammatory conditions (TNFα), and loss of Eng influences ECFC-related permeability through the LIMK/cofilin/actin rearrangement-signaling pathway.
Collapse
Affiliation(s)
- Elisa Rossi
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
- Correspondence:
| | - Alexandre Kauskot
- HITh, UMR-S 1176, INSERM—Faculty of Medicine, University Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France; (A.K.); (F.S.); (R.B.)
| | - François Saller
- HITh, UMR-S 1176, INSERM—Faculty of Medicine, University Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France; (A.K.); (F.S.); (R.B.)
| | - Elisa Frezza
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- CiTCoM, CNRS, Université de Paris, F-75006 Paris, France
| | - Sonia Poirault-Chassac
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
| | - Anna Lokajczyk
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
| | - Pierre Bourdoncle
- Plate-Forme IMAG’IC Institut Cochin Inserm U1016-CNRS UMR8104, Université Paris Descartes, F-75006 Paris, France;
| | - Bruno Saubaméa
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- UMR-S 1144, F-75006 Paris, France
| | - Pascale Gaussem
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
- AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Miguel Pericacho
- Department of Physiology and Pharmacology, Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Regis Bobe
- HITh, UMR-S 1176, INSERM—Faculty of Medicine, University Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France; (A.K.); (F.S.); (R.B.)
| | - Christilla Bachelot-Loza
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
| | - Samuela Pasquali
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- CiTCoM, CNRS, Université de Paris, F-75006 Paris, France
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, 28040 Madrid, Spain;
- Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - David M. Smadja
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
- AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, F-75015 Paris, France
- Biosurgical Research Lab (Carpentier Foundation), F-75000 Paris, France
| |
Collapse
|
16
|
Zhou X, Xu Y, Ren S, Liu D, Yang N, Han Q, Kong S, Wang H, Deng W, Qi H, Lu J. Single-cell RNA-seq revealed diverse cell types in the mouse placenta at mid-gestation. Exp Cell Res 2021; 405:112715. [PMID: 34217714 DOI: 10.1016/j.yexcr.2021.112715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022]
Abstract
The mammalian placenta consists of a set of cells to ensure normal placental functions throughout gestation. Dysfunctional placentae are considered as the origin of a series of pregnancy complications. Therefore, it is urgent for detailed information about the molecular recipes of the cell types within the normal placenta. In the past years, gene expression analysis via single-cell RNA-seq (scRNA-seq) offers opportunities to identify new cell types in a variety of organs and tissues. In this study, scRNA-seq was used to explore the cell heterogeneity within the E10.5 mouse placenta and unravel their discrepancies in cell composition and communications. We identified sixteen cell clusters, including some cell clusters that originated from the maternal tissue. Moreover, we traced the developmental trajectories of trophoblasts and Hofbauer-like cells. Further analysis revealed cell connections between the endothelial cells and pericytes, syncytiotrophoblasts, as well as decidual cells. Besides, we highlighted several signaling pathways, such as the EGF, FGF, canonical, and non-canonical WNT signaling pathways, which mediated the potential crosstalk between different cell types within placenta. Our research provides an in-depth understanding of placental development, cellular composition, and communications at the maternal-fetal interface.
Collapse
Affiliation(s)
- Xiaobo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yingchun Xu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shengnan Ren
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dong Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ningjie Yang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qian Han
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
17
|
Ollauri-Ibáñez C, Ayuso-Íñigo B, Pericacho M. Hot and Cold Tumors: Is Endoglin (CD105) a Potential Target for Vessel Normalization? Cancers (Basel) 2021; 13:1552. [PMID: 33800564 PMCID: PMC8038031 DOI: 10.3390/cancers13071552] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tumors are complex masses formed by malignant but also by normal cells. The interaction between these cells via cytokines, chemokines, growth factors, and enzymes that remodel the extracellular matrix (ECM) constitutes the tumor microenvironment (TME). This TME can be determinant in the prognosis and the response to some treatments such as immunotherapy. Depending on their TME, two types of tumors can be defined: hot tumors, characterized by an immunosupportive TME and a good response to immunotherapy; and cold tumors, which respond poorly to this therapy and are characterized by an immunosuppressive TME. A therapeutic strategy that has been shown to be useful for the conversion of cold tumors into hot tumors is vascular normalization. In this review we propose that endoglin (CD105) may be a useful target of this strategy since it is involved in the three main processes involved in the generation of the TME: angiogenesis, inflammation, and cancer-associated fibroblast (CAF) accumulation. Moreover, the analysis of endoglin expression in tumors, which is already used in the clinic to study the microvascular density and that is associated with worse prognosis, could be used to predict a patient's response to immunotherapy.
Collapse
Affiliation(s)
| | | | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Group of Physiopathology of the Vascular Endothelium (ENDOVAS), Biomedical Research Institute of Salamanca (IBSAL), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; (C.O.-I.); (B.A.-Í.)
| |
Collapse
|
18
|
Endoglin in the Spotlight to Treat Cancer. Int J Mol Sci 2021; 22:ijms22063186. [PMID: 33804796 PMCID: PMC8003971 DOI: 10.3390/ijms22063186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
A spotlight has been shone on endoglin in recent years due to that fact of its potential to serve as both a reliable disease biomarker and a therapeutic target. Indeed, endoglin has now been assigned many roles in both physiological and pathological processes. From a molecular point of view, endoglin mainly acts as a co-receptor in the canonical TGFβ pathway, but also it may be shed and released from the membrane, giving rise to the soluble form, which also plays important roles in cell signaling. In cancer, in particular, endoglin may contribute to either an oncogenic or a non-oncogenic phenotype depending on the cell context. The fact that endoglin is expressed by neoplastic and non-neoplastic cells within the tumor microenvironment suggests new possibilities for targeted therapies. Here, we aimed to review and discuss the many roles played by endoglin in different tumor types, as well as the strong evidence provided by pre-clinical and clinical studies that supports the therapeutic targeting of endoglin as a novel clinical strategy.
Collapse
|
19
|
Steenbrugge J, Vander Elst N, Demeyere K, De Wever O, Sanders NN, Van Den Broeck W, Ciamporcero E, Perera T, Meyer E. OMO-1 reduces progression and enhances cisplatin efficacy in a 4T1-based non-c-MET addicted intraductal mouse model for triple-negative breast cancer. NPJ Breast Cancer 2021; 7:27. [PMID: 33731699 PMCID: PMC7969607 DOI: 10.1038/s41523-021-00234-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/05/2021] [Indexed: 11/08/2022] Open
Abstract
c-MET is considered a driver of cancer progression, impacting tumor growth and tumor-supporting stroma. Here, we investigated the therapeutic efficacy of OMO-1, a potent and selective c-MET inhibitor, in an immunocompetent intraductal mouse model for triple-negative breast cancer (TNBC). OMO-1 reduced non-c-MET addicted 4T1 tumor progression dose dependently as monotherapeutic and provided additional disease reduction in combination with cisplatin. At the stromal level, OMO-1 significantly reduced neutrophil infiltration in 4T1 tumors, promoted immune activation, and enhanced cisplatin-mediated reduction of tumor-associated macrophages. OMO-1 treatment also reduced 4T1 tumor hypoxia and increased expression of pericyte markers, indicative for vascular maturation. Corroborating this finding, cisplatin delivery to the 4T1 primary tumor was enhanced upon OMO-1 treatment, increasing cisplatin DNA-adduct levels and tumor cell death. Although verification in additional cell lines is warranted, our findings provide initial evidence that TNBC patients may benefit from OMO-1 treatment, even in cases of non-c-MET addicted tumors.
Collapse
Affiliation(s)
- Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Niels Vander Elst
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Niek N Sanders
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
20
|
Bianchi VJ, Parsons M, Backstein D, Kandel RA. Endoglin Level Is Critical for Cartilage Tissue Formation In Vitro by Passaged Human Chondrocytes. Tissue Eng Part A 2021; 27:1140-1150. [PMID: 33323019 DOI: 10.1089/ten.tea.2020.0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor beta (TGFβ) signaling is required for in vitro chondrogenesis. In animal models of osteoarthritis (OA), TGFβ receptor alterations are detected in chondrocytes in severe OA cartilage. It is not known whether such changes are dependent on the grade of human OA and if they affect chondrogenesis. Thus, the purpose of this study was to determine if human OA chondrocytes obtained from low-grade or high-grade disease could form cartilage tissue and to assess the role of the co-receptors, endoglin (ENG) and TGFβ receptor 3 (TGFBRIII), in the regulation of this tissue generation in vitro. We hypothesized that the grade of OA disease would not affect the ability of cells to form cartilage tissue and that the TGFβ co-receptor, ENG, would be critical to regulating tissue formation. Chondrocytes isolated from low-grade OA or high-grade OA human articular cartilage (AC) were analyzed directly (P0) or passaged in monolayer to P2. Expression of the primary TGFβ receptor ALK5, and the co-receptors ENG and TGFβRIII, was assessed by image flow cytometry. To assess the ability to form cartilaginous tissue, cells were placed in three-dimensional culture at high density and cultured in chondrogenic media containing TGFβ3. ENG knockdown was used to determine its role in regulating tissue formation. Overall, grade-specific differences in expression of ALK5, ENG, and TGFβRIII in primary or passaged chondrocytes were not detected; however, ENG expression increased significantly after passaging. Despite the presence of ALK5, P0 cells did not form cartilaginous tissue. In contrast, P2 cells derived from low-grade and high-grade OA AC formed hyaline-like cartilaginous tissues of similar quality. Knockdown of ENG in P2 cells inhibited cartilaginous tissue formation compared to controls indicating that the level of ENG protein expression is critical for in vitro chondrogenesis by passaged articular chondrocytes. This study demonstrates that it is not the grade of OA, but the levels of ENG in the presence of ALK5 that influences the ability of human passaged articular chondrocytes to form cartilaginous tissue in vitro in 3D culture. This has implications for cartilage repair therapies. Impact statement These findings are important clinically, given the limited availability of osteoarthritis (OA) cartilage tissue. Being able to use cells from all grades of OA will increase our ability to obtain sufficient cells for cartilage repair. In addition, it is possible that endoglin (ENG) levels, in the presence of ALK5 expression, may be suitable to use as biomarkers to identify cells able to produce cartilage.
Collapse
Affiliation(s)
- Vanessa J Bianchi
- Lunenfeld-Tanenbaum Research Institute, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | | - David Backstein
- Division of Orthopaedic Surgery, Mount Sinai Hospital, Toronto, Canada
| | - Rita A Kandel
- Lunenfeld-Tanenbaum Research Institute, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Pérez-Roque L, Núñez-Gómez E, Rodríguez-Barbero A, Bernabéu C, López-Novoa JM, Pericacho M. Pregnancy-Induced High Plasma Levels of Soluble Endoglin in Mice Lead to Preeclampsia Symptoms and Placental Abnormalities. Int J Mol Sci 2020; 22:ijms22010165. [PMID: 33375253 PMCID: PMC7795873 DOI: 10.3390/ijms22010165] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Preeclampsia is a pregnancy-specific disease of high prevalence characterized by the onset of hypertension, among other maternal or fetal signs. Its etiopathogenesis remains elusive, but it is widely accepted that abnormal placentation results in the release of soluble factors that cause the clinical manifestations of the disease. An increased level of soluble endoglin (sEng) in plasma has been proposed to be an early diagnostic and prognostic biomarker of this disease. A pathogenic function of sEng involving hypertension has also been reported in several animal models with high levels of plasma sEng not directly dependent on pregnancy. The aim of this work was to study the functional effect of high plasma levels of sEng in the pathophysiology of preeclampsia in a model of pregnant mice, in which the levels of sEng in the maternal blood during pregnancy replicate the conditions of human preeclampsia. Our results show that wild type pregnant mice carrying human sEng-expressing transgenic fetuses (fWT(hsEng+)) present high plasma levels of sEng with a timing profile similar to that of human preeclampsia. High plasma levels of human sEng (hsEng) are associated with hypertension, proteinuria, fetal growth restriction, and the release of soluble factors to maternal plasma. In addition, fWT(hsEng+) mice also present placental alterations comparable to those caused by the poor remodeling of the spiral arteries characteristic of preeclampsia. In vitro and ex vivo experiments, performed in a human trophoblast cell line and human placental explants, show that sEng interferes with trophoblast invasion and the associated pseudovasculogenesis, a process by which cytotrophoblasts switch from an epithelial to an endothelial phenotype, both events being related to remodeling of the spiral arteries. Our findings provide a novel and useful animal model for future research in preeclampsia and reveal a much more relevant role of sEng in preeclampsia than initially proposed.
Collapse
Affiliation(s)
- Lucía Pérez-Roque
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (L.P.-R.); (E.N.-G.); (A.R.-B.); (J.M.L.-N.)
- Renal and Cardiovascular Physiopathology Unit, Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - Elena Núñez-Gómez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (L.P.-R.); (E.N.-G.); (A.R.-B.); (J.M.L.-N.)
- Renal and Cardiovascular Physiopathology Unit, Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - Alicia Rodríguez-Barbero
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (L.P.-R.); (E.N.-G.); (A.R.-B.); (J.M.L.-N.)
- Renal and Cardiovascular Physiopathology Unit, Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - Carmelo Bernabéu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain;
| | - José M. López-Novoa
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (L.P.-R.); (E.N.-G.); (A.R.-B.); (J.M.L.-N.)
- Renal and Cardiovascular Physiopathology Unit, Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - Miguel Pericacho
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (L.P.-R.); (E.N.-G.); (A.R.-B.); (J.M.L.-N.)
- Renal and Cardiovascular Physiopathology Unit, Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
- Correspondence:
| |
Collapse
|
22
|
Endoglin: An 'Accessory' Receptor Regulating Blood Cell Development and Inflammation. Int J Mol Sci 2020; 21:ijms21239247. [PMID: 33287465 PMCID: PMC7729465 DOI: 10.3390/ijms21239247] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is a pleiotropic factor sensed by most cells. It regulates a broad spectrum of cellular responses including hematopoiesis. In order to process TGF-β1-responses in time and space in an appropriate manner, there is a tight regulation of its signaling at diverse steps. The downstream signaling is mediated by type I and type II receptors and modulated by the ‘accessory’ receptor Endoglin also termed cluster of differentiation 105 (CD105). Endoglin was initially identified on pre-B leukemia cells but has received most attention due to its high expression on activated endothelial cells. In turn, Endoglin has been figured out as the causative factor for diseases associated with vascular dysfunction like hereditary hemorrhagic telangiectasia-1 (HHT-1), pre-eclampsia, and intrauterine growth restriction (IUPR). Because HHT patients often show signs of inflammation at vascular lesions, and loss of Endoglin in the myeloid lineage leads to spontaneous inflammation, it is speculated that Endoglin impacts inflammatory processes. In line, Endoglin is expressed on progenitor/precursor cells during hematopoiesis as well as on mature, differentiated cells of the innate and adaptive immune system. However, so far only pro-monocytes and macrophages have been in the focus of research, although Endoglin has been identified in many other immune system cell subsets. These findings imply a functional role of Endoglin in the maturation and function of immune cells. Aside the functional relevance of Endoglin in endothelial cells, CD105 is differentially expressed during hematopoiesis, arguing for a role of this receptor in the development of individual cell lineages. In addition, Endoglin expression is present on mature immune cells of the innate (i.e., macrophages and mast cells) and the adaptive (i.e., T-cells) immune system, further suggesting Endoglin as a factor that shapes immune responses. In this review, we summarize current knowledge on Endoglin expression and function in hematopoietic precursors and mature hematopoietic cells of different lineages.
Collapse
|
23
|
Potential Second-Hits in Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9113571. [PMID: 33167572 PMCID: PMC7694477 DOI: 10.3390/jcm9113571] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder that presents with telangiectases in skin and mucosae, and arteriovenous malformations (AVMs) in internal organs such as lungs, liver, and brain. Mutations in ENG (endoglin), ACVRL1 (ALK1), and MADH4 (Smad4) genes account for over 95% of HHT. Localized telangiectases and AVMs are present in different organs, with frequencies which differ among affected individuals. By itself, HHT gene heterozygosity does not account for the focal nature and varying presentation of the vascular lesions leading to the hypothesis of a “second-hit” that triggers the lesions. Accumulating research has identified a variety of triggers that may synergize with HHT gene heterozygosity to generate the vascular lesions. Among the postulated second-hits are: mechanical trauma, light, inflammation, vascular injury, angiogenic stimuli, shear stress, modifier genes, and somatic mutations in the wildtype HHT gene allele. The aim of this review is to summarize these triggers, as well as the functional mechanisms involved.
Collapse
|
24
|
Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve their Regenerative Efficacy. Int J Mol Sci 2020; 21:ijms21197406. [PMID: 33036489 PMCID: PMC7582994 DOI: 10.3390/ijms21197406] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularization. Therefore, more efficient therapeutic approaches are urgently required to promote neovascularization. Therapeutic angiogenesis represents an emerging strategy that aims at reconstructing the damaged vascular network by stimulating local angiogenesis and/or promoting de novo blood vessel formation according to a process known as vasculogenesis. In turn, circulating endothelial colony-forming cells (ECFCs) represent truly endothelial precursors, which display high clonogenic potential and have the documented ability to originate de novo blood vessels in vivo. Therefore, ECFCs are regarded as the most promising cellular candidate to promote therapeutic angiogenesis in patients suffering from CVD. The current briefly summarizes the available information about the origin and characterization of ECFCs and then widely illustrates the preclinical studies that assessed their regenerative efficacy in a variety of ischemic disorders, including acute myocardial infarction, peripheral artery disease, ischemic brain disease, and retinopathy. Then, we describe the most common pharmacological, genetic, and epigenetic strategies employed to enhance the vasoreparative potential of autologous ECFCs by manipulating crucial pro-angiogenic signaling pathways, e.g., extracellular-signal regulated kinase/Akt, phosphoinositide 3-kinase, and Ca2+ signaling. We conclude by discussing the possibility of targeting circulating ECFCs to rescue their dysfunctional phenotype and promote neovascularization in the presence of CVD.
Collapse
|
25
|
Abbasi N, Lee RSB, Ivanovski S, Love RM, Hamlet S. In vivo bone regeneration assessment of offset and gradient melt electrowritten (MEW) PCL scaffolds. Biomater Res 2020; 24:17. [PMID: 33014414 PMCID: PMC7529514 DOI: 10.1186/s40824-020-00196-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/21/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Biomaterial-based bone tissue engineering represents a promising solution to overcome reduced residual bone volume. It has been previously demonstrated that gradient and offset architectures of three-dimensional melt electrowritten poly-caprolactone (PCL) scaffolds could successfully direct osteoblast cells differentiation toward an osteogenic lineage, resulting in mineralization. The aim of this study was therefore to evaluate the in vivo osteoconductive capacity of PCL scaffolds with these different architectures. METHODS Five different calcium phosphate (CaP) coated melt electrowritten PCL pore sized scaffolds: 250 μm and 500 μm, 500 μm with 50% fibre offset (offset.50.50), tri layer gradient 250-500-750 μm (grad.250top) and 750-500-250 μm (grad.750top) were implanted into rodent critical-sized calvarial defects. Empty defects were used as a control. After 4 and 8 weeks of healing, the new bone was assessed by micro-computed tomography and immunohistochemistry. RESULTS Significantly more newly formed bone was shown in the grad.250top scaffold 8 weeks post-implantation. Histological investigation also showed that soft tissue was replaced with newly formed bone and fully covered the grad.250top scaffold. While, the bone healing did not happen completely in the 250 μm, offset.50.50 scaffolds and blank calvaria defects following 8 weeks of implantation. Immunohistochemical analysis showed the expression of osteogenic markers was present in all scaffold groups at both time points. The mineralization marker Osteocalcin was detected with the highest intensity in the grad.250top and 500 μm scaffolds. Moreover, the expression of the endothelial markers showed that robust angiogenesis was involved in the repair process. CONCLUSIONS These results suggest that the gradient pore size structure provides superior conditions for bone regeneration.
Collapse
Affiliation(s)
- Naghmeh Abbasi
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| | - Ryan S. B. Lee
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
- School of Dentistry, University of Queensland, Herston Campus, Herston, Queensland 4006 Australia
| | - Saso Ivanovski
- School of Dentistry, University of Queensland, Herston Campus, Herston, Queensland 4006 Australia
| | - Robert M. Love
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| | - Stephen Hamlet
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| |
Collapse
|
26
|
Blervaque L, Pomiès P, Rossi E, Catteau M, Blandinières A, Passerieux E, Blaquière M, Ayoub B, Molinari N, Mercier J, Perez-Martin A, Marchi N, Smadja DM, Hayot M, Gouzi F. COPD is deleterious for pericytes: implications during training-induced angiogenesis in skeletal muscle. Am J Physiol Heart Circ Physiol 2020; 319:H1142-H1151. [PMID: 32986960 DOI: 10.1152/ajpheart.00306.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Improvements in skeletal muscle endurance and oxygen uptake are blunted in patients with chronic obstructive pulmonary disease (COPD), possibly because of a limitation in the muscle capillary oxygen supply. Pericytes are critical for capillary blood flow adaptation during angiogenesis but may be impaired by COPD systemic effects, which are mediated by circulating factors. This study compared the pericyte coverage of muscle capillaries in response to 10 wk of exercise training in patients with COPD and sedentary healthy subjects (SHS). Fourteen patients with COPD were compared with seven matched SHS. SHS trained at moderate intensity corresponding to an individualized moderate-intensity patient with COPD trained at the same relative (%V̇o2: COPD-RI) or absolute (mL·min-1·kg-1: COPD-AI) intensity as SHS. Capillary-to-fiber ratio (C/F) and NG2+ pericyte coverage were assessed from vastus lateralis muscle biopsies, before and after 5 and 10 wk of training. We also tested in vitro the effect of COPD and SHS serum on pericyte morphology and mesenchymal stem cell (MSC) differentiation into pericytes. SHS showed greater improvement in aerobic capacity (V̇o2VT) than both patients with COPD-RI and patients with COPD-AI (Group × Time: P = 0.004). Despite a preserved increase in the C/F ratio, NG2+ pericyte coverage did not increase in patients with COPD in response to training, contrary to SHS (Group × Time: P = 0.011). Conversely to SHS serum, COPD serum altered pericyte morphology (P < 0.001) and drastically reduced MSC differentiation into pericytes (P < 0.001). Both functional capacities and pericyte coverage responses to exercise training are blunted in patients with COPD. We also provide direct evidence of the deleterious effect of COPD circulating factors on pericyte morphology and differentiation.NEW & NOTEWORTHY This work confirms the previously reported impairment in the functional response to exercise training of patients with COPD compared with SHS. Moreover, it shows for the first time that pericyte coverage of the skeletal capillaries is drastically reduced in patients with COPD compared with SHS during training-induced angiogenesis. Finally, it provides experimental evidence that circulating factors are involved in the impaired pericyte coverage of patients with COPD.
Collapse
Affiliation(s)
- Léo Blervaque
- PhyMedExp, INSERM-CNRS-Montpellier University, Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM-CNRS-Montpellier University, Montpellier, France
| | - Elisa Rossi
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, Paris, France
| | - Matthias Catteau
- PhyMedExp, INSERM-CNRS-Montpellier University, Montpellier, France
| | - Adeline Blandinières
- Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), AH-HP, Georges Pompidou European Hospital, Paris, France
| | | | - Marine Blaquière
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France
| | - Bronia Ayoub
- PhyMedExp, INSERM-CNRS-Montpellier University, CHU Montpellier, Montpellier, France
| | - Nicolas Molinari
- IMAG, CNRS, Montpellier University, CHU Montpellier, Montpellier, France
| | - Jacques Mercier
- PhyMedExp, INSERM-CNRS-Montpellier University, CHU Montpellier, Montpellier, France
| | - Antonia Perez-Martin
- Vascular Medicine Department and Laboratory, CHU Nîmes and EA2992 Research Unit, Montpellier University, Nimes, France
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France
| | - David M Smadja
- Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), AH-HP, Georges Pompidou European Hospital, Paris, France
| | - Maurice Hayot
- PhyMedExp, INSERM-CNRS-Montpellier University, CHU Montpellier, Montpellier, France
| | - Fares Gouzi
- PhyMedExp, INSERM-CNRS-Montpellier University, CHU Montpellier, Montpellier, France
| |
Collapse
|
27
|
Smadja DM, Chocron R, Rossi E, Poitier B, Pya Y, Bekbossynova M, Peronino C, Rancic J, Roussel JC, Kindo M, Gendron N, Migliozzi L, Capel A, Perles JC, Gaussem P, Ivak P, Jansen P, Girard C, Carpentier A, Latremouille C, Guerin C, Netuka I. Autoregulation of Pulsatile Bioprosthetic Total Artificial Heart is Involved in Endothelial Homeostasis Preservation. Thromb Haemost 2020; 120:1313-1322. [PMID: 32688422 DOI: 10.1055/s-0040-1713751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulsatile Carmat bioprosthetic total artificial heart (C-TAH) is designed to be implanted in patients with biventricular end-stage heart failure. Since flow variation might contribute to endothelial dysfunction, we explored circulating endothelial biomarkers after C-TAH implantation in seven patients and compared the manual and autoregulated mode. Markers of endothelial dysfunction and regeneration were compared before and during a 6- to 9-month follow-up after implantation. The follow-up was divided into three periods (< 3, 3-6, and > 6 months) and used to estimate the temporal trends during the study period. A linear mixed model was used to analyze repeated measures and association between tested parameters according to the mode of C-TAH and the time. Relevance of soluble endoglin (sEndoglin) level increase has been tested on differentiation and migration potential of human vasculogenic progenitor cells (endothelial colony forming cells [ECFCs]). Normal sEndoglin and soluble endothelial protein C receptor (sEPCR) levels were found in patients after implantation with autoregulated C-TAH, whereas they significantly increased in the manual mode, as compared with pretransplant values (p = 0.005 and 0.001, respectively). In the autoregulated mode, a significant increase in the mobilization of cytokine stromal cell-derived factor 1 was found (p = 0.03). After adjustment on the mode of C-TAH, creatinine or C-reactive protein level, sEndoglin, and sEPCR, were found significantly associated with plasma total protein levels. Moreover, a significant decrease in pseudotubes formation and migration ability was observed in vitro in ECFCs receiving sEndoglin activation. Our combined analysis of endothelial biomarkers confirms the favorable impact of blood flow variation achieved with autoregulation in patients implanted with the bioprosthetic total artificial heart.
Collapse
Affiliation(s)
- David M Smadja
- Inserm UMR-S 1140, Innovative Therapies in Haemostasis, Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Richard Chocron
- Inserm UMR-S 970 PARCC, Service d'urgences, Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Elisa Rossi
- Innovative Therapies in Haemostasis, Université de Paris, Paris, France
| | - Bastien Poitier
- Innovative Therapies in Haemostasis, Service de Chirurgie Cardiaque et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Yuri Pya
- National Research Cardiac Surgery Center, Astana, Kazakhstan
| | | | - Christophe Peronino
- Inserm UMR-S 1140, Innovative Therapies in Haemostasis, Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Jeanne Rancic
- Inserm UMR-S 1140, Innovative Therapies in Haemostasis, Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Jean Christian Roussel
- Service de Chirurgie Thoracique et Cardiovasculaire, Unité de transplantation thoracique, CHU de Nantes, Hôpital Nord Laënnec, Saint-Herblain, Nantes Cedex 1, France
| | - Michel Kindo
- Service de Chirurgie Cardiovasculaire, NHC - Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1, Place de L'Hôpital, Strasbourg, Cedex, France
| | - Nicolas Gendron
- Inserm UMR-S 1140, Innovative Therapies in Haemostasis, Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Ludovica Migliozzi
- Innovative Therapies in Haemostasis, Service de Chirurgie Cardiaque et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | | | | | - Pascale Gaussem
- Innovative Therapies in Haemostasis, Service d'Hématologie, Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Peter Ivak
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Claude Girard
- Unité d'Anesthesie Réanimation Cardio-Vasculaire, CHU François Mitterrand, Dijon Cedex, France
| | - Alain Carpentier
- Innovative Therapies in Haemostasis, Université de Paris, Paris, France
| | - Christian Latremouille
- Innovative Therapies in Haemostasis, Service de Chirurgie Cardiaque et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Coralie Guerin
- Innovative Therapies in Haemostasis, Plateforme de Cytométrie, Institut Curie, Université de Paris, Paris, France
| | - Ivan Netuka
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
28
|
Gallardo-Vara E, Gamella-Pozuelo L, Perez-Roque L, Bartha JL, Garcia-Palmero I, Casal JI, López-Novoa JM, Pericacho M, Bernabeu C. Potential Role of Circulating Endoglin in Hypertension via the Upregulated Expression of BMP4. Cells 2020; 9:cells9040988. [PMID: 32316263 PMCID: PMC7226995 DOI: 10.3390/cells9040988] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Endoglin is a membrane glycoprotein primarily expressed by the vascular endothelium and involved in cardiovascular diseases. Upon the proteolytic processing of the membrane-bound protein, a circulating form of endoglin (soluble endoglin, sEng) can be released, and high levels of sEng have been observed in several endothelial-related pathological conditions, where it appears to contribute to endothelial dysfunction. Preeclampsia is a multisystem disorder of high prevalence in pregnant women characterized by the onset of high blood pressure and associated with increased levels of sEng. Although a pathogenic role for sEng involving hypertension has been reported in several animal models of preeclampsia, the exact molecular mechanisms implicated remain to be identified. To search for sEng-induced mediators of hypertension, we analyzed the protein secretome of human endothelial cells in the presence of sEng. We found that sEng induces the expression of BMP4 in endothelial cells, as evidenced by their proteomic signature, gene transcript levels, and BMP4 promoter activity. A mouse model of preeclampsia with high sEng plasma levels (sEng+) showed increased transcript levels of BMP4 in lungs, stomach, and duodenum, and increased circulating levels of BMP4, compared to those of control animals. In addition, after crossing female wild type with male sEng+ mice, hypertension appeared 18 days after mating, coinciding with the appearance of high plasma levels of BMP4. Also, serum levels of sEng and BMP4 were positively correlated in pregnant women with and without preeclampsia. Interestingly, sEng-induced arterial pressure elevation in sEng+ mice was abolished in the presence of the BMP4 inhibitor noggin, suggesting that BMP4 is a downstream mediator of sEng. These results provide a better understanding on the role of sEng in the physiopathology of preeclampsia and other cardiovascular diseases, where sEng levels are increased.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (E.G.-V.); (L.G.-P.); (I.G.-P.); (J.I.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Luis Gamella-Pozuelo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (E.G.-V.); (L.G.-P.); (I.G.-P.); (J.I.C.)
- Biomedical Research Institute of Salamanca (IBSAL) and Renal and Cardiovascular Physiopathology Unit, Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; (L.P.-R.); (J.M.L.-N.)
| | - Lucía Perez-Roque
- Biomedical Research Institute of Salamanca (IBSAL) and Renal and Cardiovascular Physiopathology Unit, Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; (L.P.-R.); (J.M.L.-N.)
| | - José L. Bartha
- Division of Obstetrics and Maternal and Fetal Medicine, University Hospital La Paz, 28046 Madrid, Spain;
| | - Irene Garcia-Palmero
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (E.G.-V.); (L.G.-P.); (I.G.-P.); (J.I.C.)
| | - J. Ignacio Casal
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (E.G.-V.); (L.G.-P.); (I.G.-P.); (J.I.C.)
| | - José M. López-Novoa
- Biomedical Research Institute of Salamanca (IBSAL) and Renal and Cardiovascular Physiopathology Unit, Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; (L.P.-R.); (J.M.L.-N.)
| | - Miguel Pericacho
- Biomedical Research Institute of Salamanca (IBSAL) and Renal and Cardiovascular Physiopathology Unit, Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; (L.P.-R.); (J.M.L.-N.)
- Correspondence: (M.P.); (C.B.)
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (E.G.-V.); (L.G.-P.); (I.G.-P.); (J.I.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
- Correspondence: (M.P.); (C.B.)
| |
Collapse
|
29
|
Hong JM, Hu YD, Chai XQ, Tang CL. Role of activin receptor-like kinase 1 in vascular development and cerebrovascular diseases. Neural Regen Res 2020; 15:1807-1813. [PMID: 32246621 PMCID: PMC7513971 DOI: 10.4103/1673-5374.280305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Activin receptor-like kinase 1 (ALK1) is a transmembrane serine/threonine receptor kinase of the transforming growth factor beta (TGFβ) receptor superfamily. ALK1 is specifically expressed in vascular endothelial cells, and its dynamic changes are closely related to the proliferation of endothelial cells, the recruitment of pericytes to blood vessels, and functional differentiation during embryonic vascular development. The pathophysiology of many cerebrovascular diseases is today understood as a disorder of endothelial cell function and an imbalance in the proportion of vascular cells. Indeed, mutations in ALK1 and its co-receptor endoglin are major genetic risk factors for vascular arteriovenous malformation. Many studies have shown that ALK1 is closely related to the development of cerebral aneurysms, arteriovenous malformations, and cerebral atherosclerosis. In this review, we describe the various roles of ALK1 in the regulation of angiogenesis and in the maintenance of cerebral vascular homeostasis, and we discuss its relationship to functional dysregulation in cerebrovascular diseases. This review should provide new perspectives for basic research on cerebrovascular diseases and offer more effective targets and strategies for clinical diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Jun-Mou Hong
- Department of Vascular Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Yi-Da Hu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiao-Qing Chai
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Chao-Liang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
30
|
Ollauri-Ibáñez C, Núñez-Gómez E, Egido-Turrión C, Silva-Sousa L, Díaz-Rodríguez E, Rodríguez-Barbero A, López-Novoa JM, Pericacho M. Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasis. Angiogenesis 2020; 23:231-247. [PMID: 31897911 PMCID: PMC7160077 DOI: 10.1007/s10456-019-09703-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Endoglin (CD105) is an auxiliary receptor for members of the TFG-β superfamily. Whereas it has been demonstrated that the deficiency of endoglin leads to minor and defective angiogenesis, little is known about the effect of its increased expression, characteristic of several types of cancer. Angiogenesis is essential for tumor growth, so high levels of proangiogenic molecules, such as endoglin, are supposed to be related to greater tumor growth leading to a poor cancer prognosis. However, we demonstrate here that endoglin overexpression do not stimulate sprouting or vascularization in several in vitro and in vivo models. Instead, steady endoglin overexpression keep endothelial cells in an active phenotype that results in an impairment of the correct stabilization of the endothelium and the recruitment of mural cells. In a context of continuous enhanced angiogenesis, such as in tumors, endoglin overexpression gives rise to altered vessels with an incomplete mural coverage that permit the extravasation of blood. Moreover, these alterations allow the intravasation of tumor cells, the subsequent development of metastases and, thus, a worse cancer prognosis.
Collapse
Affiliation(s)
- Claudia Ollauri-Ibáñez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Elena Núñez-Gómez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - Cristina Egido-Turrión
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Laura Silva-Sousa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Elena Díaz-Rodríguez
- Instituto de Biología Molecular Y Celular del Cáncer. CSIC, IBSAL and CIBERONC, Salamanca, Spain
| | - Alicia Rodríguez-Barbero
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José M López-Novoa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
31
|
Bachelier K, Bergholz C, Friedrich EB. Differentiation potential and functional properties of a CD34‑CD133+ subpopulation of endothelial progenitor cells. Mol Med Rep 2019; 21:501-507. [PMID: 31746407 DOI: 10.3892/mmr.2019.10831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/02/2019] [Indexed: 11/05/2022] Open
Abstract
Endothelial progenitor cells (EPCs) promote angiogenesis and play an important role in myocardial and vascular repair after ischemia and infarction. EPCs consist of different subpopulations including CD34‑CD133+ EPCs, which are precursors of more mature CD34+CD133+ EPCs and functionally more active in terms of homing and endothelial regeneration. In the present study we analyzed the functional and differentiation abilities of CD34‑CD133+ EPCs. Isolation of EPC populations (CD34+CD133+, CD34‑CD133+) were performed by specific multi‑step magnetic depletion. After specific stimulation a significant higher adhesive and migrative capacity of CD34‑CD133+ cells could be detected compared to CD34+CD133+ cells (P<0.001, respectively). Next to this finding, not only significantly higher rates of proliferation (P<0.005) were detected among CD34‑CD133+ cells, but also a higher potential of cell‑differentiation capacity into other cell types. Next to a significant increase of CD34‑CD133+ EPCs differentiating into a fibroblast cell‑type (P<0.001), an enhancement into a hepatocytic cell‑type (P=0.033) and a neural cell‑type (P=0.016) could be measured in contrast to CD34+CD133+ cells. On the other hand, there was no significant difference in differentiation into a cardiomyocyte cell‑type between these EPC subpopulations (P=0.053). These results demonstrate that EPC subpopulations vary in their functional abilities and, to different degrees, have the capacity to transdifferentiate into unrelated cell‑types such as fibroblasts, hepatocytes, and neurocytes. This indicates that CD34‑CD133+ cells are more pluripotent compared to the CD34+CD133+ EPC subset, which may have important consequences for the therapy of vascular diseases.
Collapse
Affiliation(s)
- Katrin Bachelier
- Clinic of Internal Medicine III, Cardiology, Angiology and Intensive Care, University of The Saarland, D‑66421 Homburg/Saar, Germany
| | - Carolin Bergholz
- Clinic of Internal Medicine III, Cardiology, Angiology and Intensive Care, University of The Saarland, D‑66421 Homburg/Saar, Germany
| | - Erik B Friedrich
- Clinic of Internal Medicine III, Cardiology, Angiology and Intensive Care, University of The Saarland, D‑66421 Homburg/Saar, Germany
| |
Collapse
|
32
|
Klostranec JM, Chen L, Mathur S, McDonald J, Faughnan ME, Ratjen F, Krings T. A theory for polymicrogyria and brain arteriovenous malformations in HHT. Neurology 2019; 92:34-42. [PMID: 30584075 DOI: 10.1212/wnl.0000000000006686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/14/2018] [Indexed: 01/11/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is generally considered a disorder of endothelial dysfunction, characterized by the development of multiple systemic arteriovenous malformations (AVMs), including within the brain. However, there have recently been a number of reports correlating HHT with malformations of cortical development, of which polymicrogyria is the most common type. Here we present 7 new cases demonstrating polymicrogyria in HHT, 6 of which demonstrate a brain AVM (bAVM) in close spatial proximity, with the aim of providing a common origin for the association. Upon reviewing patient genetics and imaging data and comparing with previously reported findings, we form 2 new conclusions: (1) polymicrogyria in HHT appears exclusively associated with a subset of mutations in the transmembrane protein endoglin that is involved with blood flow-related mechanotransduction signaling during angiogenesis and (2) the polymicrogyria is characteristically unilateral, typically focal, and correlates with vascular regions experiencing low fluid shear stress during corticogenesis in utero. Integrating these with findings in the literature from genetics and molecular biology experiments, we propose a theory suggesting haploinsufficient endoglin mutations, especially those that are dominant-negative, may predispose focal, aberrant hypersprouting angiogenesis during corticogenesis that leads to the production of polymicrogyria. This hypoxic insult may further serve as the revealing trigger for later development of a spatially coincident bAVM. This hypothesis suggests an essential role for endoglin-mediated hemodynamic mechanotransduction in normal corticogenesis.
Collapse
Affiliation(s)
- Jesse M Klostranec
- From the Department of Medical Imaging (J.M.K., L.C., S.M., T.K.), Division of Respirology (M.E.F.) and Department of Paediatrics (F.R.), Department of Medicine, and Division of Neurosurgery (T.K.), Department of Surgery, University of Toronto; Division of Neuroradiology (J.M.K., L.C., S.M., T.K.), Toronto Western Hospital, University Health Network, Canada; Departments of Radiology and Pathology (J.M.), University of Utah School of Medicine, Salt Lake City; Toronto HHT Centre, Division of Respirology, Department of Medicine, and Li Ka Shing Knowledge Institute (M.E.F.), St. Michael's Hospital, Toronto; and Division of Respiratory Medicine (F.R.), the Hospital for Sick Children, Toronto, Canada
| | - Long Chen
- From the Department of Medical Imaging (J.M.K., L.C., S.M., T.K.), Division of Respirology (M.E.F.) and Department of Paediatrics (F.R.), Department of Medicine, and Division of Neurosurgery (T.K.), Department of Surgery, University of Toronto; Division of Neuroradiology (J.M.K., L.C., S.M., T.K.), Toronto Western Hospital, University Health Network, Canada; Departments of Radiology and Pathology (J.M.), University of Utah School of Medicine, Salt Lake City; Toronto HHT Centre, Division of Respirology, Department of Medicine, and Li Ka Shing Knowledge Institute (M.E.F.), St. Michael's Hospital, Toronto; and Division of Respiratory Medicine (F.R.), the Hospital for Sick Children, Toronto, Canada
| | - Shobhit Mathur
- From the Department of Medical Imaging (J.M.K., L.C., S.M., T.K.), Division of Respirology (M.E.F.) and Department of Paediatrics (F.R.), Department of Medicine, and Division of Neurosurgery (T.K.), Department of Surgery, University of Toronto; Division of Neuroradiology (J.M.K., L.C., S.M., T.K.), Toronto Western Hospital, University Health Network, Canada; Departments of Radiology and Pathology (J.M.), University of Utah School of Medicine, Salt Lake City; Toronto HHT Centre, Division of Respirology, Department of Medicine, and Li Ka Shing Knowledge Institute (M.E.F.), St. Michael's Hospital, Toronto; and Division of Respiratory Medicine (F.R.), the Hospital for Sick Children, Toronto, Canada
| | - Jamie McDonald
- From the Department of Medical Imaging (J.M.K., L.C., S.M., T.K.), Division of Respirology (M.E.F.) and Department of Paediatrics (F.R.), Department of Medicine, and Division of Neurosurgery (T.K.), Department of Surgery, University of Toronto; Division of Neuroradiology (J.M.K., L.C., S.M., T.K.), Toronto Western Hospital, University Health Network, Canada; Departments of Radiology and Pathology (J.M.), University of Utah School of Medicine, Salt Lake City; Toronto HHT Centre, Division of Respirology, Department of Medicine, and Li Ka Shing Knowledge Institute (M.E.F.), St. Michael's Hospital, Toronto; and Division of Respiratory Medicine (F.R.), the Hospital for Sick Children, Toronto, Canada
| | - Marie E Faughnan
- From the Department of Medical Imaging (J.M.K., L.C., S.M., T.K.), Division of Respirology (M.E.F.) and Department of Paediatrics (F.R.), Department of Medicine, and Division of Neurosurgery (T.K.), Department of Surgery, University of Toronto; Division of Neuroradiology (J.M.K., L.C., S.M., T.K.), Toronto Western Hospital, University Health Network, Canada; Departments of Radiology and Pathology (J.M.), University of Utah School of Medicine, Salt Lake City; Toronto HHT Centre, Division of Respirology, Department of Medicine, and Li Ka Shing Knowledge Institute (M.E.F.), St. Michael's Hospital, Toronto; and Division of Respiratory Medicine (F.R.), the Hospital for Sick Children, Toronto, Canada
| | - Felix Ratjen
- From the Department of Medical Imaging (J.M.K., L.C., S.M., T.K.), Division of Respirology (M.E.F.) and Department of Paediatrics (F.R.), Department of Medicine, and Division of Neurosurgery (T.K.), Department of Surgery, University of Toronto; Division of Neuroradiology (J.M.K., L.C., S.M., T.K.), Toronto Western Hospital, University Health Network, Canada; Departments of Radiology and Pathology (J.M.), University of Utah School of Medicine, Salt Lake City; Toronto HHT Centre, Division of Respirology, Department of Medicine, and Li Ka Shing Knowledge Institute (M.E.F.), St. Michael's Hospital, Toronto; and Division of Respiratory Medicine (F.R.), the Hospital for Sick Children, Toronto, Canada
| | - Timo Krings
- From the Department of Medical Imaging (J.M.K., L.C., S.M., T.K.), Division of Respirology (M.E.F.) and Department of Paediatrics (F.R.), Department of Medicine, and Division of Neurosurgery (T.K.), Department of Surgery, University of Toronto; Division of Neuroradiology (J.M.K., L.C., S.M., T.K.), Toronto Western Hospital, University Health Network, Canada; Departments of Radiology and Pathology (J.M.), University of Utah School of Medicine, Salt Lake City; Toronto HHT Centre, Division of Respirology, Department of Medicine, and Li Ka Shing Knowledge Institute (M.E.F.), St. Michael's Hospital, Toronto; and Division of Respiratory Medicine (F.R.), the Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
33
|
Huang J, Guo P, Moses MA. Rationally Designed Antibody Drug Conjugates Targeting the Breast Cancer-Associated Endothelium. ACS Biomater Sci Eng 2019; 6:2563-2569. [PMID: 33463296 DOI: 10.1021/acsbiomaterials.9b01060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The promise of antiangiogenic therapy for the treatment of breast cancer has been limited by the inability to selectively disrupt the established tumor vasculature. Here, we report the development of rationally designed antibody drug conjugates (ADCs) that can selectively recognize and attack breast tumor-associated endothelial cells (BTECs), while sparing normal endothelial cells (NECs). We first performed a quantitative and unbiased screening of a panel of cancer-related antigens on human BTECs and identified CD105 as the optimal ADC target on these cells. We then used clinically approved ADC linkers and cytotoxic drugs to engineer two CD105-targeted ADCs: CD105-DM1 and CD105-MMAE and evaluated their in vitro efficacy in human BTECs and NECs. We found that both CD105-DM1 and CD105-MMAE exhibited highly potent and selective cytotoxicity against BTECs with IC50 values of 3.2 and 3.7 nM, respectively, significantly lower than their IC50 values on NECs (8-13 fold). Our proof-of-principle study suggests that CD105-targeted ADCs are promising antiangiogenic agents that have the potential to be used to inhibit the established tumor vasculature of breast tumors in a safe and precise manner.
Collapse
Affiliation(s)
- Jing Huang
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Peng Guo
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
34
|
Gallardo-Vara E, Ruiz-Llorente L, Casado-Vela J, Ruiz-Rodríguez MJ, López-Andrés N, Pattnaik AK, Quintanilla M, Bernabeu C. Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners. Cells 2019; 8:cells8091082. [PMID: 31540324 PMCID: PMC6769930 DOI: 10.3390/cells8091082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/07/2019] [Accepted: 09/07/2019] [Indexed: 12/15/2022] Open
Abstract
Endoglin is a 180-kDa glycoprotein receptor primarily expressed by the vascular endothelium and involved in cardiovascular disease and cancer. Heterozygous mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1, a vascular disease that presents with nasal and gastrointestinal bleeding, skin and mucosa telangiectases, and arteriovenous malformations in internal organs. A circulating form of endoglin (alias soluble endoglin, sEng), proteolytically released from the membrane-bound protein, has been observed in several inflammation-related pathological conditions and appears to contribute to endothelial dysfunction and cancer development through unknown mechanisms. Membrane-bound endoglin is an auxiliary component of the TGF-β receptor complex and the extracellular region of endoglin has been shown to interact with types I and II TGF-β receptors, as well as with BMP9 and BMP10 ligands, both members of the TGF-β family. To search for novel protein interactors, we screened a microarray containing over 9000 unique human proteins using recombinant sEng as bait. We find that sEng binds with high affinity, at least, to 22 new proteins. Among these, we validated the interaction of endoglin with galectin-3, a secreted member of the lectin family with capacity to bind membrane glycoproteins, and with tripartite motif-containing protein 21 (TRIM21), an E3 ubiquitin-protein ligase. Using human endothelial cells and Chinese hamster ovary cells, we showed that endoglin co-immunoprecipitates and co-localizes with galectin-3 or TRIM21. These results open new research avenues on endoglin function and regulation.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (E.G.-V.); (L.R.-L.)
| | - Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (E.G.-V.); (L.R.-L.)
| | - Juan Casado-Vela
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Leganés, 28911 Madrid, Spain;
| | | | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain;
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), and Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Correspondence: (M.Q.); (C.B.)
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (E.G.-V.); (L.R.-L.)
- Correspondence: (M.Q.); (C.B.)
| |
Collapse
|
35
|
Nakazaki M, Sasaki M, Kataoka-Sasaki Y, Oka S, Suzuki J, Sasaki Y, Nagahama H, Hashi K, Kocsis JD, Honmou O. Intravenous infusion of mesenchymal stem cells improves impaired cognitive function in a cerebral small vessel disease model. Neuroscience 2019; 408:361-377. [DOI: 10.1016/j.neuroscience.2019.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/18/2019] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
|
36
|
Chang X, Yao J, He Q, Liu M, Duan T, Wang K. Exosomes From Women With Preeclampsia Induced Vascular Dysfunction by Delivering sFlt (Soluble Fms-Like Tyrosine Kinase)-1 and sEng (Soluble Endoglin) to Endothelial Cells. Hypertension 2019; 72:1381-1390. [PMID: 30571229 DOI: 10.1161/hypertensionaha.118.11706] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Preeclampsia is a unique multiple system disorder that affects 5% to 8% of pregnancies. Exosomes, membrane-encapsulated vesicles that are released into the extracellular environment by many cell types, can carry signals to the recipient cells to affect inflammation, apoptosis, and angiogenesis. We hypothesize that exosomes from women with preeclampsia complications impair vascular development by delivering antiangiogenic factors to endothelial cells. In the current study, plasma samples from gestational age-matched preeclampsia and normal pregnancies were used to isolate circulating exosomes by commercial kits. Next, application of transwell and matrigel tube formation assays showed that exosomes from preeclampsia patients impaired angiogenesis of human umbilical vein endothelial cells. We found that exosomes from preeclampsia expressed abundant sFlt-1 (soluble fms-like tyrosine kinase-1) and sEng (soluble endoglin). Considering the possibility that extracellular sFlt and sEng were horizontally transferred to human umbilical vein endothelial cells, we successfully collected exosomes containing high levels of sFlt-1 and sEng by overexpressing them in human embryonic kidney 293 cells. Furthermore, we demonstrated that these exosomes can attenuate the proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro. In a mouse model, exosomes from preeclampsia patients caused vascular dysfunction directly resulted in adverse preeclampsia-like birth outcomes. Thus, we proposed that exosomes mediated efficient transfer of sFlt-1 and sEng to endothelial cells to damage vascular functions and induce complications in preeclampsia patients.
Collapse
Affiliation(s)
- Xinwen Chang
- From the Clinical and Translational Research Center (X.C., J.Y., K.W.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, P.R. China
| | - Julei Yao
- From the Clinical and Translational Research Center (X.C., J.Y., K.W.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, P.R. China
| | - Qizhi He
- Department of Pathology (Q.H.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, P.R. China
| | - Ming Liu
- Department of Obstetrics (M.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, P.R. China
| | - Tao Duan
- Department of Obstetrics (M.L., T.D.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, P.R. China
| | - Kai Wang
- From the Clinical and Translational Research Center (X.C., J.Y., K.W.), Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, P.R. China
| |
Collapse
|
37
|
Ruiz-Llorente L, Chiapparino E, Plumitallo S, Danesino C, Bayrak-Toydemir P, Pagella F, Manfredi G, Bernabeu C, Jovine L, Olivieri C. Characterization of a mutation in the zona pellucida module of Endoglin that causes Hereditary Hemorrhagic Telangiectasia. Gene 2019; 696:33-39. [PMID: 30763665 DOI: 10.1016/j.gene.2019.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a vascular rare disease characterized by nose and gastrointestinal bleeding, skin and mucosa telangiectasias, and arteriovenous malformations in internal organs. HHT shows an autosomal dominant inheritance and a worldwide prevalence of approximately 1:5000 individuals. In >80% of patients, HHT is caused by mutations in either ENG (HHT1) or ACVRL1 (HHT2) genes, which code for the membrane proteins Endoglin and Activin A Receptor Type II-Like Kinase 1 (ALK1), respectively, both belonging to the TGF-β/BMP signaling pathway. In this work, we describe a novel mutation in exon 9 of ENG (c.1145 G > A) found in five affected members of a family, all of them with characteristic symptoms of HHT. This mutation involves Cys382 residue of the Endoglin protein (p.Cys382 > Tyr) in the zona pellucida (ZP) module of its extracellular region. This is a critical residue involved in a conserved intrachain disulphide bond and in the correct folding of the protein. In fact, transfection studies in human cells using Endoglin expression vectors demonstrated that the p.Cys382 > Tyr mutation results in a marked reduction in the levels of the Endoglin protein. These results demonstrate the pathogenic role for this variant in HHT1 and confirm the key function of Cys382 in Endoglin expression.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Elisa Chiapparino
- Molecular Medicine Department, General Biology and Medical Genetics Unit, University of Pavia, Via Forlanini 14, 27100 Pavia, Italy.
| | - Sara Plumitallo
- Molecular Medicine Department, General Biology and Medical Genetics Unit, University of Pavia, Via Forlanini 14, 27100 Pavia, Italy; IRCCS Fondazione Policlinico San Matteo, Piazzale Golgi 2, 27100 Pavia, Italy.
| | - Cesare Danesino
- Molecular Medicine Department, General Biology and Medical Genetics Unit, University of Pavia, Via Forlanini 14, 27100 Pavia, Italy; IRCCS Fondazione Policlinico San Matteo, Piazzale Golgi 2, 27100 Pavia, Italy.
| | - Pinar Bayrak-Toydemir
- ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| | - Fabio Pagella
- Head and Neck Department, ENT Unit, IRCCS Fondazione Policlinico "San Matteo", Piazzale Golgi 2, 27100 Pavia, Italy.
| | - Guido Manfredi
- UOC Gastroenterology and Endoscopy Unit, ASST, Ospedale Maggiore, 26013 Crema, CR, Italy.
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Luca Jovine
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Medicinaren 25 Neo, SE-141 83 Huddinge, Sweden.
| | - Carla Olivieri
- Molecular Medicine Department, General Biology and Medical Genetics Unit, University of Pavia, Via Forlanini 14, 27100 Pavia, Italy.
| |
Collapse
|
38
|
Rossi E, Bernabeu C, Smadja DM. Endoglin as an Adhesion Molecule in Mature and Progenitor Endothelial Cells: A Function Beyond TGF-β. Front Med (Lausanne) 2019; 6:10. [PMID: 30761306 PMCID: PMC6363663 DOI: 10.3389/fmed.2019.00010] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Endoglin (ENG) is a transmembrane glycoprotein expressed on endothelial cells that functions as a co-receptor for several ligands of the transforming growth factor beta (TGF-β) family. ENG is also a recognized marker of angiogenesis and mutations in the endoglin gene are responsible for Hereditary Hemorrhagic Telangiectasia (HHT) type 1, a vascular disease characterized by defective angiogenesis, arteriovenous malformations, telangiectasia, and epistaxis. In addition to its involvement in the TGF-β family signaling pathways, several lines of evidence suggest that the extracellular domain of ENG has a role in integrin-mediated cell adhesion via its RGD motif. Indeed, we have described a role for endothelial ENG in leukocyte trafficking and extravasation via its binding to leukocyte integrins. We have also found that ENG is involved in vasculogenic properties of endothelial progenitor cells known as endothelial colony forming cells (ECFCs). Moreover, the binding of endothelial ENG to platelet integrins regulate the resistance to shear during platelet-endothelium interactions under inflammatory conditions. Because of the need for more effective treatments in HHT and the involvement of ENG in angiogenesis, current studies are aimed at identifying novel biological functions of ENG which could serve as a therapeutic target. This review focuses on the interaction between ENG and integrins with the aim to better understand the role of this protein in blood vessel formation driven by progenitor and mature endothelial cells.
Collapse
Affiliation(s)
- Elisa Rossi
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - David M Smadja
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Inserm UMR-S1140, Paris, France.,Department of Hematology, AP-HP, Hôpital Européen Georges Pompidou, Paris, France.,Laboratory of Biosurgical Research, Carpentier Foundation, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
39
|
Summerhill V, Orekhov A. Pericytes in Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:279-297. [DOI: 10.1007/978-3-030-16908-4_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Galaris G, Thalgott JH, Lebrin FPG. Pericytes in Hereditary Hemorrhagic Telangiectasia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:215-246. [PMID: 31147880 DOI: 10.1007/978-3-030-16908-4_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by multi-systemic vascular dysplasia affecting 1 in 5000 people worldwide. Individuals with HHT suffer from many complications including nose and gastrointestinal bleeding, anemia, iron deficiency, stroke, abscess, and high-output heart failure. Identification of the causative gene mutations and the generation of animal models have revealed that decreased transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signaling and increased vascular endothelial growth factor (VEGF) signaling activity in endothelial cells are responsible for the development of the vascular malformations in HHT. Perturbations in these key pathways are thought to lead to endothelial cell activation resulting in mural cell disengagement from the endothelium. This initial instability state causes the blood vessels to response inadequately when they are exposed to angiogenic triggers resulting in excessive blood vessel growth and the formation of vascular abnormalities that are prone to bleeding. Drugs promoting blood vessel stability have been reported as effective in preclinical models and in clinical trials indicating possible interventional targets based on a normalization approach for treating HHT. Here, we will review how disturbed TGF-β and VEGF signaling relates to blood vessel destabilization and HHT development and will discuss therapeutic opportunities based on the concept of vessel normalization to treat HHT.
Collapse
Affiliation(s)
- Georgios Galaris
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jérémy H Thalgott
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Franck P G Lebrin
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Physics for Medicine, ESPCI, INSERM U1273, CNRS, Paris, France.
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France.
| |
Collapse
|
41
|
Vasculogenic Stem and Progenitor Cells in Human: Future Cell Therapy Product or Liquid Biopsy for Vascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:215-237. [PMID: 31898789 DOI: 10.1007/978-3-030-31206-0_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New blood vessel formation in adults was considered to result exclusively from sprouting of preexisting endothelial cells, a process referred to angiogenesis. Vasculogenesis, the formation of new blood vessels from endothelial progenitor cells, was thought to occur only during embryonic life. Discovery of adult endothelial progenitor cells (EPCs) in 1997 opened the door for cell therapy in vascular disease. Endothelial progenitor cells contribute to vascular repair and are now well established as postnatal vasculogenic cells in humans. It is now admitted that endothelial colony-forming cells (ECFCs) are the vasculogenic subtype. ECFCs could be used as a cell therapy product and also as a liquid biopsy in several vascular diseases or as vector for gene therapy. However, despite a huge interest in these cells, their tissue and molecular origin is still unclear. We recently proposed that endothelial progenitor could come from very small embryonic-like stem cells (VSELs) isolated in human from CD133 positive cells. VSELs are small dormant stem cells related to migratory primordial germ cells. They have been described in bone marrow and other organs. This chapter discusses the reported findings from in vitro data and also preclinical studies that aimed to explore stem cells at the origin of vasculogenesis in human and then explore the potential use of ECFCs to promote newly formed vessels or serve as liquid biopsy to understand vascular pathophysiology and in particular pulmonary disease and haemostasis disorders.
Collapse
|
42
|
|
43
|
Gallardo-Vara E, Tual-Chalot S, Botella LM, Arthur HM, Bernabeu C. Soluble endoglin regulates expression of angiogenesis-related proteins and induction of arteriovenous malformations in a mouse model of hereditary hemorrhagic telangiectasia. Dis Model Mech 2018; 11:dmm.034397. [PMID: 30108051 PMCID: PMC6176985 DOI: 10.1242/dmm.034397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022] Open
Abstract
Endoglin is a transmembrane glycoprotein expressed in vascular endothelium that plays a key role in angiogenesis. Mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1 (HHT1), characterized by arteriovenous malformations (AVMs) in different organs. These vascular lesions derive from abnormal processes of angiogenesis, whereby aberrant vascular remodeling leads to focal loss of capillaries. Current treatments for HHT1 include antiangiogenic therapies. Interestingly, a circulating form of endoglin (also known as soluble endoglin, sEng), proteolytically released from the membrane-bound protein and displaying antiangiogenic activity, has been described in several endothelial-related pathological conditions. Using human and mouse endothelial cells, we find that sEng downregulates several pro-angiogenic and pro-migratory proteins involved in angiogenesis. However, this effect is much reduced in endothelial cells that lack endogenous transmembrane endoglin, suggesting that the antiangiogenic activity of sEng is dependent on the presence of endogenous transmembrane endoglin protein. In fact, sEng partially restores the phenotype of endoglin-silenced endothelial cells to that of normal endothelial cells. Moreover, using an established neonatal retinal model of HHT1 with depleted endoglin in the vascular endothelium, sEng treatment decreases the number of AVMs and has a normalizing effect on the vascular phenotype with respect to vessel branching, vascular density and migration of the vascular plexus towards the retinal periphery. Taken together, these data show that circulating sEng can influence vascular development and AVMs by modulating angiogenesis, and that its effect on endothelial cells depends on the expression of endogenous endoglin. This article has an associated First Person interview with the first author of the paper. Summary: Soluble endoglin regulates vascular development and arteriovenous malformations by modulating angiogenesis, and its effect on endothelial cells depends on expression of endogenous membrane-bound endoglin.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Simon Tual-Chalot
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Luisa M Botella
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Helen M Arthur
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| |
Collapse
|
44
|
Giordano A, Romano S, Corcione N, Frati G, Zoccai GB, Ferraro P, Messina S, Ottolini S, Romano MF. Tirofiban Positively Regulates β1 Integrin and Favours Endothelial Cell Growth on Polylactic Acid Biopolymer Vascular Scaffold (BVS). J Cardiovasc Transl Res 2018; 11:201-209. [PMID: 29696533 DOI: 10.1007/s12265-018-9805-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/11/2018] [Indexed: 02/05/2023]
Abstract
An unexpectedly high incidence of thrombosis in patients that received the polylactic acid bioresorbable vascular scaffold (BVS) suggests a delayed/incomplete endothelial repair with this stent. The anti-platelet agent tirofiban stimulates endothelial cell migration and proliferation, mediated by VEGF production. We investigated the tirofiban effect on the migration and adhesion of endothelial cells to BVS, in vitro. We performed human umbilical endothelial cell (HUVEC) cultures in the presence of BVS. Tirofiban, similarly to VEGF, increased the ability of HUVEC to grow on the vascular scaffold, compared to unstimulated or abciximab-treated cells. Tirofiban increased HUVEC expression of β1 and β3 integrins along with collagen and fibronectin. A role for β1 integrin in the "pro-adhesive and -migratory" signals elicited by tirofiban was suggested by use of an anti-β1-blocking antibody that prevented poly-levo-lactic acid vascular scaffold colonization. Our study suggests that tirofiban may improve the outcomes of patients receiving BVS by accelerating stent endothelization.
Collapse
Affiliation(s)
- Arturo Giordano
- Unità Operativa di Interventistica Cardiovascolare, Presidio Ospedaliero Pineta Grande, Castel Volturno, Italy
- Unità Operativa di Emodinamica, Casa di Salute Santa Lucia, San Giuseppe Vesuviano, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini, 5, 80131, Naples, Italy
| | - Nicola Corcione
- Unità Operativa di Interventistica Cardiovascolare, Presidio Ospedaliero Pineta Grande, Castel Volturno, Italy
- Unità Operativa di Emodinamica, Casa di Salute Santa Lucia, San Giuseppe Vesuviano, Naples, Italy
| | - Giacomo Frati
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Giuseppe Biondi Zoccai
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Paolo Ferraro
- Unità Operativa di Interventistica Cardiovascolare, Presidio Ospedaliero Pineta Grande, Castel Volturno, Italy
- Unità Operativa di Emodinamica, Casa di Salute Santa Lucia, San Giuseppe Vesuviano, Naples, Italy
| | - Stefano Messina
- Unità Operativa di Interventistica Cardiovascolare, Presidio Ospedaliero Pineta Grande, Castel Volturno, Italy
- Unità Operativa di Emodinamica, Casa di Salute Santa Lucia, San Giuseppe Vesuviano, Naples, Italy
| | | | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
45
|
Goumans MJ, Zwijsen A, Ten Dijke P, Bailly S. Bone Morphogenetic Proteins in Vascular Homeostasis and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031989. [PMID: 28348038 DOI: 10.1101/cshperspect.a031989] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well established that control of vascular morphogenesis and homeostasis is regulated by vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), Delta-like 4 (Dll4), angiopoietin, and ephrin signaling. It has become clear that signaling by bone morphogenetic proteins (BMPs), which have a long history of studies in bone and early heart development, are also essential for regulating vascular function. Indeed, mutations that cause deregulated BMP signaling are linked to two human vascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. These observations are corroborated by data obtained with vascular cells in cell culture and in mouse models. BMPs are required for normal endothelial cell differentiation and for venous/arterial and lymphatic specification. In adult life, BMP signaling orchestrates neo-angiogenesis as well as vascular inflammation, remodeling, and calcification responses to shear and oxidative stress. This review emphasizes the pivotal role of BMPs in the vascular system, based on studies of mouse models and human vascular disorders.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - An Zwijsen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, 3000 Leuven, Belgium
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Sabine Bailly
- Institut National de la Santé et de la Recherche Mécale (INSERM), U1036, 38000 Grenoble, France.,Laboratoire Biologie du Cancer et de l'Infection, Commissariat à l'Énergie Atomique et aux Energies Alternatives, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,University of Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
46
|
Dingenouts CKE, Bakker W, Lodder K, Wiesmeijer KC, Moerkamp AT, Maring JA, Arthur HM, Smits AM, Goumans MJ. Inhibiting DPP4 in a mouse model of HHT1 results in a shift towards regenerative macrophages and reduces fibrosis after myocardial infarction. PLoS One 2017; 12:e0189805. [PMID: 29253907 PMCID: PMC5734765 DOI: 10.1371/journal.pone.0189805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 12/02/2017] [Indexed: 12/11/2022] Open
Abstract
AIMS Hereditary Hemorrhagic Telangiectasia type-1 (HHT1) is a genetic vascular disorder caused by haploinsufficiency of the TGFβ co-receptor endoglin. Dysfunctional homing of HHT1 mononuclear cells (MNCs) towards the infarcted myocardium hampers cardiac recovery. HHT1-MNCs have elevated expression of dipeptidyl peptidase-4 (DPP4/CD26), which inhibits recruitment of CXCR4-expressing MNCs by inactivation of stromal cell-derived factor 1 (SDF1). We hypothesize that inhibiting DPP4 will restore homing of HHT1-MNCs to the infarcted heart and improve cardiac recovery. METHODS AND RESULTS After inducing myocardial infarction (MI), wild type (WT) and endoglin heterozygous (Eng+/-) mice were treated for 5 days with the DPP4 inhibitor Diprotin A (DipA). DipA increased the number of CXCR4+ MNCs residing in the infarcted Eng+/- hearts (Eng+/- 73.17±12.67 vs. Eng+/- treated 157.00±11.61, P = 0.0003) and significantly reduced infarct size (Eng+/- 46.60±9.33% vs. Eng+/- treated 27.02±3.04%, P = 0.03). Echocardiography demonstrated that DipA treatment slightly deteriorated heart function in Eng+/- mice. An increased number of capillaries (Eng+/- 61.63±1.43 vs. Eng+/- treated 74.30±1.74, P = 0.001) were detected in the infarct border zone whereas the number of arteries was reduced (Eng+/- 11.88±0.63 vs. Eng+/- treated 6.38±0.97, P = 0.003). Interestingly, while less M2 regenerative macrophages were present in Eng+/- hearts prior to DipA treatment, (WT 29.88±1.52% vs. Eng+/- 12.34±1.64%, P<0.0001), DPP4 inhibition restored the number of M2 macrophages to wild type levels. CONCLUSIONS In this study, we demonstrate that systemic DPP4 inhibition restores the impaired MNC homing in Eng+/- animals post-MI, and enhances cardiac repair, which might be explained by restoring the balance between the inflammatory and regenerative macrophages present in the heart.
Collapse
Affiliation(s)
| | - Wineke Bakker
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kirsten Lodder
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Karien C. Wiesmeijer
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Asja T. Moerkamp
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Janita A. Maring
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Helen M. Arthur
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Anke M. Smits
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
47
|
Delabranche X, Helms J, Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care 2017; 7:117. [PMID: 29197958 PMCID: PMC5712298 DOI: 10.1186/s13613-017-0339-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Host infection by a micro-organism triggers systemic inflammation, innate immunity and complement pathways, but also haemostasis activation. The role of thrombin and fibrin generation in host defence is now recognised, and thrombin has become a partner for survival, while it was seen only as one of the "principal suspects" of multiple organ failure and death during septic shock. This review is first focused on pathophysiology. The role of contact activation system, polyphosphates and neutrophil extracellular traps has emerged, offering new potential therapeutic targets. Interestingly, newly recognised host defence peptides (HDPs), derived from thrombin and other "coagulation" factors, are potent inhibitors of bacterial growth. Inhibition of thrombin generation could promote bacterial growth, while HDPs could become novel therapeutic agents against pathogens when resistance to conventional therapies grows. In a second part, we focused on sepsis-induced coagulopathy diagnostic challenge and stratification from "adaptive" haemostasis to "noxious" disseminated intravascular coagulation (DIC) either thrombotic or haemorrhagic. Besides usual coagulation tests, we discussed cellular haemostasis assessment including neutrophil, platelet and endothelial cell activation. Then, we examined therapeutic opportunities to prevent or to reduce "excess" thrombin generation, while preserving "adaptive" haemostasis. The fail of international randomised trials involving anticoagulants during septic shock may modify the hypothesis considering the end of haemostasis as a target to improve survival. On the one hand, patients at low risk of mortality may not be treated to preserve "immunothrombosis" as a defence when, on the other hand, patients at high risk with patent excess thrombin and fibrin generation could benefit from available (antithrombin, soluble thrombomodulin) or ongoing (FXI and FXII inhibitors) therapies. We propose to better assess coagulation response during infection by an improved knowledge of pathophysiology and systematic testing including determination of DIC scores. This is one of the clues to allocate the right treatment for the right patient at the right moment.
Collapse
Affiliation(s)
- Xavier Delabranche
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, Strasbourg, France
| | - Julie Helms
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM, EFS Grand Est, BPPS UMR-S 949, Université de Strasbourg, Strasbourg, France
| | - Ferhat Meziani
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
48
|
Human endoglin as a potential new partner involved in platelet-endothelium interactions. Cell Mol Life Sci 2017; 75:1269-1284. [PMID: 29080903 PMCID: PMC5843676 DOI: 10.1007/s00018-017-2694-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 11/20/2022]
Abstract
Complex interactions between platelets and activated endothelium occur during the thrombo-inflammatory reaction at sites of vascular injuries and during vascular hemostasis. The endothelial receptor endoglin is involved in inflammation through integrin-mediated leukocyte adhesion and transmigration; and heterozygous mutations in the endoglin gene cause hereditary hemorrhagic telangiectasia type 1. This vascular disease is characterized by a bleeding tendency that is postulated to be a consequence of telangiectasia fragility rather than a platelet defect, since platelets display normal functions in vitro in this condition. Here, we hypothesize that endoglin may act as an adhesion molecule involved in the interaction between endothelial cells and platelets through integrin recognition. We find that the extracellular domain of human endoglin promotes specific platelet adhesion under static conditions and confers resistance of adherent platelets to detachment upon exposure to flow. Also, platelets adhere to confluent endothelial cells in an endoglin-mediated process. Remarkably, Chinese hamster ovary cells ectopically expressing the human αIIbβ3 integrin acquire the capacity to adhere to myoblast transfectants expressing human endoglin, whereas platelets from Glanzmann’s thrombasthenia patients lacking the αIIbβ3 integrin are defective for endoglin-dependent adhesion to endothelial cells. Furthermore, the bleeding time, but not the prothrombin time, is significantly prolonged in endoglin-haplodeficient (Eng+/−) mice compared to Eng+/+ animals. These results suggest a new role for endoglin in αIIbβ3 integrin-mediated adhesion of platelets to the endothelium, and may provide a better understanding on the basic cellular mechanisms involved in hemostasis and thrombo-inflammatory events.
Collapse
|
49
|
Abstract
Hypertensive disorders in pregnancy have been the cause of much clinical dilemma, affecting up to 10 % of all pregnancies. The precise blood pressure to achieve in a pregnant woman is usually a battle between minimizing end organ damage to the mother and providing adequate perfusion to the placenta and the fetus. This predicament is becoming more, not less, frequent as maternal ages increase in high resource nations. Biomarkers to predict preeclampsia, a subcategory of hypertension in pregnancy, have always been elusive. The discovery of angiogenic factors relevant to preeclampsia in the last decade, however, has propelled much needed research, both in the basic science and clinical arenas. In this review, we summarize the latest clinical studies and international guidelines on blood pressure goals in pregnancy, and discuss the most promising of biomarkers to predict or diagnose preeclampsia.
Collapse
|
50
|
Ruiz-Llorente L, Gallardo-Vara E, Rossi E, Smadja DM, Botella LM, Bernabeu C. Endoglin and alk1 as therapeutic targets for hereditary hemorrhagic telangiectasia. Expert Opin Ther Targets 2017; 21:933-947. [PMID: 28796572 DOI: 10.1080/14728222.2017.1365839] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hereditary Haemorrhagic Telangiectasia (HHT) is as an autosomal dominant trait characterized by frequent nose bleeds, mucocutaneous telangiectases, arteriovenous malformations (AVMs) of the lung, liver and brain, and gastrointestinal bleedings due to telangiectases. HHT is originated by mutations in genes whose encoded proteins are involved in the transforming growth factor β (TGF-β) family signalling of vascular endothelial cells. In spite of the great advances in the diagnosis as well as in the molecular, cellular and animal models of HHT, the current treatments remain just at the palliative level. Areas covered: Pathogenic mutations in genes coding for the TGF-β receptors endoglin (ENG) (HHT1) or the activin receptor-like kinase-1 (ACVRL1 or ALK1) (HHT2), are responsible for more than 80% of patients with HHT. Therefore, ENG and ALK1 are the main potential therapeutic targets for HHT and the focus of this review. The current status of the preclinical and clinical studies, including the anti-angiogenic strategy, have been addressed. Expert opinion: Endoglin and ALK1 are attractive therapeutic targets in HHT. Because haploinsufficiency is the pathogenic mechanism in HHT, several therapeutic approaches able to enhance protein expression and/or function of endoglin and ALK1 are keys to find novel and efficient treatments for the disease.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Eunate Gallardo-Vara
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Elisa Rossi
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - David M Smadja
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - Luisa M Botella
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Carmelo Bernabeu
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| |
Collapse
|