1
|
Fu Y, Yao M, Qiu P, Song M, Ni X, Niu E, Shi J, Wang T, Zhang Y, Yu H, Qian L. Identification of transcription factor BnHDG4-A08 as a novel candidate associated with the accumulation of oleic, linoleic, linolenic, and erucic acid in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:243. [PMID: 39352575 DOI: 10.1007/s00122-024-04733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/24/2024] [Indexed: 10/03/2024]
Abstract
KEY MESSAGE We screened 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits. A novel candidate of transcription factor BnHDG4 A08 influencing oleic, linoleic, linolenic, and erucic acid was identified, by a joint strategy of haplotype-based genome-wide association study, genomic resequencing, gene cloning, and co-expression network Fatty acid (FA) composition determines the quality and economic value of rapeseed oil (Brassica napus). However, the molecular network of FAs is unclear. In the current study, multi-strategies of haplotype-based genome-wide association study (GWAS), genomic resequencing, gene cloning, and co-expression network were joint to reveal novel genetic factors influencing FA accumulation in rapeseed. We identified 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits, using a haplotype-based GWAS with phenotype data from 203 Chinese semi-winter accessions. A total of 61 rapeseed orthologs involved in acyl-lipid metabolism, carbohydrate metabolism, or photosynthesis were identified in these 17 blocks. Among these genes, BnHDG4-A08, encoding a class IV homeodomain leucine-zipper transcription factor, exhibited two single-nucleotide polymorphisms (SNPs) in the exon and intron, with significant associations with oleic, linoleic, linolenic, and erucic acid. Gene cloning further validated two SNPs in the exon of BnHDG4-A08 in a population with 75 accessions, leading to two amino acid changes (T372A and P366L) and significant variation of oleic, linoleic, linolenic, and erucic acid. A competitive allele-specific PCR (KASP) marker based on the SNPs was successfully developed and validated. Moreover, 98 genes exhibiting direct interconnections and high weight values with BnHDG4-A08 were identified through co-expression network analysis using transcriptome data from 13 accessions. Our study identified a novel FA candidate of transcription factor BnHDG4-A08 influencing oleic, linoleic, linolenic, and erucic acid. This gene provides a potential promising gene resource for the novel mechanistic understanding of transcription factors regulating FA accumulation.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Min Yao
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Ping Qiu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Maolin Song
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Xiyuan Ni
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Erli Niu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianghua Shi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tanliu Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Lunwen Qian
- College of Agronomy, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
2
|
Liu Y, Du Z, Li Y, Lu S, Tang S, Guo L. Improving linolenic acid content in rapeseed oil by overexpression of CsFAD2 and CsFAD3 genes. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:9. [PMID: 38298744 PMCID: PMC10825089 DOI: 10.1007/s11032-024-01445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
With the increasing public attention to the health benefit of polyunsaturated fatty acids (PUFAs) and demand for linolenic acid (C18:3), it is of great significance to increase the C18:3 content in our meal. As an oil crop with high content of C18:3, Camelina sativa has three homologous copies of FAD2 and three homologous copies FAD3. In this study, we seed-specifically overexpressed two Camelina sativa fatty acid desaturase genes, CsFAD2 and CsFAD3, in rapeseed cultivar Zhongshuang 9. The results show that C18:3 content in CsFAD2 and CsFAD3 overexpressed seeds is increased from 8.62% in wild-type (WT) to 10.62-12.95% and 14.54-26.16%, respectively. We crossed CsFAD2 and CsFAD3 overexpression lines, and stable homozygous digenic crossed lines were obtained. The C18:3 content was increased from 8.62% in WT to 28.46-53.57% in crossed overexpression lines. In addition, we found that the overexpression of CsFAD2 and CsFAD3 had no effect on rapeseed growth, development, and other agronomic traits. In conclusion, we successfully generated rapeseed germplasms with high C18:3 content by simultaneously overexpressing CsFAD2 and CsFAD3, which provides a feasible way for breeding high C18:3 rapeseed cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01445-0.
Collapse
Affiliation(s)
- Yunhao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhuolin Du
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070 China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000 China
| |
Collapse
|
3
|
Qin D, Xing J, Cheng P, Yu G. Genome-wide association and RNA-seq analyses reveal a potential gene related to linolenic acid in soybean seeds. PeerJ 2023; 11:e16138. [PMID: 37933254 PMCID: PMC10625760 DOI: 10.7717/peerj.16138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 11/08/2023] Open
Abstract
Linolenic acid (LA) has poor oxidative stability since it is a polyunsaturated fatty acid. Soybean oil has a high LA content and thus has poor oxidative stability. To identify candidate genes that affect the linolenic acid (LA) content in soybean seeds, a genome-wide association study (GWAS) was performed with 1,060 soybean cultivars collected in China between 2019-2021 and which LA content was measured using matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF IMS). A candidate gene, GmWRI14, encoding an APETALA2 (AP2)-type transcription factor, was detected by GWAS in cultivars from all three study years. Multiple sequence alignments showed that GmWRI14 belongs to the plant WRI1 family. The fatty acid contents of different soybean lines were evaluated in transgenic lines with a copy of GmWRI14, control lines without GmWRI14, and the gmwri14 mutant. MALDI-TOF IMS revealed that GmWRI14 transgenic soybeans had a lower LA content with a significant effect on seed size and shape, whereas gmwri14 mutants had a higher LA content. compared to control. The RNA-seq results showed that GmWRI14 suppresses GmFAD3s (GmFAD3B and GmFAD3C) and GmbZIP54 expression in soybean seeds, leading to decreased LA content. Based on the RNA-seq data, yeast one-hybrid (Y1H) and qRT-PCR were performed to confirm the transcriptional regulation of FAD3s by GmWRI14. Our results suggest that FAD3 is indirectly regulated by GmWRI14, representing a new molecular mechanism of fatty acid biosynthesis, in which GmWRI14 regulates LA content in soybean seeds.
Collapse
Affiliation(s)
- Di Qin
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Gongdong, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou University, Guangzhou, Guangdong, China
| | - Jiehua Xing
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Gongdong, China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Gongdong, China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Gongdong, China
| |
Collapse
|
4
|
Wang ML, Tonnis B, Li X, Morris JB. Generation of Sesame Mutant Population by Mutagenesis and Identification of High Oleate Mutants by GC Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1294. [PMID: 36986984 PMCID: PMC10055875 DOI: 10.3390/plants12061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/31/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Sesame is one of the important oilseed crops in the world. Natural genetic variation exists in the sesame germplasm collection. Mining and utilizing the genetic allele variation from the germplasm collection is an important approach for seed quality improvement. The sesame germplasm accession, PI 263470, which has a significantly higher level of oleic acid (54.0%) than the average (39.5%), was identified by screening the entire USDA germplasm collection. The seeds from this accession were planted in a greenhouse. Leaf tissues and seeds were harvested from individual plants. DNA sequencing of the coding region of the fatty acid desaturase gene (FAD2) confirmed that this accession contained a natural mutation of G425A which may correspond to the deduced amino acid substitution of R142H leading to the high level of oleic acid, but it was a mixed accession with three genotypes (G/G, G/A, and A/A at the position). The genotype with A/A was selected and self-crossed for three generations. The purified seeds were used for EMS-induced mutagenesis to further enhance the level of oleic acid. A total of 635 M2 plants were generated from mutagenesis. Some mutant plants had significant morphological changes including leafy flat stems and others. M3 seeds were used for fatty acid composition analysis by gas chromatography (GC). Several mutant lines were identified with high oleic acid (70%). Six M3 mutant lines plus one control line were advanced to M7 or M8 generations. Their high oleate traits from M7 or M8 seeds harvested from M6 or M7 plants were further confirmed. The level of oleic acid from one mutant line (M7 915-2) was over 75%. The coding region of FAD2 was sequenced from these six mutants, but no mutation was identified. Additional loci may contribute to the high level of oleic acid. The mutants identified in this study can be used as breeding materials for sesame improvement and as genetic materials for forward genetic studies.
Collapse
Affiliation(s)
- Ming Li Wang
- Plant Genetic Resources Conservation Unit, USDA-ARS, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Brandon Tonnis
- Plant Genetic Resources Conservation Unit, USDA-ARS, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Xianran Li
- Wheat Health, Genetics, and Quality Research, USDA-ARS, 291 Clark Hall, Pullman, WA 99164, USA
| | - John Bradly Morris
- Plant Genetic Resources Conservation Unit, USDA-ARS, 1109 Experiment Street, Griffin, GA 30223, USA
| |
Collapse
|
5
|
Liu H, Lin B, Ren Y, Hao P, Huang L, Xue B, Jiang L, Zhu Y, Hua S. CRISPR/Cas9-mediated editing of double loci of BnFAD2 increased the seed oleic acid content of rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1034215. [PMID: 36483970 PMCID: PMC9723152 DOI: 10.3389/fpls.2022.1034215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Seed oleic acid is an important quality trait sought in rapeseed breeding programs. Many methods exist to increase seed oleic acid content, such as the CRISPR/Cas9-mediated genome editing system, yet there is no report on seed oleic acid content improvement via this system's precise editing of the double loci of BnFAD2. Here, a precise CRISPR/Cas9-mediated genome editing of the encoded double loci (A5 and C5) of BnFAD2 was established. The results demonstrated high efficiency of regeneration and transformation, with the rapeseed genotype screened in ratios of 20.18% and 85.46%, respectively. The total editing efficiency was 64.35%, whereas the single locus- and double locus-edited ratios were 21.58% and 78.42%, respectively. The relative proportion of oleic acid with other fatty acids in seed oil of mutants was significantly higher for those that underwent the editing on A5 copy than that on C5 copy, but it was still less than 80%. For double locus-edited mutants, their relative proportion of oleic acid was more than 85% in the T1 and T4 generations. A comparison of the sequences between the double locus-edited mutants and reference showed that no transgenic border sequences were detected from the transformed vector. Analysis of the BnFAD2 sequence on A5 and C5 at the mutated locus of double loci mutants uncovered evidence for base deletion and insertion, and combination. Further, no editing issue of FAD2 on the copy of A1 was detected on the three targeted editing regions. Seed yield, yield component, oil content, and relative proportion of oleic acid between one selected double loci-edited mutant and wild type were also compared. These results showed that although the number of siliques per plant of the wild type was significantly higher than those of the mutant, the differences in seed yield and oil content were not significant between them, albeit with the mutant having a markedly higher relative proportion of oleic acid. Altogether, our results confirmed that the established CRISPR/Cas9-mediated genome editing of double loci (A5 and C5) of the BnFAD2 can precisely edit the targeted genes, thereby enhancing the seed oleic acid content to a far greater extent than can a single locus-editing system.
Collapse
Affiliation(s)
- Han Liu
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Department of Seed Management, Yongding Agriculture and Rural Bureau of Longyan, Longyan, China
| | - Baogang Lin
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yun Ren
- Huzhou Agricultural Science and Technology Development Center, Institution of Crop Science, Huzhou, China
| | - Pengfei Hao
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Lan Huang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Bowen Xue
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Lixi Jiang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yang Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuijin Hua
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
6
|
CRISPR/Cas9-Mediated Gene Editing of BnFAD2 and BnFAE1 Modifies Fatty Acid Profiles in Brassica napus. Genes (Basel) 2022; 13:genes13101681. [PMID: 36292566 PMCID: PMC9602045 DOI: 10.3390/genes13101681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Fatty acid (FA) composition determines the quality of oil from oilseed crops, and thus is a major target for genetic improvement. FAD2 (Fatty acid dehydrogenase 2) and FAE1 (fatty acid elongase 1) are critical FA synthetic genes, and have been the focus of genetic manipulation to alter fatty acid composition in oilseed plants. In this study, to improve the nutritional quality of rapeseed cultivar CY2 (about 50% oil content; of which 40% erucic acid), we generated novel knockout plants by CRISPR/Cas9 mediated genome editing of BnFAD2 and BnFAE1 genes. Two guide RNAs were designed to target one copy of the BnFAD2 gene and two copies of the BnFAE1 gene, respectively. A number of lines with mutations at three target sites of BnFAD2 and BnFAE1 genes were identified by sequence analysis. Three of these lines showed mutations in all three target sites of the BnFAD2 and BnFAE1 genes. Fatty acid composition analysis of seeds revealed that mutations at all three sites resulted in significantly increased oleic acid (70–80%) content compared with that of CY2 (20%), greatly reduced erucic acid levels and slightly decreased polyunsaturated fatty acids content. Our results confirmed that the CRISPR/Cas9 system is an effective tool for improving this important trait.
Collapse
|
7
|
Borhanpour F, Sekhavatizadeh SS, Hosseinzadeh S, Hasanzadeh M, Golmakani MT, Moharreri M. Effect of microencapsulated chavil (Ferulago angulata) extract on physicochemical, microbiological, textural and sensorial properties of UF-feta-type cheese during storage time. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Chavil (Ferulago angulata) extract (CE) and microencapsulated chavil extract (MCE) were added to UF- Feta-type Cheese. The aim of this study was to comprising CE and MCE on physicochemical and microbiological properties in cheese. The scanning electron microscope images demonstrate the MCE had elliptical shape. The average size diameter curve of the MCE revealed bimodal distribution with two peaks (1541 and 2222 nm) separately. The hardness value of MCE cheese (212.83 ± 17.63 g) was lower than that of CE (343.67 ± 25.53 g) because of canola oil used in the microencapsulation process. The MCE-cheese showed lower values of acidity (1.67%) in comparison with CE-cheese (1.87%). The viable numbers of Streptococcus thermophilus and Lactococcus lactis were equal among the samples (4.6–4.9 log10 CFU/g respectively). The acid degree value of MCE (2.07 ± 0.21%) and CE (1.83 ± 0.25%) cheese were nearly equal at the end of storage time.
Collapse
Affiliation(s)
| | | | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health , Professor of Food Hygiene, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | | | - Mohammad-Taghi Golmakani
- Food Science and Technology Department , School of Agriculture, Shiraz University , Shiraz , Iran
| | - Morteza Moharreri
- Food Science and Technology Department , School of Agriculture, Shiraz University , Shiraz , Iran
| |
Collapse
|
8
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|
9
|
Fu Y, Mason AS, Zhang Y, Yu H. Identification and Development of KASP Markers for Novel Mutant BnFAD2 Alleles Associated With Elevated Oleic Acid in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:715633. [PMID: 34381489 PMCID: PMC8350730 DOI: 10.3389/fpls.2021.715633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 05/25/2023]
Abstract
The fatty acid desaturase FAD2 genes are the main contributors to oleic acid content, and different FAD2 alleles can result in different oleic acid contents in rapeseed oil. Hence, identification of allelic variation in FAD2 is an extremely desirable breeding goal. By performing QTL mapping using 190 F2:3 lines genotyped by genome-wide single nucleotide polymorphism (SNP) markers assayed by the Brassica 60 K Infinium BeadChip Array, four quantitative trait loci (QTL) for C18:1 content were mapped on chromosomes A01, A05, A09 and C05 over 3 years in a population segregating for oleic acid content. Two BnFAD2 genes on A05 and C05 were anchored within the QTL intervals, explaining 45-52 and 15-44% of the observed variation for C18:1 content. Sequence polymorphisms between the corresponding coding regions of the parental lines found two single-nucleotide polymorphisms (SNPs) in BnFAD2.A05 and BnFAD2.C05, respectively, which led to the amino acid changes (C421T and G1073E) in the corresponding proteins. The mutation sites of Bnfad2.A05 and Bnfad2.C05 alleles were located within the second H-box and near the third H-box motif of the protein, respectively, and were found to be novel mutant alleles. Lines resulting from the combination of these two alleles contained up to 88% oleic acid in their seed oil, compared with 63% in wild-type controls. Two competitive allele-specific PCR (KASP) markers based on these two mutation sites were successfully developed and validated in segregating F2 populations. These markers will facilitate breeding for ultra-high seed oleic acid content in oilseed rape.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Strategy of Salt Tolerance and Interactive Impact of Azotobacter chroococcum and/or Alcaligenes faecalis Inoculation on Canola ( Brassica napus L.) Plants Grown in Saline Soil. PLANTS 2021; 10:plants10010110. [PMID: 33430173 PMCID: PMC7825586 DOI: 10.3390/plants10010110] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
A pot experiment was designed and performed in a completely randomized block design (CRBD) to determine the main effect of two plant growth-promoting rhizobacteria (PGPR) and their co-inoculation on growth criteria and physio-biochemical attributes of canola plants (Brassica napus L.) plant grown in saline soil. The results showed that inoculation with two PGPR (Azotobacter chroococcum and/or Alcaligenes faecalis) energized the growth parameters and photosynthetic pigments of stressed plants. Moreover, soluble sugars’ and proteins’ contents were boosted due to the treatments mentioned above. Proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents were markedly declined. At the same time, antioxidant enzymes, viz. superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD), were augmented due to the inoculation with Azotobacter chroococcum and/or Alcaligenes faecalis. Regarding minerals’ uptake, there was a decline in sodium (Na) and an increase in nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) uptake due to the application of either individual or co-inoculation with the mentioned bacterial isolates. This study showed that co-inoculation with Azotobacter chroococcum and Alcaligenes faecalis was the most effective treatment and could be considered a premium tool used in facing environmental problems, especially saline soils.
Collapse
|
11
|
Matuszczak M, Spasibionek S, Gacek K, Bartkowiak-Broda I. Cleaved amplified polymorphic sequences (CAPS) marker for identification of two mutant alleles of the rapeseed BnaA.FAD2 gene. Mol Biol Rep 2020; 47:7607-7621. [PMID: 32979163 PMCID: PMC7588397 DOI: 10.1007/s11033-020-05828-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/07/2020] [Indexed: 11/30/2022]
Abstract
Two mutants of winter rapeseed (Brassica napus L. var. oleifera) with an increased amount of oleic acid in seeds were created by chemical mutagenesis (HOR3-M10453 and HOR4-M10464). The overall performance of the mutated plants was much lower than that of wild-type cultivars. Multiple rounds of crossing with high-yielding double-low ("00") cultivars and breeding lines having valuable agronomic traits, followed by selection of high oleic acid genotypes is then needed to obtain new "00" varieties of rapeseed having high oleic acid content in seeds. To perform such selection, the specific codominant cleaved amplified polymorphic sequences (CAPS) marker was used. This marker was designed to detect the presence of two relevant point mutations in the desaturase gene BnaA.FAD2, and it was previously described and patented. The specific polymerase chain reaction product (732 bp) was digested using FspBI restriction enzyme that recognizes the 5'-C↓TAG-3' sequence which is common to both mutated alleles, thereby yielding band patterns specific for those alleles. The method proposed in the patent was redesigned, adjusted to specific laboratory conditions, and thoroughly tested. Different DNA extraction protocols were tested to optimize the procedure. Two variants of the CAPS method (with and without purification of amplified product) were considered to choose the best option. In addition, the ability of the studied marker to detect heterozygosity in the BnaA.FAD2 locus was also tested. Finally, we also presented some examples for the use of the new CAPS marker in the marker-assisted selection (MAS) during our breeding programs. The standard CTAB method of DNA extraction and the simplified, two-step (amplification/digestion) procedure for the CAPS marker are recommended. The marker was found to be useful for the detection of two mutated alleles of the studied BnaA.FAD2 desaturase gene and can potentially assure the breeders of the purity of their HOLL lines. However, it was also shown that it could not detect any other alleles or genes that were revealed to play a role in the regulation of oleic acid level.
Collapse
Affiliation(s)
- Marcin Matuszczak
- Research Division in Poznań, Plant Breeding and Acclimatization Institute, National Research Institute, Strzeszyńska 36, Poznań, Poland.
| | - Stanisław Spasibionek
- Research Division in Poznań, Plant Breeding and Acclimatization Institute, National Research Institute, Strzeszyńska 36, Poznań, Poland
| | - Katarzyna Gacek
- Research Division in Poznań, Plant Breeding and Acclimatization Institute, National Research Institute, Strzeszyńska 36, Poznań, Poland
| | - Iwona Bartkowiak-Broda
- Research Division in Poznań, Plant Breeding and Acclimatization Institute, National Research Institute, Strzeszyńska 36, Poznań, Poland
| |
Collapse
|
12
|
Huang H, Cui T, Zhang L, Yang Q, Yang Y, Xie K, Fan C, Zhou Y. Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2401-2411. [PMID: 32448919 DOI: 10.1007/s00122-020-03607-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/12/2020] [Indexed: 05/05/2023]
Abstract
Genomic editing with CRISPR/Cas9 system can simultaneously modify multiple copies of theBnaFAD2 gene to develop novel variations in fatty acids profiles in polyploidy rapeseed. Fatty acid composition affects edible and processing quality of vegetable oil and has been one of the primary targets for genetic modification in oilseed crops including rapeseed (Brassica napus). Fatty acid desaturase 2 gene, FAD2, is a key player that affects three major fatty acids, namely oleic, linoleic and linolenic acid, in oilseed plants. Previously, we showed that there are four copies of BnaFAD2 in allotetraploid rapeseed. In this study, we further established spatiotemporal expression pattern of each copy of BnaFAD2 using published RNA-seq data. Genomic editing technology based on CRISPR/Cas9 system was used to mutate all the copies of BnaFAD2 to create novel allelic variations in oleic acid and other fatty acid levels. A number of mutants at two targeting sites were identified, and the phenotypic variation in the mutants was systematically evaluated. The oleic acid content in the seed of the mutants increased significantly with the highest exceeding 80% compared with wild type of 66.43%, while linoleic and linolenic acid contents decreased accordingly. Mutations on BnaFAD2.A5 caused more dramatic changes of fatty acid profile than the mutations on BnaFAD2.C5 alleles that were identified with gene editing technique for the first time. Moreover, combining different mutated alleles of BnaFAD2 can even broaden the variation more dramatically. It was found that effects of different mutation types at BnaFAD2 alleles on oleic levels varied, indicating a possibility to manipulate fatty acid levels by precise mutation at specific region of a gene.
Collapse
Affiliation(s)
- Huibin Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingting Cui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingyong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Spasibionek S, Mikołajczyk K, Ćwiek–Kupczyńska H, Piętka T, Krótka K, Matuszczak M, Nowakowska J, Michalski K, Bartkowiak-Broda I. Marker assisted selection of new high oleic and low linolenic winter oilseed rape (Brassica napus L.) inbred lines revealing good agricultural value. PLoS One 2020; 15:e0233959. [PMID: 32497146 PMCID: PMC7272079 DOI: 10.1371/journal.pone.0233959] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/15/2020] [Indexed: 12/01/2022] Open
Abstract
Development of oilseed rape (Brassica napus L.) breeding lines producing oil characterized by high oleic and low linolenic acid content is an important goal of rapeseed breeding programs worldwide. Such kind of oil is ideal for deep frying and can also be used as a raw material for biodiesel production. By performing chemical mutagenesis using ethyl methanesulfonate, we obtained mutant winter rapeseed breeding lines that can produce oil with a high content of oleic acid (C18:1, more than 75%) and a low content of linolenic acid (C18:3, less than 3%). However, the mutant lines revealed low agricultural value as they were characterized by low seed yield, low wintering, and high content of glucosinolates in seed meal. The aim of this work was to improve the mutant lines and develop high-oleic and low-linolenic recombinants exhibiting both good oil quality and high agronomic value. The plant materials used in this study included high-oleic and low-linolenic mutant breeding lines and high-yielding domestic canola-type breeding lines of good agricultural value with high oleic acid content and extremely low glucosinolates content. Field trials were conducted in four environments, in a randomized complete block design. Phenotyping was performed for wintering, yield of seed and oil, and seed quality traits. Genotype × environment interaction was investigated with respect to the content of C18:1 and C18:3 acids in seed oil. Genotyping was done for the selection of homozygous high oleic and low linolenic lines using allele-specific CAPS markers and SNaPshot assay, respectively. Finally, new high oleic and low linolenic winter rapeseed recombinant lines were obtained for use as a starting material for the development of new varieties that may be of high value on the oil crop market.
Collapse
Affiliation(s)
- Stanisław Spasibionek
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute (PBAI-NRI), Poznan, Greater Poland, Poland
| | - Katarzyna Mikołajczyk
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute (PBAI-NRI), Poznan, Greater Poland, Poland
- * E-mail:
| | | | - Teresa Piętka
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute (PBAI-NRI), Poznan, Greater Poland, Poland
| | - Krystyna Krótka
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute (PBAI-NRI), Poznan, Greater Poland, Poland
| | - Marcin Matuszczak
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute (PBAI-NRI), Poznan, Greater Poland, Poland
| | - Joanna Nowakowska
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute (PBAI-NRI), Poznan, Greater Poland, Poland
| | - Krzysztof Michalski
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute (PBAI-NRI), Poznan, Greater Poland, Poland
| | - Iwona Bartkowiak-Broda
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute (PBAI-NRI), Poznan, Greater Poland, Poland
| |
Collapse
|
14
|
Yao M, Guan M, Zhang Z, Zhang Q, Cui Y, Chen H, Liu W, Jan HU, Voss-Fels KP, Werner CR, He X, Liu Z, Guan C, Snowdon RJ, Hua W, Qian L. GWAS and co-expression network combination uncovers multigenes with close linkage effects on the oleic acid content accumulation in Brassica napus. BMC Genomics 2020; 21:320. [PMID: 32326904 PMCID: PMC7181522 DOI: 10.1186/s12864-020-6711-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/31/2020] [Indexed: 11/19/2022] Open
Abstract
Background Strong artificial and natural selection causes the formation of highly conserved haplotypes that harbor agronomically important genes. GWAS combination with haplotype analysis has evolved as an effective method to dissect the genetic architecture of complex traits in crop species. Results We used the 60 K Brassica Infinium SNP array to perform a genome-wide analysis of haplotype blocks associated with oleic acid (C18:1) in rapeseed. Six haplotype regions were identified as significantly associated with oleic acid (C18:1) that mapped to chromosomes A02, A07, A08, C01, C02, and C03. Additionally, whole-genome sequencing of 50 rapeseed accessions revealed three genes (BnmtACP2-A02, BnABCI13-A02 and BnECI1-A02) in the A02 chromosome haplotype region and two genes (BnFAD8-C02 and BnSDP1-C02) in the C02 chromosome haplotype region that were closely linked to oleic acid content phenotypic variation. Moreover, the co-expression network analysis uncovered candidate genes from these two different haplotype regions with potential regulatory interrelationships with oleic acid content accumulation. Conclusions Our results suggest that several candidate genes are closely linked, which provides us with an opportunity to develop functional haplotype markers for the improvement of the oleic acid content in rapeseed.
Collapse
Affiliation(s)
- Min Yao
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Mei Guan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Zhenqian Zhang
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Qiuping Zhang
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Yixin Cui
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Hao Chen
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Liu
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Habib U Jan
- Precision Medicine Lab, Rehman Medical Institute (RMI), Phase 5, Hayatabad, Peshawar, 25000, Pakistan
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Christian R Werner
- The Roslin Institute University of Edinburgh Easter Bush Research Centre Midlothian, Edinburgh, EH25 9RG, UK
| | - Xin He
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Zhongsong Liu
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Chunyun Guan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Wei Hua
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China. .,Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.
| | - Lunwen Qian
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
15
|
Kaur H, Wang L, Stawniak N, Sloan R, van Erp H, Eastmond P, Bancroft I. The impact of reducing fatty acid desaturation on the composition and thermal stability of rapeseed oil. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:983-991. [PMID: 31553825 PMCID: PMC7061866 DOI: 10.1111/pbi.13263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
Oilseed rape (Brassica napus) is the third largest source of vegetable oil globally. In addition to food uses, there are industrial applications that exploit the ability of the species to accumulate the very-long-chain fatty acid (VLCFA) erucic acid in its seed oil, controlled by orthologues of FATTY ACID ELONGASE 1 (Bna.FAE1.A8 and Bna.FAE1.C3). The proportion of polyunsaturated fatty acids (PUFAs) in rapeseed oil is predicted to affect its thermal stability and is controlled by orthologues of FATTY ACID DESATURASE 2, particularly Bna.FAD2.C5. Our aim was to develop rapeseed lines combining high erucic and low PUFA characters and to assess the impact on thermal stability of the oil they produce. The new type of rapeseed oil (high erucic low polyunsaturate; HELP) contained a substantially greater proportion of erucic acid (54%) compared with high erucic rapeseed oil (46%). Although the total VLCFA content was greater in oil from HELP lines (64%) than from high erucic rapeseed (57%), analysis of triacylglycerol composition showed negligible incorporation of VLCFAs into the sn-2 position. Rancimat analysis showed that the thermal stability of rapeseed oil was improved greatly as a consequence of reduction of PUFA content, from 3.8 and 4.2 h in conventional low erucic and high erucic rapeseed oils, respectively, to 11.3 and 16.4 h in high oleic low PUFA (HOLP) and HELP oils, respectively. Our results demonstrate that engineering of the lipid biosynthetic pathway of rapeseed, using traditional approaches, enables the production of renewable industrial oils with novel composition and properties.
Collapse
Affiliation(s)
- Harjeevan Kaur
- University of YorkHeslingtonYorkUK
- Present address:
Punjab Agricultural UniversityLudhianaIndia
| | | | | | | | | | | | | |
Collapse
|
16
|
Perkins M, Skori L, Hickerson NM, Jamshed M, Samuel MA. Genetic manipulation of ABI3 confers frost-tolerant seed degreening in canola. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:602-604. [PMID: 31465618 PMCID: PMC7004902 DOI: 10.1111/pbi.13242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 05/29/2023]
Affiliation(s)
- Mendel Perkins
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Logan Skori
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
| | | | - Muhammad Jamshed
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
| | - Marcus A. Samuel
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
| |
Collapse
|
17
|
Salimonti A, Carbone F, Romano E, Pellegrino M, Benincasa C, Micali S, Tondelli A, Conforti FL, Perri E, Ienco A, Zelasco S. Association Study of the 5'UTR Intron of the FAD2-2 Gene With Oleic and Linoleic Acid Content in Olea europaea L. FRONTIERS IN PLANT SCIENCE 2020; 11:66. [PMID: 32117401 PMCID: PMC7031445 DOI: 10.3389/fpls.2020.00066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/16/2020] [Indexed: 05/21/2023]
Abstract
Cultivated olive (Olea europaea L. subsp. europaea var. europaea) is the most ancient and spread tree crop in the Mediterranean basin. An important quality trait for the extra virgin olive oil is the fatty acid composition. In particular, a high content of oleic acid and low of linoleic, linolenic, and palmitic acid is considered very relevant in the health properties of the olive oil. The oleate desaturase enzyme encoding-gene (FAD2-2) is the main responsible for the linoleic acid content in the olive fruit mesocarp and, therefore, in the olive oil revealing to be the most important candidate gene for the linoleic acid biosynthesis. In this study, an in silico and structural analysis of the 5'UTR intron of the FAD2-2 gene was conducted with the aim to explore the natural sequence variability and its role in the gene expression regulation. In order to identify functional allele variants, the 5'UTR intron was isolated and partially sequenced in 97 olive cultivars. The sequence analysis allowed to find a 117-bp insertion including two long duplications never found before in FAD2-2 genes in olive and the existence of many intron-mediated enhancement (IME) elements. The sequence polymorphism analysis led to detect 39 SNPs. The candidate gene association study conducted for oleic and linoleic acids content revealed seven SNPs and one indel significantly associated able to explain a phenotypic variation ranging from 7% to 16% among the years. Our study highlighted new structural variants within the FAD2-2 gene in olive, putatively involved in the regulation mechanisms of gene expression associated with the variation of the content of oleic and linoleic acid.
Collapse
Affiliation(s)
- Amelia Salimonti
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | - Fabrizio Carbone
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | - Elvira Romano
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | | | - Cinzia Benincasa
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | - Sabrina Micali
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Roma, Italy
| | - Alessandro Tondelli
- Research Centre for Genomics and Bioinformatics, CREA, Fiorenzuola D’Arda, Italy
| | - Francesca L. Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Enzo Perri
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | | | - Samanta Zelasco
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
- *Correspondence: Samanta Zelasco,
| |
Collapse
|
18
|
Zhao Q, Wu J, Cai G, Yang Q, Shahid M, Fan C, Zhang C, Zhou Y. A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2313-2324. [PMID: 31037811 PMCID: PMC6835171 DOI: 10.1111/pbi.13142] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 05/09/2023]
Abstract
One of the most important goals in the breeding of oilseed crops, including Brassica napus, is to improve the quality of edible vegetable oil, which is mainly determined by the seed fatty acid composition, particularly the C18:1 content. Previous studies have indicated that the C18:1 content is a polygenic trait, and no stable quantitative trait loci (QTLs) except for FAD2 have been reported. By performing a GWAS using 375 low erucic acid B. napus accessions genotyped with the Brassica 60K SNP array and constructing a high-density SNP-based genetic map of a 150 DH population, we identified a novel QTL on the A9 chromosome. The novel locus could explain 11.25%, 5.72% and 6.29% of phenotypic variation during three consecutive seasons and increased the C18:1 content by approximately 3%-5%. By fine mapping and gene expression analysis, we found three potential candidate genes and verified the fatty acids in a homologous gene mutant of Arabidopsis. A metal ion-binding protein was found to be the most likely candidate gene in the region. Thus, the C18:1 content can be further increased to about 80% with this novel locus together with FAD2 mutant allele without compromise of agronomic performance. A closely linked marker, BnA129, for this novel QTL (OLEA9) was developed so that we can effectively identify materials with high C18:1 content at an early growth stage by marker-assisted selection. Our results may also provide new insight for understanding the complex genetic mechanism of fatty acid metabolism.
Collapse
Affiliation(s)
- Qing Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jian Wu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Present address:
Jiangsu Provincial Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhou225009JiangsuChina
| | - Guangqin Cai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Qingyong Yang
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanHubeiChina
| | - Muhammad Shahid
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
19
|
Amosova AV, Zoshchuk SA, Volovik VT, Shirokova AV, Horuzhiy NE, Mozgova GV, Yurkevich OY, Artyukhova MA, Lemesh VA, Samatadze TE, Muravenko OV. Phenotypic, biochemical and genomic variability in generations of the rapeseed (Brassica napus L.) mutant lines obtained via chemical mutagenesis. PLoS One 2019; 14:e0221699. [PMID: 31461492 PMCID: PMC6713389 DOI: 10.1371/journal.pone.0221699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/13/2019] [Indexed: 01/06/2023] Open
Abstract
The phenotypic, biochemical and genetic variability was studied in M2-M5 generations of ethyl methansulfonat (EMS, 0.2%) mutagenized rapeseed lines generated from canola, '00', B. napus cv. Vikros. EMS mutagenesis induced extensive diversity in morphological and agronomic traits among mutant progeny resulted in selection of EMS populations of B. napus- and B. rapa-morphotypes. The seeds of the obtained mutant lines were high-protein, low in oil and stabilized in contents of main fatty acids which make them useful for feed production. Despite the increased level of various meiotic abnormalities revealed in EMS populations, comparative karyotype analysis and FISH-based visualization of 45S and 5S rDNA indicated a high level of karyotypic stability in M2-M5 plants, and therefore, the obtained mutant lines could be useful in further rapeseed improvement. The revealed structural chromosomal reorganizations in karyotypes of several plants of B. rapa-type indicate that rapeseed breeding by chemical mutagenesis can result in cytogenetic instability in the mutant progeny, and therefore, it should include the karyotype examination. Our findings demonstrate that EMS at low concentrations has great potential in rapeseed improvement.
Collapse
Affiliation(s)
- Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
- * E-mail:
| | - Svyatoslav A. Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Valentina T. Volovik
- Federal Williams Research Center of Forage Production and Agroecology, Lobnya, Moscow region, Russian Federation
| | - Anna V. Shirokova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nickolai E. Horuzhiy
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Galina V. Mozgova
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Margarita A. Artyukhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Valentina A. Lemesh
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
20
|
Zhu Q, King GJ, Liu X, Shan N, Borpatragohain P, Baten A, Wang P, Luo S, Zhou Q. Identification of SNP loci and candidate genes related to four important fatty acid composition in Brassica napus using genome wide association study. PLoS One 2019; 14:e0221578. [PMID: 31442274 PMCID: PMC6707581 DOI: 10.1371/journal.pone.0221578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/11/2019] [Indexed: 12/16/2022] Open
Abstract
Rapeseed oil (canola, Brassica napus L.) is an important healthy vegetable oil throughout the world, the nutritional and economical value of which largely depends on its seed fatty acid composition. In this study, based on 201,187 SNP markers developed from the SLAF-seq (specific locus amplified fragment sequencing), a genome wide association study of four important fatty acid content traits (erucic acid, oleic acid, linoleic acid and linolenic acid) in a panel of 300 inbred lines of rapeseed in two environments (JXAU and JXRIS) was carried out. A total of 148 SNP loci significantly associated with these traits were detected by MLM model analysis respectively, and 30 SNP loci on A08 and C03 chromosomes were detected in three traits of erucic acid, oleic acid and linoleic acid contents simultaneously. Furthermore, 108 highly favorable alleles for increasing oleic acid and linoleic acid content, also for decreasing erucic acid content simultaneously were observed. By a basic local alignment search tool (BLAST) search with in a distance of 100 Kb around these significantly SNP-trait associations, we identified 20 orthologs of the functional candidate genes related to fatty acid biosynthesis, including the known vital fatty acid biosynthesis genes of BnaA.FAE1 and BnaC. FAE1 on the A08 and C03 chromosomes, and other potential candidate genes involving in the fatty acid biosynthesis pathway, such as the orthologs genes of FAD2, LACS09, KCS17, CER4, TT16 and ACBP5. This study lays a basis for uncovering the genetic variations and the improvement of fatty acid composition in B. napus.
Collapse
Affiliation(s)
- Qianglong Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Xingyue Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Nan Shan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | | | - Abdul Baten
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Putao Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Sha Luo
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Qinghong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
- * E-mail:
| |
Collapse
|
21
|
Beszterda M, Nogala‐Kałucka M. Current Research Developments on the Processing and Improvement of the Nutritional Quality of Rapeseed (
Brassica napus
L.). EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Monika Beszterda
- Department of Biochemistry and Food AnalysisPoznan University of Life SciencesMazowiecka 4860‐623PoznanPoland
| | - Małgorzata Nogala‐Kałucka
- Department of Biochemistry and Food AnalysisPoznan University of Life SciencesMazowiecka 4860‐623PoznanPoland
| |
Collapse
|
22
|
Long W, Hu M, Gao J, Chen S, Zhang J, Cheng L, Pu H. Identification and Functional Analysis of Two New Mutant BnFAD2 Alleles That Confer Elevated Oleic Acid Content in Rapeseed. Front Genet 2018; 9:399. [PMID: 30294343 PMCID: PMC6158388 DOI: 10.3389/fgene.2018.00399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/31/2018] [Indexed: 01/23/2023] Open
Abstract
Rapeseed (Brassica napus L.) is a vital oil crop worldwide. High oleic acid content is a desirable quality trait for rapeseed oil, which makes it more beneficial to human health. However, many germplasm resources with high oleic acid content in rapeseed have not been evaluated with regard to their genotypes, making it difficult to select the best strains with this trait for the breeding of high oleic acid rapeseed variety. This work was to explore the gene-regulation mechanism of this trait using a new super-high oleic acid content (∼85%) line N1379T as genetic material. In this study, the sequences of four homologous fatty acid desaturase (BnFAD2) genes were compared between super-high (∼85%, N1379T) and normal (∼63%) oleic acid content lines. Results showed that there were two single-nucleotide polymorphisms (SNPs) in BnFAD2-1 and BnFAD2-2, respectively, which led to the amino acid changes (E106K and G303E) in the corresponding proteins. Functional analysis of both genes in yeast confirmed that these SNPs were loss-of-function mutations, thus limiting the conversion of oleic acid to linoleic acid and resulting in the considerable accumulation of oleic acid. Moreover, two specific cleaved amplified polymorphic sequences (CAPS) markers for the two SNPs were developed to identify genotypes of each line in the F2 and BC1 populations. Furthermore, these two mutant loci of BnFAD2-1 and BnFAD2-2 genes were positively associated with elevated oleic acid levels and had a similar effect with regard to the increase of oleic acid content. Taken together, these two novel SNPs in two different BnFAD2 genes jointly regulated the high oleic acid trait in this special germplasm. The study provided insight into the genetic regulation involved in oleic acid accumulation and highlighted the use of new alleles of BnFAD2-1 and BnFAD2-2 in breeding high oleic acid rapeseed varieties.
Collapse
Affiliation(s)
- Weihua Long
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Maolong Hu
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Jianqin Gao
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Song Chen
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Jiefu Zhang
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Li Cheng
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Huiming Pu
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| |
Collapse
|
23
|
Chen F, Zhang W, Yu K, Sun L, Gao J, Zhou X, Peng Q, Fu S, Hu M, Long W, Pu H, Chen S, Wang X, Zhang J. Unconditional and conditional QTL analyses of seed fatty acid composition in Brassica napus L. BMC PLANT BIOLOGY 2018; 18:49. [PMID: 29566663 PMCID: PMC5865336 DOI: 10.1186/s12870-018-1268-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 03/15/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND The fatty acid composition of B. napus' seeds determines the oil's nutritional and industrial values, and affects seed germination. Many studies have reported correlations among C16:0, C18:0, C18:1, C18:2 and C18:3 based on phenotypic data; however, the genetic basis of the fatty acid composition in B. napus is still not well understood. RESULTS In this study, unconditional and conditional quantitative trail locus (QTL) mapping analyses were conducted using a recombinant inbred line in six environments. In total, 21 consensus QTLs each for C16:0, C18:0 and C18:2, 16 for C18:1 and 22 for C18:3 were detected by unconditional mapping. The QTLs with overlapping confidence intervals were integrated into 71 pleiotropically unique QTLs by meta-analysis. Two major QTLs, uuqA5-6 and uuqA5-7, simultaneously affected the fatty acids, except C18:0, in most of environments, with the homologous genes fatty acid desaturase 2 (FAD2) and glycerol-3-phosphate sn-2-acyltransferase 5 (GPAT5) occurring in the confidence interval of uuqA5-6, while phosphatidic acid phosphohydrolase 1 (PAH1) was assigned to uuqA5-7. Moreover, 49, 30, 48, 60 and 45 consensus QTLs were detected for C16:0, C18:0, C18:1, C18:2 and C18:3, respectively, by the conditional mapping analysis. In total, 128 unique QTLs were subsequently integrated from the 232 conditional consensus QTLs. A comparative analysis revealed that 63 unique QTLs could be identified by both mapping methodologies, and 65 additional unique QTLs were only identified in conditional mapping. CONCLUSIONS Thus, conditional QTL mapping for fatty acids may uncover numerous additional QTLs that were inhibited by the effects of other traits. These findings provide useful information for better understanding the genetic relationships among fatty acids at the QTL level.
Collapse
Affiliation(s)
- Feng Chen
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wei Zhang
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kunjiang Yu
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lijie Sun
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianqin Gao
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaoying Zhou
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qi Peng
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sanxiong Fu
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maolong Hu
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weihua Long
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huiming Pu
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Song Chen
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaodong Wang
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiefu Zhang
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
24
|
Li R, Jeong K, Davis JT, Kim S, Lee S, Michelmore RW, Kim S, Maloof JN. Integrated QTL and eQTL Mapping Provides Insights and Candidate Genes for Fatty Acid Composition, Flowering Time, and Growth Traits in a F 2 Population of a Novel Synthetic Allopolyploid Brassica napus. FRONTIERS IN PLANT SCIENCE 2018; 9:1632. [PMID: 30483289 PMCID: PMC6243938 DOI: 10.3389/fpls.2018.01632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/19/2018] [Indexed: 05/02/2023]
Abstract
Brassica napus (B. napus, AACC), is an economically important allotetraploid crop species that resulted from hybridization between two diploid species, Brassica rapa (AA) and Brassica olereacea (CC). We have created one new synthetic B. napus genotype Da-Ae (AACC) and one introgression line Da-Ol-1 (AACC), which were used to generate an F2 mapping population. Plants in this F2 mapping population varied in fatty acid content, flowering time, and growth-related traits. Using quantitative trait locus (QTL) mapping, we aimed to determine if Da-Ae and Da-Ol-1 provided novel genetic variation beyond what has already been found in B. napus. Making use of the genotyping information generated from RNA-seq data of these two lines and their F2 mapping population of 166 plants, we constructed a genetic map consisting of 2,021 single nucleotide polymorphism markers that spans 2,929 cM across 19 linkage groups. Besides the known major QTL identified, our high resolution genetic map facilitated the identification of several new QTL contributing to the different fatty acid levels, flowering time, and growth-related trait values. These new QTL probably represent novel genetic variation that existed in our new synthetic B. napus strain. By conducting genome-wide expression variation analysis in our F2 mapping population, genetic regions that potentially regulate many genes across the genome were revealed. A FLOWERING LOCUS C gene homolog, which was identified as a candidate regulating flowering time and multiple growth-related traits, was found underlying one of these regions. Integrated QTL and expression QTL analyses also helped us identified candidate causative genes associated with various biological traits through expression level change and/or possible protein function modification.
Collapse
Affiliation(s)
- Ruijuan Li
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | | | - John T. Davis
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Seungmo Kim
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
- FnP Co., Ltd., Jeungpyeong, South Korea
| | | | - Richard W. Michelmore
- The Genome Center and Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Shinje Kim
- FnP Co., Ltd., Jeungpyeong, South Korea
- *Correspondence: Shinje Kim, Julin N. Maloof,
| | - Julin N. Maloof
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
- *Correspondence: Shinje Kim, Julin N. Maloof,
| |
Collapse
|
25
|
Guan M, Huang X, Xiao Z, Jia L, Wang S, Zhu M, Qiao C, Wei L, Xu X, Liang Y, Wang R, Lu K, Li J, Qu C. Association Mapping Analysis of Fatty Acid Content in Different Ecotypic Rapeseed Using mrMLM. FRONTIERS IN PLANT SCIENCE 2018; 9:1872. [PMID: 30662447 PMCID: PMC6328494 DOI: 10.3389/fpls.2018.01872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/04/2018] [Indexed: 05/06/2023]
Abstract
Brassica napus L. is a widely cultivated oil crop and provides important resources of edible vegetable oil, and its quality is determined by fatty acid composition and content. To explain the genetic basis and identify more minor loci for fatty acid content, the multi-locus random-SNP-effect mixed linear model (mrMLM) was used to identify genomic regions associated with fatty acid content in a genetically diverse population of 435 rapeseed accessions, including 77 winter-type, 55 spring-type, and 303 semi-winter-type accessions grown in different environments. A total of 149 quantitative trait nucleotides (QTNs) were found to be associated with fatty acid content and composition, including 34 QTNs that overlapped with the previously reported loci, and 115 novel QTNs. Of these, 35 novel QTNs, located on chromosome A01, A02, A03, A05, A06, A09, A10, and C02, respectively, were repeatedly detected across different environments. Subsequently, we annotated 95 putative candidate genes by BlastP analysis using sequences from Arabidopsis thaliana homologs of the identified regions. The candidate genes included 34 environmentally-insensitive genes (e.g., CER4, DGK2, KCS17, KCS18, MYB4, and TT16) and 61 environment-sensitive genes (e.g., FAB1, FAD6, FAD7, KCR1, KCS9, KCS12, and TT1) as well as genes invloved in the fatty acid biosynthesis. Among these, BnaA08g08280D and BnaC03g60080D differed in genomic sequence between the high- and low-oleic acid lines, and might thus be the novel alleles regulating oleic acid content. Furthermore, RT-qPCR analysis of these genes showed differential expression levels during seed development. Our results highlight the practical and scientific value of mrMLM or QTN detection and the accuracy of linking specific QTNs to fatty acid content, and suggest a useful strategy to improve the fatty acid content of B. napus seeds by molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Mingwei Guan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaohu Huang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhongchun Xiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ledong Jia
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shuxian Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meichen Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Cailin Qiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ying Liang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- *Correspondence: Jiana Li
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Cunmin Qu
| |
Collapse
|
26
|
Bao B, Chao H, Wang H, Zhao W, Zhang L, Raboanatahiry N, Wang X, Wang B, Jia H, Li M. Stable, Environmental Specific and Novel QTL Identification as Well as Genetic Dissection of Fatty Acid Metabolism in Brassica napus. FRONTIERS IN PLANT SCIENCE 2018; 9:1018. [PMID: 30065738 PMCID: PMC6057442 DOI: 10.3389/fpls.2018.01018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/22/2018] [Indexed: 05/05/2023]
Abstract
Fatty acid (FA) composition is the typical quantitative trait in oil seed crops, of which study is not only closely related to oil content, but is also more critical for the quality improvement of seed oil. The double haploid (DH) population named KN with a high density SNP linkage map was applied for quantitative trait loci (QTL) analysis of FA composition in this study. A total of 406 identified QTL were detected for eight FA components with an average confidence interval (CI) of 2.92 cM, the explained phenotypic variation (PV) value ranged from 1.49 to 45.05%. Totally, 204 consensus and 91 unique QTL were further obtained via meta-analysis method for the purpose of detecting multiple environment expressed and pleiotropic QTL, respectively. Of which, 74 stable expressed and 22 environmental specific QTL were also revealed, respectively. In order to make clear the genetic mechanism of FA metabolism at individual QTL level, conditional QTL analysis was also conducted and more than two thousand conditional QTL which could not be detected under the unconditional mapping were detected, which indicated the complex interrelationship of the QTL controlling FA content in rapeseed. Through comparative genomic analysis and homologous gene annotation, 61 candidates related to acyl lipid metabolism were identified underlying the CI of FA QTL. To further visualize the genetic mechanism of FA metabolism, an intuitive and meticulous network about acyl lipid metabolism was constructed and some closely related candidates were positioned. This study provided a more accurate localization for stable and pleiotropic QTL, and a deeper dissection of the molecular regulatory mechanism of FA metabolism in rapeseed.
Collapse
Affiliation(s)
- Binghao Bao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Weiguo Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Lina Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Nadia Raboanatahiry
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Wang
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Baoshan Wang
- College of Life Science, Shandong Normal University, Jinan, China
| | - Haibo Jia
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Haibo Jia
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
- Maoteng Li
| |
Collapse
|
27
|
Mutations in the promoter, intron and CDS of two FAD2 generate multiple alleles modulating linoleic acid level in yellow mustard. Sci Rep 2017; 7:8284. [PMID: 28811544 PMCID: PMC5557838 DOI: 10.1038/s41598-017-08317-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/07/2017] [Indexed: 11/08/2022] Open
Abstract
Linoleic acid (C18:2) is an important polyunsaturated fatty acid in the seed oil of many crops. Here, we report that mutations in the promoter, intron and CDS of the FAD2 genes SalFAD2.LIA1 and SalFAD2.LIA2 generate three alleles LIA 1a , LIA 1b and lia 1 and two alleles LIA 2 and lia 2, respectively, controlling the C18:2 variation (4.4-32.7%) in yellow mustard. The allelic effect on increasing C18:2 content is LIA 1a > LIA 1b > lia 1 , LIA 2 > lia 2, and LIA 1a > LIA 2. The five FAD 2 alleles each contain two exons, one intron and a promoter adjacent to exon 1. LIA 1a has a 1152 bp CDS, a 1221 bp intron with promoter function and a 607 bp promoter. Compared with LIA 1a , the intron of LIA 1b has reduced promoter activity and that of LIA 2 and lia 2 has no promoter function due to extensive SNP and indel mutations. lia 1 differed from LIA 1b by having an insertion of 1223 bp retrotransposon in its intron. lia 2 with mutations in the promoter has reduced promoter activity compared with LIA 2 . This study revealed that complex quantitative variation of trait phenotype in plants could be modulated by multiple alleles of oligogenic loci resulting from mutations in the regulatory region and CDS.
Collapse
|
28
|
Qu C, Jia L, Fu F, Zhao H, Lu K, Wei L, Xu X, Liang Y, Li S, Wang R, Li J. Genome-wide association mapping and Identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers. BMC Genomics 2017; 18:232. [PMID: 28292259 PMCID: PMC5351109 DOI: 10.1186/s12864-017-3607-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/03/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND B. napus (oilseed) is an important source of edible vegetable oil, and its nutritional and economic value is determined by its fatty acid composition and content. RESULTS Using the Brassica 60 K SNP array, we performed a genome-wide association study of fatty acid composition in a population of 520 genetically diverse oilseed accessions. Using the PCA + K model in TASSEL 5.2.1, we identified 62 genomic regions that were significantly associated with the composition of seven fatty acids, and five consensus regions that mapped to the A2, A8, A9, C1, and C3 chromosomes, respectively, of the Brassica napus Darmor-bzh genome. We then identified 24 orthologs of the functional candidate genes involved in fatty acid biosynthesis, excluding BnaA.FAE1 and BnaC.FAE1 on the A8 and C3 homologous genome blocks, which are known to have critical roles in the fatty acid biosynthesis pathway, and potential orthologs of these genes (e.g., LACS9, KCR1, FAB1, LPAT4, KCS17, CER4, TT16, and ACBP5). CONCLUSIONS Our results demonstrate the power of association mapping in identifying genes of interest in B. napus and provide insight into the genetic basis of fatty acid biosynthesis in B. napus. Furthermore, our findings may facilitate marker-based breeding efforts aimed at improving fatty acid composition and quality in B. napus.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Ledong Jia
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Ying Liang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Shimeng Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China. .,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China.
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China. .,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China.
| |
Collapse
|
29
|
Rajwade AV, Joshi RS, Kadoo NY, Gupta VS. Sequence characterization and in silico structure prediction of fatty acid desaturases in linseed varieties with differential fatty acid composition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4896-4906. [PMID: 27109704 DOI: 10.1002/jsfa.7775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Linseed is the richest agricultural source of α-linolenic acid (ALA), an ω-3 fatty acid (FA) that offers several nutritional benefits. In the present study, sequence characterization of six desaturase genes (SAD1, SAD2, FAD2, FAD2-2, FAD3A and FAD3B) and 3D structure prediction of their proteins from ten Indian linseed varieties differing in ALA content were performed to determine whether the nucleotide and amino acid (AA) sequence variants have any functional implications in differential accumulation of ALA or other FAs in linseed. RESULTS The SAD and FAD2 genes exhibited few sequence variations among the ten varieties, forming only one or two protein isoforms. In contrast, the FAD3A and FAD3B genes showed more sequence variations and three or four protein isoforms. Interestingly, the two high-ALA varieties NL260 and Padmini had the same FAD3B nucleotide and protein isoforms, which differed from all other varieties. Surprisingly, no AA changes altered the 3D structures of the desaturase proteins. CONCLUSION Several nucleotide and AA sequence variations in desaturase genes were observed; however, they did not alter the 3D structure of any desaturase protein and were not correlated with FA levels among the ten linseed varieties, which had different ALA contents. This suggests a complex regulatory process of biosynthesis of FAs in linseed. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ashwini V Rajwade
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411 008, India
| | - Rakesh S Joshi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411 008, India
| | - Narendra Y Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411 008, India.
| | - Vidya S Gupta
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411 008, India.
| |
Collapse
|
30
|
Zou J, Zhao Y, Liu P, Shi L, Wang X, Wang M, Meng J, Reif JC. Seed Quality Traits Can Be Predicted with High Accuracy in Brassica napus Using Genomic Data. PLoS One 2016; 11:e0166624. [PMID: 27880793 PMCID: PMC5120799 DOI: 10.1371/journal.pone.0166624] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/01/2016] [Indexed: 11/19/2022] Open
Abstract
Improving seed oil yield and quality are central targets in rapeseed (Brassica napus) breeding. The primary goal of our study was to examine and compare the potential and the limits of marker-assisted selection and genome-wide prediction of six important seed quality traits of B. napus. Our study is based on a bi-parental population comprising 202 doubled haploid lines and a diverse validation set including 117 B. napus inbred lines derived from interspecific crosses between B. rapa and B. carinata. We used phenotypic data for seed oil, protein, erucic acid, linolenic acid, stearic acid, and glucosinolate content. All lines were genotyped with a 60k SNP array. We performed five-fold cross-validations in combination with linkage mapping and four genome-wide prediction approaches in the bi-parental population. Quantitative trait loci (QTL) with large effects were detected for erucic acid, stearic acid, and glucosinolate content, blazing the trail for marker-assisted selection. Despite substantial differences in the complexity of the genetic architecture of the six traits, genome-wide prediction models had only minor impacts on the prediction accuracies. We evaluated the effects of training population size, marker density and phenotyping intensity on the prediction accuracy. The prediction accuracy in the independent and genetically very distinct validation set still amounted to 0.14 for protein content and 0.17 for oil content reflecting the utility of the developed calibration models even in very diverse backgrounds.
Collapse
Affiliation(s)
- Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Peifa Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaohua Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Meng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jochen Christoph Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
31
|
Kumar A, Sharma A, Upadhyaya KC. Vegetable Oil: Nutritional and Industrial Perspective. Curr Genomics 2016; 17:230-40. [PMID: 27252590 PMCID: PMC4869010 DOI: 10.2174/1389202917666160202220107] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/26/2022] Open
Abstract
Oils of plant origin have been predominantly used for food-based applications. Plant oils not only represent a non-polluting renewable resource but also provide a wide diversity in fatty acids (FAs) composition with diverse applications. Besides being edible, they are now increasingly being used in industrial applications such as paints, lubricants, soaps, biofuels etc. In addition, plants can be engineered to produce fatty acids which are nutritionally beneficial to human health. Thus these oils have potential to 1) substitute ever increasing demand of non –renewable petroleum sources for industrial application and 2) also spare the marine life by providing an alternative source to nutritionally and medically important long chain polyunsaturated fatty acids or ‘Fish oil’. The biochemical pathways producing storage oils in plants have been extensively characterized, but the factors regulating fatty acid synthesis and controlling total oil content in oilseed crops are still poorly understood. Thus understanding of plant lipid metabolism is fundamental to its manipulation and increased production. This review on oils discusses fatty acids of nutritional and industrial importance, and approaches for achieving future designer vegetable oil for both edible and non-edible uses. The review will discuss the success and bottlenecks in efficient production of novel FAs in non-native plants using genetic engineering as a tool.
Collapse
Affiliation(s)
- Aruna Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Aarti Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Kailash C Upadhyaya
- Amity Institute of Molecular Biology and Genomics, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
32
|
Badigannavar A, Myers GO. Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum). J Genet 2016; 94:87-94. [PMID: 25846880 DOI: 10.1007/s12041-015-0489-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cottonseed contains 16% seed oil and 23% seed protein by weight. High levels of palmitic acid provides a degree of stability to the oil, while the presence of bound gossypol in proteins considerably changes their properties, including their biological value. This study uses genetic principles to identify genomic regions associated with seed oil, protein and fibre content in upland cotton cultivars. Cotton association mapping panel representing the US germplasm were genotyped using amplified fragment length polymorphism markers, yielding 234 polymorphic DNA fragments. Phenotypic analysis showed high genetic variability for the seed traits, seed oil range from 6.47-25.16%, protein from 1.85-28.45% and fibre content from 15.88-37.12%. There were negative correlations between seed oil and protein content.With reference to genetic diversity, the average estimate of FST was 8.852 indicating a low level of genetic differentiation among subpopulations. The AMOVA test revealed that variation was 94% within and 6% among subpopulations. Bayesian population structure identified five subpopulations and was in agreement with their geographical distribution. Among the mixed models analysed, mixed linear model (MLM) identified 21 quantitative trait loci for lint percentage and seed quality traits, such as seed protein and oil. Establishing genetic diversity, population structure and marker trait associations for the seed quality traits could be valuable in understanding the genetic relationships and their utilization in breeding programmes.
Collapse
Affiliation(s)
- Ashok Badigannavar
- Louisiana State University Agricultural Center, School of Plant, Environmental, and Soil Sciences, 104 M. B. Sturgis Hall, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
33
|
Wen J, Xu JF, Long Y, Wu JG, Xu HM, Meng JL, Shi CH. QTL mapping based on the embryo and maternal genetic systems for non-essential amino acids in rapeseed (Brassica napus L.) meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:465-473. [PMID: 25645377 DOI: 10.1002/jsfa.7112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/25/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Non-essential amino acids are a good source of nitrogen and also very important contributors to the metabolic process. Analysis of quantitative trait locus (QTL) simultaneously located on the amphidiploid embryo and maternal plant nuclear genomes for non-essential amino acid contents in rapeseed meal across different environments was conducive to further clarify the genetic mechanism of seed quality traits. RESULTS Twenty-eight QTLs associated with arginine (five QTLs), histidine (four QTLs), glutamic acid (three QTLs), glycine (three QTLs), proline (three QTLs), alanine (four QTLs) and aspartic acid (six QTLs) contents were identified in present study. All of these QTLs had significant additive main effects from embryo and maternal plant nuclear genomes with eight of them showing significant embryo dominance main effects and 12 showing notable QTL × environment interaction effects. Among them, 12 QTLs were major QTLs which could explain 13.27-35.71% of the phenotypic variation. Specially, five QTL clusters associated with several QTLs related to multiple traits were distributed on chromosomes A1, A4, A5, A7 and C2. CONCLUSION Non-essential amino acids in rapeseed meal could be simultaneously controlled by the genetic effects from the QTLs which were located on the chromosomes both in the embryo and maternal plant genetic systems.
Collapse
Affiliation(s)
- Juan Wen
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jian-Feng Xu
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yan Long
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jian-Guo Wu
- College of Agriculture and Food Science, Zhejiang A & F University, Linan, Zhejiang, 311300, China
| | - Hai-Ming Xu
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jin-Ling Meng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chun-Hai Shi
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
34
|
Gacek K, Bayer PE, Bartkowiak-Broda I, Szala L, Bocianowski J, Edwards D, Batley J. Genome-Wide Association Study of Genetic Control of Seed Fatty Acid Biosynthesis in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:2062. [PMID: 28163710 PMCID: PMC5247464 DOI: 10.3389/fpls.2016.02062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/26/2016] [Indexed: 05/03/2023]
Abstract
Fatty acids and their composition in seeds determine oil value for nutritional or industrial purposes and also affect seed germination as well as seedling establishment. To better understand the genetic basis of seed fatty acid biosynthesis in oilseed rape (Brassica napus L.) we applied a genome-wide association study, using 91,205 single nucleotide polymorphisms (SNPs) characterized across a mapping population with high-resolution skim genotyping by sequencing (SkimGBS). We identified a cluster of loci on chromosome A05 associated with oleic and linoleic seed fatty acids. The delineated genomic region contained orthologs of the Arabidopsis thaliana genes known to play a role in regulation of seed fatty acid biosynthesis such as Fatty acyl-ACP thioesterase B (FATB) and Fatty Acid Desaturase (FAD5). This approach allowed us to identify potential functional genes regulating fatty acid composition in this important oil producing crop and demonstrates that this approach can be used as a powerful tool for dissecting complex traits for B. napus improvement programs.
Collapse
Affiliation(s)
- Katarzyna Gacek
- Plant Breeding and Acclimatization Institute—National Research Institute, Oilseed Crops Research CentrePoznan, Poland
| | - Philipp E. Bayer
- School of Plant Biology, University of Western AustraliaPerth, WA, Australia
| | - Iwona Bartkowiak-Broda
- Plant Breeding and Acclimatization Institute—National Research Institute, Oilseed Crops Research CentrePoznan, Poland
| | - Laurencja Szala
- Plant Breeding and Acclimatization Institute—National Research Institute, Oilseed Crops Research CentrePoznan, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznan University of Life SciencesPoznan, Poland
| | - David Edwards
- School of Plant Biology, University of Western AustraliaPerth, WA, Australia
| | - Jacqueline Batley
- School of Plant Biology, University of Western AustraliaPerth, WA, Australia
- *Correspondence: Jacqueline Batley
| |
Collapse
|
35
|
Kumar M, Choi JY, Kumari N, Pareek A, Kim SR. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica. FRONTIERS IN PLANT SCIENCE 2015; 6:688. [PMID: 26388887 PMCID: PMC4559640 DOI: 10.3389/fpls.2015.00688] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/20/2015] [Indexed: 05/19/2023]
Abstract
Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the "candidate genes" and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops.
Collapse
Affiliation(s)
- Manu Kumar
- Plant Molecular Biology Laboratory, Department of Life Science, Sogang University, SeoulSouth Korea
| | - Ju-Young Choi
- Plant Molecular Biology Laboratory, Department of Life Science, Sogang University, SeoulSouth Korea
| | - Nisha Kumari
- College of Medicine, Seoul National University, SeoulSouth Korea
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Science, Jawaharlal Nehru University, New DelhiIndia
| | - Seong-Ryong Kim
- Plant Molecular Biology Laboratory, Department of Life Science, Sogang University, SeoulSouth Korea
| |
Collapse
|
36
|
Lemesh VA, Mozgova GV, Grushetskaya ZE, Sidorenko EV, Piluk YE, Bakanovskaya AV. The use of specific DNA markers for the identification of alleles of the FAD3 genes in rape (Brassica napus L.). RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415080049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Cai G, Yang Q, Yi B, Fan C, Zhang C, Edwards D, Batley J, Zhou Y. A bi-filtering method for processing single nucleotide polymorphism array data improves the quality of genetic map and accuracy of quantitative trait locus mapping in doubled haploid populations of polyploid Brassica napus. BMC Genomics 2015; 16:409. [PMID: 26018616 PMCID: PMC4445301 DOI: 10.1186/s12864-015-1559-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 04/20/2015] [Indexed: 01/01/2023] Open
Abstract
Background Single nucleotide polymorphism (SNP) markers have a wide range of applications in crop genetics and genomics. Due to their polyploidy nature, many important crops, such as wheat, cotton and rapeseed contain a large amount of repeat and homoeologous sequences in their genomes, which imposes a huge challenge in high-throughput genotyping with sequencing and/or array technologies. Allotetraploid Brassica napus (AACC, 2n = 4x = 38) comprises of two highly homoeologous sub-genomes derived from its progenitor species B. rapa (AA, 2n = 2x = 20) and B. oleracea (CC, 2n = 2x = 18), and is an ideal species to exploit methods for reducing the interference of extensive inter-homoeologue polymorphisms (mHemi-SNPs and Pseudo-simple SNPs) between closely related sub-genomes. Results Based on a recent B. napus 6K SNP array, we developed a bi-filtering procedure to identify unauthentic lines in a DH population, and mHemi-SNPs and Pseudo-simple SNPs in an array data matrix. The procedure utilized both monomorphic and polymorphic SNPs in the DH population and could effectively distinguish the mHemi-SNPs and Pseudo-simple SNPs that resulted from superposition of the signals from multiple SNPs. Compared with conventional procedure for array data processing, the bi-filtering method could minimize the pseudo linkage relationship caused by the mHemi-SNPs and Pseudo-simple SNPs, thus improving the quality of SNP genetic map. Furthermore, the improved genetic map could increase the accuracies of mapping of QTLs as demonstrated by the ability to eliminate non-real QTLs in the mapping population. Conclusions The bi-filtering analysis of the SNP array data represents a novel approach to effectively assigning the multi-loci SNP genotypes in polyploid B. napus and may find wide applications to SNP analyses in polyploid crops. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1559-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangqin Cai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qingyong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - David Edwards
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, QLD, Australia.
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, QLD, Australia.
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
38
|
Chen J, Tan RK, Guo XJ, Fu ZL, Wang Z, Zhang ZY, Tan XL. Transcriptome Analysis Comparison of Lipid Biosynthesis in the Leaves and Developing Seeds of Brassica napus. PLoS One 2015; 10:e0126250. [PMID: 25965272 PMCID: PMC4429122 DOI: 10.1371/journal.pone.0126250] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
Brassica napus seed is a lipid storage organ containing approximately 40% oil, while its leaves contain many kinds of lipids for many biological roles, but the overall amounts are less than in seeds. Thus, lipid biosynthesis in the developing seeds and the leaves is strictly regulated which results the final difference of lipids. However, there are few reports about the molecular mechanism controlling the difference in lipid biosynthesis between developing seeds and leaves. In this study, we tried to uncover this mechanism by analyzing the transcriptome data for lipid biosynthesis. The transcriptome data were de novo assembled and a total of 47,216 unigenes were obtained, which had an N50 length and median of 1271 and 755 bp, respectively. Among these unigenes, 36,368 (about 77.02%) were annotated and there were 109 up-regulated unigenes and 72 down-regulated unigenes in the developing seeds lipid synthetic pathway after comparing with leaves. In the oleic acid pathway, 23 unigenes were up-regulated and four unigenes were down-regulated. During triacylglycerol (TAG) synthesis, the key unigenes were all up-regulated, such as phosphatidate phosphatase and diacylglycerol O-acyltransferase. During palmitic acid, palmitoleic acid, stearic acid, linoleic acid and linolenic acid synthesis in leaves, the unigenes were nearly all up-regulated, which indicated that the biosynthesis of these particular fatty acids were more important in leaves. In the developing seeds, almost all the unigenes in the ABI3VP1, RKD, CPP, E2F-DP, GRF, JUMONJI, MYB-related, PHD and REM transcript factor families were up-regulated, which helped us to discern the regulation mechanism underlying lipid biosynthesis. The differential up/down-regulation of the genes and TFs involved in lipid biosynthesis in developing seeds and leaves provided direct evidence that allowed us to map the network that regulates lipid biosynthesis, and the identification of new TFs that are up-regulated in developing seeds will help us to further elucidate the lipids biosynthesis pathway in developing seeds and leaves.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Ren-Ke Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Xiao-Juan Guo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Zheng-Li Fu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Zhi-Yan Zhang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
39
|
Wang X, Long Y, Yin Y, Zhang C, Gan L, Liu L, Yu L, Meng J, Li M. New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus. BMC PLANT BIOLOGY 2015; 15:91. [PMID: 25888376 PMCID: PMC4377205 DOI: 10.1186/s12870-015-0475-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/16/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Rapeseed (B. napus, AACC, 2n = 38) is one of the most important oil seed crops in the world, it is also one of the most common oil for production of biodiesel. Its oil is a mixture of various fatty acids and dissection of the genetic network for fatty acids biosynthesis is of great importance for improving seed quality. RESULTS The genetic basis of fatty acid biosynthesis in B. napus was investigated via quantitative trail locus (QTL) analysis using a doubled haploid (DH) population with 202 lines. A total of 72 individual QTLs and a large number pairs of epistatic interactions associated with the content of 10 different fatty acids were detected. A total of 234 homologous genes of Arabidopsis thaliana that are involved in fatty acid metabolism were found within the confidence intervals (CIs) of 47 QTLs. Among them, 47 and 15 genes homologous to those of B. rapa and B. oleracea were detected, respectively. After the QTL mapping, the epistatic and the candidate gene interaction analysis, a potential regulatory pathway controlling fatty acid biosynthesis in B. napus was constructed, including 50 enzymes encoded genes and five regulatory factors (LEC1, LEC2, FUS3, WRI1 and ABI3). Subsequently, the interaction between these five regulatory factors and the genes involved in fatty acid metabolism were analyzed. CONCLUSIONS In this study, a potential regulatory pathway controlling the fatty acid was constructed by QTL analysis and in silico mapping analysis. These results enriched our knowledge of QTLs for fatty acids metabolism and provided a new clue for genetic engineering fatty acids composition in B. napus.
Collapse
Affiliation(s)
- Xiaodong Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Yan Long
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yongtai Yin
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chunyu Zhang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lu Gan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
| | - Longjiang Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jinling Meng
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
40
|
Wen J, Xu J, Long Y, Xu H, Wu J, Meng J, Shi C. Mapping QTLs Controlling Beneficial Fatty Acids Based on the Embryo and Maternal Plant Genomes in Brassica napus L. J AM OIL CHEM SOC 2015. [DOI: 10.1007/s11746-015-2618-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Yurchenko OP, Park S, Ilut DC, Inmon JJ, Millhollon JC, Liechty Z, Page JT, Jenks MA, Chapman KD, Udall JA, Gore MA, Dyer JM. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium. BMC PLANT BIOLOGY 2014; 14:312. [PMID: 25403726 PMCID: PMC4245742 DOI: 10.1186/s12870-014-0312-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterize the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. RESULTS Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. CONCLUSIONS The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior to the split of A and D diploid progenitor species. The FAD genes are differentially expressed in various organs and cell types, including fiber, and expression of the FAD7/8-1 gene was induced by cold temperature. Collectively, these data define the genetic and functional genomic properties of this important gene family in cotton and provide a foundation for future efforts to improve cotton abiotic stress tolerance through molecular breeding approaches.
Collapse
Affiliation(s)
- Olga P Yurchenko
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
| | - Sunjung Park
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
- />Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203 USA
| | - Daniel C Ilut
- />Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Jay J Inmon
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
| | - Jon C Millhollon
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
| | - Zach Liechty
- />Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602 USA
| | - Justin T Page
- />Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602 USA
| | - Matthew A Jenks
- />Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 2650 USA
| | - Kent D Chapman
- />Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203 USA
| | - Joshua A Udall
- />Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602 USA
| | - Michael A Gore
- />Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - John M Dyer
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
| |
Collapse
|
42
|
Yurchenko OP, Park S, Ilut DC, Inmon JJ, Millhollon JC, Liechty Z, Page JT, Jenks MA, Chapman KD, Udall JA, Gore MA, Dyer JM. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium. BMC PLANT BIOLOGY 2014; 14:312. [PMID: 25403726 DOI: 10.1186/s12870-014-0312-315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/28/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterize the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. RESULTS Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. CONCLUSIONS The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior to the split of A and D diploid progenitor species. The FAD genes are differentially expressed in various organs and cell types, including fiber, and expression of the FAD7/8-1 gene was induced by cold temperature. Collectively, these data define the genetic and functional genomic properties of this important gene family in cotton and provide a foundation for future efforts to improve cotton abiotic stress tolerance through molecular breeding approaches.
Collapse
|
43
|
Falke KC, Mahone GS, Bauer E, Haseneyer G, Miedaner T, Breuer F, Frisch M. Genome-wide prediction methods for detecting genetic effects of donor chromosome segments in introgression populations. BMC Genomics 2014; 15:782. [PMID: 25213628 PMCID: PMC4169839 DOI: 10.1186/1471-2164-15-782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Introgression populations are used to make the genetic variation of unadapted germplasm or wild relatives of crops available for plant breeding. They consist of introgression lines that carry small chromosome segments from an exotic donor in the genetic background of an elite line. The goal of our study was to investigate the detection of favorable donor chromosome segments in introgression lines with statistical methods developed for genome-wide prediction. RESULTS Computer simulations showed that genome-wide prediction employing heteroscedastic marker variances had a greater power and a lower false positive rate compared with homoscedastic marker variances when the phenotypic difference between the donor and recipient lines was controlled by few genes. The simulations helped to interpret the analyses of glycosinolate and linolenic acid content in a rapeseed introgression population and plant height in a rye introgression population. These analyses support the superiority of genome-wide prediction approaches that use heteroscedastic marker variances. CONCLUSIONS We conclude that genome-wide prediction methods in combination with permutation tests can be employed for analysis of introgression populations. They are particularly useful when introgression lines carry several donor segments or when the donor segments of different introgression lines are overlapping.
Collapse
Affiliation(s)
- Karen Christin Falke
- Institute of Agronomy and Plant Breeding II, Justus Liebig University, 35392 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Singer SD, Weselake RJ, Rahman H. Development and characterization of low α-linolenic acid Brassica oleracea lines bearing a novel mutation in a 'class a' FATTY ACID DESATURASE 3 gene. BMC Genet 2014; 15:94. [PMID: 25167929 PMCID: PMC4236532 DOI: 10.1186/s12863-014-0094-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/18/2014] [Indexed: 01/17/2023] Open
Abstract
Background Traditional canola (Brassica napus L.; AACC, 2n = 38) cultivars yield seed oil with a relatively high proportion of α-linolenic acid (ALA; C18:3cis∆9,12,15), which is desirable from a health perspective. Unfortunately, due to the instability of this fatty acid, elevated levels also result in oils that exhibit a short shelf life and problems associated with use at high temperatures. As a result, the development of cultivars bearing reduced amounts of ALA in their seeds is becoming a priority. To date, several low ALA B. napus cultivars (~2-3% ALA of total fatty acids) have been developed and molecular analyses have revealed that the low ALA phenotype of lines tested thus far is a result of mutations within two ‘class b’ FATTY ACID DESATURASE 3 (FAD3) genes. Since B. napus possesses six FAD3 genes (two ‘class a’, two ‘class b’ and two ‘class c’) and ALA levels of approximately 2-3% remain in these low ALA lines, it is likely that the mutation of additional FAD3 genes could further decrease the content of this fatty acid. Results In this study, we generated low ALA (≤2%) lines of B. oleracea, which is the C genome progenitor species of B. napus, via ethyl methanesulphonate (EMS) mutagenesis. We identified a novel nonsense mutation within the ‘class a’ FAD3 gene (BoFAD3-2) in these lines, which would result in the production of an encoded protein lacking 110 amino acids at its C terminus. When expressed in Saccharomyces cerevisiae, this mutant protein exhibited a drastic decline in its Δ-15 desaturase activity compared to the wild-type (wt) protein. Furthermore, we demonstrated that the expression of the mutant BoFAD3-2 gene was significantly reduced in developing seeds of low ALA lines when compared to expression in wt plants. Conclusions Given the additive nature of FAD3 mutations on ALA content and the ease with which B. napus can be re-synthesized from its progenitor species, the mutant isolated here has the potential to be used for the future development of B. napus cultivars exhibiting further reductions in ALA content.
Collapse
Affiliation(s)
| | | | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Alberta, Canada.
| |
Collapse
|
45
|
Tian E, Zeng F, MacKay K, Roslinsky V, Cheng B. Detection and molecular characterization of two FAD3 genes controlling linolenic acid content and development of allele-specific markers in yellow mustard (Sinapis alba). PLoS One 2014; 9:e97430. [PMID: 24823372 PMCID: PMC4019595 DOI: 10.1371/journal.pone.0097430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/19/2014] [Indexed: 11/18/2022] Open
Abstract
Development of yellow mustard (Sinapis alba L.) with superior quality traits (low erucic and linolenic acid contents, and low glucosinolate content) can make this species as a potential oilseed crop. We have recently isolated three inbred lines Y1127, Y514 and Y1035 with low (3.8%), medium (12.3%) and high (20.8%) linolenic acid (C18∶3) content, respectively, in this species. Inheritance studies detected two fatty acid desaturase 3 (FAD3) gene loci controlling the variation of C18∶3 content. QTL mapping revealed that the two FAD3 gene loci responsible for 73.0% and 23.4% of the total variation and were located on the linkage groups Sal02 and Sal10, respectively. The FAD3 gene on Sal02 was referred to as SalFAD3.LA1 and that on Sal10 as SalFAD3.LA2. The dominant and recessive alleles were designated as LA1 and la1 for SalFAD3.LA1, and LA2 and la2 for SalFAD3.LA2. Cloning and alignment of the coding and genomic DNA sequences revealed that the SalFAD3.LA1 and SalFAD3.LA2 genes each contained 8 exons and 7 introns. LA1 had a coding DNA sequence (CDS) of 1143 bp encoding a polypeptide of 380 amino acids, whereas la1 was a loss-of-function allele due to an insertion of 584 bp in exon 3. Both LA2 and la2 had a CDS of 1152 bp encoding a polypeptide of 383 amino acids. Allele-specific markers for LA1, la1, LA2 and la2 co-segregated with the C18∶3 content in the F2 populations and will be useful for improving fatty acid composition through marker assisted selection in yellow mustard breeding.
Collapse
Affiliation(s)
- Entang Tian
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
| | - Fangqin Zeng
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
| | - Kimberly MacKay
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
| | - Vicky Roslinsky
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
| | - Bifang Cheng
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
- * E-mail:
| |
Collapse
|
46
|
Xiao G, Zhang ZQ, Yin CF, Liu RY, Wu XM, Tan TL, Chen SY, Lu CM, Guan CY. Characterization of the promoter and 5'-UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus. Gene 2014; 545:45-55. [PMID: 24811682 DOI: 10.1016/j.gene.2014.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/31/2022]
Abstract
In the present study, we characterized the transcriptional regulatory region (KF038144) controlling the expression of a constitutive FAD2 in Brassica napus. There are multiple FAD2 gene copies in B. napus genome. The FAD2 gene characterized and analyzed in the study is located on chromosome A5 and was designated as BnFAD2A5-1. BnFAD2A5-1 harbors an intron (1,192 bp) within its 5'-untranslated region (5'-UTR). This intron demonstrated promoter activity. Deletion analysis of the BnFAD2A5-1 promoter and intron through the β-glucuronidase (GUS) reporter system revealed that the -220 to -1 bp is the minimum promoter region, while -220 to -110 bp and +34 to +285 bp are two important regions conferring high-levels of transcription. BnFAD2 transcripts were induced by light, low temperature, and abscisic acid (ABA). These observations demonstrated that not only the promoter but also the intron are involved in controlling the expression of the BnFAD2A5-1 gene. The intron-mediated regulation is an essential aspect of the gene expression regulation.
Collapse
Affiliation(s)
- Gang Xiao
- Key Laboratory of Oil Crop Biology of Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China; Pre-State Key Laboratory for Germplasm Innovation and Resource Utilization of Crops, Changsha 410128, PR China; The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China
| | - Zhen Qian Zhang
- The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China
| | - Chang Fa Yin
- The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China
| | - Rui Yang Liu
- The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China
| | - Xian Meng Wu
- The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China
| | - Tai Long Tan
- Pre-State Key Laboratory for Germplasm Innovation and Resource Utilization of Crops, Changsha 410128, PR China; The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China
| | - She Yuan Chen
- The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China
| | - Chang Ming Lu
- Key Laboratory of Oil Crop Biology of Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China
| | - Chun Yun Guan
- Pre-State Key Laboratory for Germplasm Innovation and Resource Utilization of Crops, Changsha 410128, PR China; The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China.
| |
Collapse
|
47
|
Soto-Cerda BJ, Duguid S, Booker H, Rowland G, Diederichsen A, Cloutier S. Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:881-96. [PMID: 24463785 PMCID: PMC3964306 DOI: 10.1007/s00122-014-2264-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/03/2014] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE The identification of stable QTL for seed quality traits by association mapping of a diverse panel of linseed accessions establishes the foundation for assisted breeding and future fine mapping in linseed. Linseed oil is valued for its food and non-food applications. Modifying its oil content and fatty acid (FA) profiles to meet market needs in a timely manner requires clear understanding of their quantitative trait loci (QTL) architectures, which have received little attention to date. Association mapping is an efficient approach to identify QTL in germplasm collections. In this study, we explored the quantitative nature of seed quality traits including oil content (OIL), palmitic acid, stearic acid, oleic acid, linoleic acid (LIO) linolenic acid (LIN) and iodine value in a flax core collection of 390 accessions assayed with 460 microsatellite markers. The core collection was grown in a modified augmented design at two locations over 3 years and phenotypic data for all seven traits were obtained from all six environments. Significant phenotypic diversity and moderate to high heritability for each trait (0.73-0.99) were observed. Most of the candidate QTL were stable as revealed by multivariate analyses. Nine candidate QTL were identified, varying from one for OIL to three for LIO and LIN. Candidate QTL for LIO and LIN co-localized with QTL previously identified in bi-parental populations and some mapped nearby genes known to be involved in the FA biosynthesis pathway. Fifty-eight percent of the QTL alleles were absent (private) in the Canadian cultivars suggesting that the core collection possesses QTL alleles potentially useful to improve seed quality traits. The candidate QTL identified herein will establish the foundation for future marker-assisted breeding in linseed.
Collapse
Affiliation(s)
- Braulio J. Soto-Cerda
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2 Canada
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB R3T 2M9 Canada
- Genomics and Bioinformatics Unit, Agriaquaculture Nutritional Genomic Center (CGNA), Km 10 Camino Cajón-Vilcún, Temuco, La Araucania Chile
| | - Scott Duguid
- Morden Research Station, Agriculture and Agri-Food Canada, Route 100, Morden, MB R6M 1Y5 Canada
| | - Helen Booker
- Crop Development Centre, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Gordon Rowland
- Crop Development Centre, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Axel Diederichsen
- Plant Gene Resources of Canada, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Sylvie Cloutier
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2 Canada
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB R3T 2M9 Canada
| |
Collapse
|
48
|
Liu Y, Huang Z, Ao Y, Li W, Zhang Z. Transcriptome analysis of yellow horn (Xanthoceras sorbifolia Bunge): a potential oil-rich seed tree for biodiesel in China. PLoS One 2013; 8:e74441. [PMID: 24040247 PMCID: PMC3770547 DOI: 10.1371/journal.pone.0074441] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/02/2013] [Indexed: 11/27/2022] Open
Abstract
Background Yellow horn (Xanthoceras sorbifolia Bunge) is an oil-rich seed shrub that grows well in cold, barren environments and has great potential for biodiesel production in China. However, the limited genetic data means that little information about the key genes involved in oil biosynthesis is available, which limits further improvement of this species. In this study, we describe sequencing and de novo transcriptome assembly to produce the first comprehensive and integrated genomic resource for yellow horn and identify the pathways and key genes related to oil accumulation. In addition, potential molecular markers were identified and compiled. Methodology/Principal Findings Total RNA was isolated from 30 plants from two regions, including buds, leaves, flowers and seeds. Equal quantities of RNA from these tissues were pooled to construct a cDNA library for 454 pyrosequencing. A total of 1,147,624 high-quality reads with total and average lengths of 530.6 Mb and 462 bp, respectively, were generated. These reads were assembled into 51,867 unigenes, corresponding to a total of 36.1 Mb with a mean length, N50 and median of 696, 928 and 570 bp, respectively. Of the unigenes, 17,541 (33.82%) were unmatched in any public protein databases. We identified 281 unigenes that may be involved in de novo fatty acid (FA) and triacylglycerol (TAG) biosynthesis and metabolism. Furthermore, 6,707 SSRs, 16,925 SNPs and 6,201 InDels with high-confidence were also identified in this study. Conclusions This transcriptome represents a new functional genomics resource and a foundation for further studies on the metabolic engineering of yellow horn to increase oil content and modify oil composition. The potential molecular markers identified in this study provide a basis for polymorphism analysis of Xanthoceras, and even Sapindaceae; they will also accelerate the process of breeding new varieties with better agronomic characteristics.
Collapse
Affiliation(s)
- Yulin Liu
- College of Biological Science and Biotechnology, Beijing Forest University, Beijing, China
| | - Zhedong Huang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forest University, Beijing, China
| | - Yan Ao
- Academy of Forest, Beijing Forest University, Beijing, China
| | - Wei Li
- College of Biological Science and Biotechnology, Beijing Forest University, Beijing, China
- * E-mail: (WL); (ZXZ)
| | - Zhixiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forest University, Beijing, China
- * E-mail: (WL); (ZXZ)
| |
Collapse
|
49
|
Lee KR, In Sohn S, Jung JH, Kim SH, Roh KH, Kim JB, Suh MC, Kim HU. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea. Gene 2013; 531:253-62. [PMID: 24029080 DOI: 10.1016/j.gene.2013.08.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/23/2023]
Abstract
Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns.
Collapse
Affiliation(s)
- Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA, Suwon 441-707, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Rahman H, Singer SD, Weselake RJ. Development of low-linolenic acid Brassica oleracea lines through seed mutagenesis and molecular characterization of mutants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1587-1598. [PMID: 23475317 DOI: 10.1007/s00122-013-2076-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/23/2013] [Indexed: 06/01/2023]
Abstract
Designing the fatty acid composition of Brassica napus L. seed oil for specific applications would extend the value of this crop. A mutation in Fatty Acid Desaturase 3 (FAD3), which encodes the desaturase responsible for catalyzing the formation of α-linolenic acid (ALA; 18:3 (cisΔ9,12,15)), in a diploid Brassica species would potentially result in useful germplasm for creating an amphidiploid displaying low ALA content in the seed oil. For this, seeds of B. oleracea (CC), one of the progenitor species of B. napus, were treated with ethyl-methane-sulfonate to induce mutations in genes encoding enzymes involved in fatty acid biosynthesis. Seeds from 1,430 M2 plants were analyzed, from which M3 seed families with 5.7-6.9 % ALA were obtained. Progeny testing and selection for low ALA content were carried out in M3-M7 generations, from which mutant lines with <2.0 % ALA were obtained. Molecular analysis revealed that the mutation was due to a single nucleotide substitution from G to A in exon 3 of FAD3, which corresponds to an amino acid residue substitution from glutamic acid to lysine. No obvious differences in the expression of the FAD3 gene were detected between wild type and mutant lines; however, evaluation of the performance of recombinant Δ-15 desaturase from mutant lines in yeast indicated reduced production of ALA. The novelty of this mutation can be inferred from the position of the point mutation in the C-genome FAD3 gene when compared to the position of mutations reported previously by other researchers. This B. oleracea mutant line has the potential to be used for the development of low-ALA B. napus and B. carinata oilseed crops.
Collapse
Affiliation(s)
- Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | | | | |
Collapse
|