1
|
Paluchowska P, Śliwka J, Yin Z. Late blight resistance genes in potato breeding. PLANTA 2022; 255:127. [PMID: 35576021 PMCID: PMC9110483 DOI: 10.1007/s00425-022-03910-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Using late blight resistance genes targeting conservative effectors of Phytophthora infestans and the constructing gene pyramids may lead to durable, broad-spectrum resistance, which could be accelerated through genetic engineering. Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. In 2020, potato production was estimated to be more than 359 million tons according to the Food and Agriculture Organization (FAO). Potato is affected by many pathogens, among which Phytophthora infestans, causing late blight, is of the most economic importance. Crop protection against late blight requires intensive use of fungicides, which has an impact on the environment and humans. Therefore, new potato cultivars have been bred using resistance genes against P. infestans (Rpi genes) that originate from wild relatives of potato. Such programmes were initiated 100 years ago, but the process is complex and long. The development of genetic engineering techniques has enabled the direct transfer of resistance genes from potato wild species to cultivars and easier pyramiding of multiple Rpi genes, which potentially increases the durability and spectrum of potato resistance to rapidly evolving P. infestans strains. In this review, we summarize the current knowledge concerning Rpi genes. We also discuss the use of Rpi genes in breeding as well as their detection in existing potato cultivars. Last, we review new sources of Rpi genes and new methods used to identify them and discuss interactions between P. infestans and host.
Collapse
Affiliation(s)
- Paulina Paluchowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland.
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | - Zhimin Yin
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
2
|
Dolatabadian A, Fernando WGD. Genomic Variations and Mutational Events Associated with Plant-Pathogen Interactions. BIOLOGY 2022; 11:421. [PMID: 35336795 PMCID: PMC8945218 DOI: 10.3390/biology11030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Phytopathologists are actively researching the molecular basis of plant-pathogen interactions. The mechanisms of responses to pathogens have been studied extensively in model crop plant species and natural populations. Today, with the rapid expansion of genomic technologies such as DNA sequencing, transcriptomics, proteomics, and metabolomics, as well as the development of new methods and protocols, data analysis, and bioinformatics, it is now possible to assess the role of genetic variation in plant-microbe interactions and to understand the underlying molecular mechanisms of plant defense and microbe pathogenicity with ever-greater resolution and accuracy. Genetic variation is an important force in evolution that enables organisms to survive in stressful environments. Moreover, understanding the role of genetic variation and mutational events is essential for crop breeders to produce improved cultivars. This review focuses on genetic variations and mutational events associated with plant-pathogen interactions and discusses how these genome compartments enhance plants' and pathogens' evolutionary processes.
Collapse
Affiliation(s)
- Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | | |
Collapse
|
3
|
Zheng Q, Putker V, Goverse A. Molecular and Cellular Mechanisms Involved in Host-Specific Resistance to Cyst Nematodes in Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:641582. [PMID: 33767723 PMCID: PMC7986850 DOI: 10.3389/fpls.2021.641582] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/16/2021] [Indexed: 05/17/2023]
Abstract
Cyst nematodes are able to infect a wide range of crop species and are regarded as a major threat in crop production. In response to invasion of cyst nematodes, plants activate their innate immune system to defend themselves by conferring basal and host-specific defense responses depending on the plant genotype. Basal defense is dependent on the detection of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), while host-specific defense mainly relies on the activation of canonical and non-canonical resistance (R) genes or quantitative trait loci (QTL). Currently, application of R genes and QTLs in crop species is a major approach to control cyst nematode in crop cultivation. However, emerging virulent cyst nematode field populations are threatening crop production due to host genetic selection by the application of a limited set of resistance genes in current crop cultivars. To counteract this problem, increased knowledge about the mechanisms involved in host-specific resistance mediated by R genes and QTLs to cyst nematodes is indispensable to improve their efficient and sustainable use in field crops. Despite the identification of an increasing number of resistance traits to cyst nematodes in various crops, the underlying genes and defense mechanisms are often unknown. In the last decade, indebt studies on the functioning of a number of cyst nematode R genes and QTLs have revealed novel insights in how plants respond to cyst nematode infection by the activation of host-specific defense responses. This review presents current knowledge of molecular and cellular mechanisms involved in the recognition of cyst nematodes, the activation of defense signaling and resistance response types mediated by R genes or QTLs. Finally, future directions for research are proposed to develop management strategies to better control cyst nematodes in crop cultivation.
Collapse
Affiliation(s)
- Qi Zheng
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Vera Putker
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
4
|
The Genomic Impact of Selection for Virulence against Resistance in the Potato Cyst Nematode, Globodera pallida. Genes (Basel) 2020; 11:genes11121429. [PMID: 33260722 PMCID: PMC7760817 DOI: 10.3390/genes11121429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
Although the use of natural resistance is the most effective management approach against the potato cyst nematode (PCN) Globodera pallida, the existence of pathotypes with different virulence characteristics constitutes a constraint towards this goal. Two resistance sources, GpaV (from Solanum vernei) and H3 from S. tuberosum ssp. andigena CPC2802 (from the Commonwealth Potato Collection) are widely used in potato breeding programmes in European potato industry. However, the use of resistant cultivars may drive strong selection towards virulence, which allows the increase in frequency of virulent alleles in the population and therefore, the emergence of highly virulent nematode lineages. This study aimed to identify Avirulence (Avr) genes in G. pallida populations selected for virulence on the above resistance sources, and the genomic impact of selection processes on the nematode. The selection drive in the populations was found to be specific to their genetic background. At the genomic level, 11 genes were found that represent candidate Avr genes. Most of the variant calls determining selection were associated with H3-selected populations, while many of them seem to be organised in genomic islands facilitating selection evolution. These phenotypic and genomic findings combined with histological studies performed revealed potential mechanisms underlying selection in G. pallida.
Collapse
|
5
|
Slater AT, Schultz L, Lombardi M, Rodoni BC, Bottcher C, Cogan NOI, Forster JW. Screening for Resistance to PVY in Australian Potato Germplasm. Genes (Basel) 2020; 11:genes11040429. [PMID: 32316258 PMCID: PMC7230960 DOI: 10.3390/genes11040429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022] Open
Abstract
Potatoes are an important human food crop, but have a number of yield limiting factors, including disease susceptibility. Potato virus Y (PVY) is found worldwide, and is one of the main virus problems for potato growers. PVY is transmitted by aphids and mechanically by machinery, tools and people, and symptoms are variable across cultivars and strains, including being symptomless in some cultivars. Therefore, breeding resistant cultivars is the best way to control this virus. This study phenotypically screened 74 of the main commercial cultivars and a few other select cultivars grown in Australia, in order to identify sources of resistance to PVY. The cultivars were screened against PVYO and PVYNTN, with 23 out of 71 resistant to PVYO and 13 out of 74 resistant to PVYNTN, and all these 13 were resistant to both strains. When the phenotypic screening was compared to the results listed on the European Cultivated Potato Database, the majority of results were found to be consistent. We then evaluated three molecular markers RYSC3, M45, and STM0003 for the extreme resistance genes Ryadg and Rysto, to validate the usefulness of the markers for marker-assisted selection (MAS) on Australian germplasm. The degree of correlation between the resistance phenotypes and the RYSC3, M45, and STM0003 markers for Ryadg and Rysto conferred PVY resistance was determined. Three cultivars amplified the RYSC3 marker, while the M45 marker amplified the same 3 and an additional 9. Of the 12 cultivars, 11 phenotyped as resistant, but 1 was susceptible. The STM0003 marker was amplified from only 2 cultivars that both had resistant phenotypes. The RYSC3, M45, and STM0003 markers were therefore able to identify all the 13 cultivars that were resistant to both strains of PVY. Therefore, these markers will enable the identification of genotypes with resistance to PVY, and enable PVY resistant parents to be used for the development of superior progeny; these genetic markers can be used for MAS in the Australian potato breeding program.
Collapse
Affiliation(s)
- Anthony T. Slater
- Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
- Correspondence:
| | - Lee Schultz
- Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - Maria Lombardi
- Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - Brendan C. Rodoni
- Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Chris Bottcher
- Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
| | - Noel O. I. Cogan
- Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - John W. Forster
- Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
6
|
Kondrák M, Kopp A, Uri C, Sós-Hegedűs A, Csákvári E, Schiller M, Barta E, Cernák I, Polgár Z, Taller J, Bánfalvi Z. Mapping and DNA sequence characterisation of the Rysto locus conferring extreme virus resistance to potato cultivar 'White Lady'. PLoS One 2020; 15:e0224534. [PMID: 32231371 PMCID: PMC7108733 DOI: 10.1371/journal.pone.0224534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/01/2020] [Indexed: 11/29/2022] Open
Abstract
Virus resistance genes carried by wild plant species are valuable resources for plant breeding. The Rysto gene, conferring a broad spectrum of durable resistance, originated from Solanum stoloniferum and was introgressed into several commercial potato cultivars, including ‘White Lady’, by classical breeding. Rysto was mapped to chromosome XII in potato, and markers used for marker-assisted selection in breeding programmes were identified. Nevertheless, there was no information on the identity of the Rysto gene. To begin to reveal the identification of Rysto, fine-scale genetic mapping was performed which, in combination with chromosome walking, narrowed down the locus of the gene to approximately 1 Mb. DNA sequence analysis of the locus identified six full-length NBS-LRR-type (short NLR-type) putative resistance genes. Two of them, designated TMV2 and TMV3, were similar to a TMV resistance gene isolated from tobacco and to Y-1, which co-segregates with Ryadg, the extreme virus resistance gene originated from Solanum andigena and localised to chromosome XI. Furthermore, TMV2 of ‘White Lady’ was found to be 95% identical at the genomic sequence level with the recently isolated Rysto gene of the potato cultivar ‘Alicja’. In addition to the markers identified earlier, this work generated five tightly linked new markers which can serve potato breeding efforts for extreme virus resistance.
Collapse
Affiliation(s)
- Mihály Kondrák
- NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Andrea Kopp
- NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Csilla Uri
- NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
| | | | - Edina Csákvári
- NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Mátyás Schiller
- NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Endre Barta
- NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - István Cernák
- Potato Research Centre, University of Pannonia, Keszthely, Hungary
| | - Zsolt Polgár
- Potato Research Centre, University of Pannonia, Keszthely, Hungary
| | - János Taller
- Department of Plant Sciences and Biotechnology, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Zsófia Bánfalvi
- NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
- * E-mail:
| |
Collapse
|
7
|
Gabur I, Chawla HS, Lopisso DT, von Tiedemann A, Snowdon RJ, Obermeier C. Gene presence-absence variation associates with quantitative Verticillium longisporum disease resistance in Brassica napus. Sci Rep 2020; 10:4131. [PMID: 32139810 PMCID: PMC7057980 DOI: 10.1038/s41598-020-61228-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Although copy number variation (CNV) and presence-absence variation (PAV) have been discovered in selected gene families in most crop species, the global prevalence of these polymorphisms in most complex genomes is still unclear and their influence on quantitatively inherited agronomic traits is still largely unknown. Here we analyze the association of gene PAV with resistance of oilseed rape (Brassica napus) against the important fungal pathogen Verticillium longisporum, as an example for a complex, quantitative disease resistance in the strongly rearranged genome of a recent allopolyploid crop species. Using Single Nucleotide absence Polymorphism (SNaP) markers to efficiently trace PAV in breeding populations, we significantly increased the resolution of loci influencing V. longisporum resistance in biparental and multi-parental mapping populations. Gene PAV, assayed by resequencing mapping parents, was observed in 23-51% of the genes within confidence intervals of quantitative trait loci (QTL) for V. longisporum resistance, and high-priority candidate genes identified within QTL were all affected by PAV. The results demonstrate the prominent role of gene PAV in determining agronomic traits, suggesting that this important class of polymorphism should be exploited more systematically in future plant breeding.
Collapse
Affiliation(s)
- Iulian Gabur
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Daniel Teshome Lopisso
- Section of General Plant Pathology and Crop Protection, Georg August University Göttingen, 37077, Göttingen, Germany
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Andreas von Tiedemann
- Section of General Plant Pathology and Crop Protection, Georg August University Göttingen, 37077, Göttingen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany.
| |
Collapse
|
8
|
Goyal N, Bhatia G, Sharma S, Garewal N, Upadhyay A, Upadhyay SK, Singh K. Genome-wide characterization revealed role of NBS-LRR genes during powdery mildew infection in Vitis vinifera. Genomics 2020; 112:312-322. [PMID: 30802599 DOI: 10.1016/j.ygeno.2019.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 02/14/2019] [Indexed: 11/23/2022]
Abstract
NBS-LRR comprises a large class of disease resistance (R) proteins that play a widespread role in plant protection against pathogens. In grapevine, powdery mildew cause significant losses in its productivity and efforts are being directed towards finding of resistance loci or genes imparting resistance/tolerance against such fungal diseases. In the present study, we performed genome-wide analysis of NBS-LRR genes during PM infection in grapevine. We identified 18, 23, 12, 16, 10, 10, 9, 20 and 14 differentially expressed NBS-LRR genes in response to PM infection in seven partially PM-resistant (DVIT3351.27, Husseine, Karadzhandal, Khalchili, Late vavilov, O34-16, Sochal) and 2 PM-susceptible (Carignan and Thompson seedless) V. vinifera accessions. Further, the identified sequences were characterized based on chromosomal locations, physicochemical properties, gene structure and motif analysis, and functional annotation by Gene Ontology (GO) mapping. The NBS-LRR genes responsive to powdery mildew could potentially be exploited to improve resistance in grapes.
Collapse
Affiliation(s)
- Neetu Goyal
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Garima Bhatia
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), D. No. 1-121/1, 4th and 5th Floors, Axis Clinicals Building, Opp. to Talkie Town, Miyapur, Hyderabad, Telangana 500 049, India
| | - Naina Garewal
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Anuradha Upadhyay
- National Research Centre for Grapes, P.B. No. 3, Manjri Farm P.O., Solapur Road, Pune, Maharashtra 412 307, India
| | | | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
9
|
Prodhomme C, Esselink D, Borm T, Visser RGF, van Eck HJ, Vossen JH. Comparative Subsequence Sets Analysis (CoSSA) is a robust approach to identify haplotype specific SNPs; mapping and pedigree analysis of a potato wart disease resistance gene Sen3. PLANT METHODS 2019; 15:60. [PMID: 31160919 PMCID: PMC6540404 DOI: 10.1186/s13007-019-0445-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/23/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Standard strategies to identify genomic regions involved in a specific trait variation are often limited by time and resource consuming genotyping methods. Other limiting pre-requisites are the phenotyping of large segregating populations or of diversity panels and the availability and quality of a closely related reference genome. To overcome these limitations, we designed efficient Comparative Subsequence Sets Analysis (CoSSA) workflows to identify haplotype specific SNPs linked to a trait of interest from Whole Genome Sequencing data. RESULTS As a model, we used the resistance to Synchytrium endobioticum pathotypes 2, 6 and 18 that co-segregated in a tetraploid full sib population. Genomic DNA from both parents, pedigree genotypes, unrelated potato varieties lacking the wart resistance traits and pools of resistant and susceptible siblings were sequenced. Set algebra and depth filtering of subsequences (k-mers) were used to delete unlinked and common SNPs and to enrich for SNPs from the haplotype(s) harboring the resistance gene(s). Using CoSSA, we identified a major and a minor effect locus. Upon comparison to the reference genome, it was inferred that the major resistance locus, referred to as Sen3, was located on the north arm of chromosome 11 between 1,259,552 and 1,519,485 bp. Furthermore, we could anchor the unanchored superscaffold DMB734 from the potato reference genome to a synthenous interval. CoSSA was also successful in identifying Sen3 in a reference genome independent way thanks to the de novo assembly of paired end reads matching haplotype specific k-mers. The de novo assembly provided more R haplotype specific polymorphisms than the reference genome corresponding region. CoSSA also offers possibilities for pedigree analysis. The origin of Sen3 was traced back until Ora. Finally, the diagnostic power of the haplotype specific markers was shown using a panel of 56 tetraploid varieties. CONCLUSIONS CoSSA is an efficient, robust and versatile set of workflows for the genetic analysis of a trait of interest using WGS data. Because the WGS data are used without intermediate reads mapping, CoSSA does not require the use of a reference genome. This approach allowed the identification of Sen3 and the design of haplotype specific, diagnostic markers.
Collapse
Affiliation(s)
- Charlotte Prodhomme
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Danny Esselink
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Theo Borm
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard G. F. Visser
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Herman J. van Eck
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jack H. Vossen
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
10
|
Bartkiewicz A, Chilla F, Terefe-Ayana D, Lübeck J, Strahwald J, Tacke E, Hofferbert HR, Flath K, Linde M, Debener T. Improved genetic resolution for linkage mapping of resistance to potato wart in monoparental dihaploids with potential diagnostic value in tetraploid potato varieties. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2555-2566. [PMID: 30159644 PMCID: PMC6244520 DOI: 10.1007/s00122-018-3172-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/27/2018] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE We achieved improved mapping resolution of the major wart resistance locus Xla-TNL containing also Sen1 in a dihaploid population using SNP data and developed additional markers with diagnostic value in tetraploid varieties. We analyzed a segregating monoparental dihaploid potato population comprising 215 genotypes derived from a tetraploid variety that is highly resistant to Synchytrium endobioticum pathotypes 18 and 6. The clear bimodal segregation for both pathotypes indicated that a major dominant resistance factor in a simplex allele configuration was present in the tetraploid donor genotype. Compared to that in previous analyses of the same tetraploid donor in conventional crosses with susceptible tetraploid genotypes, a segregation pattern with a reduced genetic complexity of resistance in dihaploids was observed here. Using the 12.8 k SolCAP SNP array, we mapped a resistance locus to the Xla-TNL region containing also Sen1 on potato chromosome 11. The improved mapping resolution provided by the monoparental dihaploids allowed for the localization of the genes responsible for the resistance to both pathotypes in an interval spanning less than 800 kbp on the reference genome. Furthermore, we identified eight molecular markers segregating without recombination to pathotype 18 and pathotype 6 resistance. Also, two developed markers display improved diagnostic properties in an independent panel of tetraploid varieties. Overall, our data provide the highest resolution mapping of wart resistance genes at the Xla-TNL locus thus far.
Collapse
Affiliation(s)
- Annette Bartkiewicz
- Institute of Plant Genetics, Department of Molecular Plant Breeding, Leibniz University Hannover, Hannover, Germany
- DHD-Consulting GmbH, Hildesheim, Germany
| | - Friederike Chilla
- Institute of Plant Genetics, Department of Molecular Plant Breeding, Leibniz University Hannover, Hannover, Germany
- Julius Kühn-Institut, Kleinmachnow, Germany
| | - Diro Terefe-Ayana
- Institute of Plant Genetics, Department of Molecular Plant Breeding, Leibniz University Hannover, Hannover, Germany
- Westhoff, Südlohn-Oeding, Germany
| | - Jens Lübeck
- SaKa Pflanzenzucht GmbH & Co. KG, Windeby, Germany
| | | | - Eckhard Tacke
- Böhm-Nordkartoffel Agrarproduktion GmbH & Co. OHG, Ebstorf, Germany
| | | | | | - Marcus Linde
- Institute of Plant Genetics, Department of Molecular Plant Breeding, Leibniz University Hannover, Hannover, Germany
| | - Thomas Debener
- Institute of Plant Genetics, Department of Molecular Plant Breeding, Leibniz University Hannover, Hannover, Germany.
| |
Collapse
|
11
|
Slootweg E, Koropacka K, Roosien J, Dees R, Overmars H, Lankhorst RK, van Schaik C, Pomp R, Bouwman L, Helder J, Schots A, Bakker J, Smant G, Goverse A. Sequence Exchange between Homologous NB-LRR Genes Converts Virus Resistance into Nematode Resistance, and Vice Versa. PLANT PHYSIOLOGY 2017; 175:498-510. [PMID: 28747428 PMCID: PMC5580749 DOI: 10.1104/pp.17.00485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/20/2017] [Indexed: 05/24/2023]
Abstract
Plants have evolved a limited repertoire of NB-LRR disease resistance (R) genes to protect themselves against myriad pathogens. This limitation is thought to be counterbalanced by the rapid evolution of NB-LRR proteins, as only a few sequence changes have been shown to be sufficient to alter resistance specificities toward novel strains of a pathogen. However, little is known about the flexibility of NB-LRR R genes to switch resistance specificities between phylogenetically unrelated pathogens. To investigate this, we created domain swaps between the close homologs Gpa2 and Rx1, which confer resistance in potato (Solanum tuberosum) to the cyst nematode Globodera pallida and Potato virus X, respectively. The genetic fusion of the CC-NB-ARC of Gpa2 with the LRR of Rx1 (Gpa2CN/Rx1L) results in autoactivity, but lowering the protein levels restored its specific activation response, including extreme resistance to Potato virus X in potato shoots. The reciprocal chimera (Rx1CN/Gpa2L) shows a loss-of-function phenotype, but exchange of the first three LRRs of Gpa2 by the corresponding region of Rx1 was sufficient to regain a wild-type resistance response to G. pallida in the roots. These data demonstrate that exchanging the recognition moiety in the LRR is sufficient to convert extreme virus resistance in the leaves into mild nematode resistance in the roots, and vice versa. In addition, we show that the CC-NB-ARC can operate independently of the recognition specificities defined by the LRR domain, either aboveground or belowground. These data show the versatility of NB-LRR genes to generate resistance to unrelated pathogens with completely different lifestyles and routes of invasion.
Collapse
Affiliation(s)
- Erik Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Kamila Koropacka
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Jan Roosien
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Robert Dees
- Laboratory of Molecular Recognition and Antigen Technology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Hein Overmars
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Rene Klein Lankhorst
- Plant Research International, Centre for Biosystems Genomics, 6708 PD Wageningen, The Netherlands
| | - Casper van Schaik
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Rikus Pomp
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Liesbeth Bouwman
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Arjen Schots
- Laboratory of Molecular Recognition and Antigen Technology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Jaap Bakker
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| |
Collapse
|
12
|
van Eck HJ, Vos PG, Valkonen JPT, Uitdewilligen JGAML, Lensing H, de Vetten N, Visser RGF. Graphical genotyping as a method to map Ny (o,n)sto and Gpa5 using a reference panel of tetraploid potato cultivars. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:515-528. [PMID: 27872942 PMCID: PMC5315735 DOI: 10.1007/s00122-016-2831-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/14/2016] [Indexed: 05/18/2023]
Abstract
The method of graphical genotyping is applied to a panel of tetraploid potato cultivars to visualize haplotype sharing. The method allowed to map genes involved in virus and nematode resistance. The physical coordinates of the amount of linkage drag surrounding these genes are easily interpretable. Graphical genotyping is a visually attractive and easily interpretable method to represent genetic marker data. In this paper, the method is extended from diploids to a panel of tetraploid potato cultivars. Application of filters to select a subset of SNPs allows one to visualize haplotype sharing between individuals that also share a specific locus. The method is illustrated with cultivars resistant to Potato virus Y (PVY), while simultaneously selecting for the absence of the SNPs in susceptible clones. SNP data will then merge into an image which displays the coordinates of a distal genomic region on the northern arm of chromosome 11 where a specific haplotype is introgressed from the wild potato species S. stoloniferum (CPC 2093) carrying a gene (Ny (o,n)sto ) conferring resistance to two PVY strains, PVYO and PVYNTN. Graphical genotyping was also successful in showing the haplotypes on chromosome 12 carrying Ry-f sto , another resistance gene derived from S. stoloniferum conferring broad-spectrum resistance to PVY, as well as chromosome 5 haplotypes from S. vernei, with the Gpa5 locus involved in resistance against Globodera pallida cyst nematodes. The image also shows shortening of linkage drag by meiotic recombination of the introgression segment in more recent breeding material. Identity-by-descent was found to be a requirement for using graphical genotyping, which is proposed as a non-statistical alternative method for gene discovery, as compared with genome-wide association studies. The potential and limitations of the method are discussed.
Collapse
Affiliation(s)
- Herman J van Eck
- Plant Breeding, Wageningen University and Research, P.O.Box 386, 6700 AJ, Wageningen, The Netherlands.
| | - Peter G Vos
- Plant Breeding, Wageningen University and Research, P.O.Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Jari P T Valkonen
- Plant Pathology Laboratory, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Jan G A M L Uitdewilligen
- Plant Breeding, Wageningen University and Research, P.O.Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Hellen Lensing
- Averis Seeds B.V., Valtherblokken Zuid 40, 7876 TC, Valthermond, The Netherlands
| | - Nick de Vetten
- Averis Seeds B.V., Valtherblokken Zuid 40, 7876 TC, Valthermond, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, P.O.Box 386, 6700 AJ, Wageningen, The Netherlands
| |
Collapse
|
13
|
Segura DM, Masuelli RW, Sanchez-Puerta MV. Dissimilar evolutionary histories of two resistance gene families in the genus Solanum. Genome 2016; 60:17-25. [PMID: 27936922 DOI: 10.1139/gen-2016-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic analyses have shown that most genes in eukaryotic lineages belong to families. Gene families vary in terms of number of members, nucleotide similarity, gene integrity, expression, and function. Often, the members of gene families are arranged in clusters, which contribute to maintaining similarity among gene copies and also to generate duplicates through replication errors. Gene families offer us an opportunity to examine the forces involved in the evolution of the genomes and to study recombination events and genomic rearrangements. In this work, we focused on the evolution of two plant resistance gene families, Sw5 and Mi-1, and analyzed the completely sequenced nuclear genomes of potato and tomato. We first noticed that the potato genome carries larger resistance gene families than tomato, but all gene copies are pseudogenes. Second, phylogenetic analyses indicated that Sw5 and Mi-1 gene families had dissimilar evolutionary histories. In contrast to Sw5, Mi-1 homologues suffered repeated gene conversion events among the gene copies, particularly in the tomato genome.
Collapse
Affiliation(s)
- Diana María Segura
- a IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina
| | - Ricardo Williams Masuelli
- a IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina
| | - M Virginia Sanchez-Puerta
- a IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina.,b Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| |
Collapse
|
14
|
Abstract
Many plants, both in nature and in agriculture, are resistant to multiple diseases. Although much of the plant innate immunity system provides highly specific resistance, there is emerging evidence to support the hypothesis that some components of plant defense are relatively nonspecific, providing multiple disease resistance (MDR). Understanding MDR is of fundamental and practical interest to plant biologists, pathologists, and breeders. This review takes stock of the available evidence related to the MDR hypothesis. Questions about MDR are considered primarily through the lens of forward genetics, starting at the organismal level and proceeding to the locus level and, finally, to the gene level. At the organismal level, MDR may be controlled by clusters of R genes that evolve under diversifying selection, by dispersed, pathogen-specific genes, and/or by individual genes providing MDR. Based on the few MDR loci that are well-understood, MDR is conditioned by diverse mechanisms at the locus and gene levels.
Collapse
Affiliation(s)
- Tyr Wiesner-Hanks
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853; ,
| | - Rebecca Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
15
|
Ma R, Sun L, Chen X, Mei B, Chang G, Wang M, Zhao D. Proteomic Analyses Provide Novel Insights into Plant Growth and Ginsenoside Biosynthesis in Forest Cultivated Panax ginseng (F. Ginseng). FRONTIERS IN PLANT SCIENCE 2016; 7:1. [PMID: 26858731 PMCID: PMC4726751 DOI: 10.3389/fpls.2016.00001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/05/2016] [Indexed: 05/18/2023]
Abstract
F. Ginseng (Panax ginseng) is planted in the forest to enhance the natural ginseng resources, which have an immense medicinal and economic value. The morphology of the cultivated plants becomes similar to that of wild growing ginseng (W. Ginseng) over the years. So far, there have been no studies highlighting the physiological or functional changes in F. Ginseng and its wild counterparts. In the present study, we used proteomic technologies (2DE and iTRAQ) coupled to mass spectrometry to compare W. Ginseng and F. Ginseng at various growth stages. Hierarchical cluster analysis based on protein abundance revealed that the protein expression profile of 25-year-old F. Ginseng was more like W. Ginseng than less 20-year-old F. Ginseng. We identified 192 differentially expressed protein spots in F. Ginseng. These protein spots increased with increase in growth years of F. Ginseng and were associated with proteins involved in energy metabolism, ginsenosides biosynthesis, and stress response. The mRNA, physiological, and metabolic analysis showed that the external morphology, protein expression profile, and ginsenoside synthesis ability of the F. Ginseng increased just like that of W. Ginseng with the increase in age. Our study represents the first characterization of the proteome of F. Ginseng during development and provides new insights into the metabolism and accumulation of ginsenosides.
Collapse
Affiliation(s)
- Rui Ma
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Chemistry and Biology, Beihua UniversityJilin, China
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
| | - Liwei Sun
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Chemistry and Biology, Beihua UniversityJilin, China
- *Correspondence: Liwei Sun
| | - Xuenan Chen
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
- The first affiliated hospital to Changchun University of Chinese MedicineChangchun, China
| | - Bing Mei
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
| | - Guijuan Chang
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
| | - Manying Wang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Chemistry and Biology, Beihua UniversityJilin, China
| | - Daqing Zhao
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
- Daqing Zhao
| |
Collapse
|
16
|
Chen JY, Huang JQ, Li NY, Ma XF, Wang JL, Liu C, Liu YF, Liang Y, Bao YM, Dai XF. Genome-wide analysis of the gene families of resistance gene analogues in cotton and their response to Verticillium wilt. BMC PLANT BIOLOGY 2015; 15:148. [PMID: 26084488 PMCID: PMC4471920 DOI: 10.1186/s12870-015-0508-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/27/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Gossypium raimondii is a Verticillium wilt-resistant cotton species whose genome encodes numerous disease resistance genes that play important roles in the defence against pathogens. However, the characteristics of resistance gene analogues (RGAs) and Verticillium dahliae response loci (VdRLs) have not been investigated on a global scale. In this study, the characteristics of RGA genes were systematically analysed using bioinformatics-driven methods. Moreover, the potential VdRLs involved in the defence response to Verticillium wilt were identified by RNA-seq and correlations with known resistance QTLs. RESULTS The G. raimondii genome encodes 1004 RGA genes, and most of these genes cluster in homology groups based on high levels of similarity. Interestingly, nearly half of the RGA genes occurred in 26 RGA-gene-rich clusters (Rgrcs). The homology analysis showed that sequence exchanges and tandem duplications frequently occurred within Rgrcs, and segmental duplications took place among the different Rgrcs. An RNA-seq analysis showed that the RGA genes play roles in cotton defence responses, forming 26 VdRLs inside in the Rgrcs after being inoculated with V. dahliae. A correlation analysis found that 12 VdRLs were adjacent to the known Verticillium wilt resistance QTLs, and that 5 were rich in NB-ARC domain-containing disease resistance genes. CONCLUSIONS The cotton genome contains numerous RGA genes, and nearly half of them are located in clusters, which evolved by sequence exchanges, tandem duplications and segmental duplications. In the Rgrcs, 26 loci were induced by the V. dahliae inoculation, and 12 are in the vicinity of known Verticillium wilt resistance QTLs.
Collapse
Affiliation(s)
- Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | | | - Nan-Yang Li
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xue-Feng Ma
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jin-Long Wang
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Chuan Liu
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China.
| | | | - Yong Liang
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China.
| | - Yu-Ming Bao
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
17
|
de Boer JM, Datema E, Tang X, Borm TJA, Bakker EH, van Eck HJ, van Ham RCHJ, de Jong H, Visser RGF, Bachem CWB. Homologues of potato chromosome 5 show variable collinearity in the euchromatin, but dramatic absence of sequence similarity in the pericentromeric heterochromatin. BMC Genomics 2015; 16:374. [PMID: 25958312 PMCID: PMC4470070 DOI: 10.1186/s12864-015-1578-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/24/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In flowering plants it has been shown that de novo genome assemblies of different species and genera show a significant drop in the proportion of alignable sequence. Within a plant species, however, it is assumed that different haplotypes of the same chromosome align well. In this paper we have compared three de novo assemblies of potato chromosome 5 and report on the sequence variation and the proportion of sequence that can be aligned. RESULTS For the diploid potato clone RH89-039-16 (RH) we produced two linkage phase controlled and haplotype-specific assemblies of chromosome 5 based on BAC-by-BAC sequencing, which were aligned to each other and compared to the 52 Mb chromosome 5 reference sequence of the doubled monoploid clone DM 1-3 516 R44 (DM). We identified 17.0 Mb of non-redundant sequence scaffolds derived from euchromatic regions of RH and 38.4 Mb from the pericentromeric heterochromatin. For 32.7 Mb of the RH sequences the correct position and order on chromosome 5 was determined, using genetic markers, fluorescence in situ hybridisation and alignment to the DM reference genome. This ordered fraction of the RH sequences is situated in the euchromatic arms and in the heterochromatin borders. In the euchromatic regions, the sequence collinearity between the three chromosomal homologs is good, but interruption of collinearity occurs at nine gene clusters. Towards and into the heterochromatin borders, absence of collinearity due to structural variation was more extensive and was caused by hemizygous and poorly aligning regions of up to 450 kb in length. In the most central heterochromatin, a total of 22.7 Mb sequence from both RH haplotypes remained unordered. These RH sequences have very few syntenic regions and represent a non-alignable region between the RH and DM heterochromatin haplotypes of chromosome 5. CONCLUSIONS Our results show that among homologous potato chromosomes large regions are present with dramatic loss of sequence collinearity. This stresses the need for more de novo reference assemblies in order to capture genome diversity in this crop. The discovery of three highly diverged pericentric heterochromatin haplotypes within one species is a novelty in plant genome analysis. The possible origin and cytogenetic implication of this heterochromatin haplotype diversity are discussed.
Collapse
Affiliation(s)
- Jan M de Boer
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands. .,Current address: Averis Seeds B.V., Valtherblokken Zuid 40, 7876 TC, Valthermond, The Netherlands.
| | - Erwin Datema
- Wageningen University and Research Centre, Applied Bioinformatics, Plant Research International, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands. .,Current address: KeyGene N.V., P.O. Box 216, 6700, Wageningen, The Netherlands.
| | - Xiaomin Tang
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands. .,Current address: Department of Biology, Colorado State University, Fort Collins, USA.
| | - Theo J A Borm
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Erin H Bakker
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Herman J van Eck
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Roeland C H J van Ham
- Wageningen University and Research Centre, Applied Bioinformatics, Plant Research International, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands. .,Current address: KeyGene N.V., P.O. Box 216, 6700, Wageningen, The Netherlands.
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Christian W B Bachem
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
18
|
Soto JC, Ortiz JF, Perlaza-Jiménez L, Vásquez AX, Lopez-Lavalle LAB, Mathew B, Léon J, Bernal AJ, Ballvora A, López CE. A genetic map of cassava (Manihot esculenta Crantz) with integrated physical mapping of immunity-related genes. BMC Genomics 2015; 16:190. [PMID: 25887443 PMCID: PMC4417308 DOI: 10.1186/s12864-015-1397-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/24/2015] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Cassava, Manihot esculenta Crantz, is one of the most important crops world-wide representing the staple security for more than one billion of people. The development of dense genetic and physical maps, as the basis for implementing genetic and molecular approaches to accelerate the rate of genetic gains in breeding program represents a significant challenge. A reference genome sequence for cassava has been made recently available and community efforts are underway for improving its quality. Cassava is threatened by several pathogens, but the mechanisms of defense are far from being understood. Besides, there has been a lack of information about the number of genes related to immunity as well as their distribution and genomic organization in the cassava genome. RESULTS A high dense genetic map of cassava containing 2,141 SNPs has been constructed. Eighteen linkage groups were resolved with an overall size of 2,571 cM and an average distance of 1.26 cM between markers. More than half of mapped SNPs (57.4%) are located in coding sequences. Physical mapping of scaffolds of cassava whole genome sequence draft using the mapped markers as anchors resulted in the orientation of 687 scaffolds covering 45.6% of the genome. One hundred eighty nine new scaffolds are anchored to the genetic cassava map leading to an extension of the present cassava physical map with 30.7 Mb. Comparative analysis using anchor markers showed strong co-linearity to previously reported cassava genetic and physical maps. In silico based searching for conserved domains allowed the annotation of a repertory of 1,061 cassava genes coding for immunity-related proteins (IRPs). Based on physical map of the corresponding sequencing scaffolds, unambiguous genetic localization was possible for 569 IRPs. CONCLUSIONS This is the first study reported so far of an integrated high density genetic map using SNPs with integrated genetic and physical localization of newly annotated immunity related genes in cassava. These data build a solid basis for future studies to map and associate markers with single loci or quantitative trait loci for agronomical important traits. The enrichment of the physical map with novel scaffolds is in line with the efforts of the cassava genome sequencing consortium.
Collapse
Affiliation(s)
- Johana Carolina Soto
- Manihot Biotec Laboratory, Biology Department, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Juan Felipe Ortiz
- Manihot Biotec Laboratory, Biology Department, Universidad Nacional de Colombia, Bogotá, Colombia. .,Present address Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Laura Perlaza-Jiménez
- Laboratory of Mycology and Plant Pathology, Universidad de los Andes, Bogotá, Colombia. .,Present address Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Andrea Ximena Vásquez
- Manihot Biotec Laboratory, Biology Department, Universidad Nacional de Colombia, Bogotá, Colombia.
| | | | - Boby Mathew
- INRES-Plant Breeding University of Bonn, Bonn, Germany.
| | - Jens Léon
- INRES-Plant Breeding University of Bonn, Bonn, Germany.
| | - Adriana Jimena Bernal
- Laboratory of Mycology and Plant Pathology, Universidad de los Andes, Bogotá, Colombia.
| | - Agim Ballvora
- INRES-Plant Breeding University of Bonn, Bonn, Germany.
| | - Camilo Ernesto López
- Manihot Biotec Laboratory, Biology Department, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
19
|
Watanabe K. Potato genetics, genomics, and applications. BREEDING SCIENCE 2015; 65:53-68. [PMID: 25931980 PMCID: PMC4374564 DOI: 10.1270/jsbbs.65.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/17/2015] [Indexed: 05/20/2023]
Abstract
Potato has a variety of reproductive uniquenesses besides its clonal propagation by tubers. These traits are controlled by a different kind of genetic control. The reproductive information has been applied to enable interspecific hybridization to enhance valuable traits, such as disease and pest resistances, from the tuber-bearing Solanum gene pool. While progress has been made in potato breeding, many resources have been invested due to the requirements of large populations and long time frame. This is not only due to the general pitfalls in plant breeding, but also due to the complexity of polyploid genetics. Tetraploid genetics is the most prominent aspect associated with potato breeding. Genetic maps and markers have contributed to potato breeding, and genome information further elucidates questions in potato evolution and supports comprehensive potato breeding. Challenges yet remain on recognizing intellectual property rights to breeding and germplasm, and also on regulatory aspects to incorporate modern biotechnology for increasing genetic variation in potato breeding.
Collapse
|
20
|
Valkonen JP. Elucidation of virus-host interactions to enhance resistance breeding for control of virus diseases in potato. BREEDING SCIENCE 2015; 65:69-76. [PMID: 25931981 PMCID: PMC4374565 DOI: 10.1270/jsbbs.65.69] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/25/2015] [Indexed: 05/03/2023]
Abstract
Potato virus Y (PVY) and Potato mop-top virus (PMTV) are viruses whose geographical distribution is expanding and economic losses are increasing, in contrast to most of other viruses infecting potato crops. Most potato cultivars lack broad-spectrum resistance to the new, genetically complex strains of PVY, and no efficient resistance to PMTV is known in potato. Control of the vectors of these viruses is not an efficient or possible strategy to prevent infections. Studies on molecular virus-host interactions can discover plant genes that are important to viral infection or antiviral defence. Both types of genes may be utilized in resistance breeding, which is discussed in this paper. The advanced gene technologies provide means to fortify potato cultivars with effective virus resistance genes or mutated, non-functional host factors that interfere with virus infection.
Collapse
Affiliation(s)
- Jari P.T. Valkonen
- Department of Agricultural Sciences,
P O Box 27, FI-00014 University of Helsinki,
Finland
| |
Collapse
|
21
|
Tian YP, Hepojoki J, Ranki H, Lankinen H, Valkonen JPT. Analysis of potato virus Y coat protein epitopes recognized by three commercial monoclonal antibodies. PLoS One 2014; 9:e115766. [PMID: 25542005 PMCID: PMC4277358 DOI: 10.1371/journal.pone.0115766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/28/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Potato virus Y (PVY, genus Potyvirus) causes substantial economic losses in solanaceous plants. Routine screening for PVY is an essential part of seed potato certification, and serological assays are often used. The commercial, commonly used monoclonal antibodies, MAb1128, MAb1129, and MAb1130, recognize the viral coat protein (CP) of PVY and distinguish PVYN strains from PVYO and PVYC strains, or detect all PVY strains, respectively. However, the minimal epitopes recognized by these antibodies have not been identified. METHODOLOGY/PRINCIPAL FINDINGS SPOT peptide array was used to map the epitopes in CP recognized by MAb1128, MAb1129, and MAb1130. Then alanine replacement as well as N- and C-terminal deletion analysis of the identified peptide epitopes was done to determine critical amino acids for antibody recognition and the respective minimal epitopes. The epitopes of all antibodies were located within the 30 N-terminal-most residues. The minimal epitope of MAb1128 was 25NLNKEK30. Replacement of 25N or 27N with alanine weakened the recognition by MAb1128, and replacement of 26L, 29E, or 30K nearly precluded recognition. The minimal epitope for MAb1129 was 16RPEQGSIQSNP26 and the most critical residues for recognition were 22I and 23Q. The epitope of MAb1130 was defined by residues 5IDAGGS10. Mutation of residue 6D abrogated and mutation of 9G strongly reduced recognition of the peptide by MAb1130. Amino acid sequence alignment demonstrated that these epitopes are relatively conserved among PVY strains. Finally, recombinant CPs were produced to demonstrate that mutations in the variable positions of the epitope regions can affect detection with the MAbs. CONCLUSIONS/SIGNIFICANCE The epitope data acquired can be compared with data on PVY CP-encoding sequences produced by laboratories worldwide and utilized to monitor how widely the new variants of PVY can be detected with current seed potato certification schemes or during the inspection of imported seed potatoes as conducted with these MAbs.
Collapse
Affiliation(s)
- Yan-Ping Tian
- Department of Agricultural Sciences, Plant Pathology Laboratory, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Harri Ranki
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Hilkka Lankinen
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Jari P. T. Valkonen
- Department of Agricultural Sciences, Plant Pathology Laboratory, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Slater AT, Cogan NOI, Hayes BJ, Schultz L, Dale MFB, Bryan GJ, Forster JW. Improving breeding efficiency in potato using molecular and quantitative genetics. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2279-92. [PMID: 25186170 DOI: 10.1007/s00122-014-2386-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 08/23/2014] [Indexed: 05/24/2023]
Abstract
Potatoes are highly heterozygous and the conventional breeding of superior germplasm is challenging, but use of a combination of MAS and EBVs can accelerate genetic gain. Cultivated potatoes are highly heterozygous due to their outbreeding nature, and suffer acute inbreeding depression. Modern potato cultivars also exhibit tetrasomic inheritance. Due to this genetic heterogeneity, the large number of target traits and the specific requirements of commercial cultivars, potato breeding is challenging. A conventional breeding strategy applies phenotypic recurrent selection over a number of generations, a process which can take over 10 years. Recently, major advances in genetics and molecular biology have provided breeders with molecular tools to accelerate gains for some traits. Marker-assisted selection (MAS) can be effectively used for the identification of major genes and quantitative trait loci that exhibit large effects. There are also a number of complex traits of interest, such as yield, that are influenced by a large number of genes of individual small effect where MAS will be difficult to deploy. Progeny testing and the use of pedigree in the analysis can provide effective identification of the superior genetic factors that underpin these complex traits. Recently, it has been shown that estimated breeding values (EBVs) can be developed for complex potato traits. Using a combination of MAS and EBVs for simple and complex traits can lead to a significant reduction in the length of the breeding cycle for the identification of superior germplasm.
Collapse
Affiliation(s)
- Anthony T Slater
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, Bundoora, Melbourne, VIC, 3083, Australia,
| | | | | | | | | | | | | |
Collapse
|
23
|
Jupe F, Witek K, Verweij W, Śliwka J, Pritchard L, Etherington GJ, Maclean D, Cock PJ, Leggett RM, Bryan GJ, Cardle L, Hein I, Jones JDG. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:530-44. [PMID: 23937694 PMCID: PMC3935411 DOI: 10.1111/tpj.12307] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 05/02/2023]
Abstract
RenSeq is a NB-LRR (nucleotide binding-site leucine-rich repeat) gene-targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB-LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB-LRRs and can be accessed through a genome browser that we provide. We compared these NB-LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ~80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum 'Heinz 1706' extended the NB-LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co-segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi-ber2) and S. ruiz-ceballosii (Rpi-rzc1), we were able to apply RenSeq successfully to identify markers that co-segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy-to-adapt Galaxy pipelines.
Collapse
Affiliation(s)
- Florian Jupe
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
| | - Kamil Witek
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
| | - Walter Verweij
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
- The Genome Analysis CentreNorwich Research Park, NR4 7UH, Norwich, UK
| | - Jadwiga Śliwka
- The Plant Breeding and Acclimatization Institute, Research Center MłochówPlatanowa 19, 05-831, Młochów, Poland
| | - Leighton Pritchard
- Information and Computational Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
| | | | - Dan Maclean
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
| | - Peter J Cock
- Information and Computational Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
| | - Richard M Leggett
- The Genome Analysis CentreNorwich Research Park, NR4 7UH, Norwich, UK
| | - Glenn J Bryan
- Cell and Molecular Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
| | - Linda Cardle
- Information and Computational Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
| | - Ingo Hein
- Cell and Molecular Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
- *For correspondence (e-mails ; )
| | - Jonathan DG Jones
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
- *For correspondence (e-mails ; )
| |
Collapse
|
24
|
Vossen JH, Dezhsetan S, Esselink D, Arens M, Sanz MJ, Verweij W, Verzaux E, van der Linden CG. Novel applications of motif-directed profiling to identify disease resistance genes in plants. PLANT METHODS 2013; 9:37. [PMID: 24099459 PMCID: PMC3853995 DOI: 10.1186/1746-4811-9-37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/02/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Molecular profiling of gene families is a versatile tool to study diversity between individual genomes in sexual crosses and germplasm. Nucleotide binding site (NBS) profiling, in particular, targets conserved nucleotide binding site-encoding sequences of resistance gene analogs (RGAs), and is widely used to identify molecular markers for disease resistance (R) genes. RESULTS In this study, we used NBS profiling to identify genome-wide locations of RGA clusters in the genome of potato clone RH. Positions of RGAs in the potato RH and DM genomes that were generated using profiling and genome sequencing, respectively, were compared. Largely overlapping results, but also interesting discrepancies, were found. Due to the clustering of RGAs, several parts of the genome are overexposed while others remain underexposed using NBS profiling. It is shown how the profiling of other gene families, i.e. protein kinases and different protein domain-coding sequences (i.e., TIR), can be used to achieve a better marker distribution. The power of profiling techniques is further illustrated using RGA cluster-directed profiling in a population of Solanum berthaultii. Multiple different paralogous RGAs within the Rpi-ber cluster could be genetically distinguished. Finally, an adaptation of the profiling protocol was made that allowed the parallel sequencing of profiling fragments using next generation sequencing. The types of RGAs that were tagged in this next-generation profiling approach largely overlapped with classical gel-based profiling. As a potential application of next-generation profiling, we showed how the R gene family associated with late blight resistance in the SH*RH population could be identified using a bulked segregant approach. CONCLUSIONS In this study, we provide a comprehensive overview of previously described and novel profiling primers and their genomic targets in potato through genetic mapping and comparative genomics. Furthermore, it is shown how genome-wide or fine mapping can be pursued by choosing different sets of profiling primers. A protocol for next-generation profiling is provided and will form the basis for novel applications. Using the current overview of genomic targets, a rational choice can be made for profiling primers to be employed.
Collapse
Affiliation(s)
- Jack H Vossen
- Plant Breeding, Wageningen University and Research Center, Wageningen, Netherlands
| | - Sara Dezhsetan
- Department of Agronomy & Plant Breeding, Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Danny Esselink
- Plant Breeding, Wageningen University and Research Center, Wageningen, Netherlands
| | - Marjon Arens
- Plant Breeding, Wageningen University and Research Center, Wageningen, Netherlands
| | - Maria J Sanz
- Department of Cell Biology and Genetics, University of Alcala, Madrid, Spain
| | | | - Estelle Verzaux
- Plant Breeding, Wageningen University and Research Center, Wageningen, Netherlands
- Current address: Universidad Técnica del Norte, Ibarra, Equador
| | | |
Collapse
|
25
|
Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. MOLECULAR PLANT PATHOLOGY 2013; 14:740-57. [PMID: 23710878 PMCID: PMC6638693 DOI: 10.1111/mpp.12036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resistance genes against Phytophthora infestans (Rpi genes), the most important potato pathogen, are still highly valued in the breeding of Solanum spp. for enhanced resistance. The Rpi genes hitherto explored are localized most often in clusters, which are similar between the diverse Solanum genomes. Their distribution is not independent of late maturity traits. This review provides a summary of the most recent important revelations on the genomic position and cloning of Rpi genes, and the structure, associations, mode of action and activity spectrum of Rpi and corresponding avirulence (Avr) proteins. Practical implications for research into and application of Rpi genes are deduced and combined with an outlook on approaches to address remaining issues and interesting questions. It is evident that the potential of Rpi genes has not been exploited fully.
Collapse
Affiliation(s)
- Jan Rodewald
- Department of Health and Environment, Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| | | |
Collapse
|
26
|
Systematic analysis and comparison of nucleotide-binding site disease resistance genes in a diploid cotton Gossypium raimondii. PLoS One 2013; 8:e68435. [PMID: 23936305 PMCID: PMC3735570 DOI: 10.1371/journal.pone.0068435] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/29/2013] [Indexed: 11/22/2022] Open
Abstract
Plant disease resistance genes are a key component of defending plants from a range of pathogens. The majority of these resistance genes belong to the super-family that harbors a Nucleotide-binding site (NBS). A number of studies have focused on NBS-encoding genes in disease resistant breeding programs for diverse plants. However, little information has been reported with an emphasis on systematic analysis and comparison of NBS-encoding genes in cotton. To fill this gap of knowledge, in this study, we identified and investigated the NBS-encoding resistance genes in cotton using the whole genome sequence information of Gossypium raimondii. Totally, 355 NBS-encoding resistance genes were identified. Analyses of the conserved motifs and structural diversity showed that the most two distinct features for these genes are the high proportion of non-regular NBS genes and the high diversity of N-termini domains. Analyses of the physical locations and duplications of NBS-encoding genes showed that gene duplication of disease resistance genes could play an important role in cotton by leading to an increase in the functional diversity of the cotton NBS-encoding genes. Analyses of phylogenetic comparisons indicated that, in cotton, the NBS-encoding genes with TIR domain not only have their own evolution pattern different from those of genes without TIR domain, but also have their own species-specific pattern that differs from those of TIR genes in other plants. Analyses of the correlation between disease resistance QTL and NBS-encoding resistance genes showed that there could be more than half of the disease resistance QTL associated to the NBS-encoding genes in cotton, which agrees with previous studies establishing that more than half of plant resistance genes are NBS-encoding genes.
Collapse
|
27
|
Enciso-Rodríguez FE, González C, Rodríguez EA, López CE, Landsman D, Barrero LS, Mariño-Ramírez L. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem. PLoS One 2013; 8:e68500. [PMID: 23844210 PMCID: PMC3701084 DOI: 10.1371/journal.pone.0068500] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 05/30/2013] [Indexed: 11/18/2022] Open
Abstract
The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC–NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance.
Collapse
Affiliation(s)
- Felix E. Enciso-Rodríguez
- Plant Molecular Genetics Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
| | - Carolina González
- Molecular Microbiology Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
| | - Edwin A. Rodríguez
- Molecular Microbiology Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
| | - Camilo E. López
- Laboratorio de Fitopatología Molecular, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Luz Stella Barrero
- Plant Molecular Genetics Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
- PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
| | - Leonardo Mariño-Ramírez
- Plant Molecular Genetics Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
- PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
- * E-mail:
| |
Collapse
|
28
|
Uitdewilligen JGAML, Wolters AMA, D’hoop BB, Borm TJA, Visser RGF, van Eck HJ. A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One 2013; 8:e62355. [PMID: 23667470 PMCID: PMC3648547 DOI: 10.1371/journal.pone.0062355] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/20/2013] [Indexed: 11/23/2022] Open
Abstract
Assessment of genomic DNA sequence variation and genotype calling in autotetraploids implies the ability to distinguish among five possible alternative allele copy number states. This study demonstrates the accuracy of genotyping-by-sequencing (GBS) of a large collection of autotetraploid potato cultivars using next-generation sequencing. It is still costly to reach sufficient read depths on a genome wide scale, across the cultivated gene pool. Therefore, we enriched cultivar-specific DNA sequencing libraries using an in-solution hybridisation method (SureSelect). This complexity reduction allowed to confine our study to 807 target genes distributed across the genomes of 83 tetraploid cultivars and one reference (DM 1–3 511). Indexed sequencing libraries were paired-end sequenced in 7 pools of 12 samples using Illumina HiSeq2000. After filtering and processing the raw sequence data, 12.4 Gigabases of high-quality sequence data was obtained, which mapped to 2.1 Mb of the potato reference genome, with a median average read depth of 63× per cultivar. We detected 129,156 sequence variants and genotyped the allele copy number of each variant for every cultivar. In this cultivar panel a variant density of 1 SNP/24 bp in exons and 1 SNP/15 bp in introns was obtained. The average minor allele frequency (MAF) of a variant was 0.14. Potato germplasm displayed a large number of relatively rare variants and/or haplotypes, with 61% of the variants having a MAF below 0.05. A very high average nucleotide diversity (π = 0.0107) was observed. Nucleotide diversity varied among potato chromosomes. Several genes under selection were identified. Genotyping-by-sequencing results, with allele copy number estimates, were validated with a KASP genotyping assay. This validation showed that read depths of ∼60–80× can be used as a lower boundary for reliable assessment of allele copy number of sequence variants in autotetraploids. Genotypic data were associated with traits, and alleles strongly influencing maturity and flesh colour were identified.
Collapse
Affiliation(s)
- Jan G. A. M. L. Uitdewilligen
- Laboratory of Plant Breeding, Wageningen University, Wageningen, The Netherlands
- The Graduate School for Experimental Plant Sciences, Wageningen, The Netherlands
| | - Anne-Marie A. Wolters
- Laboratory of Plant Breeding, Wageningen University, Wageningen, The Netherlands
- The Graduate School for Experimental Plant Sciences, Wageningen, The Netherlands
| | - Bjorn B. D’hoop
- Laboratory of Plant Breeding, Wageningen University, Wageningen, The Netherlands
| | - Theo J. A. Borm
- Laboratory of Plant Breeding, Wageningen University, Wageningen, The Netherlands
- The Graduate School for Experimental Plant Sciences, Wageningen, The Netherlands
| | - Richard G. F. Visser
- Laboratory of Plant Breeding, Wageningen University, Wageningen, The Netherlands
- The Graduate School for Experimental Plant Sciences, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| | - Herman J. van Eck
- Laboratory of Plant Breeding, Wageningen University, Wageningen, The Netherlands
- The Graduate School for Experimental Plant Sciences, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
29
|
Marone D, Russo MA, Laidò G, De Leonardis AM, Mastrangelo AM. Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 2013; 14:7302-26. [PMID: 23549266 PMCID: PMC3645687 DOI: 10.3390/ijms14047302] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/21/2013] [Accepted: 03/26/2013] [Indexed: 11/16/2022] Open
Abstract
The most represented group of resistance genes are those of the nucleotide binding site-leucine-rich repeat (NBS-LRR) class. These genes are very numerous in the plant genome, and they often occur in clusters at specific loci following gene duplication and amplification events. To date, hundreds of resistance genes and relatively few quantitative trait loci for plant resistance to pathogens have been mapped in different species, with some also cloned. When these NBS-LRR genes have been physically or genetically mapped, many cases have shown co-localization between resistance loci and NBS-LRR genes. This has allowed the identification of candidate genes for resistance, and the development of molecular markers linked to R genes. This review is focused on recent genomics studies that have described the abundance, distribution and evolution of NBS-LRR genes in plant genomes. Furthermore, in terms of their expression, NBS-LRR genes are under fine regulation by cis- and trans-acting elements. Recent findings have provided insights into the roles of alternative splicing, the ubiquitin/ proteasome system, and miRNAs and secondary siRNAs in the regulation of NBS-LRR gene expression at the post-transcriptional, post-translational and epigenetic levels. The possibility to use this knowledge for genetic improvement of plant resistance to pathogens is discussed.
Collapse
Affiliation(s)
- Daniela Marone
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Agricultural Research Council-Cereal Research Centre (CRA-CER), SS 16 km 675, 71122 Foggia, Italy.
| | | | | | | | | |
Collapse
|
30
|
Yang L, Li D, Li Y, Gu X, Huang S, Garcia-Mas J, Weng Y. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC PLANT BIOLOGY 2013; 13:53. [PMID: 23531125 PMCID: PMC3626583 DOI: 10.1186/1471-2229-13-53] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 03/11/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. RESULTS From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. CONCLUSIONS Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon genome suggesting conservation of these RGHs in the Cucumis lineage. The 1,681-locus consensus genetic-physical map developed and the RGHs identified and characterized herein are valuable genomics resources that may have many applications such as quantitative trait loci identification, map-based gene cloning, association mapping, marker-assisted selection, as well as assembly of a more complete cucumber genome.
Collapse
Affiliation(s)
- Luming Yang
- Horticulture Department, University of Wisconsin, Madison, WI 53706, USA
| | - Dawei Li
- Horticulture Department, University of Wisconsin, Madison, WI 53706, USA
- Horticulture College, Northwest A&F University, Yangling, 712100, China
| | - Yuhong Li
- Horticulture Department, University of Wisconsin, Madison, WI 53706, USA
- Horticulture College, Northwest A&F University, Yangling, 712100, China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100018, China
| | - Sanwen Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100018, China
| | - Jordi Garcia-Mas
- IRTA, Center for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, 08193, Spain
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI 53706, USA
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
31
|
Sanz MJ, Loarce Y, Fominaya A, Vossen JH, Ferrer E. Identification of RFLP and NBS/PK profiling markers for disease resistance loci in genetic maps of oats. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:203-218. [PMID: 22948438 DOI: 10.1007/s00122-012-1974-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
Two of the domains most widely shared among R genes are the nucleotide binding site (NBS) and protein kinase (PK) domains. The present study describes and maps a number of new oat resistance gene analogues (RGAs) with two purposes in mind: (1) to identify genetic regions that contain R genes and (2) to determine whether RGAs can be used as molecular markers for qualitative loci and for QTLs affording resistance to Puccinia coronata. Such genes have been mapped in the diploid A. strigosa × A. wiestii (Asw map) and the hexaploid MN841801-1 × Noble-2 (MN map). Genomic and cDNA NBS-RGA probes from oat, barley and wheat were used to produce RFLPs and to obtain markers by motif-directed profiling based on the NBS (NBS profiling) and PK (PK profiling) domains. The efficiency of primers used in NBS/PK profiling to amplify RGA fragments was assessed by sequencing individual marker bands derived from genomic and cDNA fragments. The positions of 184 markers were identified in the Asw map, while those for 99 were identified in the MN map. Large numbers of NBS and PK profiling markers were found in clusters across different linkage groups, with the PK profiling markers more evenly distributed. The location of markers throughout the genetic maps and the composition of marker clusters indicate that NBS- and PK-based markers cover partly complementary regions of oat genomes. Markers of the different classes obtained were found associated with the two resistance loci, PcA and R-284B-2, mapped on Asw, and with five out of eight QTLs for partial resistance in the MN map. 53 RGA-RFLPs and 187 NBS/PK profiling markers were also mapped on the hexaploid map A. byzantina cv. Kanota × A. sativa cv. Ogle. Significant co-localization was seen between the RGA markers in the KO map and other markers closely linked to resistance loci, such as those for P. coronata and barley yellow dwarf virus (Bydv) that were previously mapped in other segregating populations.
Collapse
Affiliation(s)
- M J Sanz
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, Ctra. Madrid-Barcelona km 33,600, Alcalá de Henares, 28871 Madrid, Spain
| | | | | | | | | |
Collapse
|
32
|
Kang YJ, Kim KH, Shim S, Yoon MY, Sun S, Kim MY, Van K, Lee SH. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC PLANT BIOLOGY 2012; 12:139. [PMID: 22877146 PMCID: PMC3493331 DOI: 10.1186/1471-2229-12-139] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 08/03/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND R genes are a key component of genetic interactions between plants and biotrophic bacteria and are known to regulate resistance against bacterial invasion. The most common R proteins contain a nucleotide-binding site and a leucine-rich repeat (NBS-LRR) domain. Some NBS-LRR genes in the soybean genome have also been reported to function in disease resistance. In this study, the number of NBS-LRR genes was found to correlate with the number of disease resistance quantitative trait loci (QTL) that flank these genes in each chromosome. NBS-LRR genes co-localized with disease resistance QTL. The study also addressed the functional redundancy of disease resistance on recently duplicated regions that harbor NBS-LRR genes and NBS-LRR gene expression in the bacterial leaf pustule (BLP)-induced soybean transcriptome. RESULTS A total of 319 genes were determined to be putative NBS-LRR genes in the soybean genome. The number of NBS-LRR genes on each chromosome was highly correlated with the number of disease resistance QTL in the 2-Mb flanking regions of NBS-LRR genes. In addition, the recently duplicated regions contained duplicated NBS-LRR genes and duplicated disease resistance QTL, and possessed either an uneven or even number of NBS-LRR genes on each side. The significant difference in NBS-LRR gene expression between a resistant near-isogenic line (NIL) and a susceptible NIL after inoculation of Xanthomonas axonopodis pv. glycines supports the conjecture that NBS-LRR genes have disease resistance functions in the soybean genome. CONCLUSIONS The number of NBS-LRR genes and disease resistance QTL in the 2-Mb flanking regions of each chromosome was significantly correlated, and several recently duplicated regions that contain NBS-LRR genes harbored disease resistance QTL for both sides. In addition, NBS-LRR gene expression was significantly different between the BLP-resistant NIL and the BLP-susceptible NIL in response to bacterial infection. From these observations, NBS-LRR genes are suggested to contribute to disease resistance in soybean. Moreover, we propose models for how NBS-LRR genes were duplicated, and apply Ks values for each NBS-LRR gene cluster.
Collapse
Affiliation(s)
- Yang Jae Kang
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | - Kil Hyun Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | - Sangrea Shim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | - Min Young Yoon
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | - Suli Sun
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | - Moon Young Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | - Kyujung Van
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, South Korea
| |
Collapse
|
33
|
Liu Z, Gulya TJ, Seiler GJ, Vick BA, Jan CC. Molecular mapping of the Pl(16) downy mildew resistance gene from HA-R4 to facilitate marker-assisted selection in sunflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:121-31. [PMID: 22350177 DOI: 10.1007/s00122-012-1820-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/04/2012] [Indexed: 05/20/2023]
Abstract
The major genes controlling sunflower downy mildew resistance have been designated as Pl genes. Ten of the more than 20 Pl genes reported have been mapped. In this study, we report the molecular mapping of gene Pl(16) in a sunflower downy mildew differential line, HA-R4. It was mapped on the lower end of linkage group (LG) 1 of the sunflower reference map, with 12 markers covering a distance of 78.9 cM. One dominant simple sequence repeat (SSR) marker, ORS1008, co-segregated with Pl(16), and another co-dominant expressed sequence tag (EST)-SSR marker, HT636, was located 0.3 cM proximal to the Pl(16) gene. The HT636 marker was also closely linked to the Pl(13) gene in another sunflower differential line, HA-R5. Thus the Pl(16) and Pl(13) genes were mapped to a similar position on LG 1 that is different from the previously reported Pl(14) gene. When the co-segregating and tightly linked markers for the Pl(16) gene were applied to other germplasms or hybrids, a unique band pattern for the ORS1008 marker was detected in HA-R4 and HA-R5 and their F(1) hybrids. This is the first report to provide two tightly linked markers for both the Pl(16) and Pl(13) genes, which will facilitate marker-assisted selection in sunflower resistance breeding, and provide a basis for the cloning of these genes.
Collapse
Affiliation(s)
- Zhao Liu
- Department of plant sciences, North Dakota State University, Fargo, ND 58102, USA
| | | | | | | | | |
Collapse
|
34
|
Jupe F, Pritchard L, Etherington GJ, Mackenzie K, Cock PJA, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JDG, Hein I. Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 2012; 13:75. [PMID: 22336098 PMCID: PMC3297505 DOI: 10.1186/1471-2164-13-75] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/15/2012] [Indexed: 11/27/2022] Open
Abstract
Background The potato genome sequence derived from the Solanum tuberosum Group Phureja clone DM1-3 516 R44 provides unparalleled insight into the genome composition and organisation of this important crop. A key class of genes that comprises the vast majority of plant resistance (R) genes contains a nucleotide-binding and leucine-rich repeat domain, and is collectively known as NB-LRRs. Results As part of an effort to accelerate the process of functional R gene isolation, we performed an amino acid motif based search of the annotated potato genome and identified 438 NB-LRR type genes among the ~39,000 potato gene models. Of the predicted genes, 77 contain an N-terminal toll/interleukin 1 receptor (TIR)-like domain, and 107 of the remaining 361 non-TIR genes contain an N-terminal coiled-coil (CC) domain. Physical map positions were established for 370 predicted NB-LRR genes across all 12 potato chromosomes. The majority of NB-LRRs are physically organised within 63 identified clusters, of which 50 are homogeneous in that they contain NB-LRRs derived from a recent common ancestor. Conclusions By establishing the phylogenetic and positional relationship of potato NB-LRRs, our analysis offers significant insight into the evolution of potato R genes. Furthermore, the data provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from Solanum species.
Collapse
Affiliation(s)
- Florian Jupe
- Cell and Molecular Sciences, The James Hutton Institute (JHI), Dundee, DD2 5DA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jupe F, Pritchard L, Etherington GJ, Mackenzie K, Cock PJA, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JDG, Hein I. Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 2012. [PMID: 22336098 DOI: 10.1186/1471‐2164‐13‐75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The potato genome sequence derived from the Solanum tuberosum Group Phureja clone DM1-3 516 R44 provides unparalleled insight into the genome composition and organisation of this important crop. A key class of genes that comprises the vast majority of plant resistance (R) genes contains a nucleotide-binding and leucine-rich repeat domain, and is collectively known as NB-LRRs. RESULTS As part of an effort to accelerate the process of functional R gene isolation, we performed an amino acid motif based search of the annotated potato genome and identified 438 NB-LRR type genes among the ~39,000 potato gene models. Of the predicted genes, 77 contain an N-terminal toll/interleukin 1 receptor (TIR)-like domain, and 107 of the remaining 361 non-TIR genes contain an N-terminal coiled-coil (CC) domain. Physical map positions were established for 370 predicted NB-LRR genes across all 12 potato chromosomes. The majority of NB-LRRs are physically organised within 63 identified clusters, of which 50 are homogeneous in that they contain NB-LRRs derived from a recent common ancestor. CONCLUSIONS By establishing the phylogenetic and positional relationship of potato NB-LRRs, our analysis offers significant insight into the evolution of potato R genes. Furthermore, the data provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from Solanum species.
Collapse
Affiliation(s)
- Florian Jupe
- Cell and Molecular Sciences, The James Hutton Institute (JHI), Dundee, DD2 5DA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vleeshouwers VGAA, Finkers R, Budding D, Visser M, Jacobs MMJ, van Berloo R, Pel M, Champouret N, Bakker E, Krenek P, Rietman H, Huigen D, Hoekstra R, Goverse A, Vosman B, Jacobsen E, Visser RGF. SolRgene: an online database to explore disease resistance genes in tuber-bearing Solanum species. BMC PLANT BIOLOGY 2011; 11:116. [PMID: 21851635 PMCID: PMC3166922 DOI: 10.1186/1471-2229-11-116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/18/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND The cultivated potato (Solanum tuberosum L.) is an important food crop, but highly susceptible to many pathogens. The major threat to potato production is the Irish famine pathogen Phytophthora infestans, which causes the devastating late blight disease. Potato breeding makes use of germplasm from wild relatives (wild germplasm) to introduce resistances into cultivated potato. The Solanum section Petota comprises tuber-bearing species that are potential donors of new disease resistance genes. The aim of this study was to explore Solanum section Petota for resistance genes and generate a widely accessible resource that is useful for studying and implementing disease resistance in potato. DESCRIPTION The SolRgene database contains data on resistance to P. infestans and presence of R genes and R gene homologues in Solanum section Petota. We have explored Solanum section Petota for resistance to late blight in high throughput disease tests under various laboratory conditions and in field trials. From resistant wild germplasm, segregating populations were generated and assessed for the presence of resistance genes. All these data have been entered into the SolRgene database. To facilitate genetic and resistance gene evolution studies, phylogenetic data of the entire SolRgene collection are included, as well as a tool for generating phylogenetic trees of selected groups of germplasm. Data from resistance gene allele-mining studies are incorporated, which enables detection of R gene homologs in related germplasm. Using these resources, various resistance genes have been detected and some of these have been cloned, whereas others are in the cloning pipeline. All this information is stored in the online SolRgene database, which allows users to query resistance data, sequences, passport data of the accessions, and phylogenic classifications. CONCLUSION Solanum section Petota forms the basis of the SolRgene database, which contains a collection of resistance data of an unprecedented size and precision. Complemented with R gene sequence data and phylogenetic tools, SolRgene can be considered the primary resource for information on R genes from potato and wild tuber-bearing relatives.
Collapse
Affiliation(s)
- Vivianne GAA Vleeshouwers
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
| | - Richard Finkers
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
| | - Dirk Budding
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Marcel Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
| | - Mirjam MJ Jacobs
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
| | - Ralph van Berloo
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Mathieu Pel
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Nicolas Champouret
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Erin Bakker
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Pavel Krenek
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
- Centre of the Region Hana for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacky University, Slechtitelu 11, Olomouc, CZ-78371, Czech Republic
| | - Hendrik Rietman
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - DirkJan Huigen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Roel Hoekstra
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
- Centre for Genetic Resources, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Aska Goverse
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Ben Vosman
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
| | - Evert Jacobsen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard GF Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
| |
Collapse
|