1
|
Wang Q, Boccalatte F, Xu J, Gambi G, Nadorp B, Akter F, Mullin C, Melnick AF, Choe E, McCarter AC, Jerome NA, Chen S, Lin K, Khan S, Kodgule R, Sussman JH, Pölönen P, Rodriguez-Hernaez J, Narang S, Avrampou K, King B, Tsirigos A, Ryan RJ, Mullighan CG, Teachey DT, Tan K, Aifantis I, Chiang MY. Native stem cell transcriptional circuits define cardinal features of high-risk leukemia. J Exp Med 2025; 222:e20231349. [PMID: 39969525 PMCID: PMC11837855 DOI: 10.1084/jem.20231349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/11/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025] Open
Abstract
While the mutational landscape across early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) and ETP-like leukemia is known, establishing a unified framework that activates stem cell genes characteristic of these tumors remains elusive. Using complementary mouse and human models, chromatin mapping, and enhancer profiling, we show that the coactivator ZMIZ1 promotes normal and malignant ETP population growth by inducing the transcription factor MYB in feedforward circuits to convergently activate oncogenes (MEF2C, MYCN, and BCL2) through essential enhancers. A key superenhancer, the N-Myc regulating enhancer (NMRE), drives malignant ETP population growth but is dispensable for normal lymphopoiesis. This network of stem cell superenhancers identifies treatment-resistant tumors and poor survival outcomes; unifies diverse ETP-ALLs; and contributes to cardinal features of the recently genomically identified high-risk bone marrow progenitor-like (BMP-like) ETP-ALL tumor-stem cell/myeloid gene expression, inhibited NOTCH1-induced T-cell development, aggressive clinical behavior, and venetoclax sensitivity. Since ZMIZ1 is dispensable for essential homeostasis, it might be possible to safely target this network to treat high-risk diseases.
Collapse
Affiliation(s)
- Qing Wang
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Francesco Boccalatte
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Jason Xu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giovanni Gambi
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Bettina Nadorp
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Fatema Akter
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Carea Mullin
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ashley F. Melnick
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Elizabeth Choe
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Anna C. McCarter
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Nicole A. Jerome
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Siyi Chen
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Karena Lin
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Sarah Khan
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Rohan Kodgule
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan H. Sussman
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Petri Pölönen
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Javier Rodriguez-Hernaez
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Sonali Narang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Kleopatra Avrampou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Bryan King
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | | | | | - David T. Teachey
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Tan
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Mark Y. Chiang
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Yuan L, Cai Y, Wang G, Liu X, Chen B, Zhou D, Wu Y, Qu N, Li X, Zhou W. SGK3 promotes estrogen receptor-positive breast cancer proliferation by activating STAT3/ZMIZ2 pathway to stabilise β-catenin. Br J Pharmacol 2025; 182:1856-1875. [PMID: 39876548 DOI: 10.1111/bph.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND AND PURPOSE Breast cancer is a leading threat to women's health, with approximately 70% of cases being estrogen receptor-positive. SGK3 is regulated by estrogen and is positively associated with estrogen receptor expression, although its molecular role remains unclear. EXPERIMENTAL APPROACH Proteomics was used to identify SGK3's downstream targets. Tissue microarray immunofluorescence evaluated SGK3 and ZMIZ2 expression in ER+ breast cancer. Lentiviral-mediated knockdown and overexpression of SGK3 and/or ZMIZ2 assessed their effects on cell proliferation in vitro and in vivo. Chromatin immunoprecipitation (ChIP) analyzed p-STAT3 binding to the ZMIZ2 promoter, and Co-immunoprecipitation (Co-IP) examined ZMIZ2-β-catenin interaction. KEY RESULTS SGK3 expression was elevated in breast tumour tissues correlating with reduced patient survival. Proteomic analysis identified ZMIZ2 as a downstream target of SGK3. Overexpression of SGK3 promoted the proliferation of estrogen receptor-positive breast cancer in MCF-7 and T47D cells. Inhibition had the opposite effects. ZMIZ2 overexpression rescued the proliferation deficit in SGK3 knockdown cells. ZMIZ2 was found to bind and stabilises β-catenin. Knockdown of SGK3 led to β-catenin degradation via polyubiquitination, a process reversed by ZMIZ2 overexpression. STAT3 was identified as a downstream effector of SGK3 and its knockdown reduced cytoplasmic and nuclear p-STAT3 and STAT3, and inhibited ZMIZ2 and β-catenin expression. Celastrol suppressed estrogen receptor-positive breast cancer cell proliferation by inhibiting the SGK3/STAT3/ZMIZ2/β-catenin pathway. CONCLUSIONS AND IMPLICATIONS SGK3 expression is associated with poorer survival rates, thus SGK3 is a potential therapeutic target. As celastrol can inhibit SGK3 expression it could be an effective therapeutic agent.
Collapse
Affiliation(s)
- Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Department of Pharmacy, The Third People's Hospital of Chengdu, Sichuan, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yuanli Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Na Qu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular, College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Dehner C, Pissaloux D, Thamphya B, Tirode F, Von Deimling A, Guo RR, Wieland C, de la Fouchardière A, Kervarrec T. ACTB::ZMIZ2-rearranged adnexal carcinoma: a second case. Virchows Arch 2025; 486:871-875. [PMID: 39847051 DOI: 10.1007/s00428-025-04030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
A case of cutaneous adnexal neoplasm with unusual squamoid morphology and harboring an in frame ACTB::ZMIZ2 fusion transcript was recently described. Herein, we report a second case of adnexal carcinoma harboring similar morphology and an identical in frame ACTB::ZMIZ2 fusion transcript. This 2.2-cm mass was removed from the axilla of a 17-year-old woman. Microscopic examination revealed a large nodular and infiltrative tumor invading the dermis composed of sheets and nests frequently centered by large areas of keratinization. Molecular investigation revealed an in frame ACTB::ZMIZ2 fusion transcript. Clustering analysis revealed close proximity of this case with the ACTB::ZMIZ2-fused adnexal tumor previously reported. Herein, we report a second case of adnexal tumor with ACTB::ZMIZ2 fusion arising in a young adult suggesting that ACTB::ZMIZ2 fusion might be a defining genetic event, specific of a rare and previously undescribed adnexal tumor entity.
Collapse
Affiliation(s)
- Carina Dehner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Daniel Pissaloux
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Brice Thamphya
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Franck Tirode
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Andreas Von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ruifeng R Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Dermatology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Carilyn Wieland
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Dermatology, Mayo Clinic, Rochester, MN, USA
| | - Arnaud de la Fouchardière
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, 37044, Tours, France.
- "Biologie des infections à polyomavirus" Team, UMR INRA ISP 1282, Université de Tours, Tours, France.
- CARADERM Network, Tours, France.
| |
Collapse
|
4
|
Wu Y, Gong Y, Liu L, Bai L, Zhang Y, Li S, Wang C, Yuan Y, Lv X, Qin Y, Wang H, Liu Y, Chen F, Chen S, Zhang F, Guo X, Wang X, Ning Y. The Impact of Selenium Deficiency and T-2 Toxin on Zip6 Expression in Kashin-Beck Disease. Biol Trace Elem Res 2024:10.1007/s12011-024-04426-8. [PMID: 39455492 DOI: 10.1007/s12011-024-04426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
This study investigated the expression of Zip6, a gene predominantly located in the placenta, breast, and prostate tissues, in patients with Kashin-Beck disease (KBD). Environmental risk factor models for KBD were developed using low selenium (Se) feeding (with a Se content of 0.02 mg Se/kg in the feed) and exposure to T-2 toxin (200 ng/g*BW/D). Additionally, the study examined the alterations in Se and Zn2+ levels, along with the mRNA and protein expression levels of Zip6 and KBD related genes, including Mtf1, Mmp3, Mmp13, Adamts5, and Col2a1. Differentially expressed genes (DEGs) were examined by transcriptome sequencing to elucidate the mechanism by which Zip6 induces metabolic disorder of the extracellular matrix (ECM), subsequently leading to cartilage injury under the influence of Se deficiency and T-2 toxin. The findings indicated that the expression levels of Zip6 in adult and pediatric KBD chondrocytes were not synchronized. In the animal study, there was a notable increase in the Zn2+ level in the comprehensive exposure (CE) group. Moreover, in both the T-2 exposure (T-2) and CE groups, there was a significant decrease in the expression of Zip6 in each zone, and the expression of Adamts5 in the middle zone exhibited a significant increase (P < 0.05) correlating with varying degrees of cartilage tissue damage in each group. Sequencing results revealed that the significantly up-regulated DEGs in the CE group included Zimz2. This study suggested that Se and T-2 toxin may influence the expression of Zip6, and it investigated the role of Zn2+ in the pathogenesis of KBD, thereby providing a novel scientific foundation for understanding the pathogenesis of KBD.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yi Gong
- Center for Immunological and Metabolic Diseases, MED-X Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Lian Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Lulu Bai
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shujin Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chaowei Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yuequan Yuan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xi Lv
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yirong Qin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hui Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
- Clinical Research Center for Endemic Disease of Shaanxi Province, the Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, No.157 Xi Wu Road, Xi'an, 710004, People's Republic of China
| | - Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
5
|
Gan X, Feng Y, Liu Y, Lin X, Yu X, Rong X, Han Q. Identification of zinc finger MIZ-type containing 2 as an oncoprotein enhancing NAD-dependent protein deacetylase sirtuin-1 deacetylase activity to regulate Wnt and Hippo pathways in non-small-cell lung cancer. Cell Mol Biol Lett 2024; 29:122. [PMID: 39266996 PMCID: PMC11391738 DOI: 10.1186/s11658-024-00636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Zinc finger MIZ-type containing 2 (ZMIZ2) can function as a coactivator and participate in the progression of certain malignant tumors; however, its expression and underlying molecular mechanism in non-small-cell lung cancer (NSCLC) remains unknown. In this study, we aim to analyze the expression of ZMIZ2 and its tumorigenic function in NSCLC, identifying its related factors. METHODS ZMIZ2 expression in NSCLC tissue samples and cell lines was examined using immunohistochemistry and western blotting; its biological role was investigated using in vivo and in vitro assays. The association between ZMIZ2 and NAD-dependent protein deacetylase sirtuin-1 (SIRT1) was demonstrated using mass spectrometry and immunoprecipitation experiments. Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG)-based enrichment analysis, luciferase reporter assay, and real-time quantitative polymerase chain reaction (RT-qPCR) were conducted to verify the impact of ZMIZ2-SIRT1 combination on Hippo/Wnt pathways. RESULTS ZMIZ2 was highly expressed in NSCLC and positively associated with advanced pTNM staging, lymph node metastasis, and poor overall survival. Functional experiments revealed that ZMIZ2 promotes the proliferation, migration, and invasiveness of lung cancer cells-establishing its role as a promoter of oncogenes. Molecular mechanism studies identified SIRT1 as an assisted key factor interacting with ZMIZ2. KEGG enrichment analysis revealed that ZMIZ2 is closely related to Wnt/Hippo pathways; ZMIZ2-SIRT1 interaction enhanced SIRT1 deacetylase activity. Direct downregulation of intranuclear β-catenin and yes-associated protein (YAP) acetylation levels occurred independently of upstream proteins in Wnt/Hippo pathways; transcriptional activities of β-catenin-transcription factor 4 (TCF4) and YAP-TEA domain family transcription factors (TEADs) were amplified. CONCLUSIONS ZMIZ2 promotes the malignant phenotype of lung cancer by regulating Wnt/Hippo pathways through SIRT1, providing an experimental basis for discovering novel biomarkers and developing tumor-targeted drugs.
Collapse
Affiliation(s)
- Xueting Gan
- Department of Pathology, Shenbei New Area, College of Basic Medical Sciences and the First Hospital of China Medical University. No, 77 Puhe Road, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Yuheng Feng
- Department of Pathology, Shenbei New Area, College of Basic Medical Sciences and the First Hospital of China Medical University. No, 77 Puhe Road, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Yang Liu
- Department of Pathology, Shenbei New Area, College of Basic Medical Sciences and the First Hospital of China Medical University. No, 77 Puhe Road, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Xuyong Lin
- Department of Pathology, Shenbei New Area, College of Basic Medical Sciences and the First Hospital of China Medical University. No, 77 Puhe Road, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Xinmiao Yu
- Department of Surgical Oncology and Breast Surgery, the First Hospital of China Medical University, Shenyang. No. 155 Nanjing North Street, Heping Area, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Xuezhu Rong
- Department of Pathology, the First Hospital of China Medical University. No, 155 Nanjing North Street, Heping Area, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Qiang Han
- Department of Pathology, Shenbei New Area, College of Basic Medical Sciences and the First Hospital of China Medical University. No, 77 Puhe Road, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
6
|
Pang Y, Sun Y, Wu Y, Li J, Qin P, Guo S, Zhou W, Chen J, Wang J. Targeting the ZMIZ1-Notch1 signaling axis for the treatment of tongue squamous cell carcinoma. Sci Rep 2024; 14:13577. [PMID: 38866828 PMCID: PMC11169241 DOI: 10.1038/s41598-024-59882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/16/2024] [Indexed: 06/14/2024] Open
Abstract
Zinc finger MIZ-type containing 1 (ZMIZ1) is a transcriptional coactivator related to the protein inhibitors of activated STATs (PIAS) family. Mounting evidence suggests that ZMIZ1 plays a crucial role in the occurrence and development of cancers. The function of ZMIZ1 in tongue squamous cell carcinoma (TSCC) and the mechanisms underpinning its role in this disease have not been fully clarified. We performed qualitative ZMIZ1 protein expression analyses using immunohistochemistry in 20 patient-derived, paraffin-embedded TSCC tissue sections. We used RNAi to knock down ZMIZ1 expression in the CAL-27 TSCC cell line and quantified the impact of ZMIZ1 knock down on proliferation, migration and apoptosis via CCK-8, scratch assay and flow cytometry, respectively. We used qRT-PCR and western blotting to investigate the role of ZMIZ1 in this cell line. Finally, we established a model of lung metastasis in nude mice to replicate the in vitro results. ZMIZ1 protein was significantly more abundant in TSCC case tissue samples. ZMIZ1 knockdown reduced the invasion and metastases of TSCC tumor cells and promoted apoptosis. ZMIZ1 knockdown was associated with the down-regulation of Notch signaling pathway related factors Jagged1 and Notch1, and invasion and metastasis related factors MKP-1, SSBP2 and MMP7 in vitro and in vivo, at the mRNA level. In vitro and in vivo data suggest that knock down of ZMIZ1 may inhibit TSCC invasion and metastasis by modulating Notch signaling. ZMIZ1 inhibition may therefore represent a new therapeutic target for TSCC.
Collapse
Affiliation(s)
- Yunqing Pang
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, China
| | - Yunjie Sun
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, China
| | - Yuyan Wu
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, China
| | - Jiamin Li
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, China
| | - Pingchuan Qin
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, China
| | - Shanchuan Guo
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, China
| | - Wenlian Zhou
- Clinical Education Woody L. Hunt School of Dental Medicine, Dental Medicine Texas Tech University Health Sciences Center El Paso, El Paso, Texas, 79905, USA
| | - Jian Chen
- The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Jing Wang
- Lanzhou University, Lanzhou, 730000, Gansu, China.
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
7
|
K. C. R, Patel NR, Shenoy A, Scallan JP, Chiang MY, Galazo MJ, Meadows SM. Zmiz1 is a novel regulator of lymphatic endothelial cell gene expression and function. PLoS One 2024; 19:e0302926. [PMID: 38718095 PMCID: PMC11078365 DOI: 10.1371/journal.pone.0302926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Zinc Finger MIZ-Type Containing 1 (Zmiz1), also known as ZIMP10 or RAI17, is a transcription cofactor and member of the Protein Inhibitor of Activated STAT (PIAS) family of proteins. Zmiz1 is critical for a variety of biological processes including vascular development. However, its role in the lymphatic vasculature is unknown. In this study, we utilized human dermal lymphatic endothelial cells (HDLECs) and an inducible, lymphatic endothelial cell (LEC)-specific Zmiz1 knockout mouse model to investigate the role of Zmiz1 in LECs. Transcriptional profiling of ZMIZ1-deficient HDLECs revealed downregulation of genes crucial for lymphatic vessel development. Additionally, our findings demonstrated that loss of Zmiz1 results in reduced expression of proliferation and migration genes in HDLECs and reduced proliferation and migration in vitro. We also presented evidence that Zmiz1 regulates Prox1 expression in vitro and in vivo by modulating chromatin accessibility at Prox1 regulatory regions. Furthermore, we observed that loss of Zmiz1 in mesenteric lymphatic vessels significantly reduced valve density. Collectively, our results highlight a novel role of Zmiz1 in LECs and as a transcriptional regulator of Prox1, shedding light on a previously unknown regulatory factor in lymphatic vascular biology.
Collapse
Affiliation(s)
- Rajan K. C.
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
| | - Nehal R. Patel
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
| | - Anoushka Shenoy
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
| | - Joshua P. Scallan
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Mark Y. Chiang
- Department of Internal Medicine, Division of Hematology-Oncology, Medical School, University of Michigan, Ann Arbor, MI, United States of America
| | - Maria J. Galazo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | - Stryder M. Meadows
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| |
Collapse
|
8
|
K. C. R, Tiemroth AS, Thurmon AN, Meadows SM, Galazo MJ. Zmiz1 is a novel regulator of brain development associated with autism and intellectual disability. Front Psychiatry 2024; 15:1375492. [PMID: 38686122 PMCID: PMC11057416 DOI: 10.3389/fpsyt.2024.1375492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are a class of pathologies arising from perturbations in brain circuit formation and maturation with complex etiological triggers often classified as environmental and genetic. Neuropsychiatric conditions such as autism spectrum disorders (ASD), intellectual disability (ID), and attention deficit hyperactivity disorders (ADHD) are common NDDs characterized by their hereditary underpinnings and inherent heterogeneity. Genetic risk factors for NDDs are increasingly being identified in non-coding regions and proteins bound to them, including transcriptional regulators and chromatin remodelers. Importantly, de novo mutations are emerging as important contributors to NDDs and neuropsychiatric disorders. Recently, de novo mutations in transcriptional co-factor Zmiz1 or its regulatory regions have been identified in unrelated patients with syndromic ID and ASD. However, the role of Zmiz1 in brain development is unknown. Here, using publicly available databases and a Zmiz1 mutant mouse model, we reveal that Zmiz1 is highly expressed during embryonic brain development in mice and humans, and though broadly expressed across the brain, Zmiz1 is enriched in areas prominently impacted in ID and ASD such as cortex, hippocampus, and cerebellum. We investigated the relationship between Zmiz1 structure and pathogenicity of protein variants, the epigenetic marks associated with Zmiz1 regulation, and protein interactions and signaling pathways regulated by Zmiz1. Our analysis reveals that Zmiz1 regulates multiple developmental processes, including neurogenesis, neuron connectivity, and synaptic signaling. This work paves the way for future studies on the functions of Zmiz1 and highlights the importance of combining analysis of mouse models and human data.
Collapse
Affiliation(s)
- Rajan K. C.
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Alina S. Tiemroth
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Abbigail N. Thurmon
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Stryder M. Meadows
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Maria J. Galazo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
9
|
Lafontaine N, Shore CJ, Campbell PJ, Mullin BH, Brown SJ, Panicker V, Dudbridge F, Brix TH, Hegedüs L, Wilson SG, Bell JT, Walsh JP. Epigenome-wide Association Study Shows Differential DNA Methylation of MDC1, KLF9, and CUTA in Autoimmune Thyroid Disease. J Clin Endocrinol Metab 2024; 109:992-999. [PMID: 37962983 PMCID: PMC10940258 DOI: 10.1210/clinem/dgad659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
CONTEXT Autoimmune thyroid disease (AITD) includes Graves disease (GD) and Hashimoto disease (HD), which often run in the same family. AITD etiology is incompletely understood: Genetic factors may account for up to 75% of phenotypic variance, whereas epigenetic effects (including DNA methylation [DNAm]) may contribute to the remaining variance (eg, why some individuals develop GD and others HD). OBJECTIVE This work aimed to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) comparing GD to HD. METHODS Whole-blood DNAm was measured across the genome using the Infinium MethylationEPIC array in 32 Australian patients with GD and 30 with HD (discovery cohort) and 32 Danish patients with GD and 32 with HD (replication cohort). Linear mixed models were used to test for differences in quantile-normalized β values of DNAm between GD and HD and data were later meta-analyzed. Comb-p software was used to identify DMRs. RESULTS We identified epigenome-wide significant differences (P < 9E-8) and replicated (P < .05) 2 DMPs between GD and HD (cg06315208 within MDC1 and cg00049440 within KLF9). We identified and replicated a DMR within CUTA (5 CpGs at 6p21.32). We also identified 64 DMPs and 137 DMRs in the meta-analysis. CONCLUSION Our study reveals differences in DNAm between GD and HD, which may help explain why some people develop GD and others HD and provide a link to environmental risk factors. Additional research is needed to advance understanding of the role of DNAm in AITD and investigate its prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Nicole Lafontaine
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Medical School, University of Western Australia, Crawley, WA, 6009, Australia
| | - Christopher J Shore
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Purdey J Campbell
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Suzanne J Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Vijay Panicker
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Medical School, University of Western Australia, Crawley, WA, 6009, Australia
| | - Frank Dudbridge
- Population Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Thomas H Brix
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, 5000, Denmark
| | - Laszlo Hegedüs
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, 5000, Denmark
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Medical School, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
10
|
Li X, Wu A, Wang Y, Li D, Wu M. Knockdown of circZMIZ1 enhances the anti-tumor activity of CD8 + T cells to alleviate hepatocellular carcinoma. Funct Integr Genomics 2024; 24:27. [PMID: 38332346 DOI: 10.1007/s10142-024-01302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
ZMIZ1 acts as an oncogene in hepatocellular carcinoma (HCC). circZMIZ1 (hsa_circ_0018964) derives from ZMIZ1; its underlying mechanism in HCC has not been reported. Peripheral blood and peripheral blood mononuclear cells (PBMCs) were obtained from HCC patients and healthy volunteers. CD8+ T cells were sorted from PBMCs of HCC patients. Applying flow cytometry, cell apoptosis and the proportion of KCNJ2/CD8+ T cells were examined. The cytotoxicity of CD8+ T cells against HCC cells was evaluated. The interaction among circZMIZ1, miR-15a-5p, and KCNJ2 was investigated by dual luciferase assay, RNA immunoprecipitation, and RNA pull-down assay. An orthotopic mouse model of HCC was constructed by intrahepatic injection of H22 cells. Upregulation of circZMIZ1 and KCNJ2 and downregulation of miR-15a-5p were observed in peripheral blood and PBMCs of HCC patients. The proportion of KCNJ2/CD8+ T cells was also increased in HCC patients. circZMIZ1 knockdown restrained apoptosis of CD8+ T cells and elevated cytotoxicity of CD8+ T cells. Mechanically speaking, circZMIZ1 elevated KCNJ2 expression by sponging miR-15a-5p. miR-15a-5p inhibitor reversed circZMIZ1 silencing-mediated inhibition of apoptosis and promotion of cytotoxicity in CD8+ T cells. In vivo, orthotopic mice of HCC exhibited increased expression of circZMIZ1 and KCNJ2, elevated proportion of KCNJ2/CD8+ T cells, and decreased expression of miR-15a-5p. This work demonstrated that circZMIZ1 inhibited the anti-tumor activity of CD8+ T cells in HCC by regulating the miR-15a-5p/KCNJ2 axis. This provides a theoretical basis for the development of effective circZMIZ1 in tumor immunotherapy.
Collapse
Affiliation(s)
- Xi Li
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Anlin Wu
- Department of Surgery, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, 344000, Jiangxi, China
| | - Yixian Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Die Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Mingming Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
11
|
Liu J, Sun T, Yin L. ZMIZ1 Upregulation of TET3-Mediated Hydroxymethylation Induces M2 Polarization of Kupffer Cells in Hepatocellular Carcinogenesis by Mediating Notch1/c-Myc Signaling. J Transl Med 2023; 103:100264. [PMID: 37839636 DOI: 10.1016/j.labinv.2023.100264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
Hydroxymethylation of DNA, mediated by the ten-eleven translocation (TET) family of methylcytosine dioxygenases, represents a crucial epigenetic modification that manipulates gene expression in numerous biological processes. This study focuses on the effect of TET3 on the polarization of Kupffer cells (KCs) and its connection to the development of hepatocellular carcinoma (HCC). TET3 was found to be abundant in KCs, and its knockdown induced an M2-M1 phenotype shift, resulting in the suppression of viability, migration, and invasion of cocultured HCC cells. Additionally, the TET3 knockdown inhibited the tumorigenesis of HCC cells in nude mice. Downstream targets of TET3 were predicted using bioinformatics. TET3-mediated DNA hydroxymethylation of zinc finger MIZ-type containing 1 (ZMIZ1) promoter. The ZMIZ1 protein interacted with notch receptor 1 (Notch1) protein to activate the transcription of c-Myc. Silencing of ZMIZ1 in KCs similarly suppressed M2 polarization of KCs and malignant phenotype of cocultured HCC cells. However, these changes were counteracted by the overexpression of either Notch1 or c-Myc overexpression in KCs. In summary, this study demonstrates that TET3-mediated hydroxymethylation of ZMIZ1 enhances hepatocellular carcinogenesis by promoting M2 skewing of KCs through the Notch1/c-Myc axis.
Collapse
Affiliation(s)
- Jia Liu
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Tingting Sun
- Department of Gerontology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Linan Yin
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China.
| |
Collapse
|
12
|
Wu W, Huang C. SUMOylation and DeSUMOylation: Prospective therapeutic targets in cancer. Life Sci 2023; 332:122085. [PMID: 37722589 DOI: 10.1016/j.lfs.2023.122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
The SUMO family is a type of ubiquitin-like protein modification molecule. Its protein modification mechanism is similar to that of ubiquitination: both involve modifier-activating enzyme E1, conjugating enzyme E2 and substrate-specific ligase E3. However, polyubiquitination can lead to the degradation of substrate proteins, while poly-SUMOylation only leads to the degradation of substrate proteins through the proteasome pathway after being recognized by ubiquitin as a signal factor. There are currently five reported subtypes in the SUMO family, namely SUMO1-5. As a reversible dynamic modification, intracellular sentrin/SUMO-specific proteases (SENPs) mainly regulate the reverse reaction pathway of SUMOylation. The SUMOylation modification system affects the localization, activation and turnover of proteins in cells and participates in regulating most nuclear and extranuclear molecular reactions. Abnormal expression of proteins related to the SUMOylation pathway is commonly observed in tumors, indicating that this pathway is closely related to tumor occurrence, metastasis and invasion. This review mainly discusses the composition of members in the protein family related to SUMOylation pathways, mutual connections between SUMOylation and other post-translational modifications on proteins as well as therapeutic drugs developed based on these pathways.
Collapse
Affiliation(s)
- Wenyan Wu
- Kunming University of Science and Technology, Medical School, Kunming 650500, China
| | - Chao Huang
- Kunming University of Science and Technology, Medical School, Kunming 650500, China.
| |
Collapse
|
13
|
Hou X, Heckman MG, Fiesel FC, Koga S, Soto-Beasley AI, Watzlawik JO, Zhao J, Valentino RR, Johnson PW, White LJ, Quicksall ZS, Reddy JS, Bras J, Guerreiro R, Zhao N, Bu G, Dickson DW, Ross OA, Springer W. Genome-wide association study identifies APOE and ZMIZ1 variants as mitophagy modifiers in Lewy body disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.16.23297100. [PMID: 37905059 PMCID: PMC10615013 DOI: 10.1101/2023.10.16.23297100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The PINK1-PRKN pathway mediates a critical quality control to maintain mitochondrial health and function. Together the kinase-ligase pair identifies and decorate damaged mitochondria with phosphorylated ubiquitin (p-S65-Ub). This selective label serves as the mitophagy tag and facilitates their degradation via autophagy-lysosome system. While complete loss of PINK1 or PRKN function causes early-onset Parkinson disease, much broader mitophagy impairments are emerging across neurodegenerative disorders. We previously found age- and disease-dependent accumulation of p-S65-Ub signal in the hippocampus of autopsy brains with Lewy body disease (LBD). However, the contribution of genetic variation to mitochondrial damage and p-S65-Ub levels remains unknown in LBD cases. To identify novel regulators of PINK1-PRKN mitophagy in LBD, we performed an unbiased genome-wide association study of hippocampal p-S65-Ub level with 1,012 autopsy confirmed LBD samples. Using an established, mostly automated workflow, hippocampal sections were immunostained for p-S65-Ub, scanned, and quantified with unbiased algorithms. Functional validation of the significant hit was performed in animal model and human induced pluripotent stem cells (hiPSCs). We identified a strong association with p-S65-Ub for APOE4 (rs429358; β : 0.50, 95% CI: 0.41 to 0.69; p =8.67x10 -25 ) and a genome-wide significant association for ZMIZ1 (rs6480922; β : -0.33, 95% CI: -0.45 to -0.22; p =1.42x10 -8 ). The increased p-S65-Ub levels in APOE4 -carrier may be mediated by both co-pathology-dependent and -independent mechanisms, which was confirmed in Apoe-targeted replacement mice and hiPSC-derived astrocytes. Intriguingly, ZMIZ1 rs6480922 also significantly associated with increased brain weight and reduced neuropathological burden indicating a potential role as a resilience factor. Our findings nominate novel mitophagy regulators in LBD brain ( ZMIZ1 locus) and highlight a strong association of APOE4 with mitophagy alteration. With APOE4 being the strongest known risk factor for clinical Alzheimer's disease and dementia with Lewy bodies, our findings suggest a common mechanistic link underscoring the importance of mitochondrial quality control.
Collapse
|
14
|
Salas-Lloret D, Jansen NS, Nagamalleswari E, van der Meulen C, Gracheva E, de Ru AH, Otte HAM, van Veelen PA, Pichler A, Goedhart J, Vertegaal AC, González-Prieto R. SUMO-activated target traps (SATTs) enable the identification of a comprehensive E3-specific SUMO proteome. SCIENCE ADVANCES 2023; 9:eadh2073. [PMID: 37531430 PMCID: PMC10396300 DOI: 10.1126/sciadv.adh2073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
Ubiquitin and ubiquitin-like conjugation cascades consist of dedicated E1, E2, and E3 enzymes with E3s providing substrate specificity. Mass spectrometry-based approaches have enabled the identification of more than 6500 SUMO2/3 target proteins. The limited number of SUMO E3s provides the unique opportunity to systematically study E3 substrate wiring. We developed SUMO-activated target traps (SATTs) and systematically identified substrates for eight different SUMO E3s, PIAS1, PIAS2, PIAS3, PIAS4, NSMCE2, ZNF451, LAZSUL (ZNF451-3), and ZMIZ2. SATTs enabled us to identify 427 SUMO1 and 961 SUMO2/3 targets in an E3-specific manner. We found pronounced E3 substrate preference. Quantitative proteomics enabled us to measure substrate specificity of E3s, quantified using the SATT index. Furthermore, we developed the Polar SATTs web-based tool to browse the dataset in an interactive manner. Overall, we uncover E3-to-target wiring of 1388 SUMO substrates, highlighting unique and overlapping sets of substrates for eight different SUMO E3 ligases.
Collapse
Affiliation(s)
- Daniel Salas-Lloret
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Nicolette S. Jansen
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Coen van der Meulen
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Ekaterina Gracheva
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Arnoud H. de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - H. Anne Marie Otte
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Peter A. van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Andrea Pichler
- Max Plank Institute for Immunobiology and Epigenetics, Freiburg, Germany
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | | | | | - Román González-Prieto
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-CSIC-Universidad-Pablo de Olavide, Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
15
|
Rajan KC, Patel NR, Shenoy A, Scallan JP, Chiang MY, Galazo MJ, Meadows SM. Zmiz1 is a novel regulator of lymphatic endothelial cell gene expression and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550165. [PMID: 37503058 PMCID: PMC10370198 DOI: 10.1101/2023.07.22.550165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Zinc Finger MIZ-Type Containing 1 (Zmiz1), also known as ZIMP10 or RAI17, is a transcription cofactor and member of the Protein Inhibitor of Activated STAT (PIAS) family of proteins. Zmiz1 is critical for a variety of biological processes including vascular development. However, its role in the lymphatic vasculature is unknown. In this study, we utilized human dermal lymphatic endothelial cells (HDLECs) and an inducible, lymphatic endothelial cell (LEC)-specific Zmiz1 knockout mouse model to investigate the role of Zmiz1 in LECs. Transcriptional profiling of Zmiz1-deficient HDLECs revealed downregulation of genes crucial for lymphatic vessel development. Additionally, our findings demonstrated that loss of Zmiz1 results in reduced expression of proliferation and migration genes in HDLECs and reduced proliferation and migration in vitro. We also presented evidence that Zmiz1 regulates Prox1 expression in vitro and in vivo by modulating chromatin accessibility at Prox1 regulatory regions. Furthermore, we observed that loss of Zmiz1 in mesenteric lymphatic vessels significantly reduced valve density. Collectively, our results highlight a novel role of Zmiz1 in LECs and as a transcriptional regulator of Prox1, shedding light on a previously unknown regulatory factor in lymphatic vascular biology.
Collapse
Affiliation(s)
- K C Rajan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA
| | - Nehal R Patel
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA
| | - Anoushka Shenoy
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA
| | - Joshua P Scallan
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mark Y Chiang
- Division of Hematology-Oncology, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI
| | - Maria J Galazo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA
- Tulane Brain Institute, Tulane University, New Orleans, LA
| | - Stryder M Meadows
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA
- Tulane Brain Institute, Tulane University, New Orleans, LA
| |
Collapse
|
16
|
Mardones MD, Gupta K. Transcriptome Profiling of the Hippocampal Seizure Network Implicates a Role for Wnt Signaling during Epileptogenesis in a Mouse Model of Temporal Lobe Epilepsy. Int J Mol Sci 2022; 23:12030. [PMID: 36233336 PMCID: PMC9569502 DOI: 10.3390/ijms231912030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a life-threatening condition characterized by recurrent hippocampal seizures. mTLE can develop after exposure to risk factors such as febrile seizure, trauma, and infection. Within the latent period between exposure and onset of epilepsy, pathological remodeling events occur that contribute to epileptogenesis. The molecular mechanisms responsible are currently unclear. We used the mouse intrahippocampal kainite model of mTLE to investigate transcriptional dysregulation in the ipsilateral and contralateral dentate gyrus (DG), representing the epileptogenic zone (EZ) and peri-ictal zone (PIZ). DG were analyzed after 3, 7, and 14 days by RNA sequencing. In both the EZ and PIZ, transcriptional dysregulation was dynamic over the epileptogenic period with early expression of genes representing cell signaling, migration, and proliferation. Canonical Wnt signaling was upregulated in the EZ and PIZ at 3 days. Expression of inflammatory genes differed between the EZ and PIZ, with early expression after 3 days in the PIZ and delayed expression after 7-14 days in the EZ. This suggests that critical gene changes occur early in the hippocampal seizure network and that Wnt signaling may play a role within the latent epileptogenic period. These findings may help to identify novel therapeutic targets that could prevent epileptogenesis.
Collapse
Affiliation(s)
- Muriel D Mardones
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kunal Gupta
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|