1
|
Chen F, Li Z, Wang T, Fu Y, Lyu L, Xing C, Li S, Li. MOTS-c mimics exercise to combat diabetic liver fibrosis by targeting Keap1-Nrf2-Smad2/3. Sci Rep 2025; 15:18460. [PMID: 40425777 PMCID: PMC12116857 DOI: 10.1038/s41598-025-03526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 05/21/2025] [Indexed: 05/29/2025] Open
Abstract
Liver fibrosis is a common complication of T2DM(Type 2 diabetes mellitus). Appropriate intervention (exercise or drugs) in the early stage of liver fibrosis can slow down or even reverse liver fibrosis. MOTS-c (Mitochondrial open reading frame of the 12 S r RNA type-c ) has been described as an exercise-mimicking substance, and its effects are similar to those achieved by aerobic exercise; however, the exact mechanism remains to be elucidated. In this study, liver function was impaired in a T2DM rat model, leading to the aggravation of liver fibrosis. T2DM rats with liver fibrosis were subjected to MOTS-c, aerobic exercise therapy, or their combination. HE staining, Masson's trichrome staining and immunohistochemistry were used for histopathological examination. Transcriptome sequencing, q-PCR and WB were used to detect the expression of Keap1 (Kelch-like ECH-associated protein 1), Nrf2 (Nuclear factor erythroid 2-related factor 2 ), Smad2/3/4 and other genes. MOTS-c and aerobic exercise therapy improved T2DM-induced liver fibrosis. Additionally, cells were transfected with MOTS-c overexpression or interference plasmids or MOTS-c was added to the culture medium. MOTS-c overexpression or MOTS-c addition to the culture medium inhibited ROS levels, increased the mRNA and protein expression of Keap1-Nrf2 pathway genes and decreased the expression of TGF-β1(Transforming growth factor-beta1)/Smad pathway genes. Our findings demonstrate that MOTS-c modulates the progression of T2DM complicated by liver fibrosis through a Keap1-Nrf2-Smad2/3 signaling pathway-dependent mechanism.
Collapse
Affiliation(s)
- Feilong Chen
- Sports Medicine Key Laboratory of Sichuan Province, Expert Centre of Sichuan Province, Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Zhiyu Li
- Sports Medicine Key Laboratory of Sichuan Province, Expert Centre of Sichuan Province, Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Tutu Wang
- Sports Medicine Key Laboratory of Sichuan Province, Expert Centre of Sichuan Province, Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu Fu
- Sports Medicine Key Laboratory of Sichuan Province, Expert Centre of Sichuan Province, Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Lei Lyu
- Sports Medicine Key Laboratory of Sichuan Province, Expert Centre of Sichuan Province, Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Chengyuan Xing
- Sports Medicine Key Laboratory of Sichuan Province, Expert Centre of Sichuan Province, Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Shunchang Li
- Sports Medicine Key Laboratory of Sichuan Province, Expert Centre of Sichuan Province, Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China.
| | - Li
- Sports Medicine Key Laboratory of Sichuan Province, Expert Centre of Sichuan Province, Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| |
Collapse
|
2
|
Feng Y, Rao Z, Tian X, Hu Y, Yue L, Meng Y, Zhong Q, Chen W, Xu W, Li H, Hu Y, Shi R. Endurance training enhances skeletal muscle mitochondrial respiration by promoting MOTS-c secretion. Free Radic Biol Med 2025; 227:619-628. [PMID: 39706498 DOI: 10.1016/j.freeradbiomed.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
The mitochondrial open reading frame of 12S rRNA-c (MOTS-c) is a biologically active mitochondria-derived peptide. However, the relationship between MOTS-c, skeletal muscle mitochondrial function, and endurance exercise adaptations is unknown. Here, we tested indices such as maximal oxygen uptake and serum MOTS-c levels in marathon runners and sedentary subjects. In addition, we tested aerobic exercise capacity, skeletal muscle mitochondrial respiration rate, and serum MOTS-c levels in mice subjected to long-term endurance training groups and sedentary groups. Our results indicated a close association between serum MOTS-c levels and aerobic exercise capacity. Circulating MOTS-c levels are expected to be an important indicator for predicting aerobic exercise capacity and assessing body fat status, endurance training load, and physical function. More importantly, we found that endurance training may enhance the mitochondrial respiratory function of skeletal muscle by promoting the secretion of MOTS-c and activating the AMPK/PGC-1α pathway.
Collapse
Affiliation(s)
- Yiwei Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Zhijian Rao
- School of Physical Education, Shanghai Normal University, Shanghai, 200234, China
| | - Xu Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yi Hu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Liantian Yue
- School of Sport, Exercise and Health Sciences, Loughborough University, UK
| | - Yifan Meng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Qiuling Zhong
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Wei Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenlong Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoran Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yingjia Hu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Rengfei Shi
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
3
|
Kumagai H, Kim SJ, Miller B, Zempo H, Tanisawa K, Natsume T, Lee SH, Wan J, Leelaprachakul N, Kumagai ME, Ramirez R, Mehta HH, Cao K, Oh TJ, Wohlschlegel JA, Sha J, Nishida Y, Fuku N, Dobashi S, Miyamoto-Mikami E, Takaragawa M, Fuku M, Yoshihara T, Naito H, Kawakami R, Torii S, Midorikawa T, Oka K, Hara M, Iwasaka C, Yamada Y, Higaki Y, Tanaka K, Yen K, Cohen P. MOTS-c modulates skeletal muscle function by directly binding and activating CK2. iScience 2024; 27:111212. [PMID: 39559755 PMCID: PMC11570452 DOI: 10.1016/j.isci.2024.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/16/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
MOTS-c is a mitochondrial microprotein that improves metabolism. Here, we demonstrate CK2 is a direct and functional target of MOTS-c. MOTS-c directly binds to CK2 and activates it in cell-free systems. MOTS-c administration to mice prevented skeletal muscle atrophy and enhanced muscle glucose uptake, which were blunted by suppressing CK2 activity. Interestingly, the effects of MOTS-c are tissue-specific. Systemically administered MOTS-c binds to CK2 in fat and muscle, yet stimulates CK2 activity in muscle while suppressing it in fat by differentially modifying CK2-interacting proteins. Notably, a naturally occurring MOTS-c variant, K14Q MOTS-c, has reduced binding to CK2 and does not activate it or elicit its effects. Male K14Q MOTS-c carriers exhibited a higher risk of sarcopenia and type 2 diabetes (T2D) in an age- and physical-activity-dependent manner, whereas females had an age-specific reduced risk of T2D. Altogether, these findings provide evidence that CK2 is required for MOTS-c effects.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hirofumi Zempo
- Department of Administrative Nutrition, Faculty of Health and Nutrition, Tokyo Seiei College, Tokyo, Japan
| | - Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | | | - Shin Hyung Lee
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Junxiang Wan
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Naphada Leelaprachakul
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Michi Emma Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ricardo Ramirez
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hemal H. Mehta
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kevin Cao
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Tae Jung Oh
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Shohei Dobashi
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Mizuki Takaragawa
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Mizuho Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Tsudanuma Central General Hospital, Chiba, Japan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Ryoko Kawakami
- Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Suguru Torii
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Taishi Midorikawa
- College of Health and Welfare, J.F. Oberlin University, Tokyo, Japan
| | - Koichiro Oka
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Chiharu Iwasaka
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yosuke Yamada
- Sports and Health Sciences, Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
- Medicine and Science in Sports and Exercise, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Yasuki Higaki
- Laboratory of Exercise Physiology, Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Rice MC, Imun M, Jung SW, Park CY, Kim JS, Lai RW, Barr CR, Son JM, Tor K, Kim E, Lu RJ, Cohen I, Benayoun BA, Lee C. The Human Mitochondrial Genome Encodes for an Interferon-Responsive Host Defense Peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530691. [PMID: 39553971 PMCID: PMC11565950 DOI: 10.1101/2023.03.02.530691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The mitochondrial DNA (mtDNA) can trigger immune responses and directly entrap pathogens, but it is not known to encode for active immune factors. The immune system is traditionally thought to be exclusively nuclear-encoded. Here, we report the identification of a mitochondrial-encoded host defense peptide (HDP) that presumably derives from the primordial proto-mitochondrial bacteria. We demonstrate that MOTS-c (mitochondrial open reading frame from the twelve S rRNA type-c) is a mitochondrial-encoded amphipathic and cationic peptide with direct antibacterial and immunomodulatory functions, consistent with the peptide chemistry and functions of known HDPs. MOTS-c targeted E. coli and methicillin-resistant S. aureus (MRSA), in part, by targeting their membranes using its hydrophobic and cationic domains. In monocytes, IFNγ, LPS, and differentiation signals each induced the expression of endogenous MOTS-c. Notably, MOTS-c translocated to the nucleus to regulate gene expression during monocyte differentiation and programmed them into macrophages with unique transcriptomic signatures related to antigen presentation and IFN signaling. MOTS-c-programmed macrophages exhibited enhanced bacterial clearance and shifted metabolism. Our findings support MOTS-c as a first-in-class mitochondrial-encoded HDP and indicates that our immune system is not only encoded by the nuclear genome, but also by the co-evolved mitochondrial genome.
Collapse
|
5
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Chen L, Liu L. Adipose thermogenic mechanisms by cold, exercise and intermittent fasting: Similarities, disparities and the application in treatment. Clin Nutr 2024; 43:2043-2056. [PMID: 39088961 DOI: 10.1016/j.clnu.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Given its nonnegligible role in metabolic homeostasis, adipose tissue has been the target for treating metabolic disorders such as obesity, diabetes and cardiovascular diseases. Besides its lipolytic function, adipose thermogenesis has gained increased interest due to the irreplaceable contribution to dissipating energy to restore equilibrium, and its therapeutic effects have been testified in various animal models. In this review, we will brief about the canonical cold-stimulated adipose thermogenic mechanisms, elucidate on the exercise- and intermittent fasting-induced adipose thermogenic mechanisms, with a focus on the similarities and disparities among these signaling pathways, in an effort to uncover the overlapped and specific targets that may yield potent therapeutic efficacy synergistically in improving metabolic health.
Collapse
Affiliation(s)
- Linshan Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China.
| |
Collapse
|
7
|
Zhou Q, Yin S, Lei X, Tian Y, Lin D, Wang L, Chen Q. The correlation between mitochondrial derived peptide (MDP) and metabolic states: a systematic review and meta-analysis. Diabetol Metab Syndr 2024; 16:200. [PMID: 39160573 PMCID: PMC11331736 DOI: 10.1186/s13098-024-01405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 07/05/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND MOTS-c is known as mitochondrial open reading frame (ORF) of the twelve S c, produced by a small ORF-encoded peptides (SEPs) in mitochondrial 12S rRNA region. There is growing evidence that MOTS-c has a strong relationship with the expression of inflammation- and metabolism-associated genes and metabolic homeostasis, and even offering some protection against insulin resistance (IR). However, studies have reported inconsistent correlations between different population characteristics and MOTS-c levels. This meta-analysis aims to elucidate MOTS-c levels in physiological and pathological states, and its correlation with metabolic features in various physiological states. METHODS We conducted a systematic review and meta-analysis to synthesize the evidence of changes in blood MOTS-c concentration, and any association between MOTS-c and population characteristic. The Web of Science, PubMed, EMBASE, CNKI, WANGFANG and VIP databases were searched from inception to April 2023. The statistical analysis was summarized using the standardized mean difference (SMD) and 95% confidence interval (95% CIs). Pearson correlation coefficient was used to analyze the correlation and generate forest plots through a random-effects model. Additional analyses as sensitivity and subgroup analyses were performed to identify the origins of heterogeneity. Publication bias was retrieved by means of a funnel-plot analysis and Egger's test. All related statistical analyses were performed using Revman 5.3 and Stata 15 statistical software. RESULT There are 6 case-control studies and 1 cross-sectional study (11 groups) including 602 participants in our current meta-analysis. Overall analysis results showed plasma MOTS-c concentration in diabetes and obesity patients was significantly reduced (SMD = - 0.37; 95% CI- 0.53 to - 0.20; P < 0.05). After subgroup analysis, the present analysis has yielded opposite results for MOTS-c changes in obesity (SMD = 0.51; 95% CI 0.21 to 0.81; P < 0.05) and type 2 diabetes mellitus (T2DM) (SMD = - 0.89; 95% CI - 1.12 to - 0.65; P < 0.05) individuals. Moreover, the correlation analysis was performed to identify that MOTS-c levels were significantly positively correlated with TC (r = 0.29, 95% CI 0.20 to 0.38) and LDL-c (r = 0.30, 95% CI 0.22 to 0.39). The subgroup analysis results showed that MOTS-c decreased significantly in patients with diabetes (SMD = - 0.89; 95% CI- 1.12 to - 0.65; P < 0.05). In contrast, the analysis result for obesity persons (BMI > 28 kg/ m2) was statistically significant after overweight people (BMI = 24-28 kg/ m2) were excluded (SMD = 0.51; 95% CI 0.21 to 0.81; P < 0.05), which is completely different from that of diabetes. Publication bias was insignificant (Egger's test: P = 0.722). CONCLUSION Circulating MOTS-c level was significantly reduced in diabetic individuals but was increased significantly in obesity patients. The application of monitoring the circulating levels variability of MOTS-c in routine screening for obesity and diabetes is prospects and should be taken into consideration as an important index for the early prediction and prevention of metabolic syndrome in the future. PROSPERO registration number CRD42021248167.
Collapse
Affiliation(s)
- Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 610072, China
| | - Shao Yin
- Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 610072, China
| | - Xingxing Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 610072, China
| | - Yuting Tian
- Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 610072, China
| | - Dajun Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 610072, China
| | - Li Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 610072, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan Province, No. 39, Shi-Er-Qiao Road, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
8
|
Kamiński K, Blatkiewicz M, Szyszka M, Olechnowicz A, Komarowska H, Klimont A, Wierzbicki T, Karczewski M, Ruchała M, Rucinski M. Expression Patterns of MOTS-c in Adrenal Tumors: Results from a Preliminary Study. Int J Mol Sci 2024; 25:8721. [PMID: 39201408 PMCID: PMC11354279 DOI: 10.3390/ijms25168721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Adrenal tumors, such as adrenocortical carcinoma (ACC), adrenocortical adenoma (ACA), and pheochromocytoma (PCC) are complex diseases with unclear causes and treatments. Mitochondria and mitochondrial-derived peptides (MDPs) are crucial for cancer cell survival. The primary aim of this study was to analyze samples from different adrenal diseases, adrenocortical carcinoma, adrenocortical adenoma, and pheochromocytoma, and compare them with normal adrenal tissue to determine whether the expression levels of the mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) gene and protein vary between different types of adrenal tumors compared to healthy controls using qPCR, ELISA, and IHC methods. Results showed decreased MOTS-c mRNA expression in all adrenal tumors compared to controls, while serum MOTS-c protein levels increased in ACA and PCC but not in ACC. The local distribution of MOTS-c protein in adrenal tissue was reduced in all tumors. Notably, MOTS-c protein expression declined with ACC progression (stages III and IV) but was unrelated to patient age or sex. Tumor size and testosterone levels positively correlated with MOTS-c mRNA but negatively with serum MOTS-c protein. Additionally, serum MOTS-c protein correlated positively with glucose, total cholesterol, HDL, LDL, and SHGB levels. These findings suggest disrupted expression of MOTS-c in the spectrum of adrenal diseases, which might be caused by mechanisms involving increased mitochondrial dysfunction and structural changes in the tissue associated with disease progression. This study provides a detailed examination of MOTS-c mRNA and protein in adrenal tumors, indicating the potential role of MDPs in tumor biology and progression.
Collapse
Affiliation(s)
- Kacper Kamiński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (K.K.); (M.B.); (M.S.); (A.O.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (K.K.); (M.B.); (M.S.); (A.O.)
| | - Marta Szyszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (K.K.); (M.B.); (M.S.); (A.O.)
| | - Anna Olechnowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (K.K.); (M.B.); (M.S.); (A.O.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Hanna Komarowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland; (H.K.); (A.K.); (M.R.)
| | - Anna Klimont
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland; (H.K.); (A.K.); (M.R.)
| | - Tomasz Wierzbicki
- Department of General, Endocrinological and Gastroenterological Surgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| | - Marek Karczewski
- Department of General and Transplantation Surgery, Poznan University of Medical Sciences, 60-356 Poznan, Poland;
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland; (H.K.); (A.K.); (M.R.)
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (K.K.); (M.B.); (M.S.); (A.O.)
| |
Collapse
|
9
|
Li F, Jia Y, Fang J, Gong L, Zhang Y, Wei S, Wu L, Jiang P. Neuroprotective Mechanism of MOTS-c in TBI Mice: Insights from Integrated Transcriptomic and Metabolomic Analyses. Drug Des Devel Ther 2024; 18:2971-2987. [PMID: 39050800 PMCID: PMC11268520 DOI: 10.2147/dddt.s460265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a condition characterized by structural and physiological disruptions in brain function caused by external forces. However, as the highly complex and heterogenous nature of TBI, effective treatments are currently lacking. Mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) has shown notable antinociceptive and anti-inflammatory effects, yet its detailed neuroprotective effects and mode of action remain incompletely understood. This study investigated the neuroprotective effects and the underlying mechanisms of MOTS-c. Methods Adult male C57BL/6 mice were randomly divided into three groups: control (CON) group, MOTS-c group and TBI group. Enzyme-linked immunosorbent assay (ELISA) kit method was used to measure the expression levels of MOTS-c in different groups. Behavioral tests were conducted to assess the effects of MOTS-c. Then, transcriptomics and metabolomics were performed to search Differentially Expressed Genes (DEGs) and Differentially Expressed Metabolites (DEMs), respectively. Moreover, the integrated transcriptomics and metabolomics analysis were employed using R packages and online Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results ELISA kit method showed that TBI resulted in a decrease in the expression of MOTS-c. and peripheral administration of MOTS-c could enter the brain tissue after TBI. Behavioral tests revealed that MOTS-c improved memory, learning, and motor function impairments in TBI mice. Additionally, transcriptomic analysis screened 159 differentially expressed genes. Metabolomic analysis identified 491 metabolites with significant differences. Integrated analysis found 14 KEGG pathways, primarily related to metabolic pathways. Besides, several signaling pathways were enriched, including neuroactive ligand-receptor interaction and retrograde endocannabinoid signaling. Conclusion TBI reduced the expression of MOTS-c. MOTS-c reduced inflammatory responses, molecular damage, and cell death by down-regulating macrophage migration inhibitory factor (MIF) expression and activating the retrograde endocannabinoid signaling pathway. In addition, MOTS-c alleviated the response to hypoxic stress and enhanced lipid β-oxidation to provide energy for the body following TBI. Overall, our study offered new insights into the neuroprotective mechanisms of MOTS-c in TBI mice.
Collapse
Affiliation(s)
- Fengfeng Li
- Neurosurgery Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Yang Jia
- Neurosurgery Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Jun Fang
- Anesthesiology Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Linqiang Gong
- Gastroenterology Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Yazhou Zhang
- Foot and Ankle Surgery Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Shanshan Wei
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Jining, Shandong, 272000, People’s Republic of China
| | - Linlin Wu
- Oncology Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Jining, Shandong, 272000, People’s Republic of China
| |
Collapse
|
10
|
Bień J, Pruszyńska-Oszmałek E, Kołodziejski P, Leciejewska N, Szczepankiewicz D, Sassek M. MOTS-c regulates pancreatic alpha and beta cell functions in vitro. Histochem Cell Biol 2024; 161:449-460. [PMID: 38430258 PMCID: PMC11162381 DOI: 10.1007/s00418-024-02274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/03/2024]
Abstract
The aim of this study is to determine the influence of the mitochondrial open-reading-frame of the twelve S rRNA-c (MOTS-c) peptide on pancreatic cell physiology. Moreover, in this study, we examined the changes in MOTS-c secretion and expression under different conditions. Our experiments were conducted using laboratory cell line cultures, specifically the INS-1E and αTC-1 cell lines, which represent β and α pancreatic cells, respectively. As the pancreas is an endocrine organ, we also tested its hormone regulation capabilities. Furthermore, we assessed the secretion of MOTS-c after incubating the cells with glucose and free fatty acids. Additionally, we examined key cell culture parameters such as cell viability, proliferation, and apoptosis. The results obtained from this study show that MOTS-c has a significant impact on the physiology of pancreatic cells. Specifically, it lowers insulin secretion and expression in INS-1E cells and enhances glucagon secretion and expression in αTC-1 cells. Furthermore, MOTS-c affects cell viability and apoptosis. Interestingly, insulin and glucagon affect the MOTS-c secretion as well as glucose and free fatty acids. These experiments clearly show that MOTS-c is an important regulator of pancreatic metabolism, and there are numerous properties of MOTS-c yet to be discovered.
Collapse
Affiliation(s)
- Jakub Bień
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Paweł Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Natalia Leciejewska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Dawid Szczepankiewicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland.
| |
Collapse
|
11
|
Ozturk Öztürk DA, Erden Y, Tekin S. Central MOTS-c infusion affects reproductive hormones in obese and non-obese rats. Neurosci Lett 2024; 826:137722. [PMID: 38462167 DOI: 10.1016/j.neulet.2024.137722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
MOTS-c, a mitochondrial-derived peptide, acts as a systemic hormone and MOTS-c level is inversely correlated with markers of obesity. Obesity is a risk factor for male reproductive physiology and is expressed as an important cause of infertility. In this study, we aimed to determine the effects of MOTS-c, which has been proven in the hypothalamus and testicles, on the actors involved in the reproductive axis. In the study, 80 male Wistar-Albino rats were divided into two main groups, obese and non-obese (n = 40). Rats in the first main group were fed with fatty diet feed and obesity was induced. The second main group was fed with normal diet feed. Each main group was divided into 4 subgroups (Control, Sham, 10 and 100 µM MOTS-c). The lateral ventricles of the animals in the treatment groups were infused with 10 and 100 µM MOTS-c (solvent in Sham group) for 14 days. At the end of the experiment, hypothalamic Gonadotropin-Releasing Hormone (GnRH) gene expression level, serum testosterone, Luteinizing hormone (LH) and Follicle stimulating hormone (FSH) levels were determined. MOTS-c infusion caused an increase in GnRH mRNA, protein expression levels and serum testosterone, LH and FSH levels in obese and non-obese rats (p < 0.05). MOTS-c administration more significantly upregulated hormone levels in non-obese rats (p < 0.05). MOTS-c administration increases these hormones, suggesting that MOTS-c may stimulate the reproductive axis. Our results reveal that MOTS-c plays a role in the central regulation of reproduction, as well as causes increased LH, FSH and testosterone release.
Collapse
Affiliation(s)
| | - Yavuz Erden
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, Bartin, Turkey.
| | - Suat Tekin
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey.
| |
Collapse
|
12
|
Atakan MM, Türkel İ, Özerkliğ B, Koşar ŞN, Taylor DF, Yan X, Bishop DJ. Small peptides: could they have a big role in metabolism and the response to exercise? J Physiol 2024; 602:545-568. [PMID: 38196325 DOI: 10.1113/jp283214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Exercise is a powerful non-pharmacological intervention for the treatment and prevention of numerous chronic diseases. Contracting skeletal muscles provoke widespread perturbations in numerous cells, tissues and organs, which stimulate multiple integrated adaptations that ultimately contribute to the many health benefits associated with regular exercise. Despite much research, the molecular mechanisms driving such changes are not completely resolved. Technological advancements beginning in the early 1960s have opened new avenues to explore the mechanisms responsible for the many beneficial adaptations to exercise. This has led to increased research into the role of small peptides (<100 amino acids) and mitochondrially derived peptides in metabolism and disease, including those coded within small open reading frames (sORFs; coding sequences that encode small peptides). Recently, it has been hypothesized that sORF-encoded mitochondrially derived peptides and other small peptides play significant roles as exercise-sensitive peptides in exercise-induced physiological adaptation. In this review, we highlight the discovery of mitochondrially derived peptides and newly discovered small peptides involved in metabolism, with a specific emphasis on their functions in exercise-induced adaptations and the prevention of metabolic diseases. In light of the few studies available, we also present data on how both single exercise sessions and exercise training affect expression of sORF-encoded mitochondrially derived peptides. Finally, we outline numerous research questions that await investigation regarding the roles of mitochondrially derived peptides in metabolism and prevention of various diseases, in addition to their roles in exercise-induced physiological adaptations, for future studies.
Collapse
Affiliation(s)
- Muhammed M Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - İbrahim Türkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Berkay Özerkliğ
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Şükran N Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Dale F Taylor
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne, Victoria, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Min SH, Kang GM, Park JW, Kim MS. Beneficial Effects of Low-Grade Mitochondrial Stress on Metabolic Diseases and Aging. Yonsei Med J 2024; 65:55-69. [PMID: 38288646 PMCID: PMC10827639 DOI: 10.3349/ymj.2023.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Mitochondria function as platforms for bioenergetics, nutrient metabolism, intracellular signaling, innate immunity regulators, and modulators of stem cell activity. Thus, the decline in mitochondrial functions causes or correlates with diabetes mellitus and many aging-related diseases. Upon stress or damage, the mitochondria elicit a series of adaptive responses to overcome stress and restore their structural integrity and functional homeostasis. These adaptive responses to low-level or transient mitochondrial stress promote health and resilience to upcoming stress. Beneficial effects of low-grade mitochondrial stress, termed mitohormesis, have been observed in various organisms, including mammals. Accumulated evidence indicates that treatments boosting mitohormesis have therapeutic potential in various human diseases accompanied by mitochondrial stress. Here, we review multiple cellular signaling pathways and interorgan communication mechanisms through which mitochondrial stress leads to advantageous outcomes. We also discuss the relevance of mitohormesis in obesity, diabetes, metabolic liver disease, aging, and exercise.
Collapse
Affiliation(s)
- Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Jae Woo Park
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea.
| |
Collapse
|
14
|
Lu H, Fan L, Zhang W, Chen G, Xiang A, Wang L, Lu Z, Zhai Y. The mitochondrial genome-encoded peptide MOTS-c interacts with Bcl-2 to alleviate nonalcoholic steatohepatitis progression. Cell Rep 2024; 43:113587. [PMID: 38206815 DOI: 10.1016/j.celrep.2023.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a metabolism-associated fatty liver disease with accumulated mitochondrial stress, and targeting mitochondrial function is a potential therapy. The mitochondrial genome-encoded bioactive peptide MOTS-c plays broad physiological roles, but its effectiveness and direct targets in NASH treatment are still unclear. Here, we show that long-term preventive and short-term therapeutic effects of MOTS-c treatments alleviate NASH-diet-induced liver steatosis, cellular apoptosis, inflammation, and fibrosis. Mitochondrial oxidative capacity and metabolites profiling analysis show that MOTS-c significantly reverses NASH-induced mitochondrial metabolic deficiency. Moreover, we identify that MOTS-c directly interacts with the BH3 domain of antiapoptotic B cell lymphoma-2 (Bcl-2), increases Bcl-2 protein stability, and suppresses Bcl-2 ubiquitination. By using a Bcl-2 inhibitor or adeno-associated virus (AAV)-mediated Bcl-2 knockdown, we further confirm that MOTS-c improves NASH-induced mitochondrial dysfunction, inflammation, and fibrosis, which are dependent on Bcl-2 function. Therefore, our findings show that MOTS-c is a potential therapeutic agent to inhibit the progression of NASH.
Collapse
Affiliation(s)
- Huanyu Lu
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Fourth Military Medical University, Xi'an, China
| | - Linni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wenli Zhang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Fourth Military Medical University, Xi'an, China; Translational Medicine Center, Shaanxi Provincial People's Hospital, Xi'an, China; The College of Life Sciences, Northwest University, Xi'an, China
| | - Guo Chen
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Fourth Military Medical University, Xi'an, China; Translational Medicine Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - An Xiang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Fourth Military Medical University, Xi'an, China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Fourth Military Medical University, Xi'an, China
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Fourth Military Medical University, Xi'an, China; Translational Medicine Center, Shaanxi Provincial People's Hospital, Xi'an, China.
| | - Yue Zhai
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
15
|
Lu Y, Ran Y, Li H, Wen J, Cui X, Zhang X, Guan X, Cheng M. Micropeptides: origins, identification, and potential role in metabolism-related diseases. J Zhejiang Univ Sci B 2023; 24:1106-1122. [PMID: 38057268 PMCID: PMC10710913 DOI: 10.1631/jzus.b2300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/06/2023] [Indexed: 12/08/2023]
Abstract
With the development of modern sequencing techniques and bioinformatics, genomes that were once thought to be noncoding have been found to encode abundant functional micropeptides (miPs), a kind of small polypeptides. Although miPs are difficult to analyze and identify, a number of studies have begun to focus on them. More and more miPs have been revealed as essential for energy metabolism homeostasis, immune regulation, and tumor growth and development. Many reports have shown that miPs are especially essential for regulating glucose and lipid metabolism and regulating mitochondrial function. MiPs are also involved in the progression of related diseases. This paper reviews the sources and identification of miPs, as well as the functional significance of miPs for metabolism-related diseases, with the aim of revealing their potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Cheng
- School of Basic Medicine Sciences, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
16
|
Ansari MA, Chauhan W, Shoaib S, Alyahya SA, Ali M, Ashraf H, Alomary MN, Al-Suhaimi EA. Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions. Int J Obes (Lond) 2023; 47:1179-1199. [PMID: 37696926 DOI: 10.1038/s41366-023-01369-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/13/2023]
Abstract
Diabetes is a serious health issue that causes a progressive dysregulation of carbohydrate metabolism due to insufficient insulin hormone, leading to consistently high blood glucose levels. According to the epidemiological data, the prevalence of diabetes has been increasing globally, affecting millions of individuals. It is a long-term condition that increases the risk of various diseases caused by damage to small and large blood vessels. There are two main subtypes of diabetes: type 1 and type 2, with type 2 being the most prevalent. Genetic and molecular studies have identified several genetic variants and metabolic pathways that contribute to the development and progression of diabetes. Current treatments include gene therapy, stem cell therapy, statin therapy, and other drugs. Moreover, recent advancements in therapeutics have also focused on developing novel drugs targeting these pathways, including incretin mimetics, SGLT2 inhibitors, and GLP-1 receptor agonists, which have shown promising results in improving glycemic control and reducing the risk of complications. However, these treatments are often expensive, inaccessible to patients in underdeveloped countries, and can have severe side effects. Peptides, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are being explored as a potential therapy for diabetes. These peptides are postprandial glucose-dependent pancreatic beta-cell insulin secretagogues and have received much attention as a possible treatment option. Despite these advances, diabetes remains a major health challenge, and further research is needed to develop effective treatments and prevent its complications. This review covers various aspects of diabetes, including epidemiology, genetic and molecular basis, and recent advancements in therapeutics including herbal and synthetic peptides.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Waseem Chauhan
- Department of Hematology, Duke University, Durham, NC, 27710, USA
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Mubashshir Ali
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Department of Molecular Medicine, Tampa, FL, USA
| | - Hamid Ashraf
- Rajiv Gandhi Center for Diabetes and Endocrinology, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia.
| | - Ebtesam A Al-Suhaimi
- King Abdulaziz & his Companions Foundation for Giftedness & Creativity, Riyadh, Saudi Arabia.
| |
Collapse
|
17
|
Tang M, Su Q, Duan Y, Fu Y, Liang M, Pan Y, Yuan J, Wang M, Pang X, Ma J, Laher I, Li S. The role of MOTS-c-mediated antioxidant defense in aerobic exercise alleviating diabetic myocardial injury. Sci Rep 2023; 13:19781. [PMID: 37957221 PMCID: PMC10643467 DOI: 10.1038/s41598-023-47073-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
Myocardial remodeling and dysfunction are commonly observed in type 2 diabetes mellitus (T2DM). Aerobic exercise can partly alleviate diabetes-induced myocardial dysfunction through its antioxidant actions. MOTS-c is a potential exercise mimic. This study aimed to investigate the effects of MOTS-c on improving diabetic heart function and its mechanism and to identify whether MOTS-c improved antioxidant defenses due to aerobic exercise. Herein, we established a rat model of T2DM induced by high-fat diet combined with a low-dose streptozotocin injection. Interventions were performed using intraperitoneal injections of MOTS-c (i.p. 0.5 mg/kg/day, 7 days/week) or aerobic exercise training (treadmill, 20 m/min, 60 min/day, 5 days/week) for 8 weeks. Myocardial ultrastructure was assessed using transmission electron microscopy (TEM), myocardial lipid peroxidation levels (MDA), superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) levels were assessed using colorimetric methods, and molecular analyses including MOTS-c, Kelch-like ECH-associated protein 1 (Keap1), Nuclear factor E2-related factor 2 (Nrf2), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)and phospho-AMPK (p-AMPK) were examined using Western blot. The results showed that MOTS-c, with or without exercise, reduced myocardial ultrastructural damage and improved glucolipid metabolism and cardiac function in T2DM. Furthermore, MOTS-c increased antioxidant markers such as SOD, CAT, and the protein expression of myocardial MOTS-c, Keap1, Nrf2, and p-AMPK. MOTS-c with exercise treatment reduced myocardial MDA and increased p-AMPK significantly comparing to only exercise or MOTS-c alone. Our findings suggest that MOTS-c may be a helpful supplement for overcoming exercise insufficiency and improving myocardial structure and function in diabetes.
Collapse
Affiliation(s)
- Mi Tang
- School of Physical Education, Xihua University, Chengdu, 610039, China
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Quansheng Su
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Yimei Duan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Min Liang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Jinghan Yuan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Xiao J, Zhang Q, Shan Y, Ye F, Zhang X, Cheng J, Wang X, Zhao Y, Dan G, Chen M, Sai Y. The Mitochondrial-Derived Peptide (MOTS-c) Interacted with Nrf2 to Defend the Antioxidant System to Protect Dopaminergic Neurons Against Rotenone Exposure. Mol Neurobiol 2023; 60:5915-5930. [PMID: 37380822 DOI: 10.1007/s12035-023-03443-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
MOTS-c is a 16-amino acid mitochondrial-derived peptide reported to be involved in regulating energy metabolism. However, few studies have reported the role of MOTS-c on neuron degeneration. In this study, it was aimed to explore the action of MOTS-c in rotenone-induced dopaminergic neurotoxicity. In an in vitro study, it was observed that rotenone could influence the expression and localization of MOTS-c significantly in PC12 cells, with more MOTS-c translocating into the nucleus from mitochondria. Further study showed that the translocation of MOTS-c from the mitochondria into the nucleus could directly interact with Nrf2 to regulate HO-1 and NQO1 expression in PC12 cells exposed to rotenone, which had been suggested to be involved in the antioxidant defense system. In vivo and in vitro experiments demonstrated that exogenous MOTS-c pretreatment could protect PC12 cells and rats from mitochondrial dysfunction and oxidative stress induced by rotenone. Moreover, MOTS-c pretreatment significantly decreased the loss of TH, PSD95, and SYP protein expression in the striatum of rats exposed to rotenone. In addition, MOTS-c pretreatment could clearly alleviate the downregulated expression of Nrf2, HO-1, and NQO1, as well as the upregulated Keap1 protein expression in the striatum of rotenone-treated rats. Taken together, these findings suggested that MOTS-c could directly interact with Nrf2 to activate the Nrf2/HO-1/NQO1 signal pathway to defend the antioxidant system to prevent dopaminergic neurons from rotenone-induced oxidative stress and neurotoxicity in vitro and in vivo.
Collapse
Affiliation(s)
- Jingsong Xiao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Qifu Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yaohui Shan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Feng Ye
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xi Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jin Cheng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xiaogang Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yuanpeng Zhao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Guorong Dan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mingliang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yan Sai
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
19
|
Zhang Z, Chen D, Du K, Huang Y, Li X, Li Q, Lv X. MOTS-c: A potential anti-pulmonary fibrosis factor derived by mitochondria. Mitochondrion 2023:S1567-7249(23)00052-1. [PMID: 37307934 DOI: 10.1016/j.mito.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
Pulmonary fibrosis (PF) is a serious lung disease characterized by diffuse alveolitis and disruption of alveolar structure, with a poor prognosis and unclear etiopathogenesis. While ageing, oxidative stress, metabolic disorders, and mitochondrial dysfunction have been proposed as potential contributors to the development of PF, effective treatments for this condition remain elusive. However, Mitochondrial open reading frame of the 12S rRNA-c (MOTS-c), a peptide encoded by the mitochondrial genome, has shown promising effects on glucose and lipid metabolism, cellular and mitochondrial homeostasis, as well as the reduction of systemic inflammatory responses, and is being investigated as a potential exercise mimetic. Additionally, dynamic expression changes of MOTS-c have been closely linked to ageing and ageing-related diseases, indicating its potential as an exercise mimetic. Therefore, the review aims to comprehensively analyze the available literature on the potential role of MOTS-c in improving PF development and to identify specific therapeutic targets for future treatment strategies.
Collapse
Affiliation(s)
- Zewei Zhang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Dongmei Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Kaili Du
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Yaping Huang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Xingzhe Li
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Quwen Li
- Department of Fujian Zoonosis Research Key Laboratory, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian 350001, China
| | - Xiaoting Lv
- Department of respiratory and critical care medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China; Department of respiratory and critical care medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Institute of Respiratory Disease, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
20
|
Kumagai H, Miller B, Kim SJ, Leelaprachakul N, Kikuchi N, Yen K, Cohen P. Novel Insights into Mitochondrial DNA: Mitochondrial Microproteins and mtDNA Variants Modulate Athletic Performance and Age-Related Diseases. Genes (Basel) 2023; 14:286. [PMID: 36833212 PMCID: PMC9956216 DOI: 10.3390/genes14020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Sports genetics research began in the late 1990s and over 200 variants have been reported as athletic performance- and sports injuries-related genetic polymorphisms. Genetic polymorphisms in the α-actinin-3 (ACTN3) and angiotensin-converting enzyme (ACE) genes are well-established for athletic performance, while collagen-, inflammation-, and estrogen-related genetic polymorphisms are reported as genetic markers for sports injuries. Although the Human Genome Project was completed in the early 2000s, recent studies have discovered previously unannotated microproteins encoded in small open reading frames. Mitochondrial microproteins (also called mitochondrial-derived peptides) are encoded in the mtDNA, and ten mitochondrial microproteins, such as humanin, MOTS-c (mitochondrial ORF of the 12S rRNA type-c), SHLPs 1-6 (small humanin-like peptides 1 to 6), SHMOOSE (Small Human Mitochondrial ORF Over SErine tRNA), and Gau (gene antisense ubiquitous in mtDNAs) have been identified to date. Some of those microproteins have crucial roles in human biology by regulating mitochondrial function, and those, including those to be discovered in the future, could contribute to a better understanding of human biology. This review describes a basic concept of mitochondrial microproteins and discusses recent findings about the potential roles of mitochondrial microproteins in athletic performance as well as age-related diseases.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Naphada Leelaprachakul
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Setagaya-ku, Tokyo 158-8508, Japan
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
21
|
Wan W, Zhang L, Lin Y, Rao X, Wang X, Hua F, Ying J. Mitochondria-derived peptide MOTS-c: effects and mechanisms related to stress, metabolism and aging. J Transl Med 2023; 21:36. [PMID: 36670507 PMCID: PMC9854231 DOI: 10.1186/s12967-023-03885-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
MOTS-c is a peptide encoded by the short open reading frame of the mitochondrial 12S rRNA gene. It is significantly expressed in response to stress or exercise and translocated to the nucleus, where it regulates the expression of stress adaptation-related genes with antioxidant response elements (ARE). MOTS-c mainly acts through the Folate-AICAR-AMPK pathway, thereby influencing energy metabolism, insulin resistance, inflammatory response, exercise, aging and aging-related pathologies. Because of the potential role of MOTS-c in maintaining energy and stress homeostasis to promote healthy aging, especially in view of the increasing aging of the global population, it is highly pertinent to summarize the relevant studies. This review summarizes the retrograde signaling of MOTS-c toward the nucleus, the regulation of energy metabolism, stress homeostasis, and aging-related pathological processes, as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Wei Wan
- grid.412455.30000 0004 1756 5980Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China ,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Lieliang Zhang
- grid.412455.30000 0004 1756 5980Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China ,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Yue Lin
- grid.412455.30000 0004 1756 5980Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China ,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Xiuqing Rao
- grid.412455.30000 0004 1756 5980Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China ,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Xifeng Wang
- grid.412604.50000 0004 1758 4073Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Fuzhou Hua
- grid.412455.30000 0004 1756 5980Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China ,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Jun Ying
- grid.412455.30000 0004 1756 5980Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China ,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006 Jiangxi People’s Republic of China
| |
Collapse
|
22
|
Gao Y, Wei X, Wei P, Lu H, Zhong L, Tan J, Liu H, Liu Z. MOTS-c Functionally Prevents Metabolic Disorders. Metabolites 2023; 13:metabo13010125. [PMID: 36677050 PMCID: PMC9866798 DOI: 10.3390/metabo13010125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial-derived peptides are a family of peptides encoded by short open reading frames in the mitochondrial genome, which have regulatory effects on mitochondrial functions, gene expression, and metabolic homeostasis of the body. As a new member of the mitochondrial-derived peptide family, mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) is regarding a peptide hormone that could reduce insulin resistance, prevent obesity, improve muscle function, promote bone metabolism, enhance immune regulation, and postpone aging. MOTS-c plays these physiological functions mainly through activating the AICAR-AMPK signaling pathways by disrupting the folate-methionine cycle in cells. Recent studies have shown that the above hormonal effect can be achieved through MOTS-c regulating the expression of genes such as GLUT4, STAT3, and IL-10. However, there is a lack of articles summarizing the genes and pathways involved in the physiological activity of MOTS-c. This article aims to summarize and interpret the interesting and updated findings of MOTS-c-associated genes and pathways involved in pathological metabolic processes. Finally, it is expected to develop novel diagnostic markers and treatment approaches with MOTS-c to prevent and treat metabolic disorders in the future.
Collapse
Affiliation(s)
- Yue Gao
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Xinran Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Pingying Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
| | - Huijie Lu
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
| | - Luying Zhong
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guilin 541199, China
- Correspondence: (H.L); (Z.L.); Tel.: +86-773-5892890 (Z.L.)
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
- Correspondence: (H.L); (Z.L.); Tel.: +86-773-5892890 (Z.L.)
| |
Collapse
|
23
|
Wang M, Wang G, Pang X, Ma J, Yuan J, Pan Y, Fu Y, Laher I, Li S. MOTS-c repairs myocardial damage by inhibiting the CCN1/ERK1/2/EGR1 pathway in diabetic rats. Front Nutr 2023; 9:1060684. [PMID: 36687680 PMCID: PMC9846618 DOI: 10.3389/fnut.2022.1060684] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Cardiac structure remodeling and dysfunction are common complications of diabetes, often leading to serious cardiovascular events. MOTS-c, a mitochondria-derived peptide, regulates metabolic homeostasis by accelerating glucose uptake and improving insulin sensitivity. Plasma levels of MOTS-c are decreased in patients with diabetes. MOTS-c can improve vascular endothelial function, making it a novel therapeutic target for the cardiovascular complications of diabetes. We investigated the effects of MOTS-c on cardiac structure and function and analyzed transcriptomic characteristics in diabetic rats. Our results indicate that treatment with MOTS-c for 8-week repaired myocardial mitochondrial damage and preserved cardiac systolic and diastolic function. Transcriptomic analysis revealed that MOTS-c altered 47 disease causing genes. Functional enrichment analysis indicated MOTS-c attenuated diabetic heart disease involved apoptosis, immunoregulation, angiogenesis and fatty acid metabolism. Moreover, MOTS-c reduced myocardial apoptosis by downregulating CCN1 genes and thereby inhibiting the activation of ERK1/2 and the expression of its downstream EGR1 gene. Our findings identify potential therapeutic targets for the treatment of T2D and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Gangqiang Wang
- Physical Education Section, Chengdu Textile College, Chengdu, China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jinghan Yuan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China,*Correspondence: Shunchang Li,
| |
Collapse
|
24
|
Yi X, Hu G, Yang Y, Li J, Jin J, Chang B. Role of MOTS-c in the regulation of bone metabolism. Front Physiol 2023; 14:1149120. [PMID: 37200834 PMCID: PMC10185875 DOI: 10.3389/fphys.2023.1149120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
MOTS-c, a mitochondrial-derived peptide (MDP), is an essential regulatory mediator of cell protection and energy metabolism and is involved in the development of specific diseases. Recent studies have revealed that MOTS-c promotes osteoblast proliferation, differentiation, and mineralization. Furthermore, it inhibits osteoclast production and mediates the regulation of bone metabolism and bone remodeling. Exercise effectively upregulates the expression of MOTS-c, but the specific mechanism of MOTS-c regulation in bone by exercise remains unclear. Therefore, this article reviewed the distribution and function of MOTS-c in the tissue, discussed the latest research developments in the regulation of osteoblasts and osteoclasts, and proposed potential molecular mechanisms for the effect of exercise on the regulation of bone metabolism. This review provides a theoretical reference for establishing methods to prevent and treat skeletal metabolic diseases.
Collapse
Affiliation(s)
- Xuejie Yi
- Social Science Research Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Guangxuan Hu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jing Li
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Junjie Jin
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
- *Correspondence: Bo Chang,
| |
Collapse
|
25
|
Zheng X, Xiang M. Mitochondrion-located peptides and their pleiotropic physiological functions. FEBS J 2022; 289:6919-6935. [PMID: 35599630 DOI: 10.1111/febs.16532] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 01/13/2023]
Abstract
With the development of advanced technologies, many small open reading frames (sORFs) have been found to be translated into micropeptides. Interestingly, a considerable proportion of micropeptides are located in mitochondria, which are designated here as mitochondrion-located peptides (MLPs). These MLPs often contain a transmembrane domain and show a high degree of conservation across species. They usually act as co-factors of large proteins and play regulatory roles in mitochondria such as electron transport in the respiratory chain, reactive oxygen species (ROS) production, metabolic homeostasis, and so on. Deficiency of MLPs disturbs diverse physiological processes including immunity, differentiation, and metabolism both in vivo and in vitro. These findings reveal crucial functions for MLPs and provide fresh insights into diverse mitochondrion-associated biological processes and diseases.
Collapse
Affiliation(s)
- Xintong Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Toll-like receptor 4-mediated endoplasmic reticulum stress induces intestinal paneth cell damage in mice following CLP-induced sepsis. Sci Rep 2022; 12:15256. [PMID: 36088483 PMCID: PMC9464222 DOI: 10.1038/s41598-022-19614-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/31/2022] [Indexed: 11/14/2022] Open
Abstract
A marked elevation of TLR4 was observed in various organs of septic mice. The mechanism of TLR4 in intestinal epithelial cell damage in sepsis remains unclear. CLP mice models were used to assess the role of TLR4 in intestinal Paneth cell damage by histological, polymerase chain reaction, western-blot analyses. The ileal expression of TLR4 was increased by more than five-fold after CLP. CLP significantly increased 7-day mortality and was associated with a higher murine sepsis score (MSS), closely related with increased TLR4 expression. Histological staining revealed that a reduced number of Paneth cells, accompanied by reduced lysozyme and defensin alpha 5(DEF-5) expression as detected by PCR. Of note, the expression levels of ATF6, XBP1 and CHOP increased in the ileal of the sepsis group. Meanwhile, the uncleaved p90 ATF6 was markedly reduced and cleaved p50 ATF6 was increased in the sepsis group. Intriguingly, The TAK-242 had improved intestinal mucosal injury, reduced the expression of ATF6, XBP1 and CHOP and relieved the cleavage of ATF6. We found that increased the expression level of TLR4 in the ileal of CLP mice promoted the depletion of Paneth cell and reduced LYZ and DEF-5 expression. Furthermore, our findings suggested that TLR4-mediated the hyperactivation of ER stress, via activating the ATF6/CHOP pathway, might be one of the mechanisms associated with Paneth cells loss and dysfunction during intestinal barrier impairment of sepsis.
Collapse
|
27
|
Kaorop W, Maneechote C, Kumfu S, Chattipakorn SC, Chattipakorn N. Mitochondrial-derived peptides as a novel intervention for obesity and cardiac diseases: bench evidence for potential bedside application. J Clin Pathol 2022; 75:jclinpath-2022-208321. [PMID: 35863886 DOI: 10.1136/jcp-2022-208321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/11/2022] [Indexed: 11/04/2022]
Abstract
Currently, obesity is the most common major health problem for people worldwide. Obesity is known to be a significant risk factor for several diseases, including metabolic syndrome, insulin resistance and type 2 diabetes, eventually leading to the development of chronic systemic disorders. Previous studies showed that mitochondrial dysfunction could be one of the potential mechanisms for obesity progression. Most interventions used for combating obesity have also been reported to modulate mitochondrial function, suggesting the potential role of mitochondria in the pathology of the obese condition. Recent studies have shown that peptides produced by mitochondria, mitochondrial-derived peptides (MDPs), potentially improve metabolic function and exert benefits in obesity-associated diabetes and various heart pathologies. In this review, the roles of MDPs in the metabolic pathways and their use in the treatment of various adverse effects of obesity are comprehensively summarised based on collective evidence from in vitro, in vivo and clinical studies. The roles of MDPs as novel therapeutic interventions for cardiac dysfunction caused by various stresses or toxicities are also presented and discussed. This review aims to summarise the knowledge regarding the effects of MDPs on obesity, with a particular emphasis on their potential protective effects on the impaired cardiac function associated with obesity. The information from this review will also encourage further clinical investigations to warrant the potential application of MDP interventions in the clinical setting in the future.
Collapse
Affiliation(s)
- Wichida Kaorop
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
28
|
Hyatt JK. MOTS-c increases in skeletal muscle following long-term physical activity and improves acute exercise performance after a single dose. Physiol Rep 2022; 10:e15377. [PMID: 35808870 PMCID: PMC9270643 DOI: 10.14814/phy2.15377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 05/03/2023] Open
Abstract
Skeletal muscle adapts to aerobic exercise training, in part, through fast-to-slow phenotypic shifts and an expansion of mitochondrial networks. Recent research suggests that the local and systemic benefits of exercise training also may be modulated by the mitochondrial-derived peptide, MOTS-c. Using a combination of acute and chronic exercise challenges, the goal of the present study was to characterize the interrelationship between MOTS-c and exercise. Compared to sedentary controls, 4-8 weeks of voluntary running increased MOTS-c protein expression ~1.5-5-fold in rodent plantaris, medial gastrocnemius, and tibialis anterior muscles and is sustained for 4-6 weeks of detraining. This MOTS-c increase coincides with elevations in mtDNA reflecting an expansion of the mitochondrial genome to aerobic training. In a second experiment, a single dose (15 mg/kg) of MOTS-c administered to untrained mice improved total running time (12% increase) and distance (15% increase) during an acute exercise test. In a final experiment, MOTS-c protein translocated from the cytoplasm into the nucleus in two of six mouse soleus muscles 1 h following a 90-min downhill running challenge; no nuclear translocation was observed in the plantaris muscles from the same animals. These findings indicate that MOTS-c protein accumulates within trained skeletal muscle likely through a concomitant increase in mtDNA. Furthermore, these data suggest that the systemic benefits of exercise are, in part, mediated by an expansion of the skeletal muscle-derived MOTS-c protein pool. The benefits of training may persist into a period of inactivity (e.g., detraining) resulting from a sustained increase in intramuscular MOTS-c proteins levels.
Collapse
|
29
|
Abstract
The mechanisms that explain mitochondrial dysfunction in aging and healthspan continue to be studied, but one element has been unexplored: microproteins. Small open reading frames in circular mitochondria DNA can encode multiple microproteins, called mitochondria-derived peptides (MDPs). Currently, eight MDPs have been published: humanin, MOTS-c, and SHLPs 1–6. This Review describes recent advances in microprotein discovery with a focus on MDPs. It discusses what is currently known about MDPs in aging and how this new understanding could add to the way we understand age-related diseases including type 2 diabetes, cancer, and neurodegenerative diseases at the genomic, proteomic, and drug-development levels.
Collapse
|
30
|
Yoon TK, Lee CH, Kwon O, Kim MS. Exercise, Mitohormesis, and Mitochondrial ORF of the 12S rRNA Type-C (MOTS-c). Diabetes Metab J 2022; 46:402-413. [PMID: 35656563 PMCID: PMC9171157 DOI: 10.4093/dmj.2022.0092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
Low levels of mitochondrial stress are beneficial for organismal health and survival through a process known as mitohormesis. Mitohormetic responses occur during or after exercise and may mediate some salutary effects of exercise on metabolism. Exercise-related mitohormesis involves reactive oxygen species production, mitochondrial unfolded protein response (UPRmt), and release of mitochondria-derived peptides (MDPs). MDPs are a group of small peptides encoded by mitochondrial DNA with beneficial metabolic effects. Among MDPs, mitochondrial ORF of the 12S rRNA type-c (MOTS-c) is the most associated with exercise. MOTS-c expression levels increase in skeletal muscles, systemic circulation, and the hypothalamus upon exercise. Systemic MOTS-c administration increases exercise performance by boosting skeletal muscle stress responses and by enhancing metabolic adaptation to exercise. Exogenous MOTS-c also stimulates thermogenesis in subcutaneous white adipose tissues, thereby enhancing energy expenditure and contributing to the anti-obesity effects of exercise training. This review briefly summarizes the mitohormetic mechanisms of exercise with an emphasis on MOTS-c.
Collapse
Affiliation(s)
- Tae Kwan Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, H+ Yangji Hospital, Seoul, Korea
| | - Chan Hee Lee
- Department of of Biomedical Science & Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Korea
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Leong AZX, Lee PY, Mohtar MA, Syafruddin SE, Pung YF, Low TY. Short open reading frames (sORFs) and microproteins: an update on their identification and validation measures. J Biomed Sci 2022; 29:19. [PMID: 35300685 PMCID: PMC8928697 DOI: 10.1186/s12929-022-00802-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
A short open reading frame (sORFs) constitutes ≤ 300 bases, encoding a microprotein or sORF-encoded protein (SEP) which comprises ≤ 100 amino acids. Traditionally dismissed by genome annotation pipelines as meaningless noise, sORFs were found to possess coding potential with ribosome profiling (RIBO-Seq), which unveiled sORF-based transcripts at various genome locations. Nonetheless, the existence of corresponding microproteins that are stable and functional was little substantiated by experimental evidence initially. With recent advancements in multi-omics, the identification, validation, and functional characterisation of sORFs and microproteins have become feasible. In this review, we discuss the history and development of an emerging research field of sORFs and microproteins. In particular, we focus on an array of bioinformatics and OMICS approaches used for predicting, sequencing, validating, and characterizing these recently discovered entities. These strategies include RIBO-Seq which detects sORF transcripts via ribosome footprints, and mass spectrometry (MS)-based proteomics for sequencing the resultant microproteins. Subsequently, our discussion extends to the functional characterisation of microproteins by incorporating CRISPR/Cas9 screen and protein–protein interaction (PPI) studies. Our review discusses not only detection methodologies, but we also highlight on the challenges and potential solutions in identifying and validating sORFs and their microproteins. The novelty of this review lies within its validation for the functional role of microproteins, which could contribute towards the future landscape of microproteomics.
Collapse
Affiliation(s)
- Alyssa Zi-Xin Leong
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, 43500, Selangor, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
32
|
Li S, Wang M, Ma J, Pang X, Yuan J, Pan Y, Fu Y, Laher I. MOTS-c and Exercise Restore Cardiac Function by Activating of NRG1-ErbB Signaling in Diabetic Rats. Front Endocrinol (Lausanne) 2022; 13:812032. [PMID: 35370955 PMCID: PMC8969227 DOI: 10.3389/fendo.2022.812032] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Pathologic cardiac remodeling and dysfunction are the most common complications of type 2 diabetes. Physical exercise is important in inhibiting myocardial pathologic remodeling and restoring cardiac function in diabetes. The mitochondrial-derived peptide MOTS-c has exercise-like effects by improving insulin resistance, combatting hyperglycemia, and reducing lipid accumulation. We investigated the effects and transcriptomic profiling of MOTS-c and aerobic exercise on cardiac properties in a rat model of type 2 diabetes which was induced by feeding a high fat high sugar diet combined with an injection of a low dose of streptozotocin. Both aerobic exercise and MOTS-c treatment reduced abnormalities in cardiac structure and function. Transcriptomic function enrichment analysis revealed that MOTS-c had exercise-like effects on inflammation, myocardial apoptosis, angiogenesis and endothelial cell proliferation and migration, and showed that the NRG1-ErbB4 pathway might be an important component in both MOTS-c and exercise induced attenuation of cardiac dysfunction in diabetes. Moreover, our findings suggest that MOTS-c activates NRG1-ErbB4 signaling and mimics exercise-induced cardio-protection in diabetes.
Collapse
Affiliation(s)
- Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jinghan Yuan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Ismail Laher,
| |
Collapse
|
33
|
Liu X, Wang Z, Song X, Chang X, Zu E, Ma X, Sukegawa M, Liu D, Wang DO. Crocetin Alleviates Ovariectomy-Induced Metabolic Dysfunction through Regulating Estrogen Receptor β. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14824-14839. [PMID: 34851635 DOI: 10.1021/acs.jafc.1c04570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metabolic dysfunction (MD) is a major health problem threatening the life quality of menopausal women. Saffron has been widely used in herb prescriptions for treating menopausal syndrome. However, the pharmacological effects and mechanisms of saffron are poorly understood. Here, we investigated the effect of crocin, the major ingredient of saffron and its active metabolite in blood, crocetin, on MD and lipid metabolism in ovariectomized (OVX) mice and 3T3-L1 adipocytes. The present study showed that intragastric treatment of crocin prevented weight gain, fat accumulation, and insulin resistance in OVX mice by increasing energy expenditure and fat oxidation. Mechanistically, crocin influenced adipose tissue homeostasis by regulating adipogenic and lipolytic factors, which was strongly associated with the restoration of the downregulated ERβ function in white adipose tissue (WAT). In vitro, crocetin facilitated lipid metabolism in an ERβ-dependent manner. Our results demonstrated the beneficial effects of crocetin/crocin-mediated intervention against metabolic dysfunction, revealing a prospective therapeutic application in menopausal women.
Collapse
Affiliation(s)
- Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziqi Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xintong Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyu Chang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Er Zu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaowei Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Momoe Sukegawa
- Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Graduate School of Biostudies, Kyoto University, Yoshida hon-machi, Kyoto 606-8501, Japan
| | - Dongchun Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Graduate School of Biostudies, Kyoto University, Yoshida hon-machi, Kyoto 606-8501, Japan
| |
Collapse
|
34
|
Changes in MOTS-c Level in the Blood of Pregnant Women with Metabolic Disorders. BIOLOGY 2021; 10:biology10101032. [PMID: 34681131 PMCID: PMC8533113 DOI: 10.3390/biology10101032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Metabolic relationships between mother and child are currently some of the most studied in the context of maternal imprinting. This is particularly important in the context of metabolic diseases as well as newly discovered peptides, proteins, and biologically active substances produced in the bodies of a mother and child. One of them is MOTS-c, which belongs to the group of mitochondria-derived peptides (MDP). The first reports show that it plays an important metabolic role in carbohydrate–lipid metabolism. We decided to investigate the concentration changes in MOTS-c levels in maternal and umbilical cord blood at delivery in healthy, obese, and hypothyroidism subjects. We found changes in MOTS-c levels depending on the metabolic condition of mothers. Abstract MOTS-c peptide is a member of the group of mitochondria-derived peptides (MDP). It is a product of the open reading frame in the 12S RNA gene. Due to its features and functions in the body, this peptide is classified as a hormone. The first publications indicated that this hormone improves insulin sensitivity and lowers body weight in obese animals. This suggests that it may be an important peptide in maintaining the body’s energy homeostasis. The aim of our work was to investigate the potential role of MOTS-c peptide during pregnancy, which is a condition prone to metabolic disorders. The research covered healthy, obese women and women with thyroid disorders. The obtained results indicated an increase in the concentration of MOTS-c in the blood of mothers and newborns in the obese group as compared to the healthy control group and a corresponding decrease in the concentration of this peptide in mothers and newborns in the group with hypothyroidism compared to the obese group. Moreover, we also observed a strong positive correlation between the concentration of MOTS-c in maternal blood and in umbilical cord blood. In summary, the MOTS-c peptide shows changes in blood concentration in various physiological states and may, in the future, become an important tool in the fight against metabolic diseases such as obesity or type 2 diabetes.
Collapse
|
35
|
The mitochondrial signaling peptide MOTS-c improves myocardial performance during exercise training in rats. Sci Rep 2021; 11:20077. [PMID: 34635713 PMCID: PMC8505603 DOI: 10.1038/s41598-021-99568-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/22/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiac remodeling is a physiological adaptation to aerobic exercise and which is characterized by increases in ventricular volume and the number of cardiomyocytes. The mitochondrial derived peptide MOTS-c functions as an important regulator in physical capacity and performance. Exercise elevates levels of endogenous MOTS-c in circulation and in myocardium, while MOTS-c can significantly enhance exercise capacity. However, the effects of aerobic exercise combined with MOTS-c on cardiac structure and function are unclear. We used pressure–volume conductance catheter technique to examine cardiac function in exercised rats with and without treatment with MOTS-c. Surprisingly, MOTS-c improved myocardial mechanical efficiency, enhanced cardiac systolic function, and had a tendency to improve the diastolic function. The findings suggest that using exercise supplements could be used to modulate the cardiovascular benefits of athletic training.
Collapse
|
36
|
Sequeira IR, Woodhead JST, Chan A, D'Souza RF, Wan J, Hollingsworth KG, Plank LD, Cohen P, Poppitt SD, Merry TL. Plasma mitochondrial derived peptides MOTS-c and SHLP2 positively associate with android and liver fat in people without diabetes. Biochim Biophys Acta Gen Subj 2021; 1865:129991. [PMID: 34419510 DOI: 10.1016/j.bbagen.2021.129991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022]
Abstract
Mitochondrial-derived peptides (MDPs) are encoded by the mitochondrial genome and hypothesised to form part of a retrograde signalling network that modulates adaptive responses to metabolic stress. To understand how metabolic stress regulates MDPs in humans we assessed the association between circulating MOTS-c and SHLP2 and components of metabolic syndrome (MS), as well as depot-specific fat mass in participants without overt type 2 diabetes or cardiovascular disease. One-hundred and twenty-five Chinese participants (91 male, 34 female) had anthropometry, whole body dual-energy X-ray absorptiometry scans and fasted blood samples analysed. Chinese female participants and an additional 34 European Caucasian female participants also underwent magnetic resonance imaging and spectroscopy (MRI/S) for visceral, pancreatic and liver fat quantification. In Chinese participants (age = 41 ± 1 years, BMI = 27.8 ± 3.9 kg/m2), plasma MOTS-c (315 ± 27 pg/ml) and SHLP2 (1393 ± 82 pg/ml) were elevated in those with MS (n = 26). While multiple components of the MS sequelae positively associated with both MOTS-c and SHLP2, including blood pressure, fasting plasma glucose and triglycerides, the most significant of these was waist circumference (p < 0.0001). Android fat had a greater effect on increasing plasma MOTS-c (p < 0.004) and SHLP2 (p < 0.009) relative to whole body fat. Associations with MRI/S parameters corrected for total body fat mass revealed that liver fat positively associated with plasma MOTS-c and SHLP2 and visceral fat with SHLP2. Consistent with hepatic stress being a driver of circulating MDP concentrations, plasma MOTS-c and SHLP2 were higher in participants with elevated liver damage markers and in male C57Bl/6j mice fed a diet that induces hepatic lipid accumulation and damage. Our findings provide evidence that in the absence of overt type 2 diabetes, components of the MS positively associated with levels of MOTS-c and SHLP2 and that android fat, in particular liver fat, is a primary driver of these associations. MOTS-c and SHLP2 have previously been shown to have cyto- and metabolo-protective properties, therefore we suggest that liver stress may be a mitochondrial peptide signal, and that mitochondrial peptides are part of a hepatic centric-hormetic response intended to restore metabolic balance.
Collapse
Affiliation(s)
- Ivana R Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition National Science Challenge, New Zealand
| | - Jonathan S T Woodhead
- Discipline of Nutrition, School of Medical Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Alex Chan
- Discipline of Nutrition, School of Medical Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Randall F D'Souza
- Discipline of Nutrition, School of Medical Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kieren G Hollingsworth
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lindsay D Plank
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition National Science Challenge, New Zealand; Riddet CoRE for Food and Nutrition, Massey University, New Zealand
| | - Troy L Merry
- Discipline of Nutrition, School of Medical Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
37
|
Kong BS, Min SH, Lee C, Cho YM. Mitochondrial-encoded MOTS-c prevents pancreatic islet destruction in autoimmune diabetes. Cell Rep 2021; 36:109447. [PMID: 34320351 PMCID: PMC10083145 DOI: 10.1016/j.celrep.2021.109447] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/08/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are principal metabolic organelles that are increasingly unveiled as immune regulators. However, it is currently not known whether mitochondrial-encoded peptides modulate T cells to induce changes in phenotype and function. In this study, we found that MOTS-c (mitochondrial open reading frame of the 12S rRNA type-c) prevented autoimmune β cell destruction by targeting T cells in non-obese diabetic (NOD) mice. MOTS-c ameliorated the development of hyperglycemia and reduced islet-infiltrating immune cells. Furthermore, adoptive transfer of T cells from MOTS-c-treated NOD mice significantly decreased the incidence of diabetes in NOD-severe combined immunodeficiency (SCID) mice. Metabolic and genomic analyses revealed that MOTS-c modulated T cell phenotype and function by regulating T cell receptor (TCR)/mTOR complex 1 (mTORC1) signaling. Type 1 diabetes (T1D) patients had a lower serum MOTS-c level than did healthy controls. Furthermore, MOTS-c reduced T cell activation by alleviating T cells from the glycolytic stress in T1D patients, suggesting therapeutic potential. Our findings indicate that MOTS-c regulates the T cell phenotype and suppresses autoimmune diabetes.
Collapse
Affiliation(s)
- Byung Soo Kong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Hee Min
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
38
|
Bhullar KS, Shang N, Kerek E, Wu K, Wu J. Mitofusion is required for MOTS-c induced GLUT4 translocation. Sci Rep 2021; 11:14291. [PMID: 34253808 PMCID: PMC8275580 DOI: 10.1038/s41598-021-93735-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
MOTS-c (mitochondrial ORF of the twelve S-c) is a 16-amino-acid mitochondrial peptide that has been shown to counter insulin resistance and alleviate obesity in vivo. However, the mechanisms involved in the pharmacological action of MOTS-c remain elusive. Based on the ability of MOTS-c to improve insulin resistance and promote cold adaptation, we hypothesized that MOTS-c might play a role in boosting the number of mitochondria in a cell. We found that treatment of mammalian cells with MOTS-c increased protein levels of TFAM, COX4, and NRF1, which are markers for mitochondrial biogenesis. However, flow cytometry analysis using MitoTracker Green revealed a sharp reduction in the mitochondrial count after MOTS-c treatment. We then anticipated possible synchronized activation of mitofusion/mitochondrial fusion by MOTS-c following the onset of mitochondrial biogenesis. This was confirmed after a significant increase in protein levels two GTPases, OPA1, and MFN2, both vital for the fusion of mammalian mitochondria. Finally, we found that inhibition of the two GTPases by TNFα abrogated the ability of MOTS-c to prompt GLUT4 translocation and glucose uptake. Similar results were obtained by siRNA KD of MFN2 as well. Our results reveal for the first time a pathway that links mitofusion to MOTS-c-induced GLUT4 translocation.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Nan Shang
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Evan Kerek
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Kaiyu Wu
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jianping Wu
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
39
|
Kim SJ, Miller B, Kumagai H, Silverstein AR, Flores M, Yen K. Mitochondrial-derived peptides in aging and age-related diseases. GeroScience 2021; 43:1113-1121. [PMID: 32910336 PMCID: PMC8190245 DOI: 10.1007/s11357-020-00262-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
A decline in mitochondrial quality and activity has been associated with normal aging and correlated with the development of a wide range of age-related diseases. Here, we review the evidence that a decline in the levels of mitochondrial-derived peptides contributes to aging and age-related diseases. In particular, we discuss how mitochondrial-derived peptides, humanin and MOTS-c, contribute to specific aspects of the aging process, including cellular senescence, chronic inflammation, and cognitive decline. Genetic variations in the coding region of humanin and MOTS-c that are associated with age-related diseases are also reviewed, with particular emphasis placed on how mitochondrial variants might, in turn, regulate MDP expression and age-related phenotypes. Taken together, these observations suggest that mitochondrial-derived peptides influence or regulate a number of key aspects of aging and that strategies directed at increasing mitochondrial-derived peptide levels might have broad beneficial effects.
Collapse
Affiliation(s)
- Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Institute of Health and Sports Science & Medicine, Juntendo University, Inzai, Chiba, Japan
| | - Ana R Silverstein
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Melanie Flores
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| |
Collapse
|
40
|
The Role of Peptide Hormones Discovered in the 21st Century in the Regulation of Adipose Tissue Functions. Genes (Basel) 2021; 12:genes12050756. [PMID: 34067710 PMCID: PMC8155905 DOI: 10.3390/genes12050756] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Peptide hormones play a prominent role in controlling energy homeostasis and metabolism. They have been implicated in controlling appetite, the function of the gastrointestinal and cardiovascular systems, energy expenditure, and reproduction. Furthermore, there is growing evidence indicating that peptide hormones and their receptors contribute to energy homeostasis regulation by interacting with white and brown adipose tissue. In this article, we review and discuss the literature addressing the role of selected peptide hormones discovered in the 21st century (adropin, apelin, elabela, irisin, kisspeptin, MOTS-c, phoenixin, spexin, and neuropeptides B and W) in controlling white and brown adipogenesis. Furthermore, we elaborate how these hormones control adipose tissue functions in vitro and in vivo.
Collapse
|
41
|
Ran N, Lin C, Leng L, Han G, Geng M, Wu Y, Bittner S, Moulton HM, Yin H. MOTS-c promotes phosphorodiamidate morpholino oligomer uptake and efficacy in dystrophic mice. EMBO Mol Med 2021; 13:e12993. [PMID: 33337582 PMCID: PMC7863382 DOI: 10.15252/emmm.202012993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/09/2022] Open
Abstract
Antisense oligonucleotide (AO)-mediated exon-skipping therapies show promise in Duchenne muscular dystrophy (DMD), a devastating muscular disease caused by frame-disrupting mutations in the DMD gene. However, insufficient systemic delivery remains a hurdle to clinical deployment. Here, we demonstrate that MOTS-c, a mitochondria-derived bioactive peptide, with an intrinsic muscle-targeting property, augmented glycolytic flux and energy production capacity of dystrophic muscles in vitro and in vivo, resulting in enhanced phosphorodiamidate morpholino oligomer (PMO) uptake and activity in mdx mice. Long-term repeated administration of MOTS-c (500 μg) and PMO at the dose of 12.5 mg/kg/week for 3 weeks followed by 12.5 mg/kg/month for 3 months (PMO-M) induced therapeutic levels of dystrophin expression in peripheral muscles, with up to 25-fold increase in diaphragm of mdx mice over PMO alone. PMO-M improved muscle function and pathologies in mdx mice without detectable toxicity. Our results demonstrate that MOTS-c enables enhanced PMO uptake and activity in dystrophic muscles by providing energy and may have therapeutic implications for exon-skipping therapeutics in DMD and other energy-deficient disorders.
Collapse
Affiliation(s)
- Ning Ran
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics &Department of Cell BiologyTianjin Medical UniversityTianjinChina
| | - Caorui Lin
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics &Department of Cell BiologyTianjin Medical UniversityTianjinChina
| | - Ling Leng
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics &Department of Cell BiologyTianjin Medical UniversityTianjinChina
| | - Gang Han
- School of Medical LaboratoryTianjin Medical UniversityTianjinChina
| | - Mengyuan Geng
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics &Department of Cell BiologyTianjin Medical UniversityTianjinChina
| | - Yingjie Wu
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics &Department of Cell BiologyTianjin Medical UniversityTianjinChina
| | - Scott Bittner
- Biomedical SciencesCollege of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Hong M Moulton
- Biomedical SciencesCollege of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - HaiFang Yin
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics &Department of Cell BiologyTianjin Medical UniversityTianjinChina
- School of Medical LaboratoryTianjin Medical UniversityTianjinChina
- Department of NeurologyTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
42
|
Kang GM, Min SH, Lee CH, Kim JY, Lim HS, Choi MJ, Jung SB, Park JW, Kim S, Park CB, Dugu H, Choi JH, Jang WH, Park SE, Cho YM, Kim JG, Kim KG, Choi CS, Kim YB, Lee C, Shong M, Kim MS. Mitohormesis in Hypothalamic POMC Neurons Mediates Regular Exercise-Induced High-Turnover Metabolism. Cell Metab 2021; 33:334-349.e6. [PMID: 33535098 PMCID: PMC7959183 DOI: 10.1016/j.cmet.2021.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/12/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
Low-grade mitochondrial stress can promote health and longevity, a phenomenon termed mitohormesis. Here, we demonstrate the opposing metabolic effects of low-level and high-level mitochondrial ribosomal (mitoribosomal) stress in hypothalamic proopiomelanocortin (POMC) neurons. POMC neuron-specific severe mitoribosomal stress due to Crif1 homodeficiency causes obesity in mice. By contrast, mild mitoribosomal stress caused by Crif1 heterodeficiency in POMC neurons leads to high-turnover metabolism and resistance to obesity. These metabolic benefits are mediated by enhanced thermogenesis and mitochondrial unfolded protein responses (UPRmt) in distal adipose tissues. In POMC neurons, partial Crif1 deficiency increases the expression of β-endorphin (β-END) and mitochondrial DNA-encoded peptide MOTS-c. Central administration of MOTS-c or β-END recapitulates the adipose phenotype of Crif1 heterodeficient mice, suggesting these factors as potential mediators. Consistently, regular running exercise at moderate intensity stimulates hypothalamic MOTS-c/β-END expression and induces adipose tissue UPRmt and thermogenesis. Our findings indicate that POMC neuronal mitohormesis may underlie exercise-induced high-turnover metabolism.
Collapse
Affiliation(s)
- Gil Myoung Kang
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chan Hee Lee
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ji Ye Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyo Sun Lim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jae Woo Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seongjun Kim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chae Beom Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hong Dugu
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jong Han Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Won Hee Jang
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Se Eun Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Young Min Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Kyung-Gon Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Cheol Soo Choi
- Lee Gil Ya Cancer and Diabetes Institute, Korea Mouse Metabolic Phenotyping Center, Gachon University, Inchon 21999, Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Korea; Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Korea.
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
43
|
MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nat Commun 2021; 12:470. [PMID: 33473109 PMCID: PMC7817689 DOI: 10.1038/s41467-020-20790-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Healthy aging can be promoted by enhanced metabolic fitness and physical capacity. Mitochondria are chief metabolic organelles with strong implications in aging that also coordinate broad physiological functions, in part, using peptides that are encoded within their independent genome. However, mitochondrial-encoded factors that actively regulate aging are unknown. Here, we report that mitochondrial-encoded MOTS-c can significantly enhance physical performance in young (2 mo.), middle-age (12 mo.), and old (22 mo.) mice. MOTS-c can regulate (i) nuclear genes, including those related to metabolism and proteostasis, (ii) skeletal muscle metabolism, and (iii) myoblast adaptation to metabolic stress. We provide evidence that late-life (23.5 mo.) initiated intermittent MOTS-c treatment (3x/week) can increase physical capacity and healthspan in mice. In humans, exercise induces endogenous MOTS-c expression in skeletal muscle and in circulation. Our data indicate that aging is regulated by genes encoded in both of our co-evolved mitochondrial and nuclear genomes. Exercise has beneficial effects on metabolism and overall physiologic fitness in aged organisms. Here the authors show that MOTS-c is a mitochondrial-encoded exercise-induced peptide that regulates skeletal muscle metabolism and improves healthspan of older mice.
Collapse
|
44
|
Zempo H, Kim SJ, Fuku N, Nishida Y, Higaki Y, Wan J, Yen K, Miller B, Vicinanza R, Miyamoto-Mikami E, Kumagai H, Naito H, Xiao J, Mehta HH, Lee C, Hara M, Patel YM, Setiawan VW, Moore TM, Hevener AL, Sutoh Y, Shimizu A, Kojima K, Kinoshita K, Arai Y, Hirose N, Maeda S, Tanaka K, Cohen P. A pro-diabetogenic mtDNA polymorphism in the mitochondrial-derived peptide, MOTS-c. Aging (Albany NY) 2021; 13:1692-1717. [PMID: 33468709 PMCID: PMC7880332 DOI: 10.18632/aging.202529] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Type 2 Diabetes (T2D) is an emerging public health problem in Asia. Although ethnic specific mtDNA polymorphisms have been shown to contribute to T2D risk, the functional effects of the mtDNA polymorphisms and the therapeutic potential of mitochondrial-derived peptides at the mtDNA polymorphisms are underexplored. Here, we showed an Asian-specific mitochondrial DNA variation m.1382A>C (rs111033358) leads to a K14Q amino acid replacement in MOTS-c, an insulin sensitizing mitochondrial-derived peptide. Meta-analysis of three cohorts (n = 27,527, J-MICC, MEC, and TMM) show that males but not females with the C-allele exhibit a higher prevalence of T2D. In J-MICC, only males with the C-allele in the lowest tertile of physical activity increased their prevalence of T2D, demonstrating a kinesio-genomic interaction. High-fat fed, male mice injected with MOTS-c showed reduced weight and improved glucose tolerance, but not K14Q-MOTS-c treated mice. Like the human data, female mice were unaffected. Mechanistically, K14Q-MOTS-c leads to diminished insulin-sensitization in vitro. Thus, the m.1382A>C polymorphism is associated with susceptibility to T2D in men, possibly interacting with exercise, and contributing to the risk of T2D in sedentary males by reducing the activity of MOTS-c.
Collapse
Affiliation(s)
- Hirofumi Zempo
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.,Department of Administrative Nutrition, Faculty of Health and Nutrition, Tokyo Seiei College, Tokyo, Japan
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuki Higaki
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Roberto Vicinanza
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hiroshi Kumagai
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yesha M Patel
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Veronica W Setiawan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Timothy M Moore
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine and the Iris Cantor-UCLA Women's Health Research Center at the David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine and the Iris Cantor-UCLA Women's Health Research Center at the David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Kaname Kojima
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
45
|
Wu Y, Sun L, Zhuang Z, Hu X, Dong D. Mitochondrial-Derived Peptides in Diabetes and Its Complications. Front Endocrinol (Lausanne) 2021; 12:808120. [PMID: 35185787 PMCID: PMC8851315 DOI: 10.3389/fendo.2021.808120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
The changes of mitochondrial function are closely related to diabetes and its complications. Here we describe the effects of mitochondrial-derived peptides (MDPs), short peptides formed by transcription and translation of the open reading frame site in human mitochondrial DNA (mtDNA), on diabetes and its complications. We mainly focus on MDPs that have been discovered so far, such as Humanin (HN), mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) and Small humanin-like peptides (SHLP 1-6), and elucidated the role of MDPs in diabetes and its major complications stroke and myocardial infarction by improving insulin resistance, inhibiting inflammatory response and anti-apoptosis. It provides more possibilities for the clinical application of mitochondrial derived peptides.
Collapse
Affiliation(s)
- Ying Wu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhoudao Zhuang
- Clinical Medical College of Jilin University, The First Hospital of Jilin University, Changchun, China
| | - Xiaoqing Hu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xiaoqing Hu, ; Delu Dong,
| | - Delu Dong
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Xiaoqing Hu, ; Delu Dong,
| |
Collapse
|
46
|
Chen Y, Ho L, Tergaonkar V. sORF-Encoded MicroPeptides: New players in inflammation, metabolism, and precision medicine. Cancer Lett 2020; 500:263-270. [PMID: 33157158 DOI: 10.1016/j.canlet.2020.10.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022]
Abstract
Significant technological advances have enabled the discovery and identification of a new class of molecules, micropeptides or small ORF encoded peptides (SEPs) within non-coding RNAs (ncRNAs). As ncRNAs are well known to be transcriptionally silent, the discovery of SEPs implies that many ncRNAs are misannotated or play both coding and non-coding functions. SEPs have reportedly diverse regulatory roles in embryogenesis, myogenesis, inflammation, diseases, and cancer. SEPs appearing in different subcellular compartments show distinct functions. In this review, we summarized the functions of SEPs that have been characterized thus far. As SEPs are amenable to therapeutic development as biologics, understanding their underlying functions will provide novel targets for the treatment of inflammatory or metabolic disorders.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore.
| | - Lena Ho
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore; Cardiovascular Metabolic Disorders Program, Duke-NUS Graduate School, Singapore; Institute of Medical Biology, A*STAR, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.
| |
Collapse
|
47
|
Merry TL, Chan A, Woodhead JST, Reynolds JC, Kumagai H, Kim SJ, Lee C. Mitochondrial-derived peptides in energy metabolism. Am J Physiol Endocrinol Metab 2020; 319:E659-E666. [PMID: 32776825 PMCID: PMC7750512 DOI: 10.1152/ajpendo.00249.2020] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Mitochondrial-derived peptides (MDPs) are small bioactive peptides encoded by short open-reading frames (sORF) in mitochondrial DNA that do not necessarily have traditional hallmarks of protein-coding genes. To date, eight MDPs have been identified, all of which have been shown to have various cyto- or metaboloprotective properties. The 12S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas the other seven MDPs [humanin and small humanin-like peptides (SHLP) 1-6] are encoded by the 16S ribosomal RNA gene. Here, we review the evidence that endogenous MDPs are sensitive to changes in metabolism, showing that metabolic conditions like obesity, diabetes, and aging are associated with lower circulating MDPs, whereas in humans muscle MDP expression is upregulated in response to stress that perturbs the mitochondria like exercise, some mtDNA mutation-associated diseases, and healthy aging, which potentially suggests a tissue-specific response aimed at restoring cellular or mitochondrial homeostasis. Consistent with this, treatment of rodents with humanin, MOTS-c, and SHLP2 can enhance insulin sensitivity and offer protection against a range of age-associated metabolic disorders. Furthermore, assessing how mtDNA variants alter the functions of MDPs is beginning to provide evidence that MDPs are metabolic signal transducers in humans. Taken together, MDPs appear to form an important aspect of a retrograde signaling network that communicates mitochondrial status with the wider cell and to distal tissues to modulate adaptative responses to metabolic stress. It remains to be fully determined whether the metaboloprotective properties of MDPs can be harnessed into therapies for metabolic disease.
Collapse
Affiliation(s)
- Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Alex Chan
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan S T Woodhead
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Joseph C Reynolds
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
- Japan Society for the Promotion of Science, Tokyo, Japan
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
- Biomedical Science, Graduate School, Ajou University, Suwon, South Korea
| |
Collapse
|
48
|
Miller B, Kim SJ, Kumagai H, Mehta HH, Xiang W, Liu J, Yen K, Cohen P. Peptides derived from small mitochondrial open reading frames: Genomic, biological, and therapeutic implications. Exp Cell Res 2020; 393:112056. [PMID: 32387288 PMCID: PMC7778388 DOI: 10.1016/j.yexcr.2020.112056] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/20/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022]
Abstract
Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins that modify cell metabolism. The the eight MDPs that been characterized (e.g., humanin, MOTS-c, SHLPs1-6) attenuate disease pathology including Alzheimer's disease, prostate cancer, macular degeneration, cardiovascular disease, and diabetes. The association between disease and human genetic variation in MDPs is underexplored, although two polymorphisms in humanin and MOTS-c associate with cognitive decline and diabetes, respectively, suggesting a precise role for MDPs in disease-modification. There could be hundreds of additional MDPs that have yet to be discovered. Altogether, MDPs could explain unanswered biological and metabolic questions and are part of a growing field of novel microproteins encoded by small open reading frames. In this review, the current state of MDPs are summarized with an emphasis on biological and therapeutic implications.
Collapse
Affiliation(s)
- Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Wang Xiang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jiali Liu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Bravo JI, Nozownik S, Danthi PS, Benayoun BA. Transposable elements, circular RNAs and mitochondrial transcription in age-related genomic regulation. Development 2020; 147:dev175786. [PMID: 32527937 PMCID: PMC10680986 DOI: 10.1242/dev.175786] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our understanding of the molecular regulation of aging and age-related diseases is still in its infancy, requiring in-depth characterization of the molecular landscape shaping these complex phenotypes. Emerging classes of molecules with promise as aging modulators include transposable elements, circRNAs and the mitochondrial transcriptome. Analytical complexity means that these molecules are often overlooked, even though they exhibit strong associations with aging and, in some cases, may directly contribute to its progress. Here, we review the links between these novel factors and age-related phenotypes, and we suggest tools that can be easily incorporated into existing pipelines to better understand the aging process.
Collapse
Affiliation(s)
- Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Séverine Nozownik
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Magistère européen de Génétique, Université Paris Diderot-Paris 7, Paris 75014, France
| | - Prakroothi S Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
50
|
Wang SF, Chen S, Tseng LM, Lee HC. Role of the mitochondrial stress response in human cancer progression. Exp Biol Med (Maywood) 2020; 245:861-878. [PMID: 32326760 PMCID: PMC7268930 DOI: 10.1177/1535370220920558] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPACT STATEMENT Dysregulated mitochondria often occurred in cancers. Mitochondrial dysfunction might contribute to cancer progression. We reviewed several mitochondrial stresses in cancers. Mitochondrial stress responses might contribute to cancer progression. Several mitochondrion-derived molecules (ROS, Ca2+, oncometabolites, exported mtDNA, mitochondrial double-stranded RNA, humanin, and MOTS-c), integrated stress response, and mitochondrial unfolded protein response act as retrograde signaling pathways and might be critical in the development and progression of cancer. Targeting these mitochondrial stress responses may be an important strategy for cancer treatment.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, 112 Taipei
- School of Pharmacy, Taipei Medical University, 110 Taipei
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, 112 Taipei
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, CA 91010, USA
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, 112 Taipei
- Department of Surgery, School of Medicine, National Yang-Ming University, 112 Taipei
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, 112 Taipei
| |
Collapse
|