1
|
Rotundo JL, Zinselmeier C, Hoffman N, Ferhatoglu C, Jobbagy E, Oliver P, Borras L. Breeding progress is a major contributor to improved regional maize water productivity. Sci Rep 2025; 15:13765. [PMID: 40258891 PMCID: PMC12012226 DOI: 10.1038/s41598-025-96534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 04/23/2025] Open
Abstract
Agricultural water productivity, defined as the amount of grain produced per unit of available water, is an important sustainability criterion in modern crop production. Although genetic progress in maize has increased crop yields, there are limited studies on the role of plant breeding on this sustainability metric. In the center of the US corn-belt, maize rainfed yields have more than tripled since 1950 while relying on the same amount of water inputs. Our analysis shows that this shift in grain production resulted in a water productivity increase of 0.191 kg ha-1 mm-1 year-1, corresponding to a relative rate of 4.2% year-1, and is the result of both higher biomass productivity and increased harvest index (i.e., the proportion of grain in total crop biomass). The comparison of 61 historical maize genotypes commercially released for farmers in the region since 1934, throughout 28 individual experiments conducted over a period of nine years in which the effects of genetic shifts were individualized, shows that the genetic component of this increase was 1.9% year-1, representing 45% of the total gain. This positions plant breeding as a major technological contributor in the generation of more water productive rainfed cropping systems, reducing the need for additional agricultural freshwater to meet increasing societal demands.
Collapse
Affiliation(s)
- Jose L Rotundo
- Corteva Agriscience, 8305 62nd Avenue, Johnston, IA, 50,131, USA
| | | | - Nick Hoffman
- Corteva Agriscience, 8305 62nd Avenue, Johnston, IA, 50,131, USA
| | - Caner Ferhatoglu
- Corteva Agriscience, 8305 62nd Avenue, Johnston, IA, 50,131, USA
| | - Esteban Jobbagy
- Grupo de Estudios Ambientales, IMASL, CONICET, Almirante Brown 907, D5700HHW, San Luis, Argentina
| | - Paige Oliver
- Corteva Agriscience, 8305 62nd Avenue, Johnston, IA, 50,131, USA
| | - Lucas Borras
- Corteva Agriscience, 8305 62nd Avenue, Johnston, IA, 50,131, USA.
| |
Collapse
|
2
|
Halpin-McCormick A, Campbell Q, Negrão S, Morrell PL, Hübner S, Neyhart JL, Kantar MB. Environmental genomic selection to leverage polygenic local adaptation in barley landraces. Commun Biol 2025; 8:618. [PMID: 40240546 PMCID: PMC12003830 DOI: 10.1038/s42003-025-08045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Climate change is threatening agricultural production across the globe. Germplasm collections provide an opportunity to explore where variation exists with important crop species. Genome environment association (GEA) is a standard approach for investigating the genetic basis of adaptation to natural environments. While these analyses provide insight into local adaptation, they have not been widely adopted in breeding or conservation programs. This may be attributable to the difficulty in identifying the best individuals for transplantation/relocation in conservation efforts or identification of the best parents in breeding programs. To explore the potential utility in future breeding programs, we used the cereal crop - barley (Hordeum vulgare L.) due to its wide adaptability to different environments and agroecologies, ranging from marginal and low input fields to high-productive farms. Here, we conduct environmental genomic selection (EGS) on 753 landrace barley accessions using a mini-core of 31 landrace accessions and a de-novo core of 100 as the training populations. Since local adaptation to the environment is polygenic, a whole-genome approach is likely to be more accurate for selection. Here we show how an integrative approach coupling environmental genomic selection and species distribution modelling can help identify key parents for adaptation to specific environmental variables.
Collapse
Affiliation(s)
- Anna Halpin-McCormick
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Quinn Campbell
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Sónia Negrão
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Sariel Hübner
- Department of Bioinformatics and Galilee Research Institute (MIGAL), Tel Hai Academic College, Upper Galilee, Israel
| | - Jeffrey L Neyhart
- USDA, Agricultural Research Service, Genetic Improvement for Fruits & Vegetables Laboratory, Chatsworth, NJ, USA.
| | - Michael B Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
3
|
Manntschke A, Hempel L, Temme A, Reumann M, Chen TW. Breeding in winter wheat ( Triticum aestivum L.) can be further progressed by targeting previously neglected competitive traits. FRONTIERS IN PLANT SCIENCE 2025; 16:1490483. [PMID: 40177013 PMCID: PMC11961425 DOI: 10.3389/fpls.2025.1490483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025]
Abstract
Breeders work to adapt winter wheat genotypes for high planting densities to pursue sustainable intensification and maximize canopy productivity. Although the effects of plant-plant competition at high planting density have been extensively reported, the quantitative relationship between competitiveness and plant performance remains unclear. In this study, we introduced a shoot competitiveness index (SCI) to quantify the competitiveness of genotypes and examined the dynamics of nine competitiveness-related traits in 200 winter wheat genotypes grown in heterogeneous canopies at two planting densities. Higher planting densities increased shoot length but reduced biomass, tiller numbers, and leaf mass per area (LMA), with trait plasticity showing at least 41% variation between genotypes. Surprisingly, genotypes with higher LMA at low density exhibited greater decreases under high density, challenging expectations from game theory. Regression analysis identified tiller number, LMA, and shoot length as key traits influencing performance under high density. Contrary to our hypothesis, early competitiveness did not guarantee sustained performance, revealing the dynamic nature of plant-plant competition. Our evaluation of breeding progress across the panel revealed a declining trend in SCI (R² = 0.61), aligning with the breeding objective of reducing plant height to reduce individual competitiveness and increase the plant-plant cooperation. The absence of historical trends in functional traits and their plasticities, such as tiller number and LMA, suggests their potential for designing ideal trait-plasticity for plant-plant cooperation and further crop improvement.
Collapse
Affiliation(s)
- Annette Manntschke
- Group of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Lina Hempel
- Group of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Andries Temme
- Group of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Marcin Reumann
- Group of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Tsu-Wei Chen
- Group of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Ali B, Mary‐Huard T, Charcosset A, Moreau L, Rincent R. Improvement in genomic prediction of maize with prior gene ontology information depends on traits and environmental conditions. THE PLANT GENOME 2025; 18:e20553. [PMID: 39779652 PMCID: PMC11711123 DOI: 10.1002/tpg2.20553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Classical genomic prediction approaches rely on statistical associations between traits and markers rather than their biological significance. Biologically informed selection of genomic regions can help prioritize polymorphisms by considering underlying biological processes, making prediction models robust and accurate. Gene ontology (GO) terms can be used for this purpose, and the information can be integrated into genomic prediction models through marker categorization. It allows likely causal markers to account for a certain portion of genetic variance independently from the remaining markers. We systematically tested a list of 5110 GO terms for their predictive performance for physiological (platform traits) and productivity traits (field grain yield) in a maize (Zea mays L.) panel using genomic features best linear unbiased prediction (GFBLUP) model. Predictive abilities were compared to the classical genomic best linear unbiased prediction (GBLUP). Predictive gains with categorizing markers based on a given GO term strongly depend on the trait and on the growth conditions, as a term can be useful for a given trait in a given condition or somewhat similar conditions but not useful for the same trait in a different condition. Overall, results of all GFBLUP models compared to GBLUP show that the former might be less efficient than the latter. Even though we could not identify a prior criterion to determine which GO terms can offer benefit to a given trait, we could a posteriori find biological interpretations of the results, meaning that GFBLUP could be helpful if more about the gene functions and their relationships with the growth conditions was known.
Collapse
Affiliation(s)
- Baber Ali
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Tristan Mary‐Huard
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- MIA Paris‐Saclay, INRAE, AgroParisTechUniversité Paris‐SaclayPalaiseauFrance
| | - Alain Charcosset
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Laurence Moreau
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Renaud Rincent
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| |
Collapse
|
5
|
Çakır E, Alsaleh A, Bektas H, Özkan H. Wild Emmer ( Triticum turgidum ssp. dicoccoides) Diversity in Southern Turkey: Evaluation of SSR and Morphological Variations. Life (Basel) 2025; 15:203. [PMID: 40003613 PMCID: PMC11856097 DOI: 10.3390/life15020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is the ancestral species of cultivated tetraploid wheat with BBAA genomes. Because of its full interfertility with domesticated emmer wheat, this wild species can serve as one of the most important genetic resources to improve durum and bread wheat. To clarify the magnitude of genetic diversity between and within populations of Turkish wild emmer wheat, 169 genotypes of ssp. dicoccoides selected from the 38 populations collected from the three sub-regions (East-1, West-1, and West-2) of the Southeast Anatolia Region of Turkey were molecularly and morphologically characterized. The populations showed significant variation in plant height, heading date, flag leaf area, spike length and number, spikelet, peduncle, lemma, palea, glume and anther lengths, glume hull thickness, anther width, and days to maturity. According to the results of nuclear-SSR analysis, the populations collected from the sub-regions East-1 and West-2 were the most genetically distant (0.539), while the populations collected from the sub-regions West-1 and West-2 were the most genetically similar (0.788) populations. According to the results of AMOVA, there was 84% similarity within the populations studied, while the variation between the populations of the three sub-regions was 16%. In the dendrogram obtained by using nuclear-SSR data, the populations formed two main groups. The populations from the sub-region East-1 were in the first group, and the populations from the sub-regions West-1 and West-2 were in the second group. From the dendrogram, it appears that the populations from the sub-region East-1 were genetically distant from the populations from the sub-regions West-1 and West-2. The results highlight the potential diversity in Southeast Anatolia for wild emmer discovery and utilization.
Collapse
Affiliation(s)
- Esra Çakır
- Department of Field Crops, Faculty of Agriculture, Çukurova University, 01330 Adana, Turkey
| | - Ahmad Alsaleh
- Department of Food and Agriculture, Institute of Hemp Research, Yozgat Bozok University, 66100 Yozgat, Turkey;
| | - Harun Bektas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Siirt University, 56100 Siirt, Turkey;
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, Çukurova University, 01330 Adana, Turkey
| |
Collapse
|
6
|
Ngumbi EN. Could flooding undermine progress in building climate-resilient crops? TRENDS IN PLANT SCIENCE 2025; 30:85-94. [PMID: 39168786 DOI: 10.1016/j.tplants.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Flooding threatens crop productivity, agricultural sustainability, and global food security. In this article I review the effects of flooding on plants and highlight three important gaps in our understanding: (i) effects of flooding on ecological interactions mediated by plants both below (changing root metabolites and exudates) and aboveground (changing plant quality and metabolites, and weakening the plant immune system), (ii) flooding impacts on soil health and microorganisms that underpin plant and ecosystems health, and (iii) the legacy impacts of flooding. Failure to address these overlooked aspects could derail and undermine the monumental progress made in building climate-resilient crops and soil-microbe-assisted plant resilience. Addressing the outlined knowledge gaps will enhance solutions developed to mitigate flooding and preserve gains made to date.
Collapse
Affiliation(s)
- Esther Ndumi Ngumbi
- Department of Entomology, University of Illinois Urbana Champaign, 417 Morrill Hall, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Nio SA, Mantilen Ludong DP, Siahaan R. Morphological Responses to Salinity Stress at the Germination Phase in Eight Rice ( Oryza sativa L.) Cultivars Cultivated in North Sulawesi, Indonesia. Pak J Biol Sci 2025; 28:70-77. [PMID: 39878329 DOI: 10.3923/pjbs.2025.70.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
<b>Background and Objective:</b> The biodiversity of rice cultivars, including local rice from North Sulawesi, represents a potential source of germplasm for fulfilling national food needs. A few publications related to the characteristics of salinity stress resistance in rice cultivars, including local rice from North Sulawesi. This study aimed to examine the morphological response to salinity stress at the germination phase in eight rice cultivars cultivated in North Sulawesi, Indonesia. <b>Materials and Methods:</b> The randomized block design experiment was conducted in the laboratory using eight rice cultivars (Superwin, Ombong, Temo, Burungan, Ciherang, Inpari 31, Inpago 10 and TB) using the Roll Paper Test method during the germination phase. The treatments in this experiment were salinity stress of 0, 10, 20 and 30% seawater for 14 days. The morphological characteristics evaluated as a response to salinity stress consisted of germination percentage, normal germination percentage, root length, shoot length and root-to-shoot ratio. To determine the significant differences and interactions between treatments (where, p<0.05), the data were analyzed using Analysis of Variance (ANOVA) followed by Least Significant Difference (LSD) 5%. <b>Results:</b> Salinity stress reduced germination rates, including overall and normal germination and shorter shoot and root lengths. However, this stress caused an increase in the root-to-shoot ratio. The Roll Paper Test with salinity treatment at the germination phase could be used as a simple selection method to obtain salinity-tolerant-rice cultivars. <b>Conclusion:</b> Shoot length and root-to-shoot ratio were potential morphological indicators for salinity tolerance in rice.
Collapse
|
8
|
Moritz A, Eckert A, Vukasovic S, Snowdon R, Stahl A. Physiological phenotyping of transpiration response to vapour pressure deficit in wheat. BMC PLANT BIOLOGY 2024; 24:1032. [PMID: 39478466 PMCID: PMC11523787 DOI: 10.1186/s12870-024-05692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Precision phenotyping of short-term transpiration response to environmental conditions and transpiration patterns throughout wheat development enables a better understanding of specific trait compositions that lead to improved transpiration efficiency. Transpiration and related traits were evaluated in a set of 79 winter wheat lines using the custom-built "DroughtSpotter XXL" facility. The 120 l plant growth containers implemented in this phenotyping platform enable gravimetric quantification of water use in real-time under semi-controlled, yet field-like conditions across the entire crop life cycle. RESULTS The resulting high-resolution data enabled identification of significant developmental stage-specific variation for genotype rankings in transpiration efficiency. In addition, for all examined genotypes we identified the genotype-specific breakpoint in transpiration in response to increasing vapour pressure deficit, with breakpoints ranging between 2.75 and 4.1 kPa. CONCLUSION Continuous monitoring of transpiration efficiency and diurnal transpiration patterns enables identification of hidden, heritable genotypic variation for transpiration traits relevant for wheat under drought stress. Since the unique experimental setup mimics field-like growth conditions, the results of this study have good transferability to field conditions.
Collapse
Affiliation(s)
- Anna Moritz
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany.
| | - Andreas Eckert
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Stjepan Vukasovic
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Rod Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| |
Collapse
|
9
|
Mullualem D, Tsega A, Mengie T, Fentie D, Kassa Z, Fassil A, Wondaferew D, Gelaw TA, Astatkie T. Genotype-by-environment interaction and stability analysis of grain yield of bread wheat ( Triticum aestivum L.) genotypes using AMMI and GGE biplot analyses. Heliyon 2024; 10:e32918. [PMID: 38988541 PMCID: PMC11234031 DOI: 10.1016/j.heliyon.2024.e32918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Bread wheat is a vital staple crop worldwide; including in Ethiopia, but its production is prone to various environmental constraints and yield reduction associated with adaptation. To identify adaptable genotypes, a total of 12 bread wheat genotypes (G1 to G12) were evaluated for their genotype-environment interaction (GEI) and stability across three different environments for two years using Additive Main Effect and Multiplicative Interaction (AMMI) and genotype main effect plus genotype-by-environment interaction (GGE) biplots analysis. GEI is a common phenomenon in crop improvement and is of significant importance in genotype assessment and recommendation. According to combined analysis of variance, grain yield was considerably impacted by environments, genotypes, and GEI. AMMI and GGE biplots analysis also provided insights into the performance and stability of the genotypes across diverse environmental conditions. Among the 12 genotypes, G6 was selected by AMMI biplot analysis as adaptive and high-yielding genotype; G5 and G7 demonstrated high stability and minimal interaction with the environment, as evidenced by their IPCA1 values. G7 was identified as the most stable and high-yielding genotype. The GGE biplot's polygon view revealed that the highest grain yield was obtained from G6 in environment three (E3). E3 was selected as the ideal environment by the GGE biplot. The top three stable genotypes identified by AMMI stability value (ASV) were G5, G7, and G10, while the most stable genotype determined by Genotype Selection Index (GSI) was G7. Even though G6 was a high yielder, it was found to be unstable according to ASV and ranked third in stability according to GSI. Based on the study's findings, the GGE biplot genotype view for grain yield identified Tay genotype (G6) to be the most ideal genotype due to its high grain yield and stability in diverse environments. G7 showed similar characteristics and was also stable. These findings provide valuable insights to breeders and researchers for selecting high-yielding and stable, as well as high-yielding specifically adapted genotypes.
Collapse
Affiliation(s)
- Destaw Mullualem
- Department of Biology, College of Natural and Computational Science, Injibara University, Injibara, Ethiopia
| | - Alemu Tsega
- Department of Biology, College of Natural and Computational Science, Injibara University, Injibara, Ethiopia
| | - Tesfaye Mengie
- Department of Biology, College of Natural and Computational Science, Injibara University, Injibara, Ethiopia
| | - Desalew Fentie
- Department of Plant Science, College of Agriculture, Food and Climate Science, Injibara University, 40, Injibara, Ethiopia
| | - Zelalem Kassa
- Department of Plant Science, College of Agriculture, Food and Climate Science, Injibara University, 40, Injibara, Ethiopia
| | - Amare Fassil
- Department of Biology, College of Natural and Computational Science, Injibara University, Injibara, Ethiopia
| | - Demekech Wondaferew
- Department of Plant Science, College of Agriculture, Food and Climate Science, Injibara University, 40, Injibara, Ethiopia
| | - Temesgen Assefa Gelaw
- Department of Biotechnology, College of Agriculture and Natural Resource Sciences, Debre Birhan University, Debre Birhan, Ethiopia
| | - Tessema Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
10
|
Corlouer E, Sauvage C, Leveugle M, Nesi N, Laperche A. Envirotyping within a multi-environment trial allowed identifying genetic determinants of winter oilseed rape yield stability. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:164. [PMID: 38898332 PMCID: PMC11186914 DOI: 10.1007/s00122-024-04664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
KEY MESSAGE A comprehensive environmental characterization allowed identifying stable and interactive QTL for seed yield: QA09 and QC09a were detected across environments; whereas QA07a was specifically detected on the most stressed environments. A main challenge for rapeseed consists in maintaining seed yield while adapting to climate changes and contributing to environmental-friendly cropping systems. Breeding for cultivar adaptation is one of the keys to meet this challenge. Therefore, we propose to identify the genetic determinant of seed yield stability for winter oilseed rape using GWAS coupled with a multi-environmental trial and to interpret them in the light of environmental characteristics. Due to a comprehensive characterization of a multi-environmental trial using 79 indicators, four contrasting envirotypes were defined and used to identify interactive and stable seed yield QTL. A total of four QTLs were detected, among which, QA09 and QC09a, were stable (detected at the multi-environmental trial scale or for different envirotypes and environments); and one, QA07a, was specifically detected into the most stressed envirotype. The analysis of the molecular diversity at QA07a showed a lack of genetic diversity within modern lines compared to older cultivars bred before the selection for low glucosinolate content. The results were discussed in comparison with other studies and methods as well as in the context of breeding programs.
Collapse
Affiliation(s)
- Erwan Corlouer
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650, Le Rheu, France
| | | | | | - Nathalie Nesi
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650, Le Rheu, France
| | - Anne Laperche
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650, Le Rheu, France.
| |
Collapse
|
11
|
Komura S, Yoshida K, Jinno H, Oono Y, Handa H, Takumi S, Kobayashi F. Identification of the causal mutation in early heading mutant of bread wheat ( Triticum aestivum L.) using MutMap approach. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:41. [PMID: 38779634 PMCID: PMC11106051 DOI: 10.1007/s11032-024-01478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
In bread wheat (Triticum aestivum L.), fine-tuning the heading time is essential to maximize grain yield. Photoperiod-1 (Ppd-1) and VERNALIZATION 1 (Vrn-1) are major genes affecting photoperiod sensitivity and vernalization requirements, respectively. These genes have predominantly governed heading timing. However, Ppd-1 and Vrn-1 significantly impact heading dates, necessitating another gene that can slightly modify heading dates for fine-tuning. In this study, we developed an early heading mutant from the ethyl methanesulfonate-mutagenized population of the Japanese winter wheat cultivar "Kitahonami." MutMap analysis identified a nonsense mutation in the clock component gene Wheat PHYTOCLOCK 1/LUX ARRHYTHMO (WPCL-D1) as the probable SNP responsible for the early heading mutant on chromosome 3D. Segregation analysis using F2 and F3 populations confirmed that plants carrying the wpcl-D1 allele headed significantly earlier than those with the functional WPCL-D1. The early heading mutant exhibited increased expression levels of Ppd-1 and circadian clock genes, such as WPCL1 and LATE ELONGATED HYPOCOTYL (LHY). Notably, the transcript accumulation levels of Ppd-A1 and Ppd-D1 were influenced by the copy number of the functional WPCL1 gene. These results suggest that a loss-of-function mutation in WPCL-D1 is the causal mutation for the early heading phenotype. Adjusting the functional copy number of WPCL1 will be beneficial in fine-tuning of heading dates. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01478-5.
Collapse
Affiliation(s)
- Shoya Komura
- Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Kentaro Yoshida
- Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Hironobu Jinno
- Hokkaido Research Organization, Kitami Agricultural Experiment Station, Yayoi 52, Kunneppucho, Tokorogun, Hokkaido, 099-1496 Japan
| | - Youko Oono
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, 305-0856 Japan
| | - Hirokazu Handa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, 305-0856 Japan
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501 Japan
| | - Fuminori Kobayashi
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, 305-0856 Japan
| |
Collapse
|
12
|
Chen KY, Kachhadiya J, Muhtasim S, Cai S, Huang J, Andrews J. Underground Ink: Printed Electronics Enabling Electrochemical Sensing in Soil. MICROMACHINES 2024; 15:625. [PMID: 38793198 PMCID: PMC11123188 DOI: 10.3390/mi15050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Improving agricultural production relies on the decisions and actions of farmers and land managers, highlighting the importance of efficient soil monitoring techniques for better resource management and reduced environmental impacts. Despite considerable advancements in soil sensors, their traditional bulky counterparts cause difficulty in widespread adoption and large-scale deployment. Printed electronics emerge as a promising technology, offering flexibility in device design, cost-effectiveness for mass production, and a compact footprint suitable for versatile deployment platforms. This review overviews how printed sensors are used in monitoring soil parameters through electrochemical sensing mechanisms, enabling direct measurement of nutrients, moisture content, pH value, and others. Notably, printed sensors address scalability and cost concerns in fabrication, making them suitable for deployment across large crop fields. Additionally, seamlessly integrating printed sensors with printed antenna units or traditional integrated circuits can facilitate comprehensive functionality for real-time data collection and communication. This real-time information empowers informed decision-making, optimizes resource management, and enhances crop yield. This review aims to provide a comprehensive overview of recent work related to printed electrochemical soil sensors, ultimately providing insight into future research directions that can enable widespread adoption of precision agriculture technologies.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
| | - Jeneel Kachhadiya
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
| | - Sharar Muhtasim
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
| | - Shuohao Cai
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.C.); (J.H.)
| | - Jingyi Huang
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.C.); (J.H.)
| | - Joseph Andrews
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Li J, Liu X, Chang S, Chu W, Lin J, Zhou H, Hu Z, Zhang M, Xin M, Yao Y, Guo W, Xie X, Peng H, Ni Z, Sun Q, Long Y, Hu Z. The potassium transporter TaNHX2 interacts with TaGAD1 to promote drought tolerance via modulating stomatal aperture in wheat. SCIENCE ADVANCES 2024; 10:eadk4027. [PMID: 38608020 PMCID: PMC11014451 DOI: 10.1126/sciadv.adk4027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Drought is a major global challenge in agriculture that decreases crop production. γ-Aminobutyric acid (GABA) interfaces with drought stress in plants; however, a mechanistic understanding of the interaction between GABA accumulation and drought response remains to be established. Here we showed the potassium/proton exchanger TaNHX2 functions as a positive regulator in drought resistance in wheat by mediating cross-talk between the stomatal aperture and GABA accumulation. TaNHX2 interacted with glutamate decarboxylase TaGAD1, a key enzyme that synthesizes GABA from glutamate. Furthermore, TaNHX2 targeted the C-terminal auto-inhibitory domain of TaGAD1, enhanced its activity, and promoted GABA accumulation under drought stress. Consistent with this, the tanhx2 and tagad1 mutants showed reduced drought tolerance, and transgenic wheat with enhanced TaNHX2 expression had a yield advantage under water deficit without growth penalty. These results shed light on the plant stomatal movement mechanism under drought stress and the TaNHX2-TaGAD1 module may be harnessed for amelioration of negative environmental effects in wheat as well as other crops.
Collapse
Affiliation(s)
- Jinpeng Li
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Xingbei Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Shumin Chang
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Wei Chu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Jingchen Lin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Hui Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhuoran Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Mancang Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Xiaodong Xie
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Yu Long
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
14
|
Rajendran S, Kang YM, Yang IB, Eo HB, Baek KL, Jang S, Eybishitz A, Kim HC, Je BI, Park SJ, Kim CM. Functional characterization of plant specific Indeterminate Domain (IDD) transcription factors in tomato (Solanum lycopersicum L.). Sci Rep 2024; 14:8015. [PMID: 38580719 PMCID: PMC10997639 DOI: 10.1038/s41598-024-58903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/04/2024] [Indexed: 04/07/2024] Open
Abstract
Plant-specific transcription factors (TFs) are responsible for regulating the genes involved in the development of plant-specific organs and response systems for adaptation to terrestrial environments. This includes the development of efficient water transport systems, efficient reproductive organs, and the ability to withstand the effects of terrestrial factors, such as UV radiation, temperature fluctuations, and soil-related stress factors, and evolutionary advantages over land predators. In rice and Arabidopsis, INDETERMINATE DOMAIN (IDD) TFs are plant-specific TFs with crucial functions, such as development, reproduction, and stress response. However, in tomatoes, IDD TFs remain uncharacterized. Here, we examined the presence, distribution, structure, characteristics, and expression patterns of SlIDDs. Database searches, multiple alignments, and motif alignments suggested that 24 TFs were related to Arabidopsis IDDs. 18 IDDs had two characteristic C2H2 domains and two C2HC domains in their coding regions. Expression analyses suggest that some IDDs exhibit multi-stress responsive properties and can respond to specific stress conditions, while others can respond to multiple stress conditions in shoots and roots, either in a tissue-specific or universal manner. Moreover, co-expression database analyses suggested potential interaction partners within IDD family and other proteins. This study functionally characterized SlIDDs, which can be studied using molecular and bioinformatics methods for crop improvement.
Collapse
Affiliation(s)
- Sujeevan Rajendran
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Yu Mi Kang
- Department of Horticultural and Life Science, Pusan National University, Milyang, 50463, Korea
| | - In Been Yang
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hye Bhin Eo
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Kyung Lyung Baek
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Seonghoe Jang
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Assaf Eybishitz
- World Vegetable Center, P.O. Box 42, Tainan, 74199, Shanhua, Taiwan
| | - Ho Cheol Kim
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Byeong Il Je
- Department of Horticultural and Life Science, Pusan National University, Milyang, 50463, Korea
| | - Soon Ju Park
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Chul Min Kim
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
15
|
Janni M, Maestri E, Gullì M, Marmiroli M, Marmiroli N. Plant responses to climate change, how global warming may impact on food security: a critical review. FRONTIERS IN PLANT SCIENCE 2024; 14:1297569. [PMID: 38250438 PMCID: PMC10796516 DOI: 10.3389/fpls.2023.1297569] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Global agricultural production must double by 2050 to meet the demands of an increasing world human population but this challenge is further exacerbated by climate change. Environmental stress, heat, and drought are key drivers in food security and strongly impacts on crop productivity. Moreover, global warming is threatening the survival of many species including those which we rely on for food production, forcing migration of cultivation areas with further impoverishing of the environment and of the genetic variability of crop species with fall out effects on food security. This review considers the relationship of climatic changes and their bearing on sustainability of natural and agricultural ecosystems, as well as the role of omics-technologies, genomics, proteomics, metabolomics, phenomics and ionomics. The use of resource saving technologies such as precision agriculture and new fertilization technologies are discussed with a focus on their use in breeding plants with higher tolerance and adaptability and as mitigation tools for global warming and climate changes. Nevertheless, plants are exposed to multiple stresses. This study lays the basis for the proposition of a novel research paradigm which is referred to a holistic approach and that went beyond the exclusive concept of crop yield, but that included sustainability, socio-economic impacts of production, commercialization, and agroecosystem management.
Collapse
Affiliation(s)
- Michela Janni
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Bari, Italy
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Nelson Marmiroli
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA) Interuniversity Consortium for Environmental Sciences, Parma/Venice, Italy
| |
Collapse
|
16
|
Haq SAU, Bashir T, Roberts TH, Husaini AM. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches. Mol Biol Rep 2023; 51:41. [PMID: 38158512 DOI: 10.1007/s11033-023-09042-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/13/2023] [Indexed: 01/03/2024]
Abstract
While global climate change poses a significant environmental threat to agriculture, the increasing population is another big challenge to food security. To address this, developing crop varieties with increased productivity and tolerance to biotic and abiotic stresses is crucial. Breeders must identify traits to ensure higher and consistent yields under inconsistent environmental challenges, possess resilience against emerging biotic and abiotic stresses and satisfy customer demands for safer and more nutritious meals. With the advent of omics-based technologies, molecular tools are now integrated with breeding to understand the molecular genetics of genotype-based traits and develop better climate-smart crops. The rapid development of omics technologies offers an opportunity to generate novel datasets for crop species. Identifying genes and pathways responsible for significant agronomic traits has been made possible by integrating omics data with genetic and phenotypic information. This paper discusses the importance and use of omics-based strategies, including genomics, transcriptomics, proteomics and phenomics, for agricultural and horticultural crop improvement, which aligns with developing better adaptability in these crop species to the changing climate conditions.
Collapse
Affiliation(s)
- Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Thomas H Roberts
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Eveleigh, Australia
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
17
|
Pixley KV, Cairns JE, Lopez-Ridaura S, Ojiewo CO, Dawud MA, Drabo I, Mindaye T, Nebie B, Asea G, Das B, Daudi H, Desmae H, Batieno BJ, Boukar O, Mukankusi CTM, Nkalubo ST, Hearne SJ, Dhugga KS, Gandhi H, Snapp S, Zepeda-Villarreal EA. Redesigning crop varieties to win the race between climate change and food security. MOLECULAR PLANT 2023; 16:1590-1611. [PMID: 37674314 DOI: 10.1016/j.molp.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/17/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Climate change poses daunting challenges to agricultural production and food security. Rising temperatures, shifting weather patterns, and more frequent extreme events have already demonstrated their effects on local, regional, and global agricultural systems. Crop varieties that withstand climate-related stresses and are suitable for cultivation in innovative cropping systems will be crucial to maximize risk avoidance, productivity, and profitability under climate-changed environments. We surveyed 588 expert stakeholders to predict current and novel traits that may be essential for future pearl millet, sorghum, maize, groundnut, cowpea, and common bean varieties, particularly in sub-Saharan Africa. We then review the current progress and prospects for breeding three prioritized future-essential traits for each of these crops. Experts predict that most current breeding priorities will remain important, but that rates of genetic gain must increase to keep pace with climate challenges and consumer demands. Importantly, the predicted future-essential traits include innovative breeding targets that must also be prioritized; for example, (1) optimized rhizosphere microbiome, with benefits for P, N, and water use efficiency, (2) optimized performance across or in specific cropping systems, (3) lower nighttime respiration, (4) improved stover quality, and (5) increased early vigor. We further discuss cutting-edge tools and approaches to discover, validate, and incorporate novel genetic diversity from exotic germplasm into breeding populations with unprecedented precision, accuracy, and speed. We conclude that the greatest challenge to developing crop varieties to win the race between climate change and food security might be our innovativeness in defining and boldness to breed for the traits of tomorrow.
Collapse
Affiliation(s)
- Kevin V Pixley
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
| | - Jill E Cairns
- International Maize and Wheat Improvement Center (CIMMYT), Harare, Zimbabwe
| | | | - Chris O Ojiewo
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | | | - Inoussa Drabo
- International Maize and Wheat Improvement Center (CIMMYT), Dakar, Senegal
| | - Taye Mindaye
- Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Baloua Nebie
- International Maize and Wheat Improvement Center (CIMMYT), Dakar, Senegal
| | - Godfrey Asea
- National Agricultural Research Organization (NARO), Kampala, Uganda
| | - Biswanath Das
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Happy Daudi
- Tanzania Agricultural Research Institute (TARI), Naliendele, Tanzania
| | - Haile Desmae
- International Maize and Wheat Improvement Center (CIMMYT), Dakar, Senegal
| | - Benoit Joseph Batieno
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Ousmane Boukar
- International Institute of Tropicl Agriculture (IITA), Kano, Nigeria
| | | | | | - Sarah J Hearne
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Kanwarpal S Dhugga
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Harish Gandhi
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Sieglinde Snapp
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | |
Collapse
|
18
|
Yactayo-Chang JP, Block AK. The impact of climate change on maize chemical defenses. Biochem J 2023; 480:1285-1298. [PMID: 37622733 DOI: 10.1042/bcj20220444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Climate change is increasingly affecting agriculture, both at the levels of crops themselves, and by altering the distribution and damage caused by insect or microbial pests. As global food security depends on the reliable production of major crops such as maize (Zea mays), it is vital that appropriate steps are taken to mitigate these negative impacts. To do this a clear understanding of what the impacts are and how they occur is needed. This review focuses on the impact of climate change on the production and effectiveness of maize chemical defenses, including volatile organic compounds, terpenoid phytoalexins, benzoxazinoids, phenolics, and flavonoids. Drought, flooding, heat stress, and elevated concentrations of atmospheric carbon dioxide, all impact the production of maize chemical defenses, in a compound and tissue-specific manner. Furthermore, changes in stomatal conductance and altered soil conditions caused by climate change can impact environmental dispersal and effectiveness certain chemicals. This can alter both defensive barrier formation and multitrophic interactions. The production of defense chemicals is controlled by stress signaling networks. The use of similar networks to co-ordinate the response to abiotic and biotic stress can lead to complex integration of these networks in response to the combinatorial stresses that are likely to occur in a changing climate. The impact of multiple stressors on maize chemical defenses can therefore be different from the sum of the responses to individual stressors and challenging to predict. Much work remains to effectively leverage these protective chemicals in climate-resilient maize.
Collapse
Affiliation(s)
- Jessica P Yactayo-Chang
- United States Department of Agriculture-Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, U.S.A
| | - Anna K Block
- United States Department of Agriculture-Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, U.S.A
| |
Collapse
|
19
|
Riedesel L, Möller M, Horney P, Golla B, Piepho HP, Kautz T, Feike T. Timing and intensity of heat and drought stress determine wheat yield losses in Germany. PLoS One 2023; 18:e0288202. [PMID: 37490483 PMCID: PMC10368287 DOI: 10.1371/journal.pone.0288202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Crop yields are increasingly affected by climate change-induced weather extremes in Germany. However, there is still little knowledge of the specific crop-climate relations and respective heat and drought stress-induced yield losses. Therefore, we configure weather indices (WIs) that differ in the timing and intensity of heat and drought stress in wheat (Triticum aestivum L.). We construct these WIs using gridded weather and phenology time series data from 1995 to 2019 and aggregate them with Germany-wide municipality level on-farm wheat yield data. We statistically analyze the WI's explanatory power and region-specific effect size for wheat yield using linear mixed models. We found the highest explanatory power during the stem elongation and booting phase under moderate drought stress and during the reproductive phase under moderate heat stress. Furthermore, we observed the highest average yield losses due to moderate and extreme heat stress during the reproductive phase. The highest heat and drought stress-induced yield losses were observed in Brandenburg, Saxony-Anhalt, and northern Bavaria, while similar heat and drought stresses cause much lower yield losses in other regions of Germany.
Collapse
Affiliation(s)
- Ludwig Riedesel
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Strategies and Technology Assessment, Kleinmachnow, Germany
| | - Markus Möller
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Braunschweig, Germany
| | - Peter Horney
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Strategies and Technology Assessment, Kleinmachnow, Germany
| | - Burkhard Golla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Strategies and Technology Assessment, Kleinmachnow, Germany
| | - Hans-Peter Piepho
- Institute of Crop Science, Biostatistics Unit, University of Hohenheim, Stuttgart, Germany
| | - Timo Kautz
- Humboldt University of Berlin, Thaer-Institute of Agricultural and Horticultural Sciences, Berlin, Germany
| | - Til Feike
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Strategies and Technology Assessment, Kleinmachnow, Germany
| |
Collapse
|
20
|
Kalamartzis I, Papakaloudis P, Dordas C. Basil ( Ocimum basilicum) Landraces Can Be Used in a Water-Limited Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2425. [PMID: 37446986 DOI: 10.3390/plants12132425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Basil (Ocimum basilicum L.) is a member of the Labiatae family and is one of the most widely consumed aromatic and medicinal plants in many countries due to its numerous properties and uses. The objective of the study was to determine whether landraces are better adapted to water-limited environments compared to commercial cultivars. Irrigation levels and genotypes affected plant height and leaf area index, with 25% and 33% higher values observed under complete irrigation, respectively. Additionally, limited water availability resulted in a 20% reduction in dry matter yield and a 21% reduction in essential oil yield over the three years in all of the genotypes tested, specifically in the lower irrigation treatment (d40), compared to the control treatment (d100). The landraces that performed the best under limited water supply were Athos white spike (AWS) and Gigas white spike (GWS), indicating their suitability for environments with limited water resources. The results demonstrate that there are landraces that can be utilized in dryland climates with appropriate water management, enabling water conservation and utilization of fields in water-scarce areas for irrigation purposes.
Collapse
Affiliation(s)
- Iakovos Kalamartzis
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Papakaloudis
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Dordas
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
21
|
Yu H, Yang F, Hu C, Yang X, Zheng A, Wang Y, Tang Y, He Y, Lv M. Production status and research advancement on root rot disease of faba bean ( Vicia faba L.) in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1165658. [PMID: 37332732 PMCID: PMC10272738 DOI: 10.3389/fpls.2023.1165658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/03/2023] [Indexed: 06/20/2023]
Abstract
China is the largest producer of faba bean with a total harvested area of 8.11×105 ha and a total production of 1.69 ×106 tons (dry beans) in 2020, accounting for 30% of the world production. Faba bean is grown in China for both fresh pods and dry seed. East China cultivates large seed cultivars for food processing and fresh vegetables, while northwestern and southwestern China grow cultivars for dry seeds, with an increased production of fresh green pods. Most of the faba bean is consumed domestically, with limited exports. The absence of unified quality control measures and simple traditional cultivation practices contributes to the lower competitiveness of the faba bean industry in international markets. Recently, new cultivation methods have emerged with improved weed control, as well as better water and drainage management, resulting in higher quality and income for producers. Root rot disease in faba bean is caused by multiple pathogens, including Fusarium spp., Rhizoctonia spp., and Pythium spp. Fusarium spp. is the most prevalent species causing root rot in faba bean crops and is responsible for severe yield loss, with different species causing the disease in different regions in China. The yield loss ranges from 5% to 30%, up to 100% in severely infected fields. The management of faba bean root rot disease in China involves a combination of physical, chemical, and bio-control methods, including intercropping with non-host crops, applying rational nitrogen, and treating seeds with chemical or bio-seed treatments. However, the effectiveness of these methods is limited due to the high cost, the broad host range of the pathogens, and potential negative impacts on the environment and non-targeted soil organisms. Intercropping is the most widely utilized and economically friendly control method to date. This review provides an overview of the current status of faba bean production in China, the challenges faced by the industry due to root rot disease, and the progress in identifying and managing this disease. This information is critical for developing integrated management strategies to effectively control root rot in faba bean cultivation and facilitating the high-quality development of the faba bean industry.
Collapse
Affiliation(s)
- Haitian Yu
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming, Yunnan, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Feng Yang
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming, Yunnan, China
| | - Chaoqin Hu
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming, Yunnan, China
| | - Xin Yang
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming, Yunnan, China
| | - Aiqing Zheng
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming, Yunnan, China
| | - Yubao Wang
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming, Yunnan, China
| | - Yongsheng Tang
- Qujing Academy of Agricultural Sciences, Qujing, Yunnan, China
| | - Yuhua He
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming, Yunnan, China
| | - Meiyuan Lv
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming, Yunnan, China
| |
Collapse
|
22
|
Abelenda JA, Trabanco N, Del Olmo I, Pozas J, Martín-Trillo MDM, Gómez-Garrido J, Esteve-Codina A, Pernas M, Jarillo JA, Piñeiro M. High ambient temperature impacts on flowering time in Brassica napus through both H2A.Z-dependent and independent mechanisms. PLANT, CELL & ENVIRONMENT 2023; 46:1427-1441. [PMID: 36575647 DOI: 10.1111/pce.14526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Knowledge concerning the integration of genetic pathways mediating the responses to environmental cues controlling flowering initiation in crops is scarce. Here, we reveal the diversity in oilseed rape (OSR) flowering response to high ambient temperature. Using a set of different spring OSR varieties, we found a consistent flowering delay at elevated temperatures. Remarkably, one of the varieties assayed exhibited the opposite behaviour. Several FT-like paralogs are plausible candidates to be part of the florigen in OSR. We revealed that BnaFTA2 plays a major role in temperature-dependent flowering initiation. Analysis of the H2A.Z histone variant occupancy at this locus in different Brassica napus varieties produced contrasting results, suggesting the involvement of additional molecular mechanisms in BnaFTA2 repression at high ambient temperature. Moreover, BnARP6 RNAi plants showed little accumulation of H2A.Z at high temperature while maintaining temperature sensitivity and delayed flowering. Furthermore, we found that H3K4me3 present in BnaFTA2 under inductive flowering conditions is reduced at high temperature, suggesting a role for this hallmark of transcriptionally active chromatin in the OSR flowering response to warming. Our work emphasises the plasticity of flowering responses in B. napus and offers venues to optimise this process in crop species grown under suboptimal environmental conditions.
Collapse
Affiliation(s)
- José A Abelenda
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - Noemí Trabanco
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - Iván Del Olmo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - Jenifer Pozas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - María Del Mar Martín-Trillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
- Dpto. de CC. Ambientales-Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Jessica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Mónica Pernas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| |
Collapse
|
23
|
Nagdalian AA, Blinov AV, Siddiqui SA, Gvozdenko AA, Golik AB, Maglakelidze DG, Rzhepakovsky IV, Kukharuk MY, Piskov SI, Rebezov MB, Shah MA. Effect of selenium nanoparticles on biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.). Sci Rep 2023; 13:6453. [PMID: 37081125 PMCID: PMC10119286 DOI: 10.1038/s41598-023-33581-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
The purpose of this work was to study the effect of selenium nanoparticles (Se NPs) on the biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.) We used seeds of Hordéum vulgáre L. with reduced morphofunctional characteristics. For the experiment, Se NPs were synthesized and stabilized with didecyldimethylammonium chloride. It was found that Se NPs have a spherical shape and a diameter of about 50 nm. According to dynamic light scattering data, the average hydrodynamic radius of the particles was 28 ± 8 nm. It is observed that the nanoparticles have a positive ζ-potential (+ 27.3 mV). For the experiment, we treated Hordéum vulgáre L. seeds with Se NPs (1, 5, 10 and 20 mg/L). The experiment showed that treatment of Hordéum vulgáre L. seeds with Se NPs has the best effect on the length of roots and sprout at concentration of 5 mg/L and on the number and thickness of roots at 10 mg/L. Germinability and germination energy of Hordéum vulgáre L. seeds were higher in group treated with 5 mg/L Se NPs. Analysis of macrophotographs of samples, histological sections of roots and 3D visualization of seeds by microcomputing tomography confirmed the best effect at 5 mg/L Se NPs. Moreover, no local destructions were detected at concentrations > 5 mg/L, which is most likely due to the inhibition of regulatory and catalytic processes in the germinating seeds. the treatment of Hordéum vulgáre L. seeds with > 5 mg/L Se NPs caused significant stress, coupled with intensive formation of reactive oxygen species, leading to a reorientation of root system growth towards thickening. Based on the results obtained, it was concluded that Se NPs at concentrations > 5 mg/L had a toxic effect. The treatment of barley seeds with 5% Se NPs showed maximum efficiency in the experiment, which allows us to further consider Se NPs as a stimulator for the growth and development of crop seeds under stress and reduced morphofunctional characteristics.
Collapse
Affiliation(s)
| | | | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.v.), Prof.-Von-Klitzing-Straße 7, 49610, Quakenbrück, Germany
| | | | | | | | | | | | | | - Maksim Borisovich Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Mohd Asif Shah
- Department of Economics, Kabridahar University, Kabridahar, Post Box 250, Somali, Ethiopia.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India.
- School of Business, Woxsen University, Hyderabad, Telangana, 502345, India.
| |
Collapse
|
24
|
Ahmadi N, Barry MB, Frouin J, de Navascués M, Toure MA. Genome Scan of Rice Landrace Populations Collected Across Time Revealed Climate Changes' Selective Footprints in the Genes Network Regulating Flowering Time. RICE (NEW YORK, N.Y.) 2023; 16:15. [PMID: 36947285 PMCID: PMC10033818 DOI: 10.1186/s12284-023-00633-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Analyses of the genetic bases of plant adaptation to climate changes, using genome-scan approaches, are often conducted on natural populations, under hypothesis of out-crossing reproductive regime. We report here on a study based on diachronic sampling (1980 and 2011) of the autogamous crop species, Oryza sativa and Oryza glaberrima, in the tropical forest and the Sudanian savannah of West Africa. First, using historical meteorological data we confirmed changes in temperatures (+ 1 °C on average) and rainfall regime (less predictable and reduced amount) in the target areas. Second, phenotyping the populations for phenology, we observed significantly earlier heading time in the 2010 samples. Third, implementing two genome-scan methods (one of which specially developed for selfing species) on genotyping by sequencing genotypic data of the two populations, we detected 31 independent selection footprints. Gene ontology analysis detected significant enrichment of these selection footprints in genes involved in reproductive processes. Some of them bore known heading time QTLs and genes, including OsGI, Hd1 and OsphyB. This rapid adaptive evolution, originated from subtle changes in the standing variation in genetic network regulating heading time, did not translate into predominance of multilocus genotypes, as it is often the case in selfing plants, and into notable selective sweeps. The high adaptive potential observed results from the multiline genetic structure of the rice landraces, and the rather large and imbricated genetic diversity of the rice meta-population at the farm, the village and the region levels, that hosted the adaptive variants in multiple genetic backgrounds before the advent of the environmental selective pressure. Our results illustrate the evolution of in situ diversity through processes of human and natural selection, and provide a model for rice breeding and cultivars deployment strategies aiming resilience to climate changes. It also calls for further development of population genetic models for adaptation of plant populations to environmental changes. To our best knowledge, this is the first study dealing with climate-changes' selective footprint in crops.
Collapse
Affiliation(s)
- Nourollah Ahmadi
- UMR AGAP, CIRAD, TA-A 108/03, Avenue Agropolis, 34398, Montpellier Cedex 5, France.
- AGAP, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| | | | - Julien Frouin
- UMR AGAP, CIRAD, TA-A 108/03, Avenue Agropolis, 34398, Montpellier Cedex 5, France
- AGAP, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Miguel de Navascués
- CBGP, CIRAD, INRAE, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | |
Collapse
|
25
|
Krause M, Sørensen JC, Petersen IL, Duque-Estrada P, Cappello C, Tlais AZA, Di Cagno R, Ispiryan L, Sahin AW, Arendt EK, Zannini E. Associating Compositional, Nutritional and Techno-Functional Characteristics of Faba Bean ( Vicia faba L.) Protein Isolates and Their Production Side-Streams with Potential Food Applications. Foods 2023; 12:919. [PMID: 36900436 PMCID: PMC10001187 DOI: 10.3390/foods12050919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Faba beans (Vicia faba L.) show exciting prospects as a sustainable source of protein and fibre, with the potential to transition to a more sustainable food production. This study reveals the compositional, nutritional and techno-functional characteristics of two protein isolates from faba beans (Vicia faba L.), a high-starch fraction and a high-fibre side-stream. During the analysis of those four ingredients, particular attention was paid to the isolates' protein profile and the side-streams' carbohydrate composition. The isoelectric precipitated protein isolate 1 showed a protein content of 72.64 ± 0.31% DM. It exhibited low solubility but superior digestibility and high foam stability. High foaming capacity and low protein digestibility were observed for protein isolate 2, with a protein content of 71.37 ± 0.93% DM. This fraction was highly soluble and consisted primarily of low molecular weight proteins. The high-starch fraction contained 83.87 ± 3.07% DM starch, of which about 66% was resistant starch. Over 65% of the high-fibre fraction was insoluble dietary fibre. The findings of this study provide a detailed understanding of different production fractions of faba beans, which is of great value for future product development.
Collapse
Affiliation(s)
- Magdalena Krause
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland
| | | | - Iben Lykke Petersen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | | | - Claudia Cappello
- Facoltà di Scienze e Tecnologie, Piazza Università 5, 39100 Bolzano, Italy
| | | | - Raffaella Di Cagno
- Facoltà di Scienze e Tecnologie, Piazza Università 5, 39100 Bolzano, Italy
| | - Lilit Ispiryan
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
26
|
Cooper M, Powell O, Gho C, Tang T, Messina C. Extending the breeder's equation to take aim at the target population of environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1129591. [PMID: 36895882 PMCID: PMC9990092 DOI: 10.3389/fpls.2023.1129591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A major focus for genomic prediction has been on improving trait prediction accuracy using combinations of algorithms and the training data sets available from plant breeding multi-environment trials (METs). Any improvements in prediction accuracy are viewed as pathways to improve traits in the reference population of genotypes and product performance in the target population of environments (TPE). To realize these breeding outcomes there must be a positive MET-TPE relationship that provides consistency between the trait variation expressed within the MET data sets that are used to train the genome-to-phenome (G2P) model for applications of genomic prediction and the realized trait and performance differences in the TPE for the genotypes that are the prediction targets. The strength of this MET-TPE relationship is usually assumed to be high, however it is rarely quantified. To date investigations of genomic prediction methods have focused on improving prediction accuracy within MET training data sets, with less attention to quantifying the structure of the TPE and the MET-TPE relationship and their potential impact on training the G2P model for applications of genomic prediction to accelerate breeding outcomes for the on-farm TPE. We extend the breeder's equation and use an example to demonstrate the importance of the MET-TPE relationship as a key component for the design of genomic prediction methods to realize improved rates of genetic gain for the target yield, quality, stress tolerance and yield stability traits in the on-farm TPE.
Collapse
Affiliation(s)
- Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Owen Powell
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Carla Gho
- School of Agriculture & Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tom Tang
- Corteva Agriscience, Johnston, IA, United States
| | - Carlos Messina
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
27
|
Coronado Y. Agriculture systems dataset in rural communities of Hidalgo state, Mexico. Data Brief 2023; 47:108918. [PMID: 36756283 PMCID: PMC9900484 DOI: 10.1016/j.dib.2023.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/04/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
The agricultural systems are commonly underrepresented by the decision making, due to difficulties obtaining data in the rural work, so then we collect data corresponding to a socio-economic and environmental survey applied to understand the relations between agricultural production, household economy, small stakeholders family structure, corn production and associated crops, and producers siblings acquiring sites of foods, edible plants and animals. The information was obtained by a survey applied to a rural population with high and very high poverty conditions into municipalities of Ixmiquilpan and El Cardonal in Hidalgo state at the center of Mexico. We performed a statistical analysis to identify the main socio-economic, agricultural and household characteristics in order to show an scope of the agricultural situation and household of rural agricultural communities in Hidalgo. This information allows us to design a recommendation for access to financial support or technical assistance in order to improve their production according to their sociocultural conditions. The data include socioeconomic values that are statistically representative of the official governmental values, proving the sufficiency of data and reproducible form in order to compare this data to other agricultural systems reported in Mexico. In the future a temporal comparison with federal data is desirable.
Collapse
|
28
|
Cooper M, Messina CD. Breeding crops for drought-affected environments and improved climate resilience. THE PLANT CELL 2023; 35:162-186. [PMID: 36370076 PMCID: PMC9806606 DOI: 10.1093/plcell/koac321] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/01/2022] [Indexed: 05/12/2023]
Abstract
Breeding climate-resilient crops with improved levels of abiotic and biotic stress resistance as a response to climate change presents both opportunities and challenges. Applying the framework of the "breeder's equation," which is used to predict the response to selection for a breeding program cycle, we review methodologies and strategies that have been used to successfully breed crops with improved levels of drought resistance, where the target population of environments (TPEs) is a spatially and temporally heterogeneous mixture of drought-affected and favorable (water-sufficient) environments. Long-term improvement of temperate maize for the US corn belt is used as a case study and compared with progress for other crops and geographies. Integration of trait information across scales, from genomes to ecosystems, is needed to accurately predict yield outcomes for genotypes within the current and future TPEs. This will require transdisciplinary teams to explore, identify, and exploit novel opportunities to accelerate breeding program outcomes; both improved germplasm resources and improved products (cultivars, hybrids, clones, and populations) that outperform and replace the products in use by farmers, in combination with modified agronomic management strategies suited to their local environments.
Collapse
Affiliation(s)
- Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Carlos D Messina
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
29
|
Bowerman AF, Byrt CS, Roy SJ, Whitney SM, Mortimer JC, Ankeny RA, Gilliham M, Zhang D, Millar AA, Rebetzke GJ, Pogson BJ. Potential abiotic stress targets for modern genetic manipulation. THE PLANT CELL 2023; 35:139-161. [PMID: 36377770 PMCID: PMC9806601 DOI: 10.1093/plcell/koac327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/03/2022] [Indexed: 05/06/2023]
Abstract
Research into crop yield and resilience has underpinned global food security, evident in yields tripling in the past 5 decades. The challenges that global agriculture now faces are not just to feed 10+ billion people within a generation, but to do so under a harsher, more variable, and less predictable climate, and in many cases with less water, more expensive inputs, and declining soil quality. The challenges of climate change are not simply to breed for a "hotter drier climate," but to enable resilience to floods and droughts and frosts and heat waves, possibly even within a single growing season. How well we prepare for the coming decades of climate variability will depend on our ability to modify current practices, innovate with novel breeding methods, and communicate and work with farming communities to ensure viability and profitability. Here we define how future climates will impact farming systems and growing seasons, thereby identifying the traits and practices needed and including exemplars being implemented and developed. Critically, this review will also consider societal perspectives and public engagement about emerging technologies for climate resilience, with participatory approaches presented as the best approach.
Collapse
Affiliation(s)
- Andrew F Bowerman
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Caitlin S Byrt
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stuart John Roy
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Spencer M Whitney
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jenny C Mortimer
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Rachel A Ankeny
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Humanities, University of Adelaide, North Terrace, South Australia, Australia
| | - Matthew Gilliham
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Dabing Zhang
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Anthony A Millar
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Greg J Rebetzke
- CSIRO Agriculture & Food, Canberra, Australian Capital Territory, Australia
| | - Barry J Pogson
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
30
|
Lorenzo CD, Debray K, Herwegh D, Develtere W, Impens L, Schaumont D, Vandeputte W, Aesaert S, Coussens G, De Boe Y, Demuynck K, Van Hautegem T, Pauwels L, Jacobs TB, Ruttink T, Nelissen H, Inzé D. BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize. THE PLANT CELL 2023; 35:218-238. [PMID: 36066192 PMCID: PMC9806654 DOI: 10.1093/plcell/koac243] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/30/2022] [Indexed: 05/04/2023]
Abstract
Ensuring food security for an ever-growing global population while adapting to climate change is the main challenge for agriculture in the 21st century. Although new technologies are being applied to tackle this problem, we are approaching a plateau in crop improvement using conventional breeding. Recent advances in CRISPR/Cas9-mediated gene engineering have paved the way to accelerate plant breeding to meet this increasing demand. However, many traits are governed by multiple small-effect genes operating in complex interactive networks. Here, we present the gene discovery pipeline BREEDIT, which combines multiplex genome editing of whole gene families with crossing schemes to improve complex traits such as yield and drought tolerance. We induced gene knockouts in 48 growth-related genes into maize (Zea mays) using CRISPR/Cas9 and generated a collection of over 1,000 gene-edited plants. The edited populations displayed (on average) 5%-10% increases in leaf length and up to 20% increases in leaf width compared with the controls. For each gene family, edits in subsets of genes could be associated with enhanced traits, allowing us to reduce the gene space to be considered for trait improvement. BREEDIT could be rapidly applied to generate a diverse collection of mutants to identify promising gene modifications for later use in breeding programs.
Collapse
Affiliation(s)
| | | | - Denia Herwegh
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Ward Develtere
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Lennert Impens
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dries Schaumont
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), B-9820 Merelbeke, Belgium
| | - Wout Vandeputte
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Stijn Aesaert
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Griet Coussens
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Yara De Boe
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Kirin Demuynck
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Tom Van Hautegem
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Laurens Pauwels
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Thomas B Jacobs
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), B-9820 Merelbeke, Belgium
| | - Hilde Nelissen
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | | |
Collapse
|
31
|
Menkir A, Dieng I, Meseka S, Bossey B, Mengesha W, Muhyideen O, Riberio PF, Coulibaly M, Yacoubou AM, Bankole FA, Adu GB, Ojo T. Estimating genetic gains for tolerance to stress combinations in tropical maize hybrids. Front Genet 2022; 13:1023318. [PMID: 36568398 PMCID: PMC9779929 DOI: 10.3389/fgene.2022.1023318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Maize is a strategic food crop in sub-Saharan Africa. However, most maize growing tropical savannas particularly in West and Central African experience the occurrence of frequent droughts and Striga infestation, resulting in 30-100% yield losses. This production zones need maize cultivars that combine tolerance to the two stresses. IITA in collaboration with national partners has thus employed a sequential selection scheme to incorporate both drought tolerance and Striga resistance in topical maize hybrids using reliable screening protocols. The main objective of the present study was therefore to use grain yield and other agronomic traits recorded in regional collaborative hybrid trials conducted for 8 years under manged stressful and non-stressful conditions and across rainfed field environments to estimate genetic gains in grain yields using mixed model analyses. The results showed significant (p < 0.05) annual yield gains of 11.89 kg ha-1 under manged drought stress (MDS) and 86.60 kg ha-1 under Striga infestation (STRIN) with concomitant yield increases of 62.65 kg ha-1 under full irrigation (WW), 102.44 kg ha-1 under Striga non-infested (STRNO) conditions and 53.11 kg ha-1 across rainfed field environments. Grain yield displayed significant but not strong genetic correlation of 0.41 ± 0.07 between MDS and STRIN, indicating that gene expression was not consistent across the two stress conditions. Furthermore, grain yield recorded in MET had significant moderate genetic correlations of 0.58 ± 0.06 and 0.44 ± 0.07It with MDS and STRIN, respectively. These results emphasize the need to screen inbred linens under both stress conditions to further enhance the rate of genetic gain in grain yield in hybrids for areas where the two stresses co-occur. Nonetheless, this study demonstrated that the sequential selection scheme has been successful in generating hybrids with dependable yields that can reduce chronic food deficits in rural communities experiencing simultaneous presence of drought and S. hermonthica infestation in their production fields.
Collapse
Affiliation(s)
- Abebe Menkir
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria,*Correspondence: Abebe Menkir,
| | - Ibnou Dieng
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Silvestro Meseka
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Bunmi Bossey
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Wende Mengesha
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Oyekunle Muhyideen
- Institute for Agricultural Research, Ahmadu Bello University, Zaria, Nigeria
| | | | | | | | | | | | - Tayo Ojo
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
32
|
Xiong W, Reynolds M, Xu Y. Climate change challenges plant breeding. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102308. [PMID: 36279790 DOI: 10.1016/j.pbi.2022.102308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Plant breeding is important to cope with climate change impacts, complementing crop management and policy interventions to ensure global food production. However, changes in environmental factors also affect the objectives, efficiency, and genetic gains of the current plant breeding system. In this review, we summarize the challenges prompted by climate change to breeding climate-resilient crops and the limitations of the next-generation breeding approach in addressing climate change. It is anticipated that the integration of multi-disciplines and technologies into three schemes of genotyping, phenotyping, and envirotyping will result in the delivery of climate change-ready crops in less time.
Collapse
Affiliation(s)
- Wei Xiong
- CIMMYT-Henan Joint Center for Wheat and Maize Improvement, Henan Agricultural University, Zhengzhou, China; International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico.
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Sheng K, Xu L, Wang M, Lei H, Duan A. The end-use quality of wheat can be enhanced by optimal water management without incurring yield loss. FRONTIERS IN PLANT SCIENCE 2022; 13:1030763. [PMID: 36438148 PMCID: PMC9684672 DOI: 10.3389/fpls.2022.1030763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In China, water-saving irrigation is playing important roles in ensuring food security, and improving wheat quality. A barrel experiment was conducted with three winter wheat (Triticum aestivum L.) genotypes and two irrigation pattens to examine the effects of regulated deficit irrigation (RDI) on wheat grain yield, water-use efficiency (WUE), and grain quality. In order to accurately control the soil water content, wheat was planted in the iron barrels set under a rainproof shelter, and the soil water content in the iron barrel was controlled by gravity method. The mechanisms whereby water management influences the end-use functional properties of wheat grain were also investigated. The results revealed that RDI improved the end-use functional properties of wheat and WUE, without significant yield loss (less than 3%). Moderate water deficit (60% to 65% field capacity) before jointing and during the late grain-filling stage combined with a slight water deficit (65% to 70% field capacity) from jointing to booting increased grain quality and WUE. The observed non-significant reduction in wheat yield associated with RDI may be attributed to higher rate of photosynthesis during the early stage of grain development and higher rate of transfer of carbohydrates from vegetative organs to grains during the later stage. By triggering an earlier rapid transfer of nitrogen deposited in vegetative organs, RDI enhances grain nitrogen content, which in turn could enhance dough elasticity, given the positive correlation between grain nitrogen content and dough midline peak value. Our results also indicate that the effects of RDI on grain quality are genotype dependent. Therefore, the grain end-use quality of some specific wheat genotypes may be enhanced without incurring yield loss by an optimal water management.
Collapse
Affiliation(s)
- Kun Sheng
- School of Hydraulic Engineering, Yellow River Conservancy Technical Institute, Kaifeng, China
| | - Lina Xu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingxia Wang
- School of Hydraulic Engineering, Yellow River Conservancy Technical Institute, Kaifeng, China
| | - Heng Lei
- School of Hydraulic Engineering, Yellow River Conservancy Technical Institute, Kaifeng, China
| | - Aiwang Duan
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| |
Collapse
|
34
|
Ćalić I, Groen SC, Choi JY, Joly‐Lopez Z, Hamann E, Natividad MA, Dorph K, Cabral CLU, Torres RO, Vergara GV, Henry A, Purugganan MD, Franks SJ. The influence of genetic architecture on responses to selection under drought in rice. Evol Appl 2022; 15:1670-1690. [PMID: 36330294 PMCID: PMC9624088 DOI: 10.1111/eva.13419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Accurately predicting responses to selection is a major goal in biology and important for successful crop breeding in changing environments. However, evolutionary responses to selection can be constrained by such factors as genetic and cross-environment correlations, linkage, and pleiotropy, and our understanding of the extent and impact of such constraints is still developing. Here, we conducted a field experiment to investigate potential constraints to selection for drought resistance in rice (Oryza sativa) using phenotypic selection analysis and quantitative genetics. We found that traits related to drought response were heritable, and some were under selection, including selection for earlier flowering, which could allow drought escape. However, patterns of selection generally were not opposite under wet and dry conditions, and we did not find individual or closely linked genes that influenced multiple traits, indicating a lack of evidence that antagonistic pleiotropy, linkage, or cross-environment correlations would constrain selection for drought resistance. In most cases, genetic correlations had little influence on responses to selection, with direct and indirect selection largely congruent. The exception to this was seed mass under drought, which was predicted to evolve in the opposite direction of direct selection due to correlations. Because of this indirect effect on selection on seed mass, selection for drought resistance was not accompanied by a decrease in seed mass, and yield increased with fecundity. Furthermore, breeding lines with high fitness and yield under drought also had high fitness and yield under wet conditions, indicating that there was no evidence for a yield penalty on drought resistance. We found multiple genes in which expression influenced both water use efficiency (WUE) and days to first flowering, supporting a genetic basis for the trade-off between drought escape and avoidance strategies. Together, these results can provide helpful guidance for understanding and managing evolutionary constraints and breeding stress-resistant crops.
Collapse
Affiliation(s)
- Irina Ćalić
- Department of Biological SciencesFordham UniversityBronxNew YorkUSA
- Institute of BotanyUniversity of CologneCologneGermany
| | - Simon C. Groen
- Department of NematologyUniversity of California at RiversideRiversideCaliforniaUSA
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Jae Young Choi
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Zoé Joly‐Lopez
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- Département de ChimieUniversité du Québec à MontréalQuébecCanada
| | - Elena Hamann
- Department of Biological SciencesFordham UniversityBronxNew YorkUSA
- Department of Genetics and Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Katherine Dorph
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | | | | | - Georgina V. Vergara
- International Rice Research InstituteLos BañosLagunaPhilippines
- Institute of Crop ScienceUniversity of the Philippines Los BañosLos BañosLagunaPhilippines
| | - Amelia Henry
- International Rice Research InstituteLos BañosLagunaPhilippines
| | - Michael D. Purugganan
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- Center for Genomics and Systems BiologyNYU Abu Dhabi Research Institute, New York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Steven J. Franks
- Department of Biological SciencesFordham UniversityBronxNew YorkUSA
| |
Collapse
|
35
|
All Are in a Drought, but Some Stand Out: Multivariate Analysis in the Selection of Agronomic Efficient Popcorn Genotypes. PLANTS 2022; 11:plants11172275. [PMID: 36079656 PMCID: PMC9460328 DOI: 10.3390/plants11172275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
The search for productive germplasm adapted to adverse conditions is an important action to mitigate the harmful effects of climate change. The aim was to identify the yield potential of 50 popcorn inbred lines grown in field conditions, in two crop seasons (CS), and under contrasting water conditions (WC). Morphoagronomic, physiological, and root system traits were evaluated. Joint and individual analyses of variance were performed, in addition to the multivariate GT bip-lot analysis. Expressive reductions between WC were observed in 100-grain weight (100 GW), popping expansion (PE), grain yield (GY), expanded popcorn volume per ha (EPV), row number per ear (RNE), plant height (PH), relative chlorophyll content (SPAD), and nitrogen balance index (NBI). It was found that the SPAD, 100 GW, GY, PE, and grain number per ear (GNE) traits had the most significant impact on the selection of genotypes. Regardless of WC and CS, the ideal lines were L294 and L688 for PE; L691 and L480 for GY; and L291 and L292 for both traits. SPAD, 100 GW, and GNE can contribute to the indirect selection. Our work contributes to understanding the damage caused by drought and the integration of traits for the indirect selection of drought-tolerant popcorn genotypes.
Collapse
|
36
|
Radzikowska D, Kowalczewski PŁ, Grzanka M, Głowicka-Wołoszyn R, Nowicki M, Sawinska Z. Succinate dehydrogenase inhibitor seed treatments positively affect the physiological condition of maize under drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:984248. [PMID: 36110354 PMCID: PMC9468601 DOI: 10.3389/fpls.2022.984248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Improvements in agricultural production are needed, as the growing human population demands more resources and exerts stronger effects on climate. Water scarcity is one of the main factors limiting the yield of maize in many regions of the world. One possible method to mitigate the negative effects of drought is seed mortars; its use improves plant development from the early stages onwards. In this study, we tested 12 various seed treatments with and without succinate dehydrogenase inhibitors (SDHI; sedaxane) on maize "SY Fanatic." Physiological parameters of germinating seeds, of young maize seedlings under drought, and of seedlings recuperated from drought were assessed and compared across 12 seed treatments and with non-stressed plants. The seed treatments varied greatly in their influence on the germination and the physiological state of seedlings under drought and after regeneration. Seeds under treatments No. 6, 11, and 12 showed the highest germination energy (97.3%). The use of SDHI-containing seed treatments significantly improved the development of the maize root system. The longest roots, ~13 cm in length, were recorded for treatments No. 6 and 12, both containing sedaxane. These treatments also boosted the functioning of plants growing under optimal soil moisture conditions and under drought stress, influencing the photosynthesis process, increasing the absorption of CO2, and improving the parameters of chlorophyll fluorescence in relation to non-treated controls. Our data indicated that using substances from the SDHI group can possibly reduce the drought-related stress reactions in maize, helping this important crop to face the progressing climate change.
Collapse
Affiliation(s)
| | | | - Monika Grzanka
- Department of Agronomy, Poznań University of Life Sciences, Poznań, Poland
| | | | - Marcin Nowicki
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
| | - Zuzanna Sawinska
- Department of Agronomy, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
37
|
Ahmad N, Su B, Ibrahim S, Kuang L, Tian Z, Wang X, Wang H, Dun X. Deciphering the Genetic Basis of Root and Biomass Traits in Rapeseed (Brassica napus L.) through the Integration of GWAS and RNA-Seq under Nitrogen Stress. Int J Mol Sci 2022; 23:ijms23147958. [PMID: 35887301 PMCID: PMC9323118 DOI: 10.3390/ijms23147958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
An excellent root system is responsible for crops with high nitrogen-use efficiency (NUE). The current study evaluated the natural variations in 13 root- and biomass-related traits under a low nitrogen (LN) treatment in a rapeseed association panel. The studied traits exhibited significant phenotypic differences with heritabilities ranging from 0.53 to 0.66, and most of the traits showed significant correlations with each other. The genome-wide association study (GWAS) found 51 significant and 30 suggestive trait–SNP associations that integrated into 14 valid quantitative trait loci (QTL) clusters and explained 5.7–21.2% phenotypic variance. In addition, RNA sequencing was performed at two time points to examine the differential expression of genes (DEGs) between high and low NUE lines. In total, 245, 540, and 399 DEGs were identified as LN stress-specific, high nitrogen (HN) condition-specific, and HNLN common DEGs, respectively. An integrated analysis of GWAS, weighted gene co-expression network, and DEGs revealed 16 genes involved in rapeseed root development under LN stress. Previous studies have reported that the homologs of seven out of sixteen potential genes control root growth and NUE. These findings revealed the genetic basis underlying nitrogen stress and provided worthwhile SNPs/genes information for the genetic improvement of NUE in rapeseed.
Collapse
Affiliation(s)
- Nazir Ahmad
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Bin Su
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Sani Ibrahim
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Department of Plant Biology, Faculty of Life Sciences, College of Physical and Pharmaceutical Sciences, Bayero University, P.M.B. 3011, Kano 700006, Nigeria
| | - Lieqiong Kuang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Ze Tian
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence: (H.W.); (X.D.)
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Correspondence: (H.W.); (X.D.)
| |
Collapse
|
38
|
Does Abiotic Host Stress Favour Dothideomycete-Induced Disease Development? PLANTS 2022; 11:plants11121615. [PMID: 35736766 PMCID: PMC9227157 DOI: 10.3390/plants11121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/07/2022]
Abstract
Dothideomycetes represent one of the largest and diverse class of fungi. This class exhibits a wide diversity of lifestyles, including endophytic, saprophytic, pathogenic and parasitic organisms. Plant pathogenic fungi are particularly common within the Dothideomycetes and are primarily found within the orders of Pleosporales, Botryosphaeriales and Capnodiales. As many Dothideomycetes can infect crops used as staple foods around the world, such as rice, wheat, maize or banana, this class of fungi is highly relevant to food security. In the context of climate change, food security faces unprecedented pressure. The benefits of a more plant-based diet to both health and climate have long been established, therefore the demand for crop production is expected to increase. Further adding pressure on food security, both the prevalence of diseases caused by fungi and the yield losses associated with abiotic stresses on crops are forecast to increase in all climate change scenarios. Furthermore, abiotic stresses can greatly influence the outcome of the host-pathogen interaction. This review focuses on the impact of abiotic stresses on the host in the development of diseases caused by Dothideomycete fungi.
Collapse
|
39
|
Najafi Vafa Z, Sohrabi Y, Mirzaghaderi G, Heidari G. Soil Microorganisms and Seaweed Application With Supplementary Irrigation Improved Physiological Traits and Yield of Two Dryland Wheat Cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:855090. [PMID: 35720598 PMCID: PMC9198557 DOI: 10.3389/fpls.2022.855090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
To evaluate the effect of useful soil microorganisms and organic compounds on physiological characteristics and yield of two wheat cultivars under supplementary irrigation conditions, a study was conducted in the Agriculture Research Farm of Kurdistan University during the two cropping seasons of 2017-2018 and 2018-2019. A split-split plot-based study on a randomized complete block design with four replicates was used as an experimental design. The main factor was irrigation at three levels, including control without irrigation, supplementary irrigation in the booting stage, and supplementary irrigation in the booting and flowering stages. Two wheat cultivars, namely, Sardari and Sirvan, as sub-factors and application of bio-fertilizers in eight levels, including the use of bio-fertilizers containing: Mycorrhiza, Seaweed extract, Nitrozist and Phosphozist, Mycorrhiza + Nitrozist and Phosphozist, Seaweed extract + Nitrozist and Phosphozist, Mycorrhiza + Seaweed extract, Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract, and non-application of bio-fertilizers, were considered as sub-factors. The results of both seasons of the experiment showed that the application of bio-fertilizers compared to the control treatment at all irrigation levels increased root volume, leaf relative water content (RWC), membrane stability index (MSI), and photosynthetic pigment content. The highest amount of H2O2, proline, and soluble carbohydrates were obtained in wheat under dry land conditions, and supplementary irrigation, especially two-time irrigation, significantly reduced the values of these traits. Supplementary irrigation also increased grain yield, so that in the conditions of two-time irrigation compared to the non-irrigation treatment (dry land), in the first and second seasons, the grain yield increased by 79.51 and 78.69%, respectively. Application of bio-fertilizers (Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract) in comparison with the non-application of these fertilizers, due to increased root volume, RWC, MSI, and content of photosynthetic pigments, increased the grain yield in the first and second seasons of the experiment by 8.04 and 6.96%, respectively. As a result, suitable microorganisms and seaweed can improve wheat resistance mechanisms to water deficit, which along with using supplementary irrigation that saves water consumption improves plant growth and yield in areas faced with water shortage.
Collapse
Affiliation(s)
| | - Yousef Sohrabi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | | | | |
Collapse
|
40
|
Acosta-Quezada PG, Valladolid-Salinas EH, Murquincho-Chuncho JM, Jadán-Veriñas E, Ruiz-González MX. Heterogeneous effects of climatic conditions on Andean bean landraces and cowpeas highlight alternatives for crop management and conservation. Sci Rep 2022; 12:6586. [PMID: 35449148 PMCID: PMC9022739 DOI: 10.1038/s41598-022-10277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
The use and conservation of agrobiodiversity have become critical to face the actual and future challenges imposed by climate change. Collecting phytogenetic resources is a first step for their conservation; however, the genetic material must be analysed to understand their potential to improve agricultural resilience and adaptation to the new climatic conditions. We have selected nine Phaseolus vulgaris, one P. lunatus and two Vigna unguiculata landraces from two different climatic backgrounds of the Andean region of South Ecuador and one P. vulgaris commercial cultivar, and we grew them under two different conditions of temperature and humidity (open field and greenhouse). Then, we recorded data for 32 characters of plant architecture, flower and fruit characteristics and yield, and 17 events in the phenology of the plants. We analysed the impact of treatment on species, climatic background, and each of the landraces, and identified both characters and landraces that are mostly affected by changes in their environmental conditions. Overall, higher temperatures were benign for all materials except for two P. vulgaris landraces from cold background, which performed better or developed faster under cold conditions. Finally, we calculated a climate resilience landrace index, which allowed us to classify the landraces by their plasticity to new environmental conditions, and found heterogeneous landrace susceptibility to warmer conditions. Two P. vulgaris landraces were highlighted as critical targets for conservation.
Collapse
Affiliation(s)
- Pablo G Acosta-Quezada
- Departamento de CC. Biológicas y Agropecuarias, Universidad Técnica Particular de Loja-UTPL, San Cayetano Alto, Calle Marcelino Champagnat s/n, Apartado Postal 11-01-608, Loja, Ecuador
| | - Edin H Valladolid-Salinas
- Departamento de CC. Biológicas y Agropecuarias, Universidad Técnica Particular de Loja-UTPL, San Cayetano Alto, Calle Marcelino Champagnat s/n, Apartado Postal 11-01-608, Loja, Ecuador
| | - Janina M Murquincho-Chuncho
- Departamento de CC. Biológicas y Agropecuarias, Universidad Técnica Particular de Loja-UTPL, San Cayetano Alto, Calle Marcelino Champagnat s/n, Apartado Postal 11-01-608, Loja, Ecuador
| | - Eudaldo Jadán-Veriñas
- Facultad de CC. Agropecuarias, Universidad Técnica de Machala-UTMACH, Machala, El Oro, Ecuador
| | - Mario X Ruiz-González
- Departamento de CC. Biológicas y Agropecuarias, Universidad Técnica Particular de Loja-UTPL, San Cayetano Alto, Calle Marcelino Champagnat s/n, Apartado Postal 11-01-608, Loja, Ecuador.
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain.
| |
Collapse
|
41
|
Shamloo-Dashtpagerdi R, Aliakbari M, Lindlöf A, Tahmasebi S. A systems biology study unveils the association between a melatonin biosynthesis gene, O-methyl transferase 1 (OMT1) and wheat (Triticum aestivum L.) combined drought and salinity stress tolerance. PLANTA 2022; 255:99. [PMID: 35386021 DOI: 10.1007/s00425-022-03885-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Enhanced levels of endogenous melatonin in the root of wheat, mainly through the OMT1 gene, augment the antioxidant system, reestablish redox homeostasis and are associated with combined stress tolerance. A systems biology approach, including a collection of computational analyses and experimental assays, led us to uncover some aspects of a poorly understood phenomenon, namely wheat (Triticum aestivum L.) combined drought and salinity stress tolerance. Accordingly, a cross-study comparison of stress experiments was performed via a meta-analysis of Expressed Sequence Tags (ESTs) data from wheat roots to uncover the overlapping gene network of drought and salinity stresses. Identified differentially expressed genes were functionally annotated by gene ontology enrichment analysis and gene network analysis. Among those genes, O-methyl transferase 1 (OMT1) was highlighted as a more important (hub) gene in the dual-stress response gene network. Afterwards, the potential roles of OMT1 in mediating physiochemical indicators of stress tolerance were investigated in two wheat genotypes differing in abiotic stress tolerance. Regression analysis and correspondence analysis (CA) confirmed that the expression profiles of the OMT1 gene and variations in melatonin content, antioxidant enzyme activities, proline accumulation, H2O2 and malondialdehyde (MDA) contents are significantly associated with combined stress tolerance. These results reveal that the OMT1 gene may contribute to wheat combined drought and salinity stress tolerance through augmenting the antioxidant system and re-establishing redox homeostasis, probably via the regulation of melatonin biosynthesis as a master regulator molecule. Our findings provide new insights into the roles of melatonin in wheat combined drought and salinity stress tolerance and suggest a novel plausible regulatory node through the OMT1 gene to improve multiple-stress tolerant crops.
Collapse
Affiliation(s)
| | - Massume Aliakbari
- Department of Crop Production and Plant Breeding, Shiraz University, Shiraz, Iran
| | | | - Sirus Tahmasebi
- Seed and Plant Improvement Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
| |
Collapse
|
42
|
Modeling the Impact of Future Climate Change Impacts on Rainfed Durum Wheat Production in Algeria. CLIMATE 2022. [DOI: 10.3390/cli10040050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The predicted climate change threatens food security in the coming years in Algeria. So, this study aims to assess the impact of future climate change on a key crop in Algeria which is rainfed durum wheat. We investigate the impact of climate change on rainfed durum wheat cultivar called Mexicali using AquaCrop crop model and the EURO-CORDEX climate projections downscaled with the ICHEC_KNMI model under RCP 4.5 and RCP 8.5. A delta method was applied to correct the incertitudes present in the raw climate projections of two experimental sites located in Sétif and Bordj Bou Arreridj (BBA)’s Eastern High plains of Algeria (EHPs). AquaCrop was validated with a good precision (RMSE = 0.41 tha−1) to simulate Mexicali cultivar yields. In 2035–2064, it is expected at both sites: an average wheat grain yield enhances of +49% and +105% under RCP 4.5 and RCP 8.5, respectively, compared to the average yield of the baseline period (1981–2010), estimated at 29 qha−1. In both sites, in 2035–2064, under RCP 4.5 and RCP 8.5, the CO2 concentrations elevation has a fertilizing effect on rainfed wheat yield. This effect compensates for the negative impacts induced by the temperatures increase and decline in precipitation and net solar radiation. An increase in wheat water productivity is predicted under both RCPs scenarios. That is due to the water loss drop induced by the shortening of the wheat-growing cycle length by the effect of temperatures increase. In 2035–2064, early sowing in mid-September and October will lead to wheat yields improvement, as it will allow the wheat plant to benefit from the precipitations increase through the fall season. Thus, this early sowing will ensure a well vegetative development and will allow the wheat’s flowering and grain filling before the spring warming period.
Collapse
|
43
|
Carcedo AJP, Mayor L, Demarco P, Morris GP, Lingenfelser J, Messina CD, Ciampitti IA. Environment Characterization in Sorghum ( Sorghum bicolor L.) by Modeling Water-Deficit and Heat Patterns in the Great Plains Region, United States. FRONTIERS IN PLANT SCIENCE 2022; 13:768610. [PMID: 35310654 PMCID: PMC8929132 DOI: 10.3389/fpls.2022.768610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/31/2022] [Indexed: 05/26/2023]
Abstract
Environmental characterization for defining the target population of environments (TPE) is critical to improve the efficiency of breeding programs in crops, such as sorghum (Sorghum bicolor L.). The aim of this study was to characterize the spatial and temporal variation for a TPE for sorghum within the United States. APSIM-sorghum, included in the Agricultural Production Systems sIMulator software platform, was used to quantify water-deficit and heat patterns for 15 sites in the sorghum belt. Historical weather data (∼35 years) was used to identify water (WSP) and heat (HSP) stress patterns to develop water-heat clusters. Four WSPs were identified with large differences in the timing of onset, intensity, and duration of the stress. In the western region of Kansas, Oklahoma, and Texas, the most frequent WSP (∼35%) was stress during grain filling with late recovery. For northeast Kansas, WSP frequencies were more evenly distributed, suggesting large temporal variation. Three HSPs were defined, with the low HSP being most frequent (∼68%). Field data from Kansas State University sorghum hybrid yield performance trials (2006-2013 period, 6 hybrids, 10 sites, 46 site × year combinations) were classified into the previously defined WSP and HSP clusters. As the intensity of the environmental stress increased, there was a clear reduction on grain yield. Both simulated and observed yield data showed similar yield trends when the level of heat or water stressed increased. Field yield data clearly separated contrasting clusters for both water and heat patterns (with vs. without stress). Thus, the patterns were regrouped into four categories, which account for the observed genotype by environment interaction (GxE) and can be applied in a breeding program. A better definition of TPE to improve predictability of GxE could accelerate genetic gains and help bridge the gap between breeders, agronomists, and farmers.
Collapse
Affiliation(s)
- Ana J. P. Carcedo
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Laura Mayor
- Corteva Agriscience, Johnston, IA, United States
| | - Paula Demarco
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Geoffrey P. Morris
- Department of Soil and Crop Science, Colorado State University, Fort Collins, CO, United States
| | - Jane Lingenfelser
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Carlos D. Messina
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
44
|
Shahid S, Ali Q, Ali S, Al-Misned FA, Maqbool S. Water Deficit Stress Tolerance Potential of Newly Developed Wheat Genotypes for Better Yield Based on Agronomic Traits and Stress Tolerance Indices: Physio-Biochemical Responses, Lipid Peroxidation and Antioxidative Defense Mechanism. PLANTS 2022; 11:plants11030466. [PMID: 35161446 PMCID: PMC8839292 DOI: 10.3390/plants11030466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022]
Abstract
Changing environmental conditions, fresh water shortages for irrigation and the rapid increase in world population have created the problems of food insecurity and malnutrition. Different strategies, including the development of water stress-tolerant, high-yielding genotypes through breeding are used to fulfil the world food demand. The present study was conducted for the selection of high-yielding, drought-tolerant wheat genotypes, considering different morpho-physio-biochemical, agronomic and yield attributes in relation to the stress tolerance indices (STI). The experiment was carried out in field in a split-plot arrangement. Water deficit stress was maintained based on the number of irrigations. All genotypes showed a differential decreasing trend in different agronomic traits. However, the increasing or decreasing trend in leaf photosynthetic pigments, non-enzymatic and enzymatic antioxidants under limited water supply also found to be genotype-specific. Genotypes MP1, MP3, MP5, MP8 and MP10 performed better regarding the yield performance under water deficit stress, which was associated with their better maintenance of water relations, photosynthetic pigments and antioxidative defense mechanisms. In conclusion, the physio-biochemical mechanisms should also be considered as the part of breeding programs for the selection of stress-tolerant genotypes, along with agronomic traits, in wheat.
Collapse
Affiliation(s)
- Sumreena Shahid
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Qasim Ali
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
- Correspondence: (Q.A.); (S.A.)
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
- Correspondence: (Q.A.); (S.A.)
| | - Fahad A. Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Saliha Maqbool
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USA;
| |
Collapse
|
45
|
Zsögön A, Peres LEP, Xiao Y, Yan J, Fernie AR. Enhancing crop diversity for food security in the face of climate uncertainty. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:402-414. [PMID: 34882870 DOI: 10.1111/tpj.15626] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 05/23/2023]
Abstract
Global agriculture is dominated by a handful of species that currently supply a huge proportion of our food and feed. It additionally faces the massive challenge of providing food for 10 billion people by 2050, despite increasing environmental deterioration. One way to better plan production in the face of current and continuing climate change is to better understand how our domestication of these crops included their adaptation to environments that were highly distinct from those of their centre of origin. There are many prominent examples of this, including the development of temperate Zea mays (maize) and the alteration of day-length requirements in Solanum tuberosum (potato). Despite the pre-eminence of some 15 crops, more than 50 000 species are edible, with 7000 of these considered semi-cultivated. Opportunities afforded by next-generation sequencing technologies alongside other methods, including metabolomics and high-throughput phenotyping, are starting to contribute to a better characterization of a handful of these species. Moreover, the first examples of de novo domestication have appeared, whereby key target genes are modified in a wild species in order to confer predictable traits of agronomic value. Here, we review the scale of the challenge, drawing extensively on the characterization of past agriculture to suggest informed strategies upon which the breeding of future climate-resilient crops can be based.
Collapse
Affiliation(s)
- Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Lázaro E P Peres
- Laboratory of Plant Developmental Genetics, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
46
|
De Santis MA, Soccio M, Laus MN, Flagella Z. Influence of Drought and Salt Stress on Durum Wheat Grain Quality and Composition: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2599. [PMID: 34961071 PMCID: PMC8708103 DOI: 10.3390/plants10122599] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 05/09/2023]
Abstract
Durum wheat is a staple crop for the Mediterranean diet because of its adaptability to environmental pressure and for its large use in cereal-based food products, such as pasta and bread, as a source of calories and proteins. Durum wheat whole grains are also highly valued for their peculiar amount of dietary fiber and minerals, as well as bioactive compounds of particular interest for their putative health-beneficial properties, including polyphenols, carotenoids, tocopherols, tocotrienols, and phytosterols. In Mediterranean environments, durum wheat is mostly grown under rainfed conditions, where the crop often experiences environmental stresses, especially water deficit and soil salinity that may induce a hyperosmotic stress. In particular, changes in C and N accumulation due to these abiotic conditions, during grain filling, can influence starch and storage protein amount and composition in durum wheat caryopsis, thus influencing yield and quality traits. Recent advancements regarding the influence of water deficit and salinity stress on durum wheat are critically discussed. In particular, a focus on stress-induced changes in (a) grain protein content and composition in relation to technological and health quality; (b) starch and dietary fiber accumulation and composition; (c) phytochemical composition; (d) health-related grain micronutrient accumulation, such as Fe and Zn.
Collapse
Affiliation(s)
- Michele Andrea De Santis
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.S.); (M.N.L.)
| | | | | | - Zina Flagella
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.S.); (M.N.L.)
| |
Collapse
|
47
|
Alipour H, Abdi H, Rahimi Y, Bihamta MR. Dissection of the genetic basis of genotype-by-environment interactions for grain yield and main agronomic traits in Iranian bread wheat landraces and cultivars. Sci Rep 2021; 11:17742. [PMID: 34493739 PMCID: PMC8423731 DOI: 10.1038/s41598-021-96576-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the genetic basis of performance stability is essential to maintain productivity, especially under severe conditions. In the present study, 268 Iranian bread wheat landraces and cultivars were evaluated in four well-watered and two rain-fed conditions for different traits. According to breeding programs, cultivars were in a group with a high mean and stability in terms of GY, GN, and SW traits, while in terms of PH, they had a low mean and high stability. The stability of cultivars and landraces was related to dynamic and static stability, respectively. The highest number of marker pairs and lowest LD decay distance in both cultivars and landraces was observed on the B genome. Population structure differentiated indigenous cultivars and landraces, and the GWAS results for each were almost different despite the commonalities. Chromosomes 1B, 3B, 7B, 2A, and 4A had markers with pleiotropic effects on the stability of different traits. Due to two rain-fed environments, the Gene Ontology (GO) confirmed the accuracy of the results. The identified markers in this study can be helpful in breeding high-performance and stable genotypes and future breeding programs such as fine mapping and cloning.
Collapse
Affiliation(s)
- Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Hossein Abdi
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Yousef Rahimi
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
48
|
Comparison of Drought and Heat Resistance Strategies among Six Populations of Solanum chilense and Two Cultivars of Solanum lycopersicum. PLANTS 2021; 10:plants10081720. [PMID: 34451764 PMCID: PMC8398976 DOI: 10.3390/plants10081720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/02/2022]
Abstract
Within the tomato clade, Solanum chilense is considered one of the most promising sources of genes for tomato (S. lycopersicum) selection to biotic and abiotic stresses. In this study, we compared the effects of drought, high temperature, and their combination in two cultivars of S. lycopersicum and six populations of S. chilense, differing in their local habitat. Plants were grown at 21/19 °C or 28/26 °C under well-watered and water-stressed conditions. Plant growth, physiological responses, and expression of stress-responsive genes were investigated. Our results demonstrated strong variability among accessions. Differences in plant growth parameters were even higher among S. chilense populations than between species. The effects of water stress, high temperature, and their combination also differed according to the accession, suggesting differences in stress resistance between species and populations. Overall, water stress affected plants more negatively than temperature from a morpho-physiological point of view, while the expression of stress-responsive genes was more affected by temperature than by water stress. Accessions clustered in two groups regarding resistance to water stress and high temperature. The sensitive group included the S. lycopersicum cultivars and the S. chilense populations LA2931 and LA1930, and the resistant group included the S. chilense populations LA1958, LA2880, LA2765, and LA4107. Our results suggested that resistance traits were not particularly related to the environmental conditions in the natural habitat of the populations. The expression of stress-responsive genes was more stable in resistant accessions than in sensitive ones in response to water stress and high temperature. Altogether, our results suggest that water stress and high temperature resistance in S. chilense did not depend on single traits but on a combination of morphological, physiological, and genetic traits.
Collapse
|
49
|
Bui H, Greenhalgh R, Gill GS, Ji M, Kurlovs AH, Ronnow C, Lee S, Ramirez RA, Clark RM. Maize Inbred Line B96 Is the Source of Large-Effect Loci for Resistance to Generalist but Not Specialist Spider Mites. FRONTIERS IN PLANT SCIENCE 2021; 12:693088. [PMID: 34234802 PMCID: PMC8256171 DOI: 10.3389/fpls.2021.693088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/25/2021] [Indexed: 05/27/2023]
Abstract
Maize (Zea mays subsp. mays) yield loss from arthropod herbivory is substantial. While the basis of resistance to major insect herbivores has been comparatively well-studied in maize, less is known about resistance to spider mite herbivores, which are distantly related to insects and feed by a different mechanism. Two spider mites, the generalist Tetranychus urticae, and the grass-specialist Oligonychus pratensis, are notable pests of maize, especially during drought conditions. We assessed resistance (antibiosis) to both mites of 38 highly diverse maize lines, including several previously reported to be resistant to one or the other mite species. We found that line B96, as well as its derivatives B49 and B75, were highly resistant to T. urticae. In contrast, neither these three lines, nor any others included in our study, were notably resistant to the specialist O. pratensis. Quantitative trait locus (QTL) mapping with replicate populations from crosses of B49, B75, and B96 to susceptible B73 identified a QTL in the same genomic interval on chromosome 6 for T. urticae resistance in each of the three resistant lines, and an additional resistance QTL on chromosome 1 was unique to B96. Single-locus genotyping with a marker coincident with the chromosome 6 QTL in crosses of both B49 and B75 to B73 revealed that the respective QTL was large-effect; it explained ∼70% of the variance in resistance, and resistance alleles from B49 and B75 acted recessively as compared to B73. Finally, a genome-wide haplotype analysis using genome sequence data generated for B49, B75, and B96 identified an identical haplotype, likely of initial origin from B96, as the source of T. urticae resistance on chromosome 6 in each of the B49, B75, and B96 lines. Our findings uncover the relationship between intraspecific variation in maize defenses and resistance to its major generalist and specialist spider mite herbivores, and we identified loci for use in breeding programs and for genetic studies of resistance to T. urticae, the most widespread spider mite pest of maize.
Collapse
Affiliation(s)
- Huyen Bui
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | | | - Meiyuan Ji
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Andre H. Kurlovs
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Christian Ronnow
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Sarah Lee
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | | | - Richard M. Clark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
50
|
Langridge P, Braun H, Hulke B, Ober E, Prasanna BM. Breeding crops for climate resilience. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1607-1611. [PMID: 34046700 DOI: 10.1007/s00122-021-03854-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
In enhancing the resilience of our crops to the impacts of climate change, selection objectives need to address increased variability in the production environment. This encompasses the effects of more variable rainfall and temperatures than currently experienced, including extreme weather events, and changes in pest and pathogens distribution with the increased likelihood of major pest and disease outbreaks as well as occurrence of novel pathogens. Farmers manage the inevitable risks associated with cropping by planting varieties that deliver high yields and good quality under optimal conditions but minimise losses when the seasons are bad. Breeders and agronomists work to support farmers in specific target environments, but increased climate variability has meant that they need to broaden the adaptability of varieties grown and increase the yield stability to help minimise climate-induced risks and build resilience.
Collapse
Affiliation(s)
- Peter Langridge
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia.
- Wheat Initiative, Julius-Kühn-Institute, 14195, Berlin, Germany.
| | | | - Brent Hulke
- Sunflower and Plant Biology Research Unit, USDA-ARS Edward T Schafer Agricultural Research Center, Fargo, ND, USA
| | - Eric Ober
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - B M Prasanna
- CIMMYT, ICRAF Campus, UN Avenue, Gigiri, Nairobi, Kenya
| |
Collapse
|