1
|
Yu Y, Yuan H, Han Q, Shi J, Liu X, Xue Y, Li Y. SMOC2, OGN, FCN3, and SERPINA3 could be biomarkers for the evaluation of acute decompensated heart failure caused by venous congestion. Front Cardiovasc Med 2024; 11:1406662. [PMID: 39717447 PMCID: PMC11663912 DOI: 10.3389/fcvm.2024.1406662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Background Venous congestion (VC) sets in weeks before visible clinical decompensation, progressively increasing cardiac strain and leading to acute heart failure (HF) decompensation. Currently, the field lacks a universally acknowledged gold standard and early detection methods for VC. Methods Using data from the GEO database, we identified VC's impact on HF through key genes using Limma and STRING databases. The potential mechanisms of HF exacerbation were explored via GO and KEGG enrichment analyses. Diagnostic genes for acute decompensated HF were discovered using LASSO, RF, and SVM-REF machine learning algorithms, complemented by single-gene GSEA analysis. A nomogram tool was developed for the diagnostic model's evaluation and application, with validation conducted on external datasets. Results Our findings reveal that VC influences 37 genes impacting HF via 8 genes, primarily affecting oxygen transport, binding, and extracellular matrix stability. Four diagnostic genes for HF's pre-decompensation phase were identified: SMOC2, OGN, FCN3, and SERPINA3. These genes showed high diagnostic potential, with AUCs for each gene exceeding 0.9 and a genomic AUC of 0.942. Conclusions Our study identifies four critical diagnostic genes for HF's pre-decompensated phase using bioinformatics and machine learning, shedding light on the molecular mechanisms through which VC worsens HF. It offers a novel approach for clinical evaluation of acute decompensated HF patient congestion status, presenting fresh insights into its pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huajing Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Kunnathattil M, Rahul P, Skaria T. Soluble vascular endothelial glycocalyx proteoglycans as potential therapeutic targets in inflammatory diseases. Immunol Cell Biol 2024; 102:97-116. [PMID: 37982607 DOI: 10.1111/imcb.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.
Collapse
Affiliation(s)
- Maneesha Kunnathattil
- Department of Zoology, Government College Madappally, University of Calicut, Calicut, Kerala, India
| | - Pedapudi Rahul
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
3
|
Zhang Y, Zhou X, Chen S, Sun X, Zhou C. Immune mechanisms of group B coxsackievirus induced viral myocarditis. Virulence 2023; 14:2180951. [PMID: 36827455 PMCID: PMC9980623 DOI: 10.1080/21505594.2023.2180951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Viral myocarditis is known to be a primary cause of dilated cardiomyopathy (DCM) that can lead to heart failure and sudden cardiac death and is invariably caused by myocardial viral infection following active inflammatory destruction of the myocardium. Although acute viral myocarditis frequently recovers on its own, current chronic myocarditis therapies are unsatisfactory, where the persistence of viral or immunological insults to the heart may play a role. Cellular and mouse experimental models that utilized the most prevalent Coxsackievirus group B type 3 (CVB3) virus infection causing myocarditis have illustrated the pathophysiology of viral myocarditis. In this review, immunological insights into the different stages of development of viral myocarditis were discussed, concentrating on the mechanisms of innate and adaptive immunity in the development of CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Yue Zhang
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,School of public health, Nantong University, Nantong, China
| | - Xiaobin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Shuyi Chen
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Xinchen Sun
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Chenglin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,CONTACT Chenglin Zhou Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
4
|
Maiti G, Ashworth S, Choi T, Chakravarti S. Molecular cues for immune cells from small leucine-rich repeat proteoglycans in their extracellular matrix-associated and free forms. Matrix Biol 2023; 123:48-58. [PMID: 37793508 PMCID: PMC10841460 DOI: 10.1016/j.matbio.2023.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
In this review we highlight emerging immune regulatory functions of lumican, keratocan, fibromodulin, biglycan and decorin, which are members of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). These SLRPs have been studied extensively as collagen-fibril regulatory structural components of the skin, cornea, bone and cartilage in homeostasis. However, SLRPs released from a remodeling ECM, or synthesized by activated fibroblasts and immune cells contribute to an ECM-free pool in tissues and circulation, that may have a significant, but poorly understood foot print in inflammation and disease. Their molecular interactions and the signaling networks they influence also require investigations. Here we present studies on the leucine-rich repeat (LRR) motifs of SLRP core proteins, their evolutionary and functional relationships with other LRR pathogen recognition receptors, such as the toll-like receptors (TLRs) to bring some molecular clarity in the immune regulatory functions of SLRPs. We discuss molecular interactions of fragments and intact SLRPs, and how some of these interactions are likely modulated by glycosaminoglycan side chains. We integrate findings on molecular interactions of these SLRPs together with what is known about their presence in circulation and lymph nodes (LN), which are important sites of immune cell regulation. Recent bulk and single cell RNA sequencing studies have identified subsets of stromal reticular cells that express these SLRPs within LNs. An understanding of the cellular source, molecular interactions and signaling consequences will lead to a fundamental understanding of how SLRPs modulate immune responses, and to therapeutic tools based on these SLRPs in the future.
Collapse
Affiliation(s)
- George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Sean Ashworth
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Tansol Choi
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States; Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States.
| |
Collapse
|
5
|
Zheng PF, Liu F, Zheng ZF, Pan HW, Liu ZY. Identification MNS1, FRZB, OGN, LUM, SERP1NA3 and FCN3 as the potential immune-related key genes involved in ischaemic cardiomyopathy by random forest and nomogram. Aging (Albany NY) 2023; 15:1475-1495. [PMID: 36863704 PMCID: PMC10042686 DOI: 10.18632/aging.204547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/11/2023] [Indexed: 03/04/2023]
Abstract
The immune molecular mechanisms involved in ischaemic cardiomyopathy (ICM) have not been fully elucidated. The current study aimed to elucidate the immune cell infiltration pattern of the ICM and identify key immune-related genes that participate in the pathologic process of the ICM. The differentially expressed genes (DEGs) were identified from two datasets (GSE42955 combined with GSE57338) and the top 8 key DEGs related to ICM were screened using random forest and used to construct the nomogram model. Moreover, the "CIBERSORT" software package was used to determine the proportion of infiltrating immune cells in the ICM. A total of 39 DEGs (18 upregulated and 21 downregulated) were identified in the current study. Four upregulated DEGs, including MNS1, FRZB, OGN, and LUM, and four downregulated DEGs, SERP1NA3, RNASE2, FCN3 and SLCO4A1, were identified by the random forest model. The nomogram constructed based on the above 8 key genes suggested a diagnostic value of up to 99% to distinguish the ICM from healthy participants. Meanwhile, most of the key DEGs presented prominent interactions with immune cell infiltrates. The RT-qPCR results suggested that the expression levels of MNS1, FRZB, OGN, LUM, SERP1NA3 and FCN3 between the ICM and control groups were consistent with the bioinformatic analysis results. These results suggested that immune cell infiltration plays a critical role in the occurrence and progression of ICM. Several key immune-related genes, including the MNS1, FRZB, OGN, LUM, SERP1NA3 and FCN3 genes, are expected to be reliable serum markers for the diagnosis of ICM and potential molecular targets for ICM immunotherapy.
Collapse
Affiliation(s)
- Peng-Fei Zheng
- Cardiology Department, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
- Clinical Research Center for Heart Failure in Hunan Province, Furong, Changsha 410000, Hunan, China
- Institute of Cardiovascular Epidemiology, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
| | - Fen Liu
- Institute of Cardiovascular Epidemiology, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Furong, Changsha 410000, Hunan, China
| | - Zhao-Fen Zheng
- Cardiology Department, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
- Clinical Research Center for Heart Failure in Hunan Province, Furong, Changsha 410000, Hunan, China
- Institute of Cardiovascular Epidemiology, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
| | - Hong-Wei Pan
- Cardiology Department, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
- Clinical Research Center for Heart Failure in Hunan Province, Furong, Changsha 410000, Hunan, China
- Institute of Cardiovascular Epidemiology, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
| | - Zheng-Yu Liu
- Cardiology Department, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
- Clinical Research Center for Heart Failure in Hunan Province, Furong, Changsha 410000, Hunan, China
- Institute of Cardiovascular Epidemiology, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
| |
Collapse
|
6
|
Dings MPG, Manoukian P, Waasdorp C, Quik JSE, Strijker M, Lodestijn SC, van Neerven SM, Moreno LF, de Oliveira RL, Bonsing BA, Bruno MJ, Busch OR, Doukas M, van Eijck CH, Mohammad NH, de Hingh IH, Molenaar QI, Besselink MG, Vermeulen L, Medema JP, van Laarhoven HWM, Bijlsma MF. Serum levels of iCAF-derived osteoglycin predict favorable outcome in pancreatic cancer. Int J Cancer 2023; 152:511-523. [PMID: 36069222 PMCID: PMC10087204 DOI: 10.1002/ijc.34276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 02/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma, the main cellular constituents of which are cancer-associated fibroblasts (CAFs). Stroma-targeting agents have been proposed to improve the poor outcome of current treatments. However, clinical trials using these agents showed disappointing results. Heterogeneity in the PDAC CAF population was recently delineated demonstrating that both tumor-promoting and tumor-suppressive activities co-exist in the stroma. Here, we aimed to identify biomarkers for the CAF population that contribute to a favorable outcome. RNA-sequencing reads from patient-derived xenografts (PDXs) were mapped to the human and mouse genome to allocate the expression of genes to the tumor or stroma. Survival meta-analysis for stromal genes was performed and applied to human protein atlas data to identify circulating biomarkers. The candidate protein was perturbed in co-cultures and assessed in existing and novel single-cell gene expression analysis from control, pancreatitis, pancreatitis-recovered and PDAC mouse models. Serum levels of the candidate biomarker were measured in two independent cohorts totaling 148 PDAC patients and related them to overall survival. Osteoglycin (OGN) was identified as a candidate serum prognostic marker. Single-cell analysis indicated that Ogn is derived from a subgroup of inflammatory CAFs. Ogn-expressing fibroblasts are distinct from resident healthy pancreatic stellate cells and arise during pancreatitis. Serum OGN levels were prognostic for favorable overall survival in two independent PDAC cohorts (HR = 0.47, P = .042 and HR = 0.53, P = .006). Altogether, we conclude that high circulating OGN levels inform on a previously unrecognized subgroup of CAFs and predict favorable outcomes in resectable PDAC.
Collapse
Affiliation(s)
- Mark P G Dings
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Paul Manoukian
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Cynthia Waasdorp
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Judith S E Quik
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Marin Strijker
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Sophie C Lodestijn
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Sanne M van Neerven
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Leandro F Moreno
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Rodrigo Leite de Oliveira
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,CRISPR Expertise Center, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Olivier R Busch
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Doukas
- Department of Pathology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Casper H van Eijck
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ignace H de Hingh
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Quintus I Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht and St Antonius Hospital, Nieuwegein, The Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Louis Vermeulen
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.,Department of Medical Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Carai P, González LF, Van Bruggen S, Spalart V, De Giorgio D, Geuens N, Martinod K, Jones EAV, Heymans S. Neutrophil inhibition improves acute inflammation in a murine model of viral myocarditis. Cardiovasc Res 2023; 118:3331-3345. [PMID: 35426438 PMCID: PMC9847559 DOI: 10.1093/cvr/cvac052] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Viral myocarditis (VM) is an inflammatory pathology of the myocardium triggered by a viral infection that may cause sudden death or heart failure (HF), especially in the younger population. Current treatments only stabilize and improve cardiac function without resolving the underlying inflammatory cause. The factors that induce VM to progress to HF are still uncertain, but neutrophils have been increasingly associated with the negative evolution of cardiac pathologies. The present study investigates the contribution of neutrophils to VM disease progression in different ways. METHODS AND RESULTS In a coxsackievirus B3- (CVB3) induced mouse model of VM, neutrophils and neutrophil extracellular traps (NETs) were prominent in the acute phase of VM as revealed by enzyme-linked immunosorbent assay analysis and immunostaining. Anti-Ly6G-mediated neutrophil blockade starting at model induction decreased cardiac necrosis and leucocyte infiltration, preventing monocyte and Ly6CHigh pro-inflammatory macrophage recruitment. Furthermore, genetic peptidylarginine deiminase 4-dependent NET blockade reduced cardiac damage and leucocyte recruitment, significantly decreasing cardiac monocyte and macrophage presence. Depleting neutrophils with anti-Ly6G antibodies at 7 days post-infection, after the acute phase, did not decrease cardiac inflammation. CONCLUSION Collectively, these results indicate that the repression of neutrophils and the related NET response in the acute phase of VM improves the pathological phenotype by reducing cardiac inflammation.
Collapse
Affiliation(s)
- Paolo Carai
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Laura Florit González
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiology, Experimental Cardiology Laboratory, Utrecht University, Utrecht, The Netherlands
| | - Stijn Van Bruggen
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Valerie Spalart
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Daria De Giorgio
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milan, Italy
| | - Nadéche Geuens
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Elizabeth Anne Vincent Jones
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Stephane Heymans
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Tao DD, Li Y, Tian XJ, Liao XJ, Yu ZQ, Xiang ZY. Effect of FoxO1 on Cardiomyocyte Apoptosis and Inflammation in Viral Myocarditis via Modultion of the TLR4/NF-κB Signaling Pathway. Int Heart J 2023; 64:732-740. [PMID: 37518354 DOI: 10.1536/ihj.22-627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
To investigate the possible effect of FoxO on coxsackievirus B3 (CVB3) -induced cardiomyocyte inflammation and apoptosis via modulation of the TLR4/NF-κB signaling pathway.Viral myocarditis (VMC) models were establied via CVB3 infection both in vivo and in vitro. Western blotting was adopted to detect FoxO1 and TLR4 expressions in myocardial tissues and cells. Cardiomyocytes of suckling mouse were divided into the control, CVB3, CVB3 + pcDNA, CVB3 + pcDNA-FoxO1, CVB3 + TLR4 siRNA, and CVB3 + pcDNA-FoxO1 + TLR4 siRNA groups. Flow cytometry was employed to evaluate cell apoptosis. The expressions of inflammatory factors including TNF-α, IL-1β, and IL-6 were detected via quantitative reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay. Then, TLR4/NF-κB pathway-related proteins were determined via Western blotting.VMC mice had increased FoxO1 and TLR4 expressions in myocardial tissues. Cardiomyocytes with CVB3 infection also had upregulated protein expressions of p-FoxO1/FoxO1 and TLR4. Compared with those in the control group, the cardiomyocytes in the CVB3 group were increased in LDH and CK-MB levels, cell apoptosis rate and inflammatory factors (TNF-α, IL-1β and IL-6), as well as protein expressions of TLR4 and p-p65/p65. Compared with those in the CVB3 group, the cardiomyocytes in the CVB3 + pcDNA-FoxO1 group were further upregulated whereas those in the CVB3 +TLR4 siRNA group were downregulated in the aforementioned indicators. Furthermore, TLR4 siRNA can reverse the effect of pcDNA-FoxO1 on the aggravation of cardiomyocyte injury induced by CVB3 infection.FoxO1 can upregulate the TLR4/NF-κB signaling pathway to promote cardiomyocyte apoptosis and inflammatory injury in CVB3-induced VMC.
Collapse
Affiliation(s)
- Di-Di Tao
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine
| | - Ya Li
- Dongfeng Stomatological Hospital, Hubei University of Medicine
| | - Xiao-Jiao Tian
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine
| | - Xing-Juan Liao
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine
| | - Zhong-Qin Yu
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine
| | - Zhao-Yan Xiang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine
| |
Collapse
|
9
|
Nulali J, Zhan M, Zhang K, Tu P, Liu Y, Song H. Osteoglycin: An ECM Factor Regulating Fibrosis and Tumorigenesis. Biomolecules 2022; 12:1674. [PMID: 36421687 PMCID: PMC9687868 DOI: 10.3390/biom12111674] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 08/27/2023] Open
Abstract
The extracellular matrix (ECM) is made up of noncellular components that have special properties for influencing cell behavior and tissue structure. Small leucine-rich proteoglycans (SLRPs) are nonfibrillar ECM components that serve as structural scaffolds and signaling molecules. osteoglycin (OGN), a class III SLRP, is a ubiquitous ECM component that not only helps to organize the extracellular matrix but also regulates a number of important biological processes. As a glycosylated protein in the ECM, OGN was originally considered to be involved in fiber assembly and was reported to have a connection with fibrosis. In addition to these functions, OGN is found in a variety of cancer tissues and is implicated in cellular processes linked to tumorigenesis, including cell proliferation, invasion, metastasis, and epithelial-mesenchymal transition (EMT). In this review, we summarize the structure and functions of OGN as well as its biological and clinical importance in the context of fibrotic illness and tumorigenesis. This review aims to improve our understanding of OGN and provide some new strategies for the treatment of fibrosis and cancer.
Collapse
Affiliation(s)
- Jiayida Nulali
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kaiwen Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Pinghui Tu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu Liu
- Department of Respiration, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200070, China
| | - Huaidong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
10
|
Garantziotis S, Savani RC. Proteoglycans in Toll-like receptor responses and innate immunity. Am J Physiol Cell Physiol 2022; 323:C202-C214. [PMID: 35675639 DOI: 10.1152/ajpcell.00088.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) is an active and dynamic feature of tissues that not only provides gross structure but also plays key roles in cellular responses. The ever-changing microenvironment responds dynamically to cellular and external signals, and in turn influences cell fate, tissue development, and response to environmental injury or microbial invasion. It is therefore paramount to understand how the ECM components interact with each other, the environment and cells, and how they mediate their effects. Among the ECM components that have recently garnered increased attention, proteoglycans (PGs) deserve special note. Recent evidence strongly suggests that they play a crucial role both in health maintenance and disease development. In particular, proteoglycans dictate whether homeostasis or cell death will result from a given injury, by triggering and modulating activation of the innate immune system, via a conserved array of receptors that recognize exogenous (infectious) or endogenous (tissue damage) molecular patterns. Innate immune activation by proteoglycans has important implications for the understanding of cell-matrix interactions in health and disease. In this review, we will summarize the current state of knowledge of innate immune signaling by proteoglycans, discuss the implications, and explore future directions to define progress in this area of extracellular matrix biology.
Collapse
Affiliation(s)
- Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Rashmin C Savani
- Division of Neonatal-Perinatal Medicine, Center for Pulmonary & Vascular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
11
|
Carai P, Ruozi G, Paye A, Debing Y, Bortolotti F, Lecomte J, Zentilin L, Jones EAV, Giacca M, Heymans S. AAV9-mediated functional screening for cardioprotective cytokines in Coxsackievirus-B3-induced myocarditis. Sci Rep 2022; 12:7304. [PMID: 35508525 PMCID: PMC9067557 DOI: 10.1038/s41598-022-11131-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
Viral myocarditis (VM) is an important cause of heart failure (HF) in children and adults. However, the molecular determinants involved in cardiac inflammation and cardiomyocyte necrosis remain poorly characterized, and cardioprotective molecules are currently missing. Here, we applied an in vivo method based on the functional selection (FunSel) of cardioprotective factors using AAV vectors for the unbiased identification of novel immunomodulatory molecules in a Coxsackievirus B3 (CVB3)-induced myocarditis mouse model. Two consecutive rounds of in vivo FunSel using an expression library of 60 cytokines were sufficient to identify five cardioprotective factors (IL9, IL3, IL4, IL13, IL15). The screening also revealed three cytokines (IL18, IL17b, and CCL11) that were counter-selected and likely to exert a detrimental effect. The pooled overexpression of the five most enriched cytokines using AAV9 vectors decreased inflammation and reduced cardiac dilatation, persisting at 1 month after treatment. Individual overexpression of IL9, the top ranking in our functional selection, markedly reduced cardiac inflammation and injury, concomitant with an increase of anti-inflammatory Th2-cells and a reduction of pro-inflammatory Th17- and Th22-cells at 14 days post-infection. AAV9-mediated FunSel cardiac screening identified IL9 and other four cytokines (IL3, IL4, IL13, and IL15) as cardioprotective factors in CVB3-induced VM in mice.
Collapse
Affiliation(s)
- Paolo Carai
- Department of Cardiovascular Sciences, Center for Vascular and Molecular Biology, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Giulia Ruozi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alexandra Paye
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Yannick Debing
- CARIM, Maastricht University, Maastricht, The Netherlands
- Aligos Therapeutics, Leuven, Belgium
| | - Francesca Bortolotti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Julie Lecomte
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Center for Vascular and Molecular Biology, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, London, UK
| | - Stephane Heymans
- Department of Cardiovascular Sciences, Center for Vascular and Molecular Biology, KU Leuven, Leuven, Belgium.
- CARIM, Maastricht University, Maastricht, The Netherlands.
- Center for Heart Failure Research, CARIM, Department of Cardiology, Maastricht University Medical Center, PO BOX 5800, 6202 AZ, Maastricht, The Netherlands.
| |
Collapse
|
12
|
The role of the cell surface glycocalyx in drug delivery to and through the endothelium. Adv Drug Deliv Rev 2022; 184:114195. [PMID: 35292326 DOI: 10.1016/j.addr.2022.114195] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
Cell membranes are key interfaces where materials engineering meets biology. Traditionally regarded as just the location of receptors regulating the uptake of molecules, we now know that all mammalian cell membranes are 'sugar coated'. These sugars, or glycans, form a matrix bound at the cell membrane via proteins and lipids, referred to as the glycocalyx, which modulate access to cell membrane receptors crucial for interactions with drug delivery systems (DDS). Focusing on the key blood-tissue barrier faced by most DDS to enable transport from the place of administration to target sites via the circulation, we critically assess the design of carriers for interactions at the endothelial cell surface. We also discuss the current challenges for this area and provide opportunities for future research efforts to more fully engineer DDS for controlled, efficient, and targeted interactions with the endothelium for therapeutic application.
Collapse
|
13
|
MicroRNA-324-3p Plays A Protective Role Against Coxsackievirus B3-Induced Viral Myocarditis. Virol Sin 2021; 36:1585-1599. [PMID: 34632544 DOI: 10.1007/s12250-021-00441-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023] Open
Abstract
Viral myocarditis (VM) is an inflammatory disease of the myocardium associated with heart failure, which is caused by common viral infections. A majority of the infections are initiated by coxsackievirus B3 (CVB3). MicroRNAs (miRNAs) have a major role in various biological processes, including gene expression, cell growth, proliferation, and apoptosis, as well as viral infection and antiviral immune responses. Although, miRNAs have been found to regulate viral infections, their role in CVB3 infection remains poorly understood. In the previous study, miRNA microarray results showed that miR-324-3p expression levels were significantly increased when cells and mice were infected with CVB3. It was also found that miR-324-3p downregulated TRIM27 and decreased CVB3 replication in vitro and in vivo. In vitro, analysis of downstream signaling of TRIM27 revealed that, miR-324-3p inhibited CVB3 infection, and reduced cytopathic effect and viral plaque formation by reducing the expression of TRIM27. In vivo, miR-324-3p decreased the expression of TRIM27, reduced cardiac viral replication and load, thereby strongly attenuating cardiac injury and inflammation. Taken together, this study suggests that miR-324-3p targets TRIM27 to inhibit CVB3 replication and viral load, thereby reducing the cardiac injury associated with VM.
Collapse
|
14
|
Cicuéndez M, Casarrubios L, Feito MJ, Madarieta I, Garcia-Urkia N, Murua O, Olalde B, Briz N, Diez-Orejas R, Portolés MT. Effects of Human and Porcine Adipose Extracellular Matrices Decellularized by Enzymatic or Chemical Methods on Macrophage Polarization and Immunocompetence. Int J Mol Sci 2021; 22:ijms22083847. [PMID: 33917732 PMCID: PMC8068109 DOI: 10.3390/ijms22083847] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
The decellularized extracellular matrix (ECM) obtained from human and porcine adipose tissue (AT) is currently used to prepare regenerative medicine bio-scaffolds. However, the influence of these natural biomaterials on host immune response is not yet deeply understood. Since macrophages play a key role in the inflammation/healing processes due to their high functional plasticity between M1 and M2 phenotypes, the evaluation of their response to decellularized ECM is mandatory. It is also necessary to analyze the immunocompetence of macrophages after contact with decellularized ECM materials to assess their functional role in a possible infection scenario. In this work, we studied the effect of four decellularized adipose matrices (DAMs) obtained from human and porcine AT by enzymatic or chemical methods on macrophage phenotypes and fungal phagocytosis. First, a thorough biochemical characterization of these biomaterials by quantification of remnant DNA, lipids, and proteins was performed, thus indicating the efficiency and reliability of both methods. The proteomic analysis evidenced that some proteins are differentially preserved depending on both the AT origin and the decellularization method employed. After exposure to the four DAMs, specific markers of M1 proinflammatory and M2 anti-inflammatory macrophages were analyzed. Porcine DAMs favor the M2 phenotype, independently of the decellularization method employed. Finally, a sensitive fungal phagocytosis assay allowed us to relate the macrophage phagocytosis capability with specific proteins differentially preserved in certain DAMs. The results obtained in this study highlight the close relationship between the ECM biochemical composition and the macrophage’s functional role.
Collapse
Affiliation(s)
- Mónica Cicuéndez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - Iratxe Madarieta
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Nerea Garcia-Urkia
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Olatz Murua
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| | - Nerea Briz
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Rosalía Diez-Orejas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| |
Collapse
|
15
|
Xu M, Li X, Song L, Tao C, Fang J, Tao L. Lupeol alleviates coxsackievirus B3-induced viral myocarditis in mice via downregulating toll-like receptor 4. J Int Med Res 2021; 48:300060520910908. [PMID: 32290748 PMCID: PMC7158257 DOI: 10.1177/0300060520910908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objectives To investigate the effect of lupeol in a mouse model of viral myocarditis induced by coxsackie virus B3 (CVB3). Methods Mice were separated into controls (DMEM, n = 20) and CVB3 infected groups (i.e., untreated CVB3 [n = 40]; CVB3 + lupeol 50 mg/kg [n = 40]; CVB3 + lupeol 100 mg/kg [n = 40]; CVB3 + small interfering RNA (siRNA)- toll-like receptor 4 (TLR4) [n = 20]; siRNA + EXP-H mice [n = 20]). Reverse transcription polymerase chain reaction (RT-PCR), western-blot assay, immunohistochemistry, enzyme-linked immunosorbent (ELISA) assay and histopathology were performed to investigate the cardioprotective role of lupeol. Results The elevated pro-inflammatory cytokines in CVB3-infected mice (i.e., interleukin-1β [IL-1β]; interleukin-6 [IL-6]; tumour necrosis factor-α [TNF-α]) were significantly reduced by lupeol 50 or 100 mg/kg. Interestingly, the mRNA level and protein level of toll-like receptor 4 (TLR4) were inhibited by lupeol. Conclusions Lupeol alleviates CVB3-induced viral myocarditis and myocardial damage in mice. The underlying mechanism may due to downregulation of TLR4.
Collapse
Affiliation(s)
- Ming Xu
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, P.R. China *Ming Xu and Xiaoyong Li are co-first authors
| | - Xiaoyong Li
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, P.R. China *Ming Xu and Xiaoyong Li are co-first authors
| | | | | | | | | |
Collapse
|
16
|
Tengryd C, Nielsen SH, Cavalera M, Bengtsson E, Genovese F, Karsdal M, Dunér P, Orho-Melander M, Nilsson J, Edsfeldt A, Gonçalves I. The proteoglycan mimecan is associated with carotid plaque vulnerability and increased risk of future cardiovascular death. Atherosclerosis 2020; 313:88-95. [DOI: 10.1016/j.atherosclerosis.2020.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/31/2020] [Accepted: 09/10/2020] [Indexed: 01/28/2023]
|
17
|
The first versatile human iPSC-based model of ectopic virus induction allows new insights in RNA-virus disease. Sci Rep 2020; 10:16804. [PMID: 33033381 PMCID: PMC7546621 DOI: 10.1038/s41598-020-72966-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
A detailed description of pathophysiological effects that viruses exert on their host is still challenging. For the first time, we report a highly controllable viral expression model based on an iPS-cell line from a healthy human donor. The established viral model system enables a dose-dependent and highly localized RNA-virus expression in a fully controllable environment, giving rise for new applications for the scientific community.
Collapse
|
18
|
Pessentheiner AR, Ducasa GM, Gordts PLSM. Proteoglycans in Obesity-Associated Metabolic Dysfunction and Meta-Inflammation. Front Immunol 2020; 11:769. [PMID: 32508807 PMCID: PMC7248225 DOI: 10.3389/fimmu.2020.00769] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Proteoglycans are a specific subset of glycoproteins found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in metabolic homeostasis and meta-inflammation. Over the last decade, new insights have emerged on the mechanism and biological significance of these interactions in the context of diet-induced disorders such as obesity and type-2 diabetes. Complications of energy metabolism drive most diet-induced metabolic disorders, which results in low-grade chronic inflammation, thereby affecting proper function of many vital organs involved in energy homeostasis, such as the brain, liver, kidney, heart and adipose tissue. Here, we discuss how heparan, chondroitin and keratan sulfate proteoglycans modulate obesity-induced metabolic dysfunction and low-grade inflammation that impact the initiation and progression of obesity-associated morbidities.
Collapse
Affiliation(s)
- Ariane R. Pessentheiner
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - G. Michelle Ducasa
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - Philip L. S. M. Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
19
|
Zappia J, Joiret M, Sanchez C, Lambert C, Geris L, Muller M, Henrotin Y. From Translation to Protein Degradation as Mechanisms for Regulating Biological Functions: A Review on the SLRP Family in Skeletal Tissues. Biomolecules 2020; 10:E80. [PMID: 31947880 PMCID: PMC7023458 DOI: 10.3390/biom10010080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix can trigger cellular responses through its composition and structure. Major extracellular matrix components are the proteoglycans, which are composed of a core protein associated with glycosaminoglycans, among which the small leucine-rich proteoglycans (SLRPs) are the largest family. This review highlights how the codon usage pattern can be used to modulate cellular response and discusses the biological impact of post-translational events on SLRPs, including the substitution of glycosaminoglycan moieties, glycosylation, and degradation. These modifications are listed, and their impacts on the biological activities and structural properties of SLRPs are described. We narrowed the topic to skeletal tissues undergoing dynamic remodeling.
Collapse
Affiliation(s)
- Jérémie Zappia
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Marc Joiret
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Christelle Sanchez
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Cécile Lambert
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Liesbet Geris
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Avenue de l’Hôpital, B-4000 Liège, Belgium;
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
- Physical therapy and Rehabilitation department, Princess Paola Hospital, Vivalia, B-6900 Marche-en-Famenne, Belgium
- Artialis SA, GIGA Tower, Level 3, CHU Sart-Tilman, 4000 Liège, Belgium
| |
Collapse
|
20
|
Xia K, Zhang Y, Sun D. miR‑217 and miR‑543 downregulation mitigates inflammatory response and myocardial injury in children with viral myocarditis by regulating the SIRT1/AMPK/NF‑κB signaling pathway. Int J Mol Med 2019; 45:634-646. [PMID: 31894309 DOI: 10.3892/ijmm.2019.4442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/05/2019] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the expression levels and roles of microRNA (miR)‑217 and miR‑543 in viral myocarditis, and to examine their underlying mechanisms. Coxsackievirus B3 (CVB3) was used to establish in vivo and in vitro models of viral myocarditis. The levels of miR‑217 and miR‑543 were detected using reverse transcription‑quantitative PCR. The association between miR‑217 and miR‑543 and sirtuin‑1 (SIRT1) was predicted and confirmed by TargetScan and dual‑luciferase reporter assay. Cell viability was detected using Cell Counting Kit‑8 assay, and cell apoptosis was measured by analyzing the expression levels of Bcl‑2 and Bax, and by flow cytometry. In addition, the synthesis of various pro‑inflammatory factors was determined by ELISA. In addition, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels were measured in cardiomyocytes following transfection and CVB infection. miR‑217 and miR‑543 were found to be highly expressed in the peripheral blood of pediatric patients with viral myocarditis, in the peripheral blood and myocardial tissues of viral myocarditis mice and in CVB3‑infected cardiomyocytes. SIRT1 was found to be a target of both miR‑217 and miR‑543, and SIRT1 expression level was downregulated in viral myocarditis. Further analysis indicated that the reduced cell viability, increased cell apoptosis, enhanced synthesis of inflammatory factors, increased MDA content and decreased SOD activity associated with myocarditis were significantly reversed after inhibition of miR‑217 or miR‑543. Importantly, the present results showed that all the effects of miR‑217 and miR‑543 inhibition on cardiomyocytes were significantly suppressed following SIRT1 knockdown. Collectively, the present data indicated that miR‑217 and miR‑543 were significantly upregulated in viral myocarditis, and downregulation of miR‑217 and miR‑543 attenuated CVB3 infection‑induced cardiomyocyte injury by targeting SIRT1. miR‑217 and miR‑543 may be potential therapeutic targets for developing novel viral myocarditis treatments in the future.
Collapse
Affiliation(s)
- Kun Xia
- Department of Cardiovascular Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430019, P.R China
| | - Yong Zhang
- Department of Cardiovascular Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430019, P.R China
| | - Dongming Sun
- Department of Cardiovascular Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430019, P.R China
| |
Collapse
|
21
|
The Non-Fibrillar Side of Fibrosis: Contribution of the Basement Membrane, Proteoglycans, and Glycoproteins to Myocardial Fibrosis. J Cardiovasc Dev Dis 2019; 6:jcdd6040035. [PMID: 31547598 PMCID: PMC6956278 DOI: 10.3390/jcdd6040035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) provides structural support and a microenvironmentfor soluble extracellular molecules. ECM is comprised of numerous proteins which can be broadly classified as fibrillar (collagen types I and III) and non-fibrillar (basement membrane, proteoglycans, and glycoproteins). The basement membrane provides an interface between the cardiomyocytes and the fibrillar ECM, while proteoglycans sequester soluble growth factors and cytokines. Myocardial fibrosis was originally only linked to accumulation of fibrillar collagens, but is now recognized as the expansion of the ECM including the non-fibrillar ECM proteins. Myocardial fibrosis can be reparative to replace the lost myocardium (e.g., ischemic injury or myocardial infarction), or can be reactive resulting from pathological activity of fibroblasts (e.g., dilated or hypertrophic cardiomyopathy). Contribution of fibrillar collagens to fibrosis is well studied, but the role of the non-fibrillar ECM proteins has remained less explored. In this article, we provide an overview of the contribution of the non-fibrillar components of the extracellular space of the heart to highlight the potential significance of these molecules in fibrosis, with direct evidence for some, although not all of these molecules in their direct contribution to fibrosis.
Collapse
|
22
|
Christensen G, Herum KM, Lunde IG. Sweet, yet underappreciated: Proteoglycans and extracellular matrix remodeling in heart disease. Matrix Biol 2019; 75-76:286-299. [DOI: 10.1016/j.matbio.2018.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/22/2017] [Accepted: 01/01/2018] [Indexed: 12/20/2022]
|
23
|
Costa RA, Martins RST, Capilla E, Anjos L, Power DM. Vertebrate SLRP family evolution and the subfunctionalization of osteoglycin gene duplicates in teleost fish. BMC Evol Biol 2018; 18:191. [PMID: 30545285 PMCID: PMC6293640 DOI: 10.1186/s12862-018-1310-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Osteoglycin (OGN, a.k.a. mimecan) belongs to cluster III of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). In vertebrates OGN is a characteristic ECM protein of bone. In the present study we explore the evolution of SLRP III and OGN in teleosts that have a skeleton adapted to an aquatic environment. Results The SLRP gene family has been conserved since the separation of chondrichthyes and osteichthyes. Few gene duplicates of the SLRP III family exist even in the teleosts that experienced a specific whole genome duplication. One exception is ogn for which duplicate copies were identified in fish genomes. The ogn promoter sequence and in vitro mesenchymal stem cell (MSC) cultures suggest the duplicate ogn genes acquired divergent functions. In gilthead sea bream (Sparus aurata) ogn1 was up-regulated during osteoblast and myocyte differentiation in vitro, while ogn2 was severely down-regulated during bone-derived MSCs differentiation into adipocytes in vitro. Conclusions Overall, the phylogenetic analysis indicates that the SLRP III family in vertebrates has been under conservative evolutionary pressure. The retention of the ogn gene duplicates in teleosts was linked with the acquisition of different functions. The acquisition by OGN of functions other than that of a bone ECM protein occurred early in the vertebrate lineage. Electronic supplementary material The online version of this article (10.1186/s12862-018-1310-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R A Costa
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - R S T Martins
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - E Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - L Anjos
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - D M Power
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
24
|
Trifonov L, Nudelman V, Zhenin M, Matsree E, Afri M, Schmerling B, Cohen G, Jozwiak K, Weitman M, Korshin E, Senderowitz H, Shainberg A, Hochhauser E, Gruzman A. Structurally Simple, Readily Available Peptidomimetic 1-Benzyl-5-methyl-4-( n-octylamino)pyrimidin-2(1 H)-one Exhibited Efficient Cardioprotection in a Myocardial Ischemia (MI) Mouse Model. J Med Chem 2018; 61:11309-11326. [PMID: 30507195 DOI: 10.1021/acs.jmedchem.8b01471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TLR4, a member of the Toll-like receptor (TLR) family, serves as a pattern recognition receptor in the innate immune response to microbial pathogens. TLR4 also regulates the inflammatory reaction to ischemic injury in the heart. The TRIF-related adaptor molecule (TRAM) is an adapter that recruits the Toll/interleukin 1 receptor (TIR) domain, which contains adapter-inducing IFN-β (TRIF), to activate TLR4, following TRIF-dependent cytokine gene transcription. On the basis of a known TRAM-derived decoy peptide, 10 of its peptidomimetics were synthesized. One of them, 1-benzyl-5-methyl-4-( n-octylamino)pyrimidin-2(1 H)-one (21), exhibited high potency and efficacy in vitro. In vitro results and in silico analysis provided evidence for the possible direct interaction of 21 with the TLR4 complex. Administered in mice, 21 was able to block the pathophysiological manifestation of MI, restoring the concomitant tissue damage, with a 100% survival rate. Thus, inhibition of TLR4-mediated inflammation in postischemic myocardium could be used as an approach for developing cardioprotective drugs.
Collapse
Affiliation(s)
| | - Vadim Nudelman
- Cardiac Research Laboratory, Felsenstein Research Center, Rabin Medical Center, Sackler Faculty of Medicine , Tel Aviv University , Jabotinsky Street , Petach Tikva 49100 , Israel
| | | | - Erez Matsree
- Cardiac Research Laboratory, Felsenstein Research Center, Rabin Medical Center, Sackler Faculty of Medicine , Tel Aviv University , Jabotinsky Street , Petach Tikva 49100 , Israel
| | | | | | - Guy Cohen
- The Skin Research Institute , The Dead-Sea & Arava Science Center , Masada 86910 , Israel
| | - Krzysztof Jozwiak
- Department of Biopharmacy , Medical University of Lublin , W. Chodzki 4a , Lublin 20-093 , Poland
| | | | | | | | | | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Research Center, Rabin Medical Center, Sackler Faculty of Medicine , Tel Aviv University , Jabotinsky Street , Petach Tikva 49100 , Israel
| | | |
Collapse
|
25
|
Hu X, Li YQ, Li QG, Ma YL, Peng JJ, Cai SJ. Osteoglycin-induced VEGF Inhibition Enhances T Lymphocytes Infiltrating in Colorectal Cancer. EBioMedicine 2018; 34:35-45. [PMID: 30037719 PMCID: PMC6116424 DOI: 10.1016/j.ebiom.2018.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND OGN could modify tissue inflammation and immune response via local and circulating innate immune cells, which was suggestive of a reciprocal relationship between OGN and T cell infiltration in cancer. Hence, we aim to measure the OGN expression patterns and immune cells response in colorectal cancer(CRC). METHODS This study enrolled three independent sets of patients from TCGA and the Fudan University Shanghai Cancer Center(FUSCC). The effect of OGN on T cell infiltration and the mechanism were examined in vitro and in vivo. FINDINGS Tumor OGN expression levels were positively associated with CD3, CD8, and PTPRC expressions in the training and testing sets from TCGA, respectively. In validation set from FUSCC, OGN expression level also paralleled positively with CD8+ cell density in colorectal cancer tissue (p < .001). For a unit decrease in outcome quartile categories, multivariable OR in the lowest (vs highest) OGN expression was 0.17 (95% CI 0.08-0.33). Consistently, immunofluorescence validated that OGN was preferentially expressed with CD8+ cells in both normal epithelium and cancer tissue. Xenograft tumors arising from MC38 cells with OGN-over-expression displayed a significant increase in CD8+ cells recruitment. Hence, high expression of OGN was associated with a profound longer survival (P = .009). In mechanism, elevated OGN expression inhibited the activation of the transcriptional genes HIF-1α in CRC cells, then significantly impeded the expression of VEGF. As a result of this, T cell tumor infiltration was reduced. INTERPRETATION OGN expression is positively associated with CD8+ cell density in colorectal cancer tissue, suggesting a possible influence of OGN expression on tumor reactive T cells in the tumor niche. FUND: No.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ya-Qi Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qing-Guo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan-Lei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jun-Jie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - San-Jun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
26
|
Rienks M, Carai P, van Teeffelen J, Eskens B, Verhesen W, Hemmeryckx B, Johnson DM, van Leeuwen R, Jones EA, Heymans S, Papageorgiou AP. SPARC preserves endothelial glycocalyx integrity, and protects against adverse cardiac inflammation and injury during viral myocarditis. Matrix Biol 2018; 74:21-34. [PMID: 29730504 DOI: 10.1016/j.matbio.2018.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 12/24/2022]
Abstract
Myocardial damage as a consequence of cardiotropic viruses leads to a broad variety of clinical presentations and is still a complicated condition to diagnose and treat. Whereas the extracellular matrix protein Secreted Protein Acidic and Rich in Cysteine or SPARC has been implicated in hypertensive and ischemic heart disease by modulating collagen production and cross-linking, its role in cardiac inflammation and endothelial function is yet unknown. Absence of SPARC in mice resulted in increased cardiac inflammation and mortality, and reduced cardiac systolic function upon coxsackievirus-B3 induced myocarditis. Intra-vital microscopic imaging of the microvasculature of the cremaster muscle combined with electron microscopic imaging of the microvasculature of the cardiac muscle uncovered the significance of SPARC in maintaining endothelial glycocalyx integrity and subsequent barrier properties to stop inflammation. Moreover, systemic administration of recombinant SPARC restored the endothelial glycocalyx and consequently reversed the increase in inflammation and mortality observed in SPARC KO mice in response to viral exposure. Reducing the glycocalyx in vivo by systemic administration of hyaluronidase, an enzyme that degrades the endothelial glycocalyx, mimicked the barrier defects found in SPARC KO mice, which could be restored by subsequent administration of recombinant SPARC. In conclusion, the secreted glycoprotein SPARC protects against adverse cardiac inflammation and mortality by improving the glycocalyx function and resulting endothelial barrier function during viral myocarditis.
Collapse
Affiliation(s)
- Marieke Rienks
- Cardiovascular Department, King's College London, United Kingdom; Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, The Netherlands.
| | - Paolo Carai
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, The Netherlands
| | | | - Bart Eskens
- Department of Physiology, Maastricht University, The Netherlands
| | - Wouter Verhesen
- Cardiovascular Department, King's College London, United Kingdom
| | - Bianca Hemmeryckx
- Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU, Leuven, Belgium
| | - Daniel M Johnson
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, The Netherlands
| | - Rick van Leeuwen
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, The Netherlands
| | - Elizabeth A Jones
- Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU, Leuven, Belgium
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, The Netherlands; Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU, Leuven, Belgium; Netherlands Heart Institute, ICIN, Utrecht, The Netherlands
| | - Anna-Pia Papageorgiou
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, The Netherlands; Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU, Leuven, Belgium
| |
Collapse
|
27
|
Zhang Y, Sun L, Sun H, Yu Z, Liu X, Luo X, Li C, Sun D, Li T. MicroRNA-381 protects myocardial cell function in children and mice with viral myocarditis via targeting cyclooxygenase-2 expression. Exp Ther Med 2018; 15:5510-5516. [PMID: 29805552 DOI: 10.3892/etm.2018.6082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 01/16/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine the expression of cyclooxygenase (COX)-2 and microRNA (miRNA/miR)-381 in the blood of children with viral myocarditis (VM), and investigate the association between COX-2 and miR-381 in the occurrence and development of the disease using a mouse model. A total of 26 children with VM (15 boys and 11 girls) were included in the present study. Peripheral blood was collected from all children. The mouse model of VM was constructed by coxsackievirus B3 (CVB3) infection. Peripheral blood and myocardial tissues were collected from all mice for analysis. Reverse transcription-quantitative polymerase chain reaction was used to determine the expression of COX-2 mRNA and miR-381 in serum and myocardial tissues. ELISA was used to measure the content of COX-2 protein in serum from humans and mice, and western blotting was employed to determine the expression of COX-2 protein in myocardial tissues from mice. Contents of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) were evaluated using an automatic biochemical analyzer. A dual luciferase assay was conducted to identify interactions between COX-2 mRNA and miR-381. Children with VM had increased COX-2 levels and decreased miR-381 expression in peripheral blood, compared with those who had recovered from VM. CVB3 infection resulted in damage in the myocardium of mice, and elevated CK-MB and LDH contents. VM model mice exhibited increased COX-2 levels and decreased miR-381 expression in peripheral blood and myocardial tissues compared with normal mice. miR-381 binds to the 3'-untranslated seed regions of both human and mouse COX-2 mRNA to regulate their expression. The present study demonstrated that children with VM have decreased miR-381 expression and elevated COX-2 expression in peripheral blood. miR-381 may inhibit myocardial cell damage caused by CVB3 infection and protect myocardial cell function by targeting COX-2 expression.
Collapse
Affiliation(s)
- Yong Zhang
- Cardiology Department, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430015, P.R. China
| | - Lingli Sun
- Cardiology Department, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430015, P.R. China
| | - Hui Sun
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhongqin Yu
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xia Liu
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xia Luo
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Cuifang Li
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Dongming Sun
- Cardiology Department, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430015, P.R. China
| | - Tao Li
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
28
|
Osteoglycin prevents the development of age-related diastolic dysfunction during pressure overload by reducing cardiac fibrosis and inflammation. Matrix Biol 2017; 66:110-124. [PMID: 28958774 DOI: 10.1016/j.matbio.2017.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 12/17/2022]
Abstract
The small leucine-rich proteoglycan osteoglycin has been implicated in matrix homeostasis in different organs, including the ischemic heart. However, whether osteoglycin modulates cardiac hypertrophy, fibrosis or inflammation in hypertensive heart disease and during aging remains unknown. Angiotensin-II-induced pressure overload increases cardiac osteoglycin expression, concomitant with the onset of inflammation and extracellular matrix deposition. Interestingly aging led to decreased cardiac levels of osteoglycin, yet absence of osteoglycin did not affect organ structure or cardiac function up to the age of 18months. However, Angiotensin-II infusion in combination with aging resulted in exaggerated cardiac fibrosis and inflammation in the osteoglycin null mice as compared to wild-type mice, resulting in increased diastolic dysfunction as determined by magnetic resonance imaging. In vitro, stimulation of bone marrow derived macrophages from osteoglycin null mice with Angiotensin-II resulted in significantly higher levels of ICAM-1 as well as pro-inflammatory cytokines and chemokines IL-1β and MCP-1 as compared to WT cells. Further, stimulation of human cardiac fibroblasts with osteoglycin reduced cell proliferation and inhibited TGF-β induced collagen gene expression. In mouse cardiac tissue, osteoglycin expression inversely correlated with TGF-β expression and in cardiac biopsies of aortic stenosis patients, osteoglycin expression is significantly higher than in control biopsies. Interestingly, osteoglycin levels were higher in patients with less severe myocardial fibrosis and overall in the aortic stenosis patients osteoglycin levels negatively correlated with collagen content in the myocardium. In conclusion, osteoglycin expression is increased in the heart in response to pressure overload and its absence results in increased cardiac inflammation and fibrosis resulting in increased diastolic dysfunction.
Collapse
|