1
|
Huber E, Singh T, Bunk M, Hebel M, Kick K, Weiß A, Kohls M, Köger M, Hergl M, Zapardiel Gonzalo JM, Bonifacio E, Ziegler AG. Discrimination and Precision of Continuous Glucose Monitoring in Staging Children With Presymptomatic Type 1 Diabetes. J Clin Endocrinol Metab 2025; 110:1624-1632. [PMID: 39413240 DOI: 10.1210/clinem/dgae691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
CONTEXT Staging and monitoring of presymptomatic type 1 diabetes includes the assessment for dysglycemia. OBJECTIVE To assess the ability of continuous glucose monitoring (CGM) to differentiate between islet autoantibody-negative controls and early-stage type 1 diabetes and explore whether CGM classifiers predict progression to clinical diabetes. RESEARCH DESIGN AND METHODS Children and adolescents participating in public health screening for islet autoantibodies in Bavaria, Germany, were invited to undergo CGM with Dexcom G6. In total, 118 participated and valid data was obtained from 97 [57 female; median age 10 (range 3-17) years], including 46 with stage 1, 18 with stage 2, and 33 with no islet autoantibodies. RESULTS Mean glucose during CGM in islet autoantibody-negative controls was high (median, 115.3 mg/dL) and varied substantially (interquartile range, 106.8-124.4). Eleven (33%) of the controls had more than 10% of glucose values above 140 mg/dL (TA140). Using thresholds corresponding to 100% specificity in controls, differences between controls and stage 1 and stage 2 were obtained for glucose SD, TA140, TA160, and TA180. Elevations in any 2 of these parameters identified 12 (67%) with stage 2 and 9 (82%) of 11 participants who developed clinical diabetes within 1 year. However, there was marked variation within groups for all parameters and poor consistency observed in a second CGM performed in 18 participants. CONCLUSION This study demonstrated the potential of integrating CGM into staging and monitoring of early-stage type 1 diabetes. However, substantial improvement in the precision of CGM is required for its application in routine monitoring practices.
Collapse
Affiliation(s)
- Elisabeth Huber
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Tarini Singh
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Melanie Bunk
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Mayscha Hebel
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Kerstin Kick
- Forschergruppe Diabetes at Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich 80939, Germany
| | - Andreas Weiß
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Mirjam Kohls
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Melanie Köger
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Maja Hergl
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Jose Maria Zapardiel Gonzalo
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Ezio Bonifacio
- Faculty of Medicine, Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
- Forschergruppe Diabetes at Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich 80939, Germany
| |
Collapse
|
2
|
Phadnis A, Chawla D, Alex J, Jha P. Decoding MODY: exploring genetic roots and clinical pathways. Diabetol Int 2025; 16:257-271. [PMID: 40166432 PMCID: PMC11954780 DOI: 10.1007/s13340-025-00809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
Purpose Maturity-onset diabetes of the young (MODY) is a transformative factor in today's pattern of diabetes care. The definition of its genetic basis brings insight into the diabetes processes, opening up possibilities for its early detection through public health strategies and improvement in precision medicine. Current knowledge on MODY has been brought together in this review. Methods Extensive literature review on PubMed and Google Scholar databases was conducted. Studies encompassing (1) genetic underpinnings and their types, (2) the significance of its biomarkers, and (3) diagnostic techniques and treatment modalities were focused upon. Results The disease accounts for 1-2% of all cases of diabetes and is usually misdiagnosed as either Type 1 or Type 2 diabetes. Several genes are involved in the appropriate functioning of pancreatic β-cells and mutations in these genes lead to an impairment in glucose metabolism and insulin secretion. A mild degree of hyperglycaemia, but without ketosis, is typical of MODY, seen mostly in adolescents and young adults. Treatment varies, including sulfonylureas for HNF1A and HNF4A mutations, lifestyle management for GCK mutations, and emerging therapies like GLP1 receptor agonists. Conclusion Proper genetic diagnosis is cardinal to the best management of MODY. Genetic and clinical advances have been impressive in monogenic diabetes, but further research in novel therapies is needed to optimise outcomes with precision medicine.
Collapse
Affiliation(s)
- Anshuman Phadnis
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to Be University, Mumbai, Maharashtra India
| | - Diya Chawla
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to Be University, Mumbai, Maharashtra India
| | - Joanne Alex
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to Be University, Mumbai, Maharashtra India
| | - Pamela Jha
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to Be University, Mumbai, Maharashtra India
| |
Collapse
|
3
|
Mallone R, Bismuth E, Thivolet C, Benhamou PY, Hoffmeister N, Collet F, Nicolino M, Reynaud R, Beltrand J, SFD, SFEDP and AJD. Screening and care for preclinical stage 1-2 type 1 diabetes in first-degree relatives: French expert position statement. DIABETES & METABOLISM 2025; 51:101603. [PMID: 39675522 DOI: 10.1016/j.diabet.2024.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
The natural history of type 1 diabetes (T1D) evolves from stage 1 (islet autoimmunity with normoglycemia; ICD-10 diagnostic code E10.A1) to stage 2 (autoimmunity with dysglycemia; E10.A2) and subsequent clinical stage 3 (overt hyperglycemia), which is commonly the first time of referral. Autoantibody testing can diagnose T1D at its preclinical stages 1-2 and lead to earlier initiation of care, particularly for first-degree relatives of people living with T1D, who are at higher genetic risk. Preclinical T1D screening and monitoring aims to avoid inaugural ketoacidosis and prolong preservation of endogenous insulin secretion, thereby improving glycemic control and reducing long-term morbidity. Moreover, early management can help coping with T1D and correct modifiable risk factors (obesity, sedentary lifestyle). New treatments currently under clinical deployment or trials also offer the possibility of delaying clinical progression. All these arguments lead to the proposition of a national screening and care pathway open to interested first-degree relatives. This pathway represents a new expertise to acquire for healthcare professionals. By adapting international consensus guidance to the French specificities, the proposed screening strategy involves testing for ≥ 2 autoantibodies (among IAA, anti-GAD, anti-IA-2) in relatives aged 2-45 years. Negative screening (∼95 % of cases) should be repeated every 4 years until the age of 12. A management workflow is proposed for relatives screening positive (∼5 % of cases), with immuno-metabolic monitoring by autoantibody testing, OGTT, glycemia and/or HbA1c of variable frequency, depending on T1D stage, age, patient preference and available resources, as well as the definition of expert centers for preclinical T1D.
Collapse
Affiliation(s)
- Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France; Assistance Publique Hôpitaux de Paris, Université Paris Cité, Service de Diabétologie et Immunologie Clinique, Hôpital Cochin, Paris, France; Indiana Biosciences Research Institute, Indianapolis, IN, USA.
| | - Elise Bismuth
- Assistance Publique Hôpitaux de Paris, Université Paris Cité, Service d'Endocrinologie et Diabétologie Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Charles Thivolet
- Hospices Civils de Lyon, Université de Lyon, Centre du diabète DIAB-eCARE, Lyon, France
| | - Pierre-Yves Benhamou
- Université Grenoble Alpes, INSERM U1055, LBFA, Endocrinologie, CHU Grenoble Alpes, France
| | | | - François Collet
- CHU Lille, Psychiatrie de Liaison et psycho-oncologie, Lille, France
| | - Marc Nicolino
- Hospices Civils de Lyon, Université de Lyon, Service d'Endocrinologie et Diabétologie Pédiatrique, Lyon, France
| | - Rachel Reynaud
- Assistance Publique Hôpitaux de Marseille, Université Aix-Marseille, Service de Pédiatrie Multidisciplinaire, Hôpital de la Timone, Marseille, France
| | - Jacques Beltrand
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France; Assistance Publique Hôpitaux de Paris, Université Paris Cité, Service d'Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Necker Hospital, Paris, France
| | | |
Collapse
|
4
|
Hanna SJ, Bonami RH, Corrie B, Westley M, Posgai AL, Luning Prak ET, Breden F, Michels AW, Brusko TM. The Type 1 Diabetes T Cell Receptor and B Cell Receptor Repository in the AIRR Data Commons: a practical guide for access, use and contributions through the Type 1 Diabetes AIRR Consortium. Diabetologia 2025; 68:186-202. [PMID: 39467874 PMCID: PMC11663175 DOI: 10.1007/s00125-024-06298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024]
Abstract
Human molecular genetics has brought incredible insights into the variants that confer risk for the development of tissue-specific autoimmune diseases, including type 1 diabetes. The hallmark cell-mediated immune destruction that is characteristic of type 1 diabetes is closely linked with risk conferred by the HLA class II gene locus, in combination with a broad array of additional candidate genes influencing islet-resident beta cells within the pancreas, as well as function, phenotype and trafficking of immune cells to tissues. In addition to the well-studied germline SNP variants, there are critical contributions conferred by T cell receptor (TCR) and B cell receptor (BCR) genes that undergo somatic recombination to yield the Adaptive Immune Receptor Repertoire (AIRR) responsible for autoimmunity in type 1 diabetes. We therefore created the T1D TCR/BCR Repository (The Type 1 Diabetes T Cell Receptor and B Cell Receptor Repository) to study these highly variable and dynamic gene rearrangements. In addition to processed TCR and BCR sequences, the T1D TCR/BCR Repository includes detailed metadata (e.g. participant demographics, disease-associated parameters and tissue type). We introduce the Type 1 Diabetes AIRR Consortium goals and outline methods to use and deposit data to this comprehensive repository. Our ultimate goal is to facilitate research community access to rich, carefully annotated immune AIRR datasets to enable new scientific inquiry and insight into the natural history and pathogenesis of type 1 diabetes.
Collapse
MESH Headings
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/genetics
- Humans
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Autoimmunity
Collapse
Affiliation(s)
- Stephanie J Hanna
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| | - Rachel H Bonami
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
| | - Brian Corrie
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- iReceptor Genomic Services, Summerland, BC, Canada
| | | | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- iReceptor Genomic Services, Summerland, BC, Canada
| | - Aaron W Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Phillip M, Achenbach P, Addala A, Albanese-O'Neill A, Battelino T, Bell KJ, Besser REJ, Bonifacio E, Colhoun HM, Couper JJ, Craig ME, Danne T, de Beaufort C, Dovc K, Driscoll KA, Dutta S, Ebekozien O, Larsson HE, Feiten DJ, Frohnert BI, Gabbay RA, Gallagher MP, Greenbaum CJ, Griffin KJ, Hagopian W, Haller MJ, Hendrieckx C, Hendriks E, Holt RIG, Hughes L, Ismail HM, Jacobsen LM, Johnson SB, Kolb LE, Kordonouri O, Lange K, Lash RW, Lernmark Å, Libman I, Lundgren M, Maahs DM, Marcovecchio ML, Mathieu C, Miller KM, O'Donnell HK, Oron T, Patil SP, Pop-Busui R, Rewers MJ, Rich SS, Schatz DA, Schulman-Rosenbaum R, Simmons KM, Sims EK, Skyler JS, Smith LB, Speake C, Steck AK, Thomas NPB, Tonyushkina KN, Veijola R, Wentworth JM, Wherrett DK, Wood JR, Ziegler AG, DiMeglio LA. Consensus guidance for monitoring individuals with islet autoantibody-positive pre-stage 3 type 1 diabetes. Diabetologia 2024; 67:1731-1759. [PMID: 38910151 PMCID: PMC11410955 DOI: 10.1007/s00125-024-06205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Given the proven benefits of screening to reduce diabetic ketoacidosis (DKA) likelihood at the time of stage 3 type 1 diabetes diagnosis, and emerging availability of therapy to delay disease progression, type 1 diabetes screening programmes are being increasingly emphasised. Once broadly implemented, screening initiatives will identify significant numbers of islet autoantibody-positive (IAb+) children and adults who are at risk of (confirmed single IAb+) or living with (multiple IAb+) early-stage (stage 1 and stage 2) type 1 diabetes. These individuals will need monitoring for disease progression; much of this care will happen in non-specialised settings. To inform this monitoring, JDRF in conjunction with international experts and societies developed consensus guidance. Broad advice from this guidance includes the following: (1) partnerships should be fostered between endocrinologists and primary-care providers to care for people who are IAb+; (2) when people who are IAb+ are initially identified there is a need for confirmation using a second sample; (3) single IAb+ individuals are at lower risk of progression than multiple IAb+ individuals; (4) individuals with early-stage type 1 diabetes should have periodic medical monitoring, including regular assessments of glucose levels, regular education about symptoms of diabetes and DKA, and psychosocial support; (5) interested people with stage 2 type 1 diabetes should be offered trial participation or approved therapies; and (6) all health professionals involved in monitoring and care of individuals with type 1 diabetes have a responsibility to provide education. The guidance also emphasises significant unmet needs for further research on early-stage type 1 diabetes to increase the rigour of future recommendations and inform clinical care.
Collapse
Affiliation(s)
- Moshe Phillip
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Ananta Addala
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Kirstine J Bell
- Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rachel E J Besser
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre Human Genetics, Nuffield Department of Medicine Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of TU Dresden and Faculty of Medicine, Dresden, Germany
| | - Helen M Colhoun
- The Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Department of Public Health, NHS Fife, Kirkcaldy, UK
| | - Jennifer J Couper
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Division of Paediatrics, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Maria E Craig
- Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Discipline of Paediatrics & Child Health, School of Clinical Medicine, UNSW Medicine & Health, Sydney, NSW, Australia
| | | | - Carine de Beaufort
- International Society for Pediatric and Adolescent Diabetes (ISPAD), Berlin, Germany
- Diabetes & Endocrine Care Clinique Pédiatrique (DECCP), Clinique Pédiatrique/Centre Hospitalier (CH) de Luxembourg, Luxembourg City, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Klemen Dovc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Kimberly A Driscoll
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL, USA
| | | | | | - Helena Elding Larsson
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Skåne University Hospital, Malmö and Lund, Sweden
| | | | - Brigitte I Frohnert
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Carla J Greenbaum
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kurt J Griffin
- Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - William Hagopian
- Pacific Northwest Diabetes Research Institute, University of Washington, Seattle, WA, USA
| | - Michael J Haller
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL, USA
- Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christel Hendrieckx
- School of Psychology, Deakin University, Geelong, VIC, Australia
- The Australian Centre for Behavioural Research in Diabetes, Diabetes Victoria, Carlton, VIC, Australia
- Institute for Health Transformation, Deakin University, Geelong, VIC, Australia
| | - Emile Hendriks
- Department of Paediatrics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Heba M Ismail
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura M Jacobsen
- Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Suzanne B Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Leslie E Kolb
- Association of Diabetes Care & Education Specialists, Chicago, IL, USA
| | | | - Karin Lange
- Medical Psychology, Hannover Medical School, Hannover, Germany
| | | | - Åke Lernmark
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Ingrid Libman
- Division of Pediatric Endocrinology and Diabetes, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Markus Lundgren
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - David M Maahs
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - M Loredana Marcovecchio
- Department of Pediatrics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Chantal Mathieu
- Department of Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium
| | | | - Holly K O'Donnell
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tal Oron
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shivajirao P Patil
- Department of Family Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Marian J Rewers
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Rifka Schulman-Rosenbaum
- Division of Endocrinology, Long Island Jewish Medical Center, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, USA
| | - Kimber M Simmons
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily K Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laura B Smith
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cate Speake
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA, USA
| | - Andrea K Steck
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ksenia N Tonyushkina
- Division of Endocrinology and Diabetes, Baystate Children's Hospital and University of Massachusetts Chan Medical School - Baystate, Springfield, MA, USA
| | - Riitta Veijola
- Research Unit of Clinical Medicine, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - John M Wentworth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Diane K Wherrett
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jamie R Wood
- Department of Pediatric Endocrinology, Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Su YT, Chou YH, Chiu CF, Huang YC, Lo FS. Prevalence, diagnostic utility, and clinical characteristics of ZnT8 antibody in children with type 1 diabetes in Northern Taiwan. Pediatr Neonatol 2024; 65:395-398. [PMID: 38267283 DOI: 10.1016/j.pedneo.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/19/2023] [Accepted: 09/08/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The ZnT8 autoantibody is used to independently diagnose type 1 diabetes (T1D) and as a prediction factor in high-risk populations. This is the first report in Taiwan on the prevalence, diagnostic utility, and clinical characteristics of zinc transporter 8 autoantibody (ZnT8A) in children with T1D. METHODS We performed a retrospective analysis of 268 children (130 boys, 138 girls) newly diagnosed with T1D at three hospitals in North Taiwan from February 1994 to August 2021. RESULTS ZnT8A was detected in 117 patients (43.7 %). The combined diagnostic rate of the four antibodies, including glutamic acid decarboxylase autoantibody (GADA), islet antigen 2 autoantibody (IA2A), insulin autoantibody (IAA), and ZnT8A, can reach 86.19 % while that of the original three antibodies is 84.3 %. IA2A (64.9 %) showed the highest positive rate, followed by GADA (64.2 %), ZnT8A (43.7 %), and IAA (22.0 %). Of the 268 patients, five (1.9 %) were only ZnT8A+. All antibodies were positive in 19 (7.1 %) people, whereas 37 others (13.8 %) had all antibodies negative. ZnT8A has the strongest relationship with IA2A. 5 patients had ZnT8A positive only. 5/(37 + 5) (about 12 %) T1D patients were diagnosed by ZnT8A testing. CONCLUSIONS ZnT8A testing can diagnose up to 12 % more patients with T1D along with three other antibodies. Furthermore, since the ZnT8A titer decreased over time, it should be tested within six months of onset in Taiwanese patients with T1D.
Collapse
Affiliation(s)
- Ya-Ting Su
- Division of Pediatric Endocrinology and Genetics, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsuan Chou
- Division of Pediatric Endocrinology and Genetics, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiao-Fan Chiu
- Division of Pediatric Endocrinology and Genetics, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Chun Huang
- Division of Pediatric Endocrinology and Genetics, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Sung Lo
- Division of Pediatric Endocrinology and Genetics, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital, Taipei, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan.
| |
Collapse
|
7
|
Williams CL, Marzinotto I, Brigatti C, Gillespie KM, Lampasona V, Williams AJK, Long AE. A novel, high-performance, low-volume, rapid luciferase immunoprecipitation system (LIPS) assay to detect autoantibodies to zinc transporter 8. Clin Exp Immunol 2024; 215:215-224. [PMID: 38150393 PMCID: PMC10876106 DOI: 10.1093/cei/uxad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Zinc transporter 8 autoantibodies (ZnT8A) are thought to appear close to type 1 diabetes (T1D) onset and can identify high-risk multiple (≥2) autoantibody positive individuals. Radiobinding assays (RBA) are widely used for ZnT8A measurement but have limited sustainability. We sought to develop a novel, high-performance, non-radioactive luciferase immunoprecipitation system (LIPS) assay to replace RBA. METHODS A custom dual C-terminal ZnT8 (aa268-369; R325/W325) heterodimeric antigen, tagged with a NanoluciferaseTM (Nluc-ZnT8) reporter, and LIPS assay was developed. Assay performance was evaluated by testing sera from new onset T1D (n = 573), healthy schoolchildren (n = 521), and selected first-degree relatives (FDRs) from the Bart's Oxford family study (n = 617; 164 progressed to diabetes). RESULTS In new-onset T1D, ZnT8A levels by LIPS strongly correlated with RBA (Spearman's r = 0.89; P < 0.0001), and positivity was highly concordant (94.3%). At a high specificity (95%), LIPS and RBA had comparable assay performance [LIPS pROC-AUC(95) 0.032 (95% CI: 0.029-0.036); RBA pROC-AUC(95) 0.031 (95% CI: 0.028-0.034); P = 0.376]. Overall, FDRs found positive by LIPS or RBA had a comparable 20-year diabetes risk (52.6% and 59.7%, respectively), but LIPS positivity further stratified T1D risk in FDRs positive for at least one other islet autoantibody detected by RBA (P = 0.0346). CONCLUSION This novel, high-performance, cheaper, quicker, higher throughput, low blood volume Nluc-ZnT8 LIPS assay is a safe, non-radioactive alternative to RBA with enhanced sensitivity and ability to discriminate T1D progressors. This method offers an advanced approach to current strategies to screen the general population for T1D risk for immunotherapy trials and to reduce rates of diabetic ketoacidosis at diagnosis.
Collapse
Affiliation(s)
- Claire L Williams
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Ilaria Marzinotto
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Brigatti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kathleen M Gillespie
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alistair J K Williams
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Anna E Long
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| |
Collapse
|
8
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Yang L, Zhang X, Liu Q, Wen Y, Wang Q. Update on the ZNT8 epitope and its role in the pathogenesis of type 1 diabetes. Minerva Endocrinol (Torino) 2023; 48:447-458. [PMID: 38099391 DOI: 10.23736/s2724-6507.22.03723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Type 1 diabetes (T1D) is an organ-specific chronic autoimmune disease mediated by autoreactive T cells. ZnT8 is a pancreatic islet-specific zinc transporter that is mainly located in β cells. It not only participates in the synthesis, storage and secretion of insulin but also maintains the structural integrity of insulin. ZnT8 is the main autoantigen recognized by autoreactive CD8+ T cells in children and adults with T1D. This article summarizes the latest research results on the T lymphocyte epitope and B lymphocyte epitope of ZnT8 in the current literature. The structure and expression of ZnT8, the role of ZnT8 in insulin synthesis and its role in autoimmunity are reviewed. ZnT8 is the primary autoantigen of T1D and is specifically expressed in pancreatic islets. Thus, it is one of biomarkers for the diagnosis of T1D. It has broad prospects for further research on immunomodulators for the treatment of T1D.
Collapse
Affiliation(s)
- Liu Yang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuejiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qing Liu
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Wen
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China -
| |
Collapse
|
10
|
Lugar M, Eugster A, Achenbach P, von dem Berge T, Berner R, Besser REJ, Casteels K, Elding Larsson H, Gemulla G, Kordonouri O, Lindner A, Lundgren M, Müller D, Oltarzewski M, Rochtus A, Scholz M, Szypowska A, Todd JA, Ziegler AG, Bonifacio E. SARS-CoV-2 Infection and Development of Islet Autoimmunity in Early Childhood. JAMA 2023; 330:1151-1160. [PMID: 37682551 PMCID: PMC10523173 DOI: 10.1001/jama.2023.16348] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023]
Abstract
Importance The incidence of diabetes in childhood has increased during the COVID-19 pandemic. Elucidating whether SARS-CoV-2 infection is associated with islet autoimmunity, which precedes type 1 diabetes onset, is relevant to disease etiology and future childhood diabetes trends. Objective To determine whether there is a temporal relationship between SARS-CoV-2 infection and the development of islet autoimmunity in early childhood. Design, Setting, and Participants Between February 2018 and March 2021, the Primary Oral Insulin Trial, a European multicenter study, enrolled 1050 infants (517 girls) aged 4 to 7 months with a more than 10% genetically defined risk of type 1 diabetes. Children were followed up through September 2022. Exposure SARS-CoV-2 infection identified by SARS-CoV-2 antibody development in follow-up visits conducted at 2- to 6-month intervals until age 2 years from April 2018 through June 2022. Main Outcomes and Measures The development of multiple (≥2) islet autoantibodies in follow-up in consecutive samples or single islet antibodies and type 1 diabetes. Antibody incidence rates and risk of developing islet autoantibodies were analyzed. Results Consent was obtained for 885 (441 girls) children who were included in follow-up antibody measurements from age 6 months. SARS-CoV-2 antibodies developed in 170 children at a median age of 18 months (range, 6-25 months). Islet autoantibodies developed in 60 children. Six of these children tested positive for islet autoantibodies at the same time as they tested positive for SARS-CoV-2 antibodies and 6 at the visit after having tested positive for SARS-CoV-2 antibodies. The sex-, age-, and country-adjusted hazard ratio for developing islet autoantibodies when the children tested positive for SARS-CoV-2 antibodies was 3.5 (95% CI, 1.6-7.7; P = .002). The incidence rate of islet autoantibodies was 3.5 (95% CI, 2.2-5.1) per 100 person-years in children without SARS-CoV-2 antibodies and 7.8 (95% CI, 5.3-19.0) per 100 person-years in children with SARS-CoV-2 antibodies (P = .02). Islet autoantibody risk in children with SARS-CoV-2 antibodies was associated with younger age (<18 months) of SARS-CoV-2 antibody development (HR, 5.3; 95% CI, 1.5-18.3; P = .009). Conclusion and relevance In young children with high genetic risk of type 1 diabetes, SARS-CoV-2 infection was temporally associated with the development of islet autoantibodies.
Collapse
Affiliation(s)
- Marija Lugar
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Anne Eugster
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | | | - Reinhard Berner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Rachel E. J. Besser
- Department of Pediatrics, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, Oxford University, Oxford, United Kingdom
| | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Helena Elding Larsson
- Unit for Pediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Paediatrics, Skåne University Hospital, Malmö, Sweden
| | - Gita Gemulla
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Olga Kordonouri
- Kinder-und Jugendkrankenhaus AUF DER BULT, Hannover, Germany
| | - Annett Lindner
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Markus Lundgren
- Unit for Pediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - Denise Müller
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | | | - Anne Rochtus
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Marlon Scholz
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | | | - John A. Todd
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, Oxford University, Oxford, United Kingdom
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Ezio Bonifacio
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Germany
- Institute for Diabetes and Obesity, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
| |
Collapse
|
11
|
Hummel S, Carl J, Friedl N, Winkler C, Kick K, Stock J, Reinmüller F, Ramminger C, Schmidt J, Lwowsky D, Braig S, Dunstheimer D, Ermer U, Gerstl EM, Weber L, Nellen-Hellmuth N, Brämswig S, Sindichakis M, Tretter S, Lorrmann A, Bonifacio E, Ziegler AG, Achenbach P. Children diagnosed with presymptomatic type 1 diabetes through public health screening have milder diabetes at clinical manifestation. Diabetologia 2023; 66:1633-1642. [PMID: 37329450 PMCID: PMC10390633 DOI: 10.1007/s00125-023-05953-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
AIMS/HYPOTHESIS We aimed to determine whether disease severity was reduced at onset of clinical (stage 3) type 1 diabetes in children previously diagnosed with presymptomatic type 1 diabetes in a population-based screening programme for islet autoantibodies. METHODS Clinical data obtained at diagnosis of stage 3 type 1 diabetes were evaluated in 128 children previously diagnosed with presymptomatic early-stage type 1 diabetes between 2015 and 2022 in the Fr1da study and compared with data from 736 children diagnosed with incident type 1 diabetes between 2009 and 2018 at a similar age in the DiMelli study without prior screening. RESULTS At the diagnosis of stage 3 type 1 diabetes, children with a prior early-stage diagnosis had lower median HbA1c (51 mmol/mol vs 91 mmol/mol [6.8% vs 10.5%], p<0.001), lower median fasting glucose (5.3 mmol/l vs 7.2 mmol/l, p<0.05) and higher median fasting C-peptide (0.21 nmol/l vs 0.10 nmol/l, p<0.001) compared with children without previous early-stage diagnosis. Fewer participants with prior early-stage diagnosis had ketonuria (22.2% vs 78.4%, p<0.001) or required insulin treatment (72.3% vs 98.1%, p<0.05) and only 2.5% presented with diabetic ketoacidosis at diagnosis of stage 3 type 1 diabetes. Outcomes in children with a prior early-stage diagnosis were not associated with a family history of type 1 diabetes or diagnosis during the COVID-19 pandemic. A milder clinical presentation was observed in children who participated in education and monitoring after early-stage diagnosis. CONCLUSIONS/INTERPRETATION Diagnosis of presymptomatic type 1 diabetes in children followed by education and monitoring improved clinical presentation at the onset of stage 3 type 1 diabetes.
Collapse
Affiliation(s)
- Sandra Hummel
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany.
- Forschergruppe Diabetes at Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany.
| | - Johanna Carl
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Nadine Friedl
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
| | - Kerstin Kick
- Forschergruppe Diabetes at Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Joanna Stock
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Franziska Reinmüller
- Forschergruppe Diabetes at Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Claudia Ramminger
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Jennifer Schmidt
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
| | | | - Sonja Braig
- Pediatric Clinic of the Bayreuth Hospital, Bayreuth, Germany
| | | | - Uwe Ermer
- St Elisabeth Klinik, Neuburg an der Donau, Germany
| | | | | | | | | | | | | | | | - Ezio Bonifacio
- German Center for Diabetes Research (DZD), Munich, Germany
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of TU Dresden and Faculty of Medicine, Dresden, Germany
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
- Forschergruppe Diabetes at Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany.
- Forschergruppe Diabetes at Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany.
| |
Collapse
|
12
|
Kawasaki E. Anti-Islet Autoantibodies in Type 1 Diabetes. Int J Mol Sci 2023; 24:10012. [PMID: 37373160 PMCID: PMC10298549 DOI: 10.3390/ijms241210012] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Anti-islet autoantibodies serve as key markers in immune-mediated type 1 diabetes (T1D) and slowly progressive T1D (SPIDDM), also known as latent autoimmune diabetes in adults (LADA). Autoantibodies to insulin (IAA), glutamic acid decarboxylase (GADA), tyrosine phosphatase-like protein IA-2 (IA-2A), and zinc transporter 8 (ZnT8A) are currently employed in the diagnosis, pathological analysis, and prediction of T1D. GADA can also be detected in non-diabetic patients with autoimmune diseases other than T1D and may not necessarily reflect insulitis. Conversely, IA-2A and ZnT8A serve as surrogate markers of pancreatic β-cell destruction. A combinatorial analysis of these four anti-islet autoantibodies demonstrated that 93-96% of acute-onset T1D and SPIDDM cases were diagnosed as immune-mediated T1D, while the majority of fulminant T1D cases were autoantibody-negative. Evaluating the epitopes and immunoglobulin subclasses of anti-islet autoantibodies help distinguish between diabetes-associated and non-diabetes-associated autoantibodies and is valuable for predicting future insulin deficiency in SPIDDM (LADA) patients. Additionally, GADA in T1D patients with autoimmune thyroid disease reveals the polyclonal expansion of autoantibody epitopes and immunoglobulin subclasses. Recent advancements in anti-islet autoantibody assays include nonradioactive fluid-phase assays and the simultaneous determination of multiple biochemically defined autoantibodies. Developing a high-throughput assay for detecting epitope-specific or immunoglobulin isotype-specific autoantibodies will facilitate a more accurate diagnosis and prediction of autoimmune disorders. The aim of this review is to summarize what is known about the clinical significance of anti-islet autoantibodies in the pathogenesis and diagnosis of T1D.
Collapse
Affiliation(s)
- Eiji Kawasaki
- Diabetes Center, Shin-Koga Hospital, Kurume 830-8577, Japan
| |
Collapse
|
13
|
Weiss A, Zapardiel-Gonzalo J, Voss F, Jolink M, Stock J, Haupt F, Kick K, Welzhofer T, Heublein A, Winkler C, Achenbach P, Ziegler AG, Bonifacio E. Progression likelihood score identifies substages of presymptomatic type 1 diabetes in childhood public health screening. Diabetologia 2022; 65:2121-2131. [PMID: 36028774 PMCID: PMC9630406 DOI: 10.1007/s00125-022-05780-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/07/2022] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to develop strategies that identify children from the general population who have late-stage presymptomatic type 1 diabetes and may, therefore, benefit from immune intervention. METHODS We tested children from Bavaria, Germany, aged 1.75-10 years, enrolled in the Fr1da public health screening programme for islet autoantibodies (n=154,462). OGTT and HbA1c were assessed in children with multiple islet autoantibodies for diagnosis of presymptomatic stage 1 (normoglycaemia) or stage 2 (dysglycaemia) type 1 diabetes. Cox proportional hazards and penalised logistic regression of autoantibody, genetic, metabolic and demographic information were used to develop a progression likelihood score to identify children with stage 1 type 1 diabetes who progressed to stage 3 (clinical) type 1 diabetes within 2 years. RESULTS Of 447 children with multiple islet autoantibodies, 364 (81.4%) were staged. Undiagnosed stage 3 type 1 diabetes, presymptomatic stage 2, and stage 1 type 1 diabetes were detected in 41 (0.027% of screened children), 30 (0.019%) and 293 (0.19%) children, respectively. The 2 year risk for progression to stage 3 type 1 diabetes was 48% (95% CI 34, 58) in children with stage 2 type 1 diabetes (annualised risk, 28%). HbA1c, islet antigen-2 autoantibody positivity and titre, and the 90 min OGTT value were predictors of progression in children with stage 1 type 1 diabetes. The derived progression likelihood score identified substages corresponding to ≤90th centile (stage 1a, n=258) and >90th centile (stage 1b, n=29; 0.019%) of stage 1 children with a 4.1% (95% CI 1.4, 6.7) and 46% (95% CI 21, 63) 2 year risk of progressing to stage 3 type 1 diabetes, respectively. CONCLUSIONS/INTERPRETATION Public health screening for islet autoantibodies found 0.027% of children to have undiagnosed clinical type 1 diabetes and 0.038% to have undiagnosed presymptomatic stage 2 or stage 1b type 1 diabetes, with 50% risk to develop clinical type 1 diabetes within 2 years.
Collapse
Affiliation(s)
- Andreas Weiss
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Jose Zapardiel-Gonzalo
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Franziska Voss
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Manja Jolink
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Joanna Stock
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Florian Haupt
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
| | - Kerstin Kick
- Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany
| | - Tiziana Welzhofer
- Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany
| | - Anja Heublein
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
- Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany.
- Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany.
| | - Ezio Bonifacio
- German Center for Diabetes Research (DZD), Munich, Germany
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden, Faculty of Medicine, Dresden, Germany
| | | |
Collapse
|
14
|
Kim YK, Walters JA, Moss ND, Wells KL, Sheridan R, Miranda JG, Benninger RKP, Pyle LL, O'Brien RM, Sussel L, Davidson HW. Zinc transporter 8 haploinsufficiency protects against beta cell dysfunction in type 1 diabetes by increasing mitochondrial respiration. Mol Metab 2022; 66:101632. [PMID: 36347424 PMCID: PMC9672421 DOI: 10.1016/j.molmet.2022.101632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Zinc transporter 8 (ZnT8) is a major humoral target in human type 1 diabetes (T1D). Polymorphic variants of Slc30A8, which encodes ZnT8, are also associated with protection from type 2 diabetes (T2D). The current study examined whether ZnT8 might play a role beyond simply being a target of autoimmunity in the pathophysiology of T1D. METHODS The phenotypes of NOD mice with complete or partial global loss of ZnT8 were determined using a combination of disease incidence, histological, transcriptomic, and metabolic analyses. RESULTS Unexpectedly, while complete loss of ZnT8 accelerated spontaneous T1D, heterozygosity was partially protective. In vivo and in vitro studies of ZnT8 deficient NOD.SCID mice suggested that the accelerated disease was due to more rampant autoimmunity. Conversely, beta cells in heterozygous animals uniquely displayed increased mitochondrial fitness under mild proinflammatory conditions. CONCLUSIONS In pancreatic beta cells and immune cell populations, Zn2+ plays a key role as a regulator of redox signaling and as an independent secondary messenger. Importantly, Zn2+ also plays a major role in maintaining mitochondrial homeostasis. Our results suggest that regulating mitochondrial fitness by altering intra-islet zinc homeostasis may provide a novel mechanism to modulate T1D pathophysiology.
Collapse
Affiliation(s)
- Yong Kyung Kim
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jay A Walters
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicole D Moss
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; RNA Biology Initiative, Biochemistry and Molecular Genetics Department, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ryan Sheridan
- RNA Biology Initiative, Biochemistry and Molecular Genetics Department, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jose G Miranda
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard K P Benninger
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laura L Pyle
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; Director Child Health Research Biostatistics Core, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Howard W Davidson
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
15
|
Warncke K, Weiss A, Achenbach P, von dem Berge T, Berner R, Casteels K, Groele L, Hatzikotoulas K, Hommel A, Kordonouri O, Elding Larsson H, Lundgren M, Marcus BA, Snape MD, Szypowska A, Todd JA, Bonifacio E, Ziegler AG, for the GPPAD and POInT Study Groups. Elevations in blood glucose before and after the appearance of islet autoantibodies in children. J Clin Invest 2022; 132:e162123. [PMID: 36250461 PMCID: PMC9566912 DOI: 10.1172/jci162123] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023] Open
Abstract
The etiology of type 1 diabetes has polygenic and environmental determinants that lead to autoimmune responses against pancreatic β cells and promote β cell death. The autoimmunity is considered silent without metabolic consequences until late preclinical stages,and it remains unknown how early in the disease process the pancreatic β cell is compromised. To address this, we investigated preprandial nonfasting and postprandial blood glucose concentrations and islet autoantibody development in 1,050 children with high genetic risk of type 1 diabetes. Pre- and postprandial blood glucose decreased between 4 and 18 months of age and gradually increased until the final measurements at 3.6 years of age. Determinants of blood glucose trajectories in the first year of life included sex, body mass index, glucose-related genetic risk scores, and the type 1 diabetes-susceptible INS gene. Children who developed islet autoantibodies had early elevations in blood glucose concentrations. A sharp and sustained rise in postprandial blood glucose was observed at around 2 months prior to autoantibody seroconversion, with further increases in postprandial and, subsequently, preprandial values after seroconversion. These findings show heterogeneity in blood glucose control in infancy and early childhood and suggest that islet autoimmunity is concurrent or subsequent to insults on the pancreatic islets.
Collapse
Affiliation(s)
- Katharina Warncke
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
- Department of Pediatrics, Kinderklinik München Schwabing, School of Medicine, Technical University Munich, Munich, Germany
| | - Andreas Weiss
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | | | - Reinhard Berner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Lidia Groele
- Department of Paediatrics, The Children’s Clinical Hospital Józef Polikarp Brudziński, Warsaw, Poland
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Angela Hommel
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Germany
| | - Olga Kordonouri
- Kinder- und Jugendkrankenhaus auf der Bult, Hannover, Germany
| | - Helena Elding Larsson
- Unit for Pediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Paediatrics, Skåne University Hospital, Malmö, Sweden
| | - Markus Lundgren
- Unit for Pediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - Benjamin A. Marcus
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Matthew D. Snape
- Oxford Vaccine Group, University of Oxford Department of Paediatrics, and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - John A. Todd
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ezio Bonifacio
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Germany
| | - Anette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | | |
Collapse
|
16
|
HERV-K Envelope Protein Induces Long-Lasting Production of Autoantibodies in T1DM Patients at Onset in Comparison to ZNT8 Autoantibodies. Pathogens 2022; 11:pathogens11101188. [PMID: 36297245 PMCID: PMC9607583 DOI: 10.3390/pathogens11101188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Human endogenous retroviruses (HERVs) have been thought of as silent passengers within our genomes, but their reactivation has been linked with several autoimmune diseases, including type 1 diabetes (T1DM). In order to evaluate the potential role of HERVs, in addition to the recognized role of HERV-W, we focused on the debated role of the HERV-K family in T1DM. Therefore, we performed a serological evaluation of IgG antibodies against HERV-K Env epitope (HERV-K Env19−37) in comparison to an important β-cellular autoimmunity biomarker, ZnT8, from plasma samples of Sardinian children at the onset of T1DM, different T1DM groups (1−5 and 6−12 years since diagnosis), and healthy controls (HCs), by an indirect enzyme-linked immunosorbent assay (ELISA). A significant antibody response was observed against HERV-K Env19−37 (p < 0.0001) in T1DM patients compared to HCs, and significantly higher IgG responses were detected in the group at the onset compared to the other T1DM groups and HCs. Unlike the trend of the β-cellular autoimmunity autoantibodies, for HERV-K Env antibodies we observed positive values that persist over time up to 5 years since the onset of T1DM. Our results add new evidence about the presence of antibodies against HERV-K in T1DM, but further investigations are necessary to relate these results with the established role of HERVs, considering the contrasting results for HERV-K.
Collapse
|
17
|
Zielmann ML, Jolink M, Winkler C, Eugster A, Müller D, Scholz M, Ziegler AG, Bonifacio E. Autoantibodies against ATP4A are a feature of the abundant autoimmunity that develops in first-degree relatives of patients with type 1 diabetes. Pediatr Diabetes 2022; 23:714-720. [PMID: 35561070 DOI: 10.1111/pedi.13361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Type 1 diabetes is associated with autoantibodies to different organs that include the gut. The objective of the study was to determine the risk of developing gastric parietal cell autoimmunity in relation to other autoimmunity in individuals with a family history of type 1 diabetes. METHODS Autoantibodies to the parietal cell autoantigen, H+ /K+ ATPase subunit A (ATP4A) was measured in 2218 first-degree relatives of patients with type 1 diabetes, who were prospectively followed from birth for a median of 14.5 years. All were also tested regularly for the development of islet autoantibodies, transglutaminase autoantibodies, and thyroid peroxidase autoantibodies. RESULTS The cumulative risk to develop ATP4A autoantibodies was 8.1% (95% CI, 6.6-9.6) by age 20 years with a maximum incidence observed at age 2 years. Risk was increased in females (HR, 1.9; 95% CI, 1.3-2.8; p = 0.0004), relatives with the HLA DR4-DQ8/DR4-DQ8 genotype (HR, 3.4; 95% CI, 1.9-5.9; p < 0.0001) and in participants who also had thyroid peroxidase autoantibodies (HR, 3.7; 95% CI, 2.5-5.5; p < 0.0001). Risk for at least one of ATP4A-, islet-, transglutaminase-, or thyroid peroxidase-autoantibodies was 24.7% (95% CI, 22.6-26.7) by age 20 years and was 47.3% (95% CI, 41.3-53.3) in relatives who had an HLA DR3/DR4-DQ8, DR4-DQ8/DR4-DQ8, or DR3/DR3 genotype (p < 0.0001 vs. other genotypes). CONCLUSIONS Relatives of patients with type 1 diabetes who have risk genotypes are at very high risk for the development of autoimmunity against gastric and other organs.
Collapse
Affiliation(s)
- Marie-Luise Zielmann
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Manja Jolink
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany.,German Center for Diabetes Research (DZD), Munich, Germany.,Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany.,Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
| | - Anne Eugster
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Denise Müller
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Marlon Scholz
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany.,German Center for Diabetes Research (DZD), Munich, Germany.,Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany.,Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
| | - Ezio Bonifacio
- German Center for Diabetes Research (DZD), Munich, Germany.,Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Faculty of Medicine, Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden, Dresden, Germany
| |
Collapse
|
18
|
Zhang X, Dong Y, Liu D, Yang L, Xu J, Wang Q. Antigen-specific immunotherapies in type 1 diabetes. J Trace Elem Med Biol 2022; 73:127040. [PMID: 35868165 DOI: 10.1016/j.jtemb.2022.127040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/18/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by the destruction of pancreatic beta cells, in which immune system disorder plays an important role. Finding a cure for T1DM and restoring beta cell function has been a long-standing goal. Research has shown that immune regulation with pancreatic islet auto-antigens may be the most specific and safe treatment for T1DM. Immunological intervention using diabetogenic auto-antigens as a target can help identify T1DM in high-risk individuals by early screening of autoantibodies (AAbs) before the loss of pancreatic islet function and thus achieve primary prevention of T1DM. However, induction of self-tolerance in patients with pre-diabetes can also slow down the attack of autoimmunity, and achieve secondary prevention. Antigen-based immune therapy opens up new avenues for the prevention and treatment of T1DM. The zinc transporter 8 (ZnT8) protein, presents in the serum of pre-diabetic and diabetic patients, is immunogenic and can cause T1D autoimmune responses. ZnT8 has become a potential target of humoral autoimmunity; it is of great significance for the early diagnosis of T1D. ZnT8-specific CD8+ T cells can be detected in most T1DM patients, and play a key role in the progression of T1D. As an immunotherapy target, it can improve the dysfunction of beta cells in T1DM and provide new ideas for the treatment of T1D. In this review, we summarize research surrounding antigen-specific immunotherapies (ASI) over the past 10 years and the ZnT8 antigen as an autoimmune target to induce self-tolerance for T1DM.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Ying Dong
- Department of Radiation Oncology, Jilin Cancer Hospital, Changchun 130000, China
| | - Dianyuan Liu
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Liu Yang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Jiayi Xu
- School of Public Health, Jilin University, Changchun 130000, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
19
|
Thornton L. Zinc transporter 8 antibody-mediated type 1 diabetes mellitus: A case report. Nurse Pract 2022; 47:6-11. [PMID: 35877140 DOI: 10.1097/01.npr.0000841960.41027.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Lucy Thornton
- Lucy Thornton is an NP at Mayo Clinic Florida, Jacksonville, Fla
| |
Collapse
|
20
|
Achenbach P, Hippich M, Zapardiel-Gonzalo J, Karges B, Holl RW, Petrera A, Bonifacio E, Ziegler AG. A classification and regression tree analysis identifies subgroups of childhood type 1 diabetes. EBioMedicine 2022; 82:104118. [PMID: 35803018 PMCID: PMC9270253 DOI: 10.1016/j.ebiom.2022.104118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/22/2022] Open
Abstract
Background Diabetes in childhood and adolescence includes autoimmune and non-autoimmune forms with heterogeneity in clinical and biochemical presentations. An unresolved question is whether there are subtypes, endotypes, or theratypes within these forms of diabetes. Methods The multivariable classification and regression tree (CART) analysis method was used to identify subgroups of diabetes with differing residual C-peptide levels in patients with newly diagnosed diabetes before 20 years of age (n=1192). The robustness of the model was assessed in a confirmation and prognosis cohort (n=2722). Findings The analysis selected age, haemoglobin A1c (HbA1c), and body mass index (BMI) as split parameters that classified patients into seven islet autoantibody-positive and three autoantibody-negative groups. There were substantial differences in genetics, inflammatory markers, diabetes family history, lipids, 25-OH-Vitamin D3, insulin treatment, insulin sensitivity and insulin autoimmunity among the groups, and the method stratified patients with potentially different pathogeneses and prognoses. Interferon-ɣ and/or tumour necrosis factor inflammatory signatures were enriched in the youngest islet autoantibody-positive groups and in patients with the lowest C-peptide values, while higher BMI and type 2 diabetes characteristics were found in older patients. The prognostic relevance was demonstrated by persistent differences in HbA1c at 7 years median follow-up. Interpretation This multivariable analysis revealed subgroups of young patients with diabetes that have potential pathogenetic and therapeutic relevance. Funding The work was supported by funds from the German Federal Ministry of Education and Research (01KX1818; FKZ 01GI0805; DZD e.V.), the Innovative Medicine Initiative 2 Joint Undertaking INNODIA (grant agreement No. 115797), the German Robert Koch Institute, and the German Diabetes Association.
Collapse
Affiliation(s)
- Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany; German Center for Diabetes Research (DZD), Munich, Germany; Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany
| | - Markus Hippich
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany; German Center for Diabetes Research (DZD), Munich, Germany
| | - Jose Zapardiel-Gonzalo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Beate Karges
- Division of Endocrinology and Diabetes, Medical Faculty, RWTH Aachen University, D 52074 Aachen, Germany
| | - Reinhard W Holl
- German Center for Diabetes Research (DZD), Munich, Germany; Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, D 89081 Ulm, Germany
| | - Agnese Petrera
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Ezio Bonifacio
- German Center for Diabetes Research (DZD), Munich, Germany; DFG Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany; German Center for Diabetes Research (DZD), Munich, Germany; Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany.
| | | |
Collapse
|
21
|
Rudman N, Kifer D, Kaur S, Simunović V, Cvetko A, Pociot F, Morahan G, Gornik O. Children at onset of type 1 diabetes show altered N-glycosylation of plasma proteins and IgG. Diabetologia 2022; 65:1315-1327. [PMID: 35622127 PMCID: PMC9283363 DOI: 10.1007/s00125-022-05703-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Individual variation in plasma N-glycosylation has mainly been studied in the context of diabetes complications, and its role in type 1 diabetes onset is largely unknown. Our aims were to undertake a detailed characterisation of the plasma and IgG N-glycomes in patients with recent onset type 1 diabetes, and to evaluate their discriminative potential in risk assessment. METHODS In the first part of the study, plasma and IgG N-glycans were chromatographically analysed in a study population from the DanDiabKids registry, comprising 1917 children and adolescents (0.6-19.1 years) who were newly diagnosed with type 1 diabetes. A follow-up study compared the results for 188 of these participants with those for their 244 unaffected siblings. Correlation of N-glycan abundance with the levels and number of various autoantibodies (against IA-2, GAD, ZnT8R, ZnT8W), as well as with sex and age at diagnosis, were estimated by using general linear modelling. A disease predictive model was built using logistic mixed-model elastic net regression, and evaluated using a 10-fold cross-validation. RESULTS Our study showed that onset of type 1 diabetes was associated with an increase in the proportion of plasma and IgG high-mannose and bisecting GlcNAc structures, a decrease in monogalactosylation, and an increase in IgG disialylation. ZnT8R autoantibody levels were associated with higher IgG digalactosylated glycan with bisecting GlcNAc. Finally, an increase in the number of autoantibodies (which is a better predictor of progression to overt diabetes than the level of any individual antibody) was accompanied by a decrease in the proportions of some of the highly branched plasma N-glycans. Models including age, sex and N-glycans yielded notable discriminative power between children with type 1 diabetes and their healthy siblings, with AUCs of 0.915 and 0.869 for addition of plasma and IgG N-glycans, respectively. CONCLUSIONS/INTERPRETATION We defined N-glycan changes accompanying onset of type 1 diabetes, and developed a predictive model based on N-glycan profiles that could have valuable potential in risk assessment. Increasing the power of tests to identify individuals at risk of disease development would be a considerable asset for type 1 diabetes prevention trials.
Collapse
Affiliation(s)
- Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Vesna Simunović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ana Cvetko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics E, Herlev Hospital, Herlev, Denmark
| | - Grant Morahan
- Centre for Diabetes Research, The Harry Perkins Institute for Medical Research, Perth, WA, Australia.
- University of Melbourne, Parkville, VIC, Australia.
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
22
|
Rochmah N, Faizi M, Nova S, Setyoningrum RA, Basuki S, Endaryanto A. CTLA-4 CT-60 A/G and CTLA-4 1822 C/T Gene Polymorphisms in Indonesians with Type 1 Diabetes Mellitus. Appl Clin Genet 2022; 15:19-25. [PMID: 35515014 PMCID: PMC9064071 DOI: 10.2147/tacg.s359158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction CTLA-4 gene polymorphism plays an important role in children with type 1 diabetes mellitus (T1DM). However, data on this subject vary among different races and ethnics. Purpose To analyze CTLA-4 CT-60 A/G and CTLA-4 1822 C/T gene polymorphism among children with T1DM compared to control. Patients and Methods The CTLA-4 CT-60 A/G and CTLA-4 1822 C/T gene polymorphism in children with T1DM using polymerase chain reaction-restriction fragment length polymorphism in 25 T1DM and 25 controls. The inclusion criteria were patients regularly controlled at the Pediatric Endocrine Outpatient Clinic of Dr. Soetomo Hospital, aged 4-18 years and willing to join this study and the exclusion criteria were T1DM patients hospitalized in the pediatric intensive care unit. In the control group, the inclusion criteria were healthy children, aged 4-18 years and willing to join this study. The exclusion criteria included children with ongoing infection, history of other autoimmune diseases, allergies, or malignancy. Results The mean age was 12.48 years old, and the mean of T1DM onset was 9.28 years old. The CTLA-4 1822 T allele observed in 62% T1DM and 56% in control (p = 0.388, OR = 0.78, 95% CI = 0.44-1.37) and CTLA-4 CT-60 G allele observed in 52% T1DM and 58% in control (p = 0.393, OR = 1.27, 95% CI = 0.73-2.22). The C/T genotypes was significantly higher in control group (p = 0.045, OR = 3.27, 95% CI = 1.00-10.62). The A/G genotypes was commonly found in control group (p = 0.765, OR = 1.20, 95% CI = 0.37-3.86). The Javanese was the dominant ethnic group in our study. Conclusion The frequency of CTLA-4 CT-60 A/G polymorphism almost equivalent in T1DM and control group. However, CTLA-4 1822 C/T polymorphism was more prevalent in the control group; thus, this genotype may have a protective effect against T1DM.
Collapse
Affiliation(s)
- Nur Rochmah
- Faculty of Medicine, Department of Child Health, Dr. Soetomo General Hospital, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Muhammad Faizi
- Faculty of Medicine, Department of Child Health, Dr. Soetomo General Hospital, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Suhasta Nova
- Faculty of Medicine, Department of Child Health, Dr. Soetomo General Hospital, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Retno Asih Setyoningrum
- Faculty of Medicine, Department of Child Health, Dr. Soetomo General Hospital, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Sukmawati Basuki
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Anang Endaryanto
- Faculty of Medicine, Department of Child Health, Dr. Soetomo General Hospital, Universitas Airlangga, Surabaya, East Java, Indonesia
| |
Collapse
|
23
|
Firdous P, Nissar K, Masoodi SR, Ganai BA. Biomarkers: Tools for Discriminating MODY from Other Diabetic Subtypes. Indian J Endocrinol Metab 2022; 26:223-231. [PMID: 36248040 PMCID: PMC9555386 DOI: 10.4103/ijem.ijem_266_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/24/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Maturity Onset Diabetes of Young (MODY), characterized by the pancreatic b-cell dysfunction, the autosomal dominant mode of inheritance and early age of onset (often ≤25 years). It differs from normal type 1 and type 2 diabetes in that it occurs at a low rate of 1-5%, three-generational autosomal dominant patterns of inheritance and lacks typical diabetic features such as obesity. MODY patients can be managed by diet alone for many years, and sulfonylureas are also recommended to be very effective for managing glucose levels for more than 30 years. Despite rapid advancements in molecular disease diagnosis methods, MODY cases are frequently misdiagnosed as type 1 or type 2 due to overlapping clinical features, genetic testing expenses, and a lack of disease understanding. A timely and accurate diagnosis method is critical for disease management and its complications. An early diagnosis and differentiation of MODY at the clinical level could reduce the risk of inappropriate insulin or sulfonylurea treatment therapy and its associated side effects. We present a broader review to highlight the role and efficacy of biomarkers in MODY differentiation and patient selection for genetic testing analysis.
Collapse
Affiliation(s)
- Parveena Firdous
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
| | - Kamran Nissar
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir
| | | | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
| |
Collapse
|
24
|
Karl FM, Winkler C, Ziegler AG, Laxy M, Achenbach P. Costs of Public Health Screening of Children for Presymptomatic Type 1 Diabetes in Bavaria, Germany. Diabetes Care 2022; 45:837-844. [PMID: 35156126 DOI: 10.2337/dc21-1648] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/09/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We sought to evaluate costs associated with public health screening for presymptomatic type 1 diabetes in 90,632 children as part of the Fr1da study in Bavaria and in forecasts for standard care. RESEARCH DESIGN AND METHODS We report on resource use and direct costs for screening-related procedures in the Fr1da study coordination center and laboratory and in participating pediatric practices and local diabetes clinics. Data were obtained from Fr1da study documents, an online survey among pediatricians, and interviews and records of Fr1da staff members. Data were analyzed with tree models that mimic procedures during the screening process. Cost estimates are presented as they were observed in the Fr1da study and as they can be expected in standard care for various scenarios. RESULTS The costs per child screened in the Fr1da study were €28.17 (95% CI 19.96; 39.63) and the costs per child diagnosed with presymptomatic type 1 diabetes were €9,117 (6,460; 12,827). Assuming a prevalence of presymptomatic type 1 diabetes of 0.31%, as in the Fr1da study, the estimated costs in standard care in Germany would be €21.73 (16.76; 28.19) per screened child and €7,035 (5,426; 9,124) per diagnosed child. Of the projected screening costs, €12.25 would be the costs in the medical practice, €9.34 for coordination and laboratory, and €0.14 for local diabetes clinics. CONCLUSIONS This study provides information for the planning and implementation of screening tests for presymptomatic type 1 diabetes in the general public and for the analysis of the cost-effectiveness of targeted prevention strategies.
Collapse
Affiliation(s)
- Florian M Karl
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, Garching, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christiane Winkler
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Diabetes Research, Helmholtz Zentrum München, Munich-Neuherberg, Germany
| | - Anette-Gabriele Ziegler
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Diabetes Research, Helmholtz Zentrum München, Munich-Neuherberg, Germany.,Forschergruppe Diabetes, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Michael Laxy
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, Garching, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Faculty of Sport and Health Science, Technical University of Munich, Munich, Germany.,Global Diabetes Research Center, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Peter Achenbach
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Diabetes Research, Helmholtz Zentrum München, Munich-Neuherberg, Germany.,Forschergruppe Diabetes, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
25
|
Nelson HA, Joshi HR, Straseski JA. Mistaken Identity: The Role of Autoantibodies in Endocrine Disease. J Appl Lab Med 2022; 7:206-220. [PMID: 34996091 DOI: 10.1093/jalm/jfab128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Autoimmune endocrine diseases can be thought of as a case of mistaken identity. The immune system mistakenly attacks one's own cells, as if they were foreign, which typically results in endocrine gland hypofunction and inadequate hormone production. Type 1 diabetes mellitus and autoimmune thyroid disorders (Hashimoto and Graves diseases) are the most common autoimmune endocrine disorders, while conditions such as Addison disease are encountered less frequently. Autoantibody production can precede clinical presentation, and their measurement may aid verification of an autoimmune process and guide appropriate treatment modalities. CONTENT In this review, we discuss type 1 diabetes mellitus, autoimmune thyroid disorders, and Addison disease, emphasizing their associated autoantibodies and methods for clinical detection. We will also discuss efforts to standardize measurement of autoantibodies. CONCLUSIONS Autoimmune endocrine disease progression may take months to years and detection of associated autoantibodies may precede clinical onset of disease. Although detection of autoantibodies is not necessary for diagnosis, they may be useful to verify an autoimmune process.
Collapse
Affiliation(s)
- Heather A Nelson
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Hemant R Joshi
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Joely A Straseski
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| |
Collapse
|
26
|
Leão IS, Araujo DB, Barone B, Dantas JR, de Souza Nolasco da Silva MV, Soares MO, Kendler DB, Kupfer R, Zajdenverg L, Rodacki M. Ten years follow up of first degree relatives of type 1 diabetes patients: presence of autoimmune biomarkers and the progression to diabetes in a retrospective cohort. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:436-442. [PMID: 34283897 PMCID: PMC10522178 DOI: 10.20945/2359-3997000000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/15/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE The aim of the study was to assess the autoimmunity in first degrees relatives (FDR) of patients with type 1 diabetes (T1DM) and the progression to T1DM after 10 years of follow up in the Brazilian population. METHODS Non-diabetic FDR of T1DM patients were interviewed and blood was drawn for autoantibodies measurement (GADA, IA-2A, IAA, ZnT8A). Serum samples were analyzed by standard radioligand binding assays performed at the Federal University of Rio de Janeiro (GADA, IAA and IA2A), and at the Skäne University Hospital, Sweden (ZnT8A). The FDR were interviewed by phone after 10 years to determine if they had developed T1DM. Descriptive statistical analysis was performed and results were described as means and standard deviation (SD). RESULTS 81 individuals were analyzed. Thirteen subjects had positive autoantibodies associated with T1DM.10 were positive for 1 autoantibody and 3 subjects were positive for multiple autoantibodies (1 of them showed positivity for 2 autoantibodies - GADA, ZnT8A - and the other two were positive for 3 autoantibodies - GADA, IA2A, ZnT8A). The 3 subjects with multiple positive autoantibodies developed T1DM within 10 years. CONCLUSION In Brazilian FDR of T1DM patients, the positivity for multiple autoantibodies indicate a greater chance of progression to T1DM, similar to observed in Caucasians. ZnT8A was helpful in the risk assessment for T1DM development.
Collapse
Affiliation(s)
- Isabella Sued Leão
- Departamento de Nutrologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brasil,
| | - Débora Batista Araujo
- Departamento de Nutrologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brasil
| | - Bianca Barone
- Departamento de Nutrologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brasil
| | - Joana Rodrigues Dantas
- Departamento de Nutrologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brasil
| | | | - Marina Oliveira Soares
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brasil
| | - Daniel Barretto Kendler
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione (Iede), Rio de Janeiro, RJ, Brasil
| | - Rosane Kupfer
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione (Iede), Rio de Janeiro, RJ, Brasil
| | - Lenita Zajdenverg
- Departamento de Nutrologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brasil
| | - Melanie Rodacki
- Departamento de Nutrologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brasil
| |
Collapse
|
27
|
So M, Speake C, Steck AK, Lundgren M, Colman PG, Palmer JP, Herold KC, Greenbaum CJ. Advances in Type 1 Diabetes Prediction Using Islet Autoantibodies: Beyond a Simple Count. Endocr Rev 2021; 42:584-604. [PMID: 33881515 DOI: 10.1210/endrev/bnab013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Islet autoantibodies are key markers for the diagnosis of type 1 diabetes. Since their discovery, they have also been recognized for their potential to identify at-risk individuals prior to symptoms. To date, risk prediction using autoantibodies has been based on autoantibody number; it has been robustly shown that nearly all multiple-autoantibody-positive individuals will progress to clinical disease. However, longitudinal studies have demonstrated that the rate of progression among multiple-autoantibody-positive individuals is highly heterogenous. Accurate prediction of the most rapidly progressing individuals is crucial for efficient and informative clinical trials and for identification of candidates most likely to benefit from disease modification. This is increasingly relevant with the recent success in delaying clinical disease in presymptomatic subjects using immunotherapy, and as the field moves toward population-based screening. There have been many studies investigating islet autoantibody characteristics for their predictive potential, beyond a simple categorical count. Predictive features that have emerged include molecular specifics, such as epitope targets and affinity; longitudinal patterns, such as changes in titer and autoantibody reversion; and sequence-dependent risk profiles specific to the autoantibody and the subject's age. These insights are the outworking of decades of prospective cohort studies and international assay standardization efforts and will contribute to the granularity needed for more sensitive and specific preclinical staging. The aim of this review is to identify the dynamic and nuanced manifestations of autoantibodies in type 1 diabetes, and to highlight how these autoantibody features have the potential to improve study design of trials aiming to predict and prevent disease.
Collapse
Affiliation(s)
- Michelle So
- Diabetes Clinical Research Program, and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Cate Speake
- Diabetes Clinical Research Program, and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Andrea K Steck
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Markus Lundgren
- Department of Clinical Sciences Malmö, Lund University, Malmö 22200, Sweden
| | - Peter G Colman
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Jerry P Palmer
- VA Puget Sound Health Care System, Department of Medicine, University of Washington, Seattle, WA 98108, USA
| | - Kevan C Herold
- Department of Immunobiology, and Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| |
Collapse
|
28
|
Bauer W, Gyenesei A, Krętowski A. The Multifactorial Progression from the Islet Autoimmunity to Type 1 Diabetes in Children. Int J Mol Sci 2021; 22:7493. [PMID: 34299114 PMCID: PMC8305179 DOI: 10.3390/ijms22147493] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Type 1 Diabetes (T1D) results from autoimmune destruction of insulin producing pancreatic ß-cells. This disease, with a peak incidence in childhood, causes the lifelong need for insulin injections and necessitates careful monitoring of blood glucose levels. However, despite the current insulin therapies, it still shortens life expectancy due to complications affecting multiple organs. Recently, the incidence of T1D in childhood has increased by 3-5% per year in most developed Western countries. The heterogeneity of the disease process is supported by the findings of follow-up studies started early in infancy. The development of T1D is usually preceded by the appearance of autoantibodies targeted against antigens expressed in the pancreatic islets. The risk of T1D increases significantly with an increasing number of positive autoantibodies. The order of autoantibody appearance affects the disease risk. Genetic susceptibility, mainly defined by the human leukocyte antigen (HLA) class II gene region and environmental factors, is important in the development of islet autoimmunity and T1D. Environmental factors, mainly those linked to the changes in the gut microbiome as well as several pathogens, especially viruses, and diet are key modulators of T1D. The aim of this paper is to expand the understanding of the aetiology and pathogenesis of T1D in childhood by detailed description and comparison of factors affecting the progression from the islet autoimmunity to T1D in children.
Collapse
Affiliation(s)
- Witold Bauer
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
| | - Attila Gyenesei
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
- Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland
| |
Collapse
|
29
|
Assfalg R, Knoop J, Hoffman KL, Pfirrmann M, Zapardiel-Gonzalo JM, Hofelich A, Eugster A, Weigelt M, Matzke C, Reinhardt J, Fuchs Y, Bunk M, Weiss A, Hippich M, Halfter K, Hauck SM, Hasford J, Petrosino JF, Achenbach P, Bonifacio E, Ziegler AG. Oral insulin immunotherapy in children at risk for type 1 diabetes in a randomised controlled trial. Diabetologia 2021; 64:1079-1092. [PMID: 33515070 PMCID: PMC8012335 DOI: 10.1007/s00125-020-05376-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Oral administration of antigen can induce immunological tolerance. Insulin is a key autoantigen in childhood type 1 diabetes. Here, oral insulin was given as antigen-specific immunotherapy before the onset of autoimmunity in children from age 6 months to assess its safety and immune response actions on immunity and the gut microbiome. METHODS A phase I/II randomised controlled trial was performed in a single clinical study centre in Germany. Participants were 44 islet autoantibody-negative children aged 6 months to 2.99 years who had a first-degree relative with type 1 diabetes and a susceptible HLA DR4-DQ8-containing genotype. Children were randomised 1:1 to daily oral insulin (7.5 mg with dose escalation to 67.5 mg) or placebo for 12 months using a web-based computer system. The primary outcome was immune efficacy pre-specified as induction of antibody or T cell responses to insulin and measured in a central treatment-blinded laboratory. RESULTS Randomisation was performed in 44 children. One child in the placebo group was withdrawn after the first study visit and data from 22 insulin-treated and 21 placebo-treated children were analysed. Oral insulin was well tolerated with no changes in metabolic variables. Immune responses to insulin were observed in children who received both insulin (54.5%) and placebo (66.7%), and the trial did not demonstrate an effect on its primary outcome (p = 0.54). In exploratory analyses, there was preliminary evidence that the immune response and gut microbiome were modified by the INS genotype Among children with the type 1 diabetes-susceptible INS genotype (n = 22), antibody responses to insulin were more frequent in insulin-treated (72.7%) as compared with placebo-treated children (18.2%; p = 0.03). T cell responses to insulin were modified by treatment-independent inflammatory episodes. CONCLUSIONS/INTERPRETATION The study demonstrated that oral insulin immunotherapy in young genetically at-risk children was safe, but was not associated with an immune response as predefined in the trial primary outcome. Exploratory analyses suggested that antibody responses to oral insulin may occur in children with a susceptible INS genotype, and that inflammatory episodes may promote the activation of insulin-responsive T cells. TRIAL REGISTRATION Clinicaltrials.gov NCT02547519 FUNDING: The main funding source was the German Center for Diabetes Research (DZD e.V.).
Collapse
Affiliation(s)
- Robin Assfalg
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Jan Knoop
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Markus Pfirrmann
- Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jose Maria Zapardiel-Gonzalo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Anna Hofelich
- Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany
| | - Anne Eugster
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Marc Weigelt
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Claudia Matzke
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Julia Reinhardt
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Yannick Fuchs
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Melanie Bunk
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Andreas Weiss
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Markus Hippich
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Kathrin Halfter
- Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Jörg Hasford
- Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Ezio Bonifacio
- German Center for Diabetes Research (DZD), Munich, Germany
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich-Neuherberg, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.
- Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
| |
Collapse
|
30
|
Natural Autoimmunity to the Thyroid Hormone Monocarboxylate Transporters MCT8 and MCT10. Biomedicines 2021; 9:biomedicines9050496. [PMID: 33946552 PMCID: PMC8147215 DOI: 10.3390/biomedicines9050496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
The monocarboxylate transporters 8 (MCT8) and 10 (MCT10) are important for thyroid hormone (TH) uptake and signaling. Reduced TH activity is associated with impaired development, weight gain and discomfort. We hypothesized that autoantibodies (aAb) to MCT8 or MCT10 are prevalent in thyroid disease and obesity. Analytical tests for MCT8-aAb and MCT10-aAb were developed and characterized with commercial antiserum. Serum samples from healthy controls, thyroid patients and young overweight subjects were analyzed, and prevalence of the aAb was compared. MCT8-aAb were additionally tested for biological effects on thyroid hormone uptake in cell culture. Positive MCT8-aAb and MCT10-aAb were detected in all three clinical cohorts analyzed. MCT8-aAb were most prevalent in thyroid patients (11.9%) as compared to healthy controls (3.8%) and overweight adolescents (4.2%). MCT8-aAb positive serum reduced T4 uptake in cell culture in comparison to MCT8-aAb negative control serum. Prevalence of MCT10-aAb was highest in the group of thyroid patients as compared to healthy subjects or overweight adolescents (9.0% versus 4.5% and 6.3%, respectively). We conclude that MCT8 and MCT10 represent autoantigens in humans, and that MCT8-aAb may interfere with regular TH uptake and signaling. The increased prevalence of MCT8-aAb and MCT10-aAb in thyroid disease suggests that their presence may be of pathophysiological relevance. This hypothesis deserves an analysis in large prospective studies.
Collapse
|
31
|
Barragán-Álvarez CP, Padilla-Camberos E, Díaz NF, Cota-Coronado A, Hernández-Jiménez C, Bravo-Reyna CC, Díaz-Martínez NE. Loss of Znt8 function in diabetes mellitus: risk or benefit? Mol Cell Biochem 2021; 476:2703-2718. [PMID: 33666829 DOI: 10.1007/s11010-021-04114-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
The zinc transporter 8 (ZnT8) plays an essential role in zinc homeostasis inside pancreatic β cells, its function is related to the stabilization of insulin hexameric form. Genome-wide association studies (GWAS) have established a positive and negative relationship of ZnT8 variants with type 2 diabetes mellitus (T2DM), exposing a dual and controversial role. The first hypotheses about its role in T2DM indicated a higher risk of developing T2DM for loss of function; nevertheless, recent GWAS of ZnT8 loss-of-function mutations in humans have shown protection against T2DM. With regard to the ZnT8 role in T2DM, most studies have focused on rodent models and common high-risk variants; however, considerable differences between human and rodent models have been found and the new approaches have included lower-frequency variants as a tool to clarify gene functions, allowing a better understanding of the disease and offering possible therapeutic targets. Therefore, this review will discuss the physiological effects of the ZnT8 variants associated with a major and lower risk of T2DM, emphasizing the low- and rare-frequency variants.
Collapse
Affiliation(s)
- Carla P Barragán-Álvarez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Eduardo Padilla-Camberos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Nestor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Agustín Cota-Coronado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Claudia Hernández-Jiménez
- Departamento de Cirugía Experimental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Carlos C Bravo-Reyna
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nestor E Díaz-Martínez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico.
| |
Collapse
|
32
|
Baumann K, Kesselring K, Lampasona V, Walschus U, Kerner W, Wassmuth R, Schlosser M. Autoantibodies against zinc transporter 8 further stratify the autoantibody-defined risk for type 1 diabetes in a general population of schoolchildren and have distinctive isoform binding patterns in different forms of autoimmune diabetes: results from the Karlsburg Type 1 Diabetes Risk Study. Diabet Med 2021; 38:e14389. [PMID: 32799407 DOI: 10.1111/dme.14389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 11/26/2022]
Abstract
AIMS To evaluate the diagnostic relevance of autoantibodies against zinc transporter 8 (ZnT8) in schoolchildren from the general population as well as in people with autoimmune diabetes. METHODS A total of 137 schoolchildren positive for at least one of the three major diabetes-associated autoantibodies, without diabetes heredity or preselection on HLA typing, from the Karlsburg Type 1 Diabetes Risk Study, as well as 102 people at type 1 diabetes onset, 88 people with latent autoimmune diabetes in adults and 119 people with type 2 diabetes, were analysed for different ZnT8 autoantibody variants. RESULTS Zinc transporter 8 autoantibody positivity was found in 18% of autoantibody-positive schoolchildren, with a noticeable association with other autoantibodies associated with type 1 diabetes and disease progression. Furthermore, ZnT8 autoantibody positivity was associated with diabetes progression in schoolchildren positive for autoantibodies against insulinoma-associated antigen-2 (IA-2) and, importantly, in seven IA-2 autoantibody-negative schoolchildren. Additionally, ZnT8 autoantibodies were found in 56% of people with type 1 diabetes, predominantly directed against all three ZnT8 variants and comparable to schoolchildren with multiple autoantibodies. In contrast, ZnT8 autoantibodies were detected in 10% of people with latent autoimmune diabetes in adults, none of them with reactivity to all three isoforms. CONCLUSION Zinc transporter 8 autoantibodies are useful markers for prediction of type 1 diabetes in a general population, further stratifying the risk of progression in autoantibody-positive children. ZnT8 autoantibodies are also important markers in adult-onset diabetes, with a completely different reaction pattern in type 1 diabetes in comparison to latent autoimmune diabetes in adults, and may therefore help to differentiate between the two forms.
Collapse
Affiliation(s)
- K Baumann
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - K Kesselring
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - V Lampasona
- Diabetes Research Institute (SR-DRI), IRCCS Ospedale San Raffaele, Milan, Italy
| | - U Walschus
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - W Kerner
- Center of Diabetes and Metabolic Disorders, Karlsburg, Germany
| | - R Wassmuth
- Department of Quality Management, University Medical Center Duesseldorf, Duesseldorf, Germany
| | - M Schlosser
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| |
Collapse
|
33
|
Giampaoli O, Conta G, Calvani R, Miccheli A. Can the FUT2 Non-secretor Phenotype Associated With Gut Microbiota Increase the Children Susceptibility for Type 1 Diabetes? A Mini Review. Front Nutr 2020; 7:606171. [PMID: 33425974 PMCID: PMC7785815 DOI: 10.3389/fnut.2020.606171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The global toll of type 1 diabetes (T1D) has steadily increased over the last decades. It is now widely acknowledged that T1D pathophysiology is more complex than expected. Indeed, a multifaceted interplay between genetic, metabolic, inflammatory and environmental factors exists that leads to heterogeneous clinical manifestations across individuals. Children with non-secretor phenotype and those affected by T1D share low abundance of bifidobacteria, low content of short-chain fatty acids, intestinal phosphatase alkaline and a high incidence of inflammatory bowel diseases. In this context, host-gut microbiota dyad may represent a relevant contributor to T1D development and progression due to its crucial role in shaping host immunity and susceptibility to autoimmune conditions. The FUT2 gene is responsible for the composition and functional properties of glycans in mucosal tissues and bodily secretions, including human milk. FUT2 polymorphisms may profoundly influence gut microbiota composition and host susceptibility to viral infections and chronic inflammatory disease. In this minireview, the possible interplay between mothers' phenotype, host FUT2 genetic background and gut microbiota composition will be discussed in perspective of the T1D onset. The study of FUT2-gut microbiota interaction may add a new piece on the puzzling T1D etiology and unveil novel targets of intervention to contrast T1D development and progression. Dietary interventions, including the intake of α-(1, 2)-fucosyl oligosaccharides in formula milk and the use of specific prebiotics and probiotics, could be hypothesized.
Collapse
Affiliation(s)
- Ottavia Giampaoli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Giorgia Conta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Alfredo Miccheli
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy.,Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
34
|
Pöllänen PM, Ryhänen SJ, Toppari J, Ilonen J, Vähäsalo P, Veijola R, Siljander H, Knip M. Dynamics of Islet Autoantibodies During Prospective Follow-Up From Birth to Age 15 Years. J Clin Endocrinol Metab 2020; 105:5901133. [PMID: 32882033 PMCID: PMC7686032 DOI: 10.1210/clinem/dgaa624] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/31/2020] [Indexed: 01/23/2023]
Abstract
CONTEXT We set out to characterize the dynamics of islet autoantibodies over the first 15 years of life in children carrying genetic susceptibility to type 1 diabetes (T1D). We also assessed systematically the role of zinc transporter 8 autoantibodies (ZnT8A) in this context. DESIGN HLA-predisposed children (N = 1006, 53.0% boys) recruited from the general population during 1994 to 1997 were observed from birth over a median time of 14.9 years (range, 1.9-15.5 years) for ZnT8A, islet cell (ICA), insulin (IAA), glutamate decarboxylase (GADA), and islet antigen-2 (IA-2A) antibodies, and for T1D. RESULTS By age 15.5 years, 35 (3.5%) children had progressed to T1D. Islet autoimmunity developed in 275 (27.3%) children at a median age of 7.4 years (range, 0.3-15.1 years). The ICA seroconversion rate increased toward puberty, but the biochemically defined autoantibodies peaked at a young age. Before age 2 years, ZnT8A and IAA appeared commonly as the first autoantibody, but in the preschool years IA-2A- and especially GADA-initiated autoimmunity increased. Thereafter, GADA-positive seroconversions continued to appear steadily until ages 10 to 15 years. Inverse IAA seroconversions occurred frequently (49.3% turned negative) and marked a prolonged delay from seroconversion to diagnosis compared to persistent IAA (8.2 vs 3.4 years; P = .01). CONCLUSIONS In HLA-predisposed children, the primary autoantibody is characteristic of age and might reflect the events driving the disease process toward clinical T1D. Autoantibody persistence affects the risk of T1D. These findings provide a framework for identifying disease subpopulations and for personalizing the efforts to predict and prevent T1D.
Collapse
Affiliation(s)
- Petra M Pöllänen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Samppa J Ryhänen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, and Institute of Biomedicine and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Paula Vähäsalo
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Heli Siljander
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Correspondence and Reprint Requests: Mikael Knip, MD, PhD, Children’s Hospital, University of Helsinki, P.O. Box 22 (Stenbäckinkatu 11), FI-00014 Helsinki, Finland. E-mail:
| |
Collapse
|
35
|
Cortez FDJ, Gebhart D, Robinson PV, Seftel D, Pourmandi N, Owyoung J, Bertozzi CR, Wilson DM, Maahs DM, Buckingham BA, Mills JR, Roforth MM, Pittock SJ, McKeon A, Page K, Wolf WA, Sanda S, Speake C, Greenbaum CJ, Tsai CT. Sensitive detection of multiple islet autoantibodies in type 1 diabetes using small sample volumes by agglutination-PCR. PLoS One 2020; 15:e0242049. [PMID: 33186361 PMCID: PMC7665791 DOI: 10.1371/journal.pone.0242049] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Islet autoantibodies are predominantly measured by radioassay to facilitate risk assessment and diagnosis of type 1 diabetes. However, the reliance on radioactive components, large sample volumes and limited throughput renders radioassay testing costly and challenging. We developed a multiplex analysis platform based on antibody detection by agglutination-PCR (ADAP) for the sample-sparing measurement of GAD, IA-2 and insulin autoantibodies/antibodies in 1 μL serum. The assay was developed and validated in 7 distinct cohorts (n = 858) with the majority of the cohorts blinded prior to analysis. Measurements from the ADAP assay were compared to radioassay to determine correlation, concordance, agreement, clinical sensitivity and specificity. The average overall agreement between ADAP and radioassay was above 91%. The average clinical sensitivity and specificity were 96% and 97%. In the IASP 2018 workshop, ADAP achieved the highest sensitivity of all assays tested at 95% specificity (AS95) rating for GAD and IA-2 autoantibodies and top-tier performance for insulin autoantibodies. Furthermore, ADAP correctly identified 95% high-risk individuals with two or more autoantibodies by radioassay amongst 39 relatives of T1D patients tested. In conclusion, the new ADAP assay can reliably detect the three cardinal islet autoantibodies/antibodies in 1μL serum with high sensitivity. This novel assay may improve pediatric testing compliance and facilitate easier community-wide screening for islet autoantibodies.
Collapse
Affiliation(s)
| | - David Gebhart
- Enable Biosciences Inc., South San Francisco, CA, United States of America
| | - Peter V. Robinson
- Enable Biosciences Inc., South San Francisco, CA, United States of America
| | - David Seftel
- Enable Biosciences Inc., South San Francisco, CA, United States of America
| | - Narges Pourmandi
- Enable Biosciences Inc., South San Francisco, CA, United States of America
| | - Jordan Owyoung
- Enable Biosciences Inc., South San Francisco, CA, United States of America
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, United States of America
- Stanford Diabetes Research Center, Stanford, CA, United States of America
| | - Darrell M. Wilson
- Stanford Diabetes Research Center, Stanford, CA, United States of America
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - David M. Maahs
- Stanford Diabetes Research Center, Stanford, CA, United States of America
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Bruce A. Buckingham
- Stanford Diabetes Research Center, Stanford, CA, United States of America
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - John R. Mills
- Department of Laboratory Medicine/Pathology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
- Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
| | - Matthew M. Roforth
- Department of Laboratory Medicine/Pathology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
- Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
| | - Sean J. Pittock
- Department of Laboratory Medicine/Pathology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
- Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
| | - Andrew McKeon
- Department of Laboratory Medicine/Pathology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
- Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
| | - Kara Page
- T1D Exchange, Boston, MA, United States of America
| | | | - Srinath Sanda
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States of America
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA, United States of America
| | - Carla J. Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA, United States of America
| | - Cheng-ting Tsai
- Enable Biosciences Inc., South San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
36
|
Hollstein T, Schulte DM, Schulz J, Glück A, Ziegler AG, Bonifacio E, Wendorff M, Franke A, Schreiber S, Bornstein SR, Laudes M. Autoantibody-negative insulin-dependent diabetes mellitus after SARS-CoV-2 infection: a case report. Nat Metab 2020; 2:1021-1024. [PMID: 32879473 DOI: 10.1038/s42255-020-00281-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
Abstract
Here we report a case where the manifestations of insulin-dependent diabetes occurred following SARS-CoV-2 infection in a young individual in the absence of autoantibodies typical for type 1 diabetes mellitus. Specifically, a 19-year-old white male presented at our emergency department with diabetic ketoacidosis, C-peptide level of 0.62 µg l-1, blood glucose concentration of 30.6 mmol l-1 (552 mg dl-1) and haemoglobin A1c of 16.8%. The patient´s case history revealed probable COVID-19 infection 5-7 weeks before admission, based on a positive test for antibodies against SARS-CoV-2 proteins as determined by enzyme-linked immunosorbent assay. Interestingly, the patient carried a human leukocyte antigen genotype (HLA DR1-DR3-DQ2) considered to provide only a slightly elevated risk of developing autoimmune type 1 diabetes mellitus. However, as noted, no serum autoantibodies were observed against islet cells, glutamic acid decarboxylase, tyrosine phosphatase, insulin and zinc-transporter 8. Although our report cannot fully establish causality between COVID-19 and the development of diabetes in this patient, considering that SARS-CoV-2 entry receptors, including angiotensin-converting enzyme 2, are expressed on pancreatic β-cells and, given the circumstances of this case, we suggest that SARS-CoV-2 infection, or COVID-19, might negatively affect pancreatic function, perhaps through direct cytolytic effects of the virus on β-cells.
Collapse
Affiliation(s)
- Tim Hollstein
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Dominik M Schulte
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Juliane Schulz
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Andreas Glück
- Division of Critical Care, Department of Internal Medicine I, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Anette G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden and Paul Langerhans Institute Dresden, German Center for Diabetes Research, Dresden University of Technology, Dresden, Germany
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Stefan Schreiber
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Medical Centre Schleswig-Holstein, Kiel, Germany
- Division of Critical Care, Department of Internal Medicine I, University Medical Centre Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Diabetes, School of Life Course Science and Medicine, King's College London, London, UK
| | - Matthias Laudes
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Medical Centre Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
37
|
Vehik K, Bonifacio E, Lernmark Å, Yu L, Williams A, Schatz D, Rewers M, She JX, Toppari J, Hagopian W, Akolkar B, Ziegler AG, Krischer JP. Hierarchical Order of Distinct Autoantibody Spreading and Progression to Type 1 Diabetes in the TEDDY Study. Diabetes Care 2020; 43:2066-2073. [PMID: 32641373 PMCID: PMC7440899 DOI: 10.2337/dc19-2547] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/13/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The first-appearing β-cell autoantibody has been shown to influence risk of type 1 diabetes (T1D). Here, we assessed the risk of autoantibody spreading to the second-appearing autoantibody and further progression to clinical disease in The Environmental Determinants of Diabetes in the Young (TEDDY) study. RESEARCH DESIGN AND METHODS Eligible children with increased HLA-DR-DQ genetic risk for T1D were followed quarterly from age 3 months up to 15 years for development of a single first-appearing autoantibody (GAD antibody [GADA], insulin autoantibody [IAA], or insulinoma antigen-2 autoantibody [IA-2A]) and subsequent development of a single second-appearing autoantibody and progression to T1D. Autoantibody positivity was defined as positivity for a specific autoantibody at two consecutive visits confirmed in two laboratories. Zinc transporter 8 autoantibody (ZnT8A) was measured in children who developed another autoantibody. RESULTS There were 608 children who developed a single first-appearing autoantibody (IAA, n = 282, or GADA, n = 326) with a median follow-up of 12.5 years from birth. The risk of a second-appearing autoantibody was independent of GADA versus IAA as a first-appearing autoantibody (adjusted hazard ratio [HR] 1.12; 95% CI 0.88-1.42; P = 0.36). Second-appearing GADA, IAA, IA-2A, or ZnT8A conferred an increased risk of T1D compared with children who remained positive for a single autoantibody, e.g., IAA or GADA second (adjusted HR 6.44; 95% CI 3.78-10.98), IA-2A second (adjusted HR 16.33; 95% CI 9.10-29.29; P < 0.0001), or ZnT8A second (adjusted HR 5.35; 95% CI 2.61-10.95; P < 0.0001). In children who developed a distinct second autoantibody, IA-2A (adjusted HR 3.08; 95% CI 2.04-4.65; P < 0.0001) conferred a greater risk of progression to T1D as compared with GADA or IAA. Additionally, both a younger initial age at seroconversion and shorter time to the development of the second-appearing autoantibody increased the risk for T1D. CONCLUSIONS The hierarchical order of distinct autoantibody spreading was independent of the first-appearing autoantibody type and was age-dependent and augmented the risk of progression to T1D.
Collapse
Affiliation(s)
- Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ezio Bonifacio
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- DFG Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö, Sweden
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | - Alistair Williams
- Diabetes and Metabolism, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Desmond Schatz
- Diabetes Center of Excellence, University of Florida, Gainesville, FL
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | | | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Anette G Ziegler
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
38
|
Bhatty A, Baig S, Fawwad A, Rubab ZE, Shahid MA, Waris N. Association of Zinc Transporter-8 Autoantibody (ZnT8A) with Type 1 Diabetes Mellitus. Cureus 2020; 12:e7263. [PMID: 32292675 PMCID: PMC7153815 DOI: 10.7759/cureus.7263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Zinc transporter 8 autoantibody (ZnT8A), discovered through bioinformatics, is identified as another major biomarker for type 1 diabetes mellitus (T1DM), expanding the panel of diagnostic autoantibodies. The absence of standard autoantibodies in T1DM patients and the presence of ZnT8A in individuals before disease development has led the researchers to evaluate ZnT8A to gather information about the frequency and its association. Therefore, we aim to find out the concentration of ZnT8A and its association with T1DM. METHODS A case-control study with 25 type 1 diabetes mellitus patients and 25 first-degree relatives of cases as controls was conducted at Ziauddin University in collaboration with the Baqai Institute of Diabetology and Endocrinology (BIDE), Karachi. Demographic data were collected from patients on a standard questionnaire. Blood samples were collected, after approval from Ziauddin Ethics Review Committee, from subjects and serum was separated to estimate ZnT8A by using sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS The mean age at diagnosis of T1DM patients was 13.40±5.05 years, and the duration of diabetes was 7.74±5.85 years. The frequency of ZnT8A was found higher in cases (19 (76%)) compared to controls (6 (24%)). ZnT8A concentrations were significantly higher in cases (13.82 ng/ml) compared to the controls (8.78 ng/ml; p= 0.024). The cut-off value of 9 ng/ml was selected for measuring sensitivity, specificity, and accuracy, which were determined as 76%, 76%, and 76%, respectively. CONCLUSIONS ZnT8A was found significantly associated with T1DM. Subjects with ZnT8A values ≥ 9 ng/ml are 10 times more at risk to develop T1DM (p = 0.000).
Collapse
Affiliation(s)
| | - Saeeda Baig
- Biochemistry, Ziauddin University, Karachi, PAK
| | - Asher Fawwad
- Medicine, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi, PAK
| | - Zil E Rubab
- Biochemistry, Ziauddin University, Karachi, PAK
| | | | - Nazish Waris
- Research, Baqai Institute of Diabetology and Endocrinology, Karachi, PAK
| |
Collapse
|
39
|
Harmonization of immunoassays for biomarkers in diabetes mellitus. Biotechnol Adv 2020; 39:107359. [DOI: 10.1016/j.biotechadv.2019.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/07/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
|
40
|
Ziegler AG, Kick K, Bonifacio E, Haupt F, Hippich M, Dunstheimer D, Lang M, Laub O, Warncke K, Lange K, Assfalg R, Jolink M, Winkler C, Achenbach P. Yield of a Public Health Screening of Children for Islet Autoantibodies in Bavaria, Germany. JAMA 2020; 323:339-351. [PMID: 31990315 PMCID: PMC6990943 DOI: 10.1001/jama.2019.21565] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE Public health screening for type 1 diabetes in its presymptomatic stages may reduce disease severity and burden on a population level. OBJECTIVE To determine the prevalence of presymptomatic type 1 diabetes in children participating in a public health screening program for islet autoantibodies and the risk for progression to clinical diabetes. DESIGN, SETTING, AND PARTICIPANTS Screening for islet autoantibodies was offered to children aged 1.75 to 5.99 years in Bavaria, Germany, between 2015 and 2019 by primary care pediatricians during well-baby visits. Families of children with multiple islet autoantibodies (presymptomatic type 1 diabetes) were invited to participate in a program of diabetes education, metabolic staging, assessment of psychological stress associated with diagnosis, and prospective follow-up for progression to clinical diabetes until July 31, 2019. EXPOSURES Measurement of islet autoantibodies. MAIN OUTCOMES AND MEASURES The primary outcome was presymptomatic type 1 diabetes, defined by 2 or more islet autoantibodies, with categorization into stages 1 (normoglycemia), 2 (dysglycemia), or 3 (clinical) type 1 diabetes. Secondary outcomes were the frequency of diabetic ketoacidosis and parental psychological stress, assessed by the Patient Health Questionnaire-9 (range, 0-27; higher scores indicate worse depression; ≤4 indicates no to minimal depression; >20 indicates severe depression). RESULTS Of 90 632 children screened (median [interquartile range {IQR}] age, 3.1 [2.1-4.2] years; 48.5% girls), 280 (0.31%; 95% CI, 0.27-0.35) had presymptomatic type 1 diabetes, including 196 (0.22%) with stage 1, 17 (0.02%) with stage 2, 26 (0.03%) with stage 3, and 41 who were not staged. After a median (IQR) follow-up of 2.4 (1.0-3.2) years, another 36 children developed stage 3 type 1 diabetes. The 3-year cumulative risk for stage 3 type 1 diabetes in the 280 children with presymptomatic type 1 diabetes was 24.9% ([95% CI, 18.5%-30.7%]; 54 cases; annualized rate, 9.0%). Two children had diabetic ketoacidosis. Median (IQR) psychological stress scores were significantly increased at the time of metabolic staging in mothers of children with presymptomatic type 1 diabetes (3 [1-7]) compared with mothers of children without islet autoantibodies (2 [1-4]) (P = .002), but declined after 12 months of follow-up (2 [0-4]) (P < .001). CONCLUSIONS AND RELEVANCE Among children aged 2 to 5 years in Bavaria, Germany, a program of primary care-based screening showed an islet autoantibody prevalence of 0.31%. These findings may inform considerations of population-based screening of children for islet autoantibodies.
Collapse
Affiliation(s)
- Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Kerstin Kick
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Ezio Bonifacio
- DFG Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich-Neuherberg, Germany
| | - Florian Haupt
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Markus Hippich
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | | | - Martin Lang
- Berufsverband der Kinder- und Jugendärzte e.V., Landesverband Bayern, Augsburg, Germany
| | - Otto Laub
- PaedNetz Bayern e.V., Rosenheim, Germany
| | - Katharina Warncke
- Department of Pediatrics, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Karin Lange
- Department of Medical Psychology, Hannover Medical School, Hannover, Germany
| | - Robin Assfalg
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Manja Jolink
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| |
Collapse
|
41
|
Battaglia M, Ahmed S, Anderson MS, Atkinson MA, Becker D, Bingley PJ, Bosi E, Brusko TM, DiMeglio LA, Evans-Molina C, Gitelman SE, Greenbaum CJ, Gottlieb PA, Herold KC, Hessner MJ, Knip M, Jacobsen L, Krischer JP, Long SA, Lundgren M, McKinney EF, Morgan NG, Oram RA, Pastinen T, Peters MC, Petrelli A, Qian X, Redondo MJ, Roep BO, Schatz D, Skibinski D, Peakman M. Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes. Diabetes Care 2020; 43:5-12. [PMID: 31753960 PMCID: PMC6925574 DOI: 10.2337/dc19-0880] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
The clinical diagnosis of new-onset type 1 diabetes has, for many years, been considered relatively straightforward. Recently, however, there is increasing awareness that within this single clinical phenotype exists considerable heterogeneity: disease onset spans the complete age range; genetic susceptibility is complex; rates of progression differ markedly, as does insulin secretory capacity; and complication rates, glycemic control, and therapeutic intervention efficacy vary widely. Mechanistic and immunopathological studies typically show considerable patchiness across subjects, undermining conclusions regarding disease pathways. Without better understanding, type 1 diabetes heterogeneity represents a major barrier both to deciphering pathogenesis and to the translational effort of designing, conducting, and interpreting clinical trials of disease-modifying agents. This realization comes during a period of unprecedented change in clinical medicine, with increasing emphasis on greater individualization and precision. For complex disorders such as type 1 diabetes, the option of maintaining the "single disease" approach appears untenable, as does the notion of individualizing each single patient's care, obliging us to conceptualize type 1 diabetes less in terms of phenotypes (observable characteristics) and more in terms of disease endotypes (underlying biological mechanisms). Here, we provide our view on an approach to dissect heterogeneity in type 1 diabetes. Using lessons from other diseases and the data gathered to date, we aim to delineate a roadmap through which the field can incorporate the endotype concept into laboratory and clinical practice. We predict that such an effort will accelerate the implementation of precision medicine and has the potential for impact on our approach to translational research, trial design, and clinical management.
Collapse
Affiliation(s)
- Manuela Battaglia
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Dorothy Becker
- Division of Endocrinology and Diabetes, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Polly J Bingley
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Emanuele Bosi
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy, and Department of Internal Medicine, IRCCS San Raffaele Hospital, Milan, Italy
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Linda A DiMeglio
- Division of Pediatric Endocrinology and Diabetology and Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Carmella Evans-Molina
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Stephen E Gitelman
- Division of Pediatric Endocrinology and Diabetes, University of California, San Francisco, San Francisco, CA
| | | | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT
| | - Martin J Hessner
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Clinical and Molecular Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Laura Jacobsen
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - S Alice Long
- Diabetes Program, Benaroya Research Institute, Seattle, WA
| | - Markus Lundgren
- Department of Clinical Sciences, Clinical Research Centre, Faculty of Medicine, Lund University, and Skåne University Hospital, Malmö, Sweden
| | - Eoin F McKinney
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, U.K
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.,University of Exeter Medical School and Royal Devon and Exeter Hospital, Exeter, U.K
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, U.K.,NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, U.K.,Academic Renal Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Tomi Pastinen
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Michael C Peters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Alessandra Petrelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Xiaoning Qian
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX
| | - Maria J Redondo
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Bart O Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute, National Medical Center, City of Hope, Duarte, CA.,Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Desmond Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL
| | | | - Mark Peakman
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, U.K. .,King's Health Partners Institute of Diabetes, Obesity and Endocrinology, London, U.K
| |
Collapse
|
42
|
Scherm MG, Serr I, Zahm AM, Schug J, Bellusci S, Manfredini R, Salb VK, Gerlach K, Weigmann B, Ziegler AG, Kaestner KH, Daniel C. miRNA142-3p targets Tet2 and impairs Treg differentiation and stability in models of type 1 diabetes. Nat Commun 2019; 10:5697. [PMID: 31836704 PMCID: PMC6910913 DOI: 10.1038/s41467-019-13587-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
In type 1 diabetes, the appearance of islet autoantibodies indicates the onset of islet autoimmunity, often many years before clinical symptoms arise. While T cells play a major role in the destruction of pancreatic beta cells, molecular underpinnings promoting aberrant T cell activation remain poorly understood. Here, we show that during islet autoimmunity an miR142-3p/Tet2/Foxp3 axis interferes with the efficient induction of regulatory T (Treg) cells, resulting in impaired Treg stability in mouse and human. Specifically, we demonstrate that miR142-3p is induced in islet autoimmunity and that its inhibition enhances Treg induction and stability, leading to reduced islet autoimmunity in non-obese diabetic mice. Using various cellular and molecular approaches we identify Tet2 as a direct target of miR142-3p, thereby linking high miR142-3p levels to epigenetic remodeling in Tregs. These findings offer a mechanistic model where during islet autoimmunity miR142-3p/Tet2-mediated Treg instability contributes to autoimmune activation and progression.
Collapse
Affiliation(s)
- Martin G Scherm
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939, Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), 85764, Munich-Neuherberg, Germany
| | - Isabelle Serr
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939, Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), 85764, Munich-Neuherberg, Germany
| | - Adam M Zahm
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Saverio Bellusci
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, 35390, Giessen, Germany
| | - Rossella Manfredini
- Center for Regenerative Medicine, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Victoria K Salb
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939, Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), 85764, Munich-Neuherberg, Germany
| | - Katharina Gerlach
- Department of Medicine 1, University of Erlangen-Nuremberg, 91052, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, 91052, Erlangen, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, 80333, Munich, Germany
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carolin Daniel
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939, Munich, Germany.
- Deutsches Zentrum für Diabetesforschung (DZD), 85764, Munich-Neuherberg, Germany.
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, 80337, Munich, Germany.
| |
Collapse
|
43
|
Williams CL, Long AE. What has zinc transporter 8 autoimmunity taught us about type 1 diabetes? Diabetologia 2019; 62:1969-1976. [PMID: 31444530 PMCID: PMC6805822 DOI: 10.1007/s00125-019-04975-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/21/2019] [Indexed: 12/23/2022]
Abstract
Zinc transporter 8 (ZnT8), a protein highly specific to pancreatic insulin-producing beta cells, is vital for the biosynthesis and secretion of insulin. ZnT8 autoantibodies (ZnT8A) are among the most recently discovered and least-characterised islet autoantibodies. In combination with autoantibodies to several other islet antigens, including insulin, ZnT8A help predict risk of future type 1 diabetes. Often, ZnT8A appear later in the pathogenic process leading to type 1 diabetes, suggesting that the antigen is recognised as part of the spreading, rather than the initial, autoimmune response. The development of autoantibodies to different forms of ZnT8 depends on the genotype of an individual for a polymorphic ZnT8 residue. This genetic variant is associated with susceptibility to type 2 but not type 1 diabetes. Levels of ZnT8A often fall rapidly after diagnosis while other islet autoantibodies can persist for many years. In this review, we consider the contribution made by ZnT8 to our understanding of type 1 diabetes over the past decade and what remains to be investigated in future research.
Collapse
Affiliation(s)
- Claire L Williams
- Translational Health Sciences, Bristol Medical School, University of Bristol, Level 2, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Anna E Long
- Translational Health Sciences, Bristol Medical School, University of Bristol, Level 2, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK.
| |
Collapse
|
44
|
Pöllänen PM, Lempainen J, Laine AP, Toppari J, Veijola R, Ilonen J, Siljander H, Knip M. Characteristics of Slow Progression to Type 1 Diabetes in Children With Increased HLA-Conferred Disease Risk. J Clin Endocrinol Metab 2019; 104:5585-5594. [PMID: 31314077 DOI: 10.1210/jc.2019-01069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
CONTEXT Characterization of slow progression to type 1 diabetes (T1D) may reveal novel means for prevention of T1D. Slow progressors might carry natural immunomodulators that delay β-cell destruction and mediate preservation of β-cell function. OBJECTIVE To identify demographic, genetic, and immunological characteristics of slow progression from seroconversion to clinical T1D. DESIGN HLA-susceptible children (n = 7410) were observed from birth for islet cell antibody (ICA), insulin autoantibody (IAA), glutamic acid decarboxylase (GADA), and islet antigen-2 autoantibodies (IA-2A), and for clinical T1D. Disease progression that lasted ≥7.26 years (slowest) quartile from initial seroconversion to diagnosis was considered slow. Autoantibody and genetic characteristics including 45 non-HLA single nucleotide polymorphisms (SNPs) predisposing to T1D were analyzed. RESULTS By the end of 2015, 1528 children (21%) had tested autoantibody positive and 247 (16%) had progressed to T1D. The median delay from seroconversion to diagnosis was 8.7 years in slow (n = 62, 25%) and 3.0 years in other progressors. Compared with other progressors, slow progressors were less often multipositive, had lower ICA and IAA titers, and lower frequency of IA-2A at seroconversion. Slow progressors were born more frequently in the fall, whereas other progressors were born more often in the spring. Compared with multipositive nonprogressors, slow progressors were younger, had higher ICA titers, and higher frequency of IAA and multiple autoantibodies at seroconversion. We found no differences in the distributions of non-HLA SNPs between progressors. CONCLUSIONS We observed differences in autoantibody characteristics and the season of birth among progressors, but no characteristics present at seroconversion that were specifically predictive for slow progression.
Collapse
Affiliation(s)
- Petra M Pöllänen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Institute of Biomedicine and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
45
|
Bonifacio E, Achenbach P. Birth and coming of age of islet autoantibodies. Clin Exp Immunol 2019; 198:294-305. [PMID: 31397889 PMCID: PMC6857083 DOI: 10.1111/cei.13360] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
This review takes the reader through 45 years of islet autoantibody research, from the discovery of islet‐cell antibodies in 1974 to today’s population‐based screening for presymptomatic early‐stage type 1 diabetes. The review emphasizes the current practical value of, and factors to be considered in, the measurement of islet autoantibodies.
Collapse
Affiliation(s)
- E Bonifacio
- Technische Universität Dresden, DFG Center for Regenerative Therapies Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - P Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Forschergruppe Diabetes, Munich, Germany
| |
Collapse
|
46
|
Winkler C, Jolink M, Knopff A, Kwarteng NA, Achenbach P, Bonifacio E, Ziegler AG. Age, HLA, and Sex Define a Marked Risk of Organ-Specific Autoimmunity in First-Degree Relatives of Patients With Type 1 Diabetes. Diabetes Care 2019; 42:1684-1691. [PMID: 31213469 DOI: 10.2337/dc19-0315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/31/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Autoimmune diseases can be diagnosed early through the detection of autoantibodies. The aim of this study was to determine the risk of organ-specific autoimmunity in individuals with a family history of type 1 diabetes. RESEARCH DESIGN AND METHODS The study cohort included 2,441 first-degree relatives of patients with type 1 diabetes who were prospectively followed from birth to a maximum of 29.4 years (median 13.2 years). All were tested regularly for the development of autoantibodies associated with type 1 diabetes (islet), celiac disease (transglutaminase), or thyroid autoimmunity (thyroid peroxidase). The outcome was defined as an autoantibody-positive status on two consecutive samples. RESULTS In total, 394 relatives developed one (n = 353) or more (n = 41) of the three disease-associated autoantibodies during follow-up. The risk by age 20 years was 8.0% (95% CI 6.8-9.2%) for islet autoantibodies, 6.3% (5.1-7.5%) for transglutaminase autoantibodies, 10.7% (8.9-12.5%) for thyroid peroxidase autoantibodies, and 21.5% (19.5-23.5%) for any of these autoantibodies. Each of the three disease-associated autoantibodies was defined by distinct HLA, sex, genetic, and age profiles. The risk of developing any of these autoantibodies was 56.5% (40.8-72.2%) in relatives with HLA DR3/DR3 and 44.4% (36.6-52.2%) in relatives with HLA DR3/DR4-DQ8. CONCLUSIONS Relatives of patients with type 1 diabetes have a very high risk of organ-specific autoimmunity. Appropriate counseling and genetic and autoantibody testing for multiple autoimmune diseases may be warranted for relatives of patients with type 1 diabetes.
Collapse
Affiliation(s)
- Christiane Winkler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Manja Jolink
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Annette Knopff
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Nana-Adjoa Kwarteng
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,Forschergruppe Diabetes, Technical University Munich at Klinikum rechts der Isar, Munich, Germany
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technical University Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Zentrum Münich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany .,Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,Forschergruppe Diabetes, Technical University Munich at Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
47
|
Hoffmann VS, Weiß A, Winkler C, Knopff A, Jolink M, Bonifacio E, Ziegler AG. Landmark models to define the age-adjusted risk of developing stage 1 type 1 diabetes across childhood and adolescence. BMC Med 2019; 17:125. [PMID: 31286933 PMCID: PMC6615150 DOI: 10.1186/s12916-019-1360-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Autoimmune diseases are often preceded by an asymptomatic autoantibody-positive phase. In type 1 diabetes, the detection of autoantibodies to pancreatic islet antigens in genetically at-risk children is prognostic for future clinical diabetes. Testing for islet autoantibodies is, therefore, performed in a range of clinical studies. Accurate risk estimates that consider the a priori genetic risk and other risk modifiers are an important component of screening. The age of an individual is an under-appreciated risk modifier. The aim of this study was to provide age-adjusted risk estimates for the development of autoantibodies across childhood in genetically at-risk children. METHODS The prospective BABYDIAB and BABYDIET studies included 2441 children from birth who had a first-degree relative with type 1 diabetes. Children were born between 1989 and 2006 and were regularly followed from birth for the development of islet autoantibodies and diabetes. A landmark analysis was performed to estimate the risk of islet autoantibodies at birth and at the age 3.5, 6.5 and 12.5 years. Exponential decay curves were fitted for the risk by the age of 20 years. RESULTS The risk of islet autoantibodies by the age of 20 years was 8%, 4.6%, 2.6% and 0.9%, at the landmark ages of birth, 3.5, 6.5 and 12.5 years, respectively. The short-term risks (within 6 years of follow-up) at these landmark ages were 5.3%, 2.9%, 1.8% and 1%, respectively. The decline in autoantibody risk with age was modelled using a one-phase exponential decay curve (r = 0.99) with a risk half-life of 3.7 years. This risk decay model was remarkably consistent when the outcome was defined as islet autoantibody-positive or multiple islet autoantibody-positive and when the study cohort was stratified by HLA risk genotype. A similar decay model was observed for coeliac disease-associated transglutaminase antibodies in the same cohort. Unlike the risk of developing islet autoantibodies, the rate of developing clinical diabetes in children who were islet autoantibody-positive did not decline with age. CONCLUSION The risk of developing autoantibodies drops exponentially with age in children with a first-degree relative with type 1 diabetes.
Collapse
Affiliation(s)
- Verena Sophia Hoffmann
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Munich-Neuherberg, Germany
| | - Andreas Weiß
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Munich-Neuherberg, Germany
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Munich-Neuherberg, Germany.,Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Annette Knopff
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Munich-Neuherberg, Germany
| | - Manja Jolink
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Munich-Neuherberg, Germany.,Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Ezio Bonifacio
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany. .,Technische Universität Dresden, DFG Center for Regenerative Therapies Dresden, Fetscherstrasse 105, 01307, Dresden, Germany. .,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Dresden, TU, Germany.
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Munich-Neuherberg, Germany. .,Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany. .,Forschergruppe Diabetes, Technical University Munich at Klinikum rechts der Isar, Munich, Germany.
| |
Collapse
|
48
|
Ziegler AG, Achenbach P, Berner R, Casteels K, Danne T, Gündert M, Hasford J, Hoffmann VS, Kordonouri O, Lange K, Elding Larsson H, Lundgren M, Snape MD, Szypowska A, Todd JA, Bonifacio E. Oral insulin therapy for primary prevention of type 1 diabetes in infants with high genetic risk: the GPPAD-POInT (global platform for the prevention of autoimmune diabetes primary oral insulin trial) study protocol. BMJ Open 2019; 9:e028578. [PMID: 31256036 PMCID: PMC6609035 DOI: 10.1136/bmjopen-2018-028578] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The POInT study, an investigator initiated, randomised, placebo-controlled, double-blind, multicentre primary prevention trial is conducted to determine whether daily administration of oral insulin, from age 4.0 months to 7.0 months until age 36.0 months to children with elevated genetic risk for type 1 diabetes, reduces the incidence of beta-cell autoantibodies and diabetes. METHODS AND ANALYSIS Infants aged 4.0 to 7.0 months from Germany, Poland, Belgium, UK and Sweden are eligible if they have a >10.0% expected risk for developing multiple beta-cell autoantibodies as determined by genetic risk score or family history and human leucocyte antigen genotype. Infants are randomised 1:1 to daily oral insulin (7.5 mg for 2 months, 22.5 mg for 2 months, 67.5 mg until age 36.0 months) or placebo, and followed for a maximum of 7 years. Treatment and follow-up is stopped if a child develops diabetes. The primary outcome is the development of persistent confirmed multiple beta-cell autoantibodies or diabetes. Other outcomes are: (1) Any persistent confirmed beta-cell autoantibody (glutamic acid decarboxylase (GADA), IA-2A, autoantibodies to insulin (IAA) and zinc transporter 8 or tetraspanin 7), or diabetes, (2) Persistent confirmed IAA, (3) Persistent confirmed GADA and (4) Abnormal glucose tolerance or diabetes. ETHICS AND DISSEMINATION The study is approved by the ethical committees of all participating clinical sites. The results will be disseminated through peer-reviewed journals and conference presentations and will be openly shared after completion of the trial. TRIAL REGISTRATION NUMBER NCT03364868.
Collapse
Affiliation(s)
- Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Medical faculty, Munich, Germany
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Medical faculty, Munich, Germany
| | - Reinhard Berner
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kristina Casteels
- Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Thomas Danne
- Kinder- und Jugendkrankenhaus AUF DER BULT, Hannover, Germany
| | - Melanie Gündert
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Joerg Hasford
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Olga Kordonouri
- Kinder- und Jugendkrankenhaus AUF DER BULT, Hannover, Germany
| | - Karin Lange
- Department of Medical Psychology, Hannover Medical School, Hannover, Germany
| | - Helena Elding Larsson
- Unit for Paediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Sweden
- Department of Paediatrics, Skåne University Hospital, Malmö, Sweden
| | - Markus Lundgren
- Unit for Paediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Matthew D Snape
- Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford, UK
| | | | - John A Todd
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ezio Bonifacio
- Centre for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
49
|
Purcell AW, Sechi S, DiLorenzo TP. The Evolving Landscape of Autoantigen Discovery and Characterization in Type 1 Diabetes. Diabetes 2019; 68:879-886. [PMID: 31010879 PMCID: PMC6477901 DOI: 10.2337/dbi18-0066] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is caused, in part, by T cell-mediated destruction of insulin-producing β-cells. High risk for disease, in those with genetic susceptibility, is predicted by the presence of two or more autoantibodies against insulin, the 65-kDa form of glutamic acid decarboxylase (GAD65), insulinoma-associated protein 2 (IA-2), and zinc transporter 8 (ZnT8). Despite this knowledge, we still do not know what leads to the breakdown of tolerance to these autoantigens, and we have an incomplete understanding of T1D etiology and pathophysiology. Several new autoantibodies have recently been discovered using innovative technologies, but neither their potential utility in monitoring disease development and treatment nor their role in the pathophysiology and etiology of T1D has been explored. Moreover, neoantigen generation (through posttranslational modification, the formation of hybrid peptides containing two distinct regions of an antigen or antigens, alternative open reading frame usage, and translation of RNA splicing variants) has been reported, and autoreactive T cells that target these neoantigens have been identified. Collectively, these new studies provide a conceptual framework to understand the breakdown of self-tolerance, if such modifications occur in a tissue- or disease-specific context. A recent workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases brought together investigators who are using new methods and technologies to identify autoantigens and characterize immune responses toward these proteins. Researchers with diverse expertise shared ideas and identified resources to accelerate antigen discovery and the detection of autoimmune responses in T1D. The application of this knowledge will direct strategies for the identification of improved biomarkers for disease progression and treatment response monitoring and, ultimately, will form the foundation for novel antigen-specific therapeutics. This Perspective highlights the key issues that were addressed at the workshop and identifies areas for future investigation.
Collapse
Affiliation(s)
- Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Salvatore Sechi
- Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
50
|
Witka BZ, Oktaviani DJ, Marcellino M, Barliana MI, Abdulah R. Type 2 Diabetes-Associated Genetic Polymorphisms as Potential Disease Predictors. Diabetes Metab Syndr Obes 2019; 12:2689-2706. [PMID: 31908510 PMCID: PMC6927489 DOI: 10.2147/dmso.s230061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a major cause of mortality worldwide. There are several types of diabetes, with type 2 diabetes mellitus (T2DM) being the most common. Many factors, including environmental and genetic factors, are involved in the etiology of the disease. Numerous studies have reported the role of genetic polymorphisms in the initiation and development of T2DM. While genome-wide association studies have identified around more than 200 susceptibility loci, it remains unclear whether these loci are correlated with the pathophysiology of the disease. The present review aimed to elucidate the potential genetic mechanisms underlying T2DM. We found that some genetic polymorphisms were related to T2DM, either in the form of single-nucleotide polymorphisms or direct amino acid changes in proteins. These polymorphisms are potential predictors for the management of T2DM.
Collapse
Affiliation(s)
- Beska Z Witka
- Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Dede J Oktaviani
- Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Marcellino Marcellino
- Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Melisa I Barliana
- Departement of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
- Correspondence: Melisa I Barliana Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM. 21, Jatinangor45363, Indonesia Email
| | - Rizky Abdulah
- Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|