1
|
Ježek P. Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Versus Lipotoxicity. Antioxid Redox Signal 2025; 42:566-622. [PMID: 39834189 DOI: 10.1089/ars.2024.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Significance: Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recent Advances: Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons. This contrasts with the frequent lipotoxicity observed in rodents. Critical Issues: Overfeeding causes FASIS to overlap with GSIS providing repeating hyperinsulinemia, initiates prediabetic states by lipotoxic effects and low-grade inflammation. In contrast the protective effects of lipid droplets in human β-cells counteract excessive lipids. Insulin by FASIS allows FATP1 recruitment into adipocyte plasma membranes when postprandial chylomicrons come late at already low glycemia. Future Directions: Impaired states of pancreatic β-cells and peripheral organs at prediabetes and type 2 diabetes should be revealed, including the inter-organ crosstalk by extracellular vesicles. Details of FA/lipid molecular physiology are yet to be uncovered, such as complex phenomena of FA uptake into cells, postabsorptive inactivity of G-protein-coupled receptor 40, carnitine carrier substrate specificity, the role of carnitine-O-acetyltransferase in β-cells, and lipid droplet interactions with mitochondria. Antioxid. Redox Signal. 42, 566-622.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Liu L, Zhang Q, Ma Y, Lin L, Liu W, Ding A, Wang C, Zhou S, Cai J, Tang H. Recent Developments in Drug Design of Oral Synthetic Free Fatty Acid Receptor 1 Agonists. Drug Des Devel Ther 2024; 18:5961-5983. [PMID: 39679134 PMCID: PMC11646431 DOI: 10.2147/dddt.s487469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Over the past two decades, synthetic FFAR1 agonists such as TAK-875 and TSL1806 have undergone meticulous design and extensive clinical trials. However, due to issues primarily related to hepatotoxicity, no FFAR1 agonist has yet received regulatory approval. Research into the sources of hepatotoxicity suggests that one potential cause lies in the molecular structure itself. These structures typically feature lipid-like carboxylic acid head groups, which tend to generate toxic metabolites. Strategies to mitigate these risks focus on optimizing chemical groups to reduce lipophilicity and prevent the formation of reactive metabolites. Recent studies have concentrated on developing low-molecular-weight compounds that more closely resemble natural products, with CPL207280 showing promising potential and liver safety, currently in Phase II clinical trials. Moreover, ongoing research continues to explore the potential applications of FFAR1 agonists in diabetes management, as well as in conditions such as non-alcoholic fatty liver disease (NAFLD) and cerebrovascular diseases. Utilizing advanced technologies such as artificial intelligence and computer-aided design, the development of compact molecules that mimic natural structures represents a hopeful direction for future research and development.
Collapse
Affiliation(s)
- Lei Liu
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Qinghua Zhang
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Yichuan Ma
- China Medical University (CMU)-The Queen’s University of Belfast (QUB) Joint College, Shenyang, Liaoning, People’s Republic of China
| | - Ling Lin
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Wenli Liu
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Aizhong Ding
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Chunjian Wang
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Shuiping Zhou
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
| | - Jinyong Cai
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
| | - Hai Tang
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| |
Collapse
|
3
|
Yoon J, Song H, Park JS, Kim JH, Jun Y, Gim SA, Hong C, An KM, Park JT, Lee JW, Yoon H, Kim YS, Kim SG. Lower hepatotoxicity risk in Xelaglifam, a novel GPR40 agonist, compared to Fasiglifam for type 2 diabetes therapy. Biomed Pharmacother 2024; 181:117674. [PMID: 39536537 DOI: 10.1016/j.biopha.2024.117674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Fasiglifam, a candidate targeting GPR40, showed efficacy in clinical trials for type 2 diabetes but exerted liver toxicity. This study investigated the drug-induced liver injury (DILI) risk of Xelaglifam, a new GPR40 agonist, based on the potential toxicity mechanism of Fasiglifam; transporter inhibition, mitochondrial dysfunction, reactive metabolite formation, and covalent binding to proteins. In the hepatobiliary transporter assay, Xelaglifam showed a broader safety margin (>10-fold) against bile acid transporters, suggesting its less likelihood to cause bile acids accumulation, unlike Fasiglifam (<10-fold safety margin). Moreover, Xelaglifam showed no effect on glycocholic acid accumulation at higher concentrations than the estimated Cmax in the 3D human liver model, whereas Fasiglifam affected the accumulation. In the HepaRG spheroids 3D model, the AC50 values of Xelaglifam for mitochondrial function-related parameters were higher than Fasiglifam. Unlike Fasiglifam, none of the cell parameters for Xelaglifam were below the estimated 5x Cmax. Additionally, the glucuronide metabolite of Xelaglifam was negligible (<1 % of the parent) in the Safety Testing, indicating a limited contribution to DILI. Fasiglifam activated genes related to liver disease, whereas Xelaglifam had no effect; instead, it increased FXR activity, a bile acid regulator. Notably, toxicity studies in rats and monkeys showed no adverse liver effects at higher exposure levels than the effective human blood concentration. Overall, these results support a low risk of DILI for Xelaglifam treatment and the justification for its long-term use for treating type 2 diabetes.
Collapse
Affiliation(s)
- Jongmin Yoon
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Haengjin Song
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Ji Soo Park
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jeong Ho Kim
- AIMS BioScience, Co., Ltd., Seoul, Republic of Korea
| | - Yearin Jun
- AIMS BioScience, Co., Ltd., Seoul, Republic of Korea
| | - Sang-Ah Gim
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Changhee Hong
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Kyung Mi An
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Joon-Tae Park
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jung Woo Lee
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Hongchul Yoon
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro-1, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
4
|
Renton MC, McGee SL, Howlett KF. The role of protein kinase D (PKD) in obesity: Lessons from the heart and other tissues. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119814. [PMID: 39128598 DOI: 10.1016/j.bbamcr.2024.119814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Obesity causes a range of tissue dysfunctions that increases the risk for morbidity and mortality. Protein kinase D (PKD) represents a family of stress-activated intracellular signalling proteins that regulate essential processes such as cell proliferation and differentiation, cell survival, and exocytosis. Evidence suggests that PKD regulates the cellular adaptations to the obese environment in metabolically important tissues and drives the development of a variety of diseases. This review explores the role that PKD plays in tissue dysfunction in obesity, with special consideration of the development of obesity-mediated cardiomyopathy, a distinct cardiovascular disease that occurs in the absence of common comorbidities and leads to eventual heart failure and death. The downstream mechanisms mediated by PKD that could contribute to dysfunctions observed in the heart and other metabolically important tissues in obesity, and the predicted cell types involved are discussed to suggest potential targets for the development of therapeutics against obesity-related disease.
Collapse
Affiliation(s)
- Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia; The Fralin Biomedical Research Institute at Virginia Tech Carilion, Centre for Vascular and Heart Research, Roanoke, VA, USA.
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia.
| |
Collapse
|
5
|
Yoon J, Lee DG, Song H, Hong D, Park JS, Hong C, An KM, Lee JW, Park JT, Yoon H, Tak J, Kim SG. Xelaglifam, a novel GPR40/FFAR1 agonist, exhibits enhanced β-arrestin recruitment and sustained glycemic control for type 2 diabetes. Biomed Pharmacother 2024; 177:117044. [PMID: 38941892 DOI: 10.1016/j.biopha.2024.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Xelaglifam, developed as a GPR40/FFAR1 agonist, induces glucose-dependent insulin secretion and reduces circulating glucose levels for Type 2 diabetes treatment. This study investigated the effects of Xelaglifam in comparison with Fasiglifam on the in vitro/in vivo anti-diabetic efficacy and selectivity, and the mechanistic basis. In vitro studies on downstream targets of Xelaglifam were performed in GPR40-expressing cells. Xelaglifam treatment exhibited dose-dependent effects, increasing inositol phosphate-1, Ca2+ mobilization, and β-arrestin recruitment (EC50: 0.76 nM, 20 nM, 68 nM), supporting its role in Gq protein-dependent and G-protein-independent mechanisms. Despite a lack of change in the cAMP pathway, the Xelaglifam-treated group demonstrated increased insulin secretion compared to Fasiglifam in HIT-T15 β cells under high glucose conditions. High doses of Xelaglifam (<30 mg/kg) did not induce hypoglycemia in Sprague-Dawley rats. In addition, Xelaglifam lowered glucose and increased insulin levels in diabetic rat models (GK, ZDF, OLETF). In GK rats, 1 mg/kg of Xelaglifam improved glucose tolerance (33.4 % and 15.6 % for the 1 and 5 h) after consecutive glucose challenges. Moreover, repeated dosing in ZDF and OLETF rats resulted in superior glucose tolerance (34 % and 35.1 % in ZDF and OLETF), reducing fasting hyperglycemia (18.3 % and 30 % in ZDF and OLETF) at lower doses; Xelaglifam demonstrated a longer-lasting effect with a greater effect on β-cells including 3.8-fold enhanced insulin secretion. Co-treatment of Xelaglifam with SGLT-2 inhibitors showed additive or synergistic effects. Collectively, these results demonstrate the therapeutic efficacy and selectivity of Xelaglifam on GPR40, supportive of its potential for the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Jongmin Yoon
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Don-Gil Lee
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Haengjin Song
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Dahae Hong
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Ji Soo Park
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Changhee Hong
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Kyung Mi An
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jung Woo Lee
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Joon-Tae Park
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Hongchul Yoon
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
6
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
7
|
Kolic J, Sun WG, Cen HH, Ewald JD, Rogalski JC, Sasaki S, Sun H, Rajesh V, Xia YH, Moravcova R, Skovsø S, Spigelman AF, Manning Fox JE, Lyon J, Beet L, Xia J, Lynn FC, Gloyn AL, Foster LJ, MacDonald PE, Johnson JD. Proteomic predictors of individualized nutrient-specific insulin secretion in health and disease. Cell Metab 2024; 36:1619-1633.e5. [PMID: 38959864 PMCID: PMC11250105 DOI: 10.1016/j.cmet.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Population-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid. However, 9% of donors' islets had amino acid responses, and 8% had fatty acid responses that were larger than their glucose-stimulated insulin responses. We leveraged this heterogeneity and used multi-omics to identify molecular correlates of nutrient responsiveness, as well as proteins and mRNAs altered in type 2 diabetes. We also examined nutrient-stimulated insulin release from stem cell-derived islets and observed responsiveness to fat but not carbohydrate or protein-potentially a hallmark of immaturity. Understanding the diversity of insulin responses to carbohydrate, protein, and fat lays the groundwork for personalized nutrition.
Collapse
Affiliation(s)
- Jelena Kolic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - WenQing Grace Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jessica D Ewald
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Jason C Rogalski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Han Sun
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
| | - Varsha Rajesh
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Renata Moravcova
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Søs Skovsø
- Valkyrie Life Sciences, Vancouver, BC, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - James Lyon
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Leanne Beet
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA; Wellcome Center for Human Genetics, University of Oxford, Oxford, UK
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Kolic J, Sun WG, Cen HH, Ewald J, Rogalski JC, Sasaki S, Sun H, Rajesh V, Xia YH, Moravcova R, Skovsø S, Spigelman AF, Manning Fox JE, Lyon J, Beet L, Xia J, Lynn FC, Gloyn AL, Foster LJ, MacDonald PE, Johnson JD. Proteomic predictors of individualized nutrient-specific insulin secretion in health and disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.24.23290298. [PMID: 38496562 PMCID: PMC10942505 DOI: 10.1101/2023.05.24.23290298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Population level variation and molecular mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized despite ramifications for personalized nutrition. Here, we define prototypical insulin secretion dynamics in response to the three macronutrients in islets from 140 cadaveric donors, including those diagnosed with type 2 diabetes. While islets from the majority of donors exhibited the expected relative response magnitudes, with glucose being highest, amino acid moderate, and fatty acid small, 9% of islets stimulated with amino acid and 8% of islets stimulated with fatty acids had larger responses compared with high glucose. We leveraged this insulin response heterogeneity and used transcriptomics and proteomics to identify molecular correlates of specific nutrient responsiveness, as well as those proteins and mRNAs altered in type 2 diabetes. We also examine nutrient-responsiveness in stem cell-derived islet clusters and observe that they have dysregulated fuel sensitivity, which is a hallmark of functionally immature cells. Our study now represents the first comparison of dynamic responses to nutrients and multi-omics analysis in human insulin secreting cells. Responses of different people's islets to carbohydrate, protein, and fat lay the groundwork for personalized nutrition. ONE-SENTENCE SUMMARY Deep phenotyping and multi-omics reveal individualized nutrient-specific insulin secretion propensity.
Collapse
|
9
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Wit M, Belykh A, Sumara G. Protein kinase D (PKD) on the crossroad of lipid absorption, synthesis and utilization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119653. [PMID: 38104800 DOI: 10.1016/j.bbamcr.2023.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Inappropriate lipid levels in the blood, as well as its content and composition in different organs, underlie multiple metabolic disorders including obesity, non-alcoholic fatty liver disease, type 2 diabetes, and atherosclerosis. Multiple processes contribute to the complex metabolism of triglycerides (TGs), fatty acids (FAs), and other lipid species. These consist of digestion and absorption of dietary lipids, de novo FAs synthesis (lipogenesis), uptake of TGs and FAs by peripheral tissues, TGs storage in the intracellular depots as well as lipid utilization for β-oxidation and their conversion to lipid-derivatives. A majority of the enzymatic reactions linked to lipogenesis, TGs synthesis, lipid absorption, and transport are happening at the endoplasmic reticulum, while β-oxidation takes place in mitochondria and peroxisomes. The Golgi apparatus is a central sorting, protein- and lipid-modifying organelle and hence is involved in lipid metabolism as well. However, the impact of the processes taking part in the Golgi apparatus are often overseen. The protein kinase D (PKD) family (composed of three members, PKD1, 2, and 3) is the master regulator of Golgi dynamics. PKDs are also a sensor of different lipid species in distinct cellular compartments. In this review, we discuss the roles of PKD family members in the regulation of lipid metabolism including the processes executed by PKDs at the Golgi apparatus. We also discuss the role of PKDs-dependent signaling in different cellular compartments and organs in the context of the development of metabolic disorders.
Collapse
Affiliation(s)
- Magdalena Wit
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Andrei Belykh
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland.
| |
Collapse
|
11
|
Fleming Martinez AK, Storz P. Protein kinase D1 - A targetable mediator of pancreatic cancer development. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119646. [PMID: 38061566 PMCID: PMC10872883 DOI: 10.1016/j.bbamcr.2023.119646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Members of the Protein kinase D (PKD) kinase family each play important cell-specific roles in the regulation of normal pancreas functions. In pancreatic diseases PKD1 is the most widely characterized isoform with roles in pancreatitis and in induction of pancreatic cancer and its progression. PKD1 expression and activation increases in pancreatic acinar cells through macrophage secreted factors, Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling, and reactive oxygen species (ROS), driving the formation of precancerous lesions. In precancerous lesions PKD1 regulates cell survival, growth, senescence, and generation of doublecortin like kinase 1 (DCLK1)-positive cancer stem cells (CSCs). Within tumors, regulation by PKD1 includes chemoresistance, apoptosis, proliferation, CSC features, and the Warburg effect. Thus, PKD1 plays a critical role throughout pancreatic disease initiation and progression.
Collapse
Affiliation(s)
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
12
|
Ferdaoussi M. Metabolic and Molecular Amplification of Insulin Secretion. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 239:117-139. [PMID: 39283484 DOI: 10.1007/978-3-031-62232-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
The pancreatic β cells are at the hub of myriad signals to regulate the secretion of an adequate amount of insulin needed to re-establish postprandial euglycemia. The β cell possesses sophisticated metabolic enzymes and a variety of extracellular receptors and channels that amplify insulin secretion in response to autocrine, paracrine, and neurohormonal signals. Considerable research has been undertaken to decipher the mechanisms regulating insulin secretion. While the triggering pathway induced by glucose is needed to initiate the exocytosis process, multiple other stimuli modulate the insulin secretion response. This chapter will discuss the recent advances in understanding the role of the diverse glucose- and fatty acid-metabolic coupling factors in amplifying insulin secretion. It will also highlight the intracellular events linking the extracellular receptors and channels to insulin secretion amplification. Understanding these mechanisms provides new insights into learning more about the etiology of β-cell failure and paves the way for developing new therapeutic strategies for type 2 diabetes.
Collapse
Affiliation(s)
- Mourad Ferdaoussi
- Faculty Saint-Jean and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
13
|
Karwen T, Kolczynska‐Matysiak K, Gross C, Löffler MC, Friedrich M, Loza‐Valdes A, Schmitz W, Wit M, Dziaczkowski F, Belykh A, Trujillo‐Viera J, El‐Merahbi R, Deppermann C, Nawaz S, Hastoy B, Demczuk A, Erk M, Wieckowski MR, Rorsman P, Heinze KG, Stegner D, Nieswandt B, Sumara G. Platelet-derived lipids promote insulin secretion of pancreatic β cells. EMBO Mol Med 2023; 15:e16858. [PMID: 37490001 PMCID: PMC10493578 DOI: 10.15252/emmm.202216858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Hyperreactive platelets are commonly observed in diabetic patients indicating a potential link between glucose homeostasis and platelet reactivity. This raises the possibility that platelets may play a role in the regulation of metabolism. Pancreatic β cells are the central regulators of systemic glucose homeostasis. Here, we show that factor(s) derived from β cells stimulate platelet activity and platelets selectively localize to the vascular endothelium of pancreatic islets. Both depletion of platelets and ablation of major platelet adhesion or activation pathways consistently resulted in impaired glucose tolerance and decreased circulating insulin levels. Furthermore, we found platelet-derived lipid classes to promote insulin secretion and identified 20-Hydroxyeicosatetraenoic acid (20-HETE) as the main factor promoting β cells function. Finally, we demonstrate that the levels of platelet-derived 20-HETE decline with age and that this parallels with reduced impact of platelets on β cell function. Our findings identify an unexpected function of platelets in the regulation of insulin secretion and glucose metabolism, which promotes metabolic fitness in young individuals.
Collapse
Affiliation(s)
- Till Karwen
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | | | - Carina Gross
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Mona C Löffler
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Mike Friedrich
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Angel Loza‐Valdes
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Werner Schmitz
- Theodor Boveri Institute, BiocenterUniversity of WürzburgWürzburgGermany
| | - Magdalena Wit
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Filip Dziaczkowski
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Andrei Belykh
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Jonathan Trujillo‐Viera
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Rabih El‐Merahbi
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Carsten Deppermann
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Center for Thrombosis and HemostasisUniversity Medical Center of the Johannes Gutenberg‐UniversityMainzGermany
| | - Sameena Nawaz
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
| | - Benoit Hastoy
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
| | - Agnieszka Demczuk
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Manuela Erk
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Mariusz R Wieckowski
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Patrik Rorsman
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
- Department of Physiology, Institute of Neuroscience and PhysiologyUniversity of GöteborgGöteborgSweden
- Oxford National Institute for Health Research, Biomedical Research CentreChurchill HospitalOxfordUK
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - David Stegner
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Grzegorz Sumara
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| |
Collapse
|
14
|
Armour SL, Stanley JE, Cantley J, Dean ED, Knudsen JG. Metabolic regulation of glucagon secretion. J Endocrinol 2023; 259:e230081. [PMID: 37523232 PMCID: PMC10681275 DOI: 10.1530/joe-23-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Since the discovery of glucagon 100 years ago, the hormone and the pancreatic islet alpha cells that produce it have remained enigmatic relative to insulin-producing beta cells. Canonically, alpha cells have been described in the context of glucagon's role in glucose metabolism in liver, with glucose as the primary nutrient signal regulating alpha cell function. However, current data reveal a more holistic model of metabolic signalling, involving glucagon-regulated metabolism of multiple nutrients by the liver and other tissues, including amino acids and lipids, providing reciprocal feedback to regulate glucagon secretion and even alpha cell mass. Here we describe how various nutrients are sensed, transported and metabolised in alpha cells, providing an integrative model for the metabolic regulation of glucagon secretion and action. Importantly, we discuss where these nutrient-sensing pathways intersect to regulate alpha cell function and highlight key areas for future research.
Collapse
Affiliation(s)
- Sarah L Armour
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, DK
| | - Jade E. Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA
| | - James Cantley
- Division of Cellular and systems medicine, School of Medicine, University of Dundee, UK
| | - E. Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA
- Division of Diabetes, Endocrinology, & Metabolism, Vanderbilt University Medical Center school of medicine, USA
| | - Jakob G Knudsen
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, DK
| |
Collapse
|
15
|
Ludovico ID, Sarkar S, Elliott E, Virtanen SM, Erlund I, Ramanadham S, Mirmira RG, Metz TO, Nakayasu ES. Fatty acid-mediated signaling as a target for developing type 1 diabetes therapies. Expert Opin Ther Targets 2023; 27:793-806. [PMID: 37706269 PMCID: PMC10591803 DOI: 10.1080/14728222.2023.2259099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION Type 1 diabetes (T1D) is an autoimmune disease in which pro-inflammatory and cytotoxic signaling drive the death of the insulin-producing β cells. This complex signaling is regulated in part by fatty acids and their bioproducts, making them excellent therapeutic targets. AREAS COVERED We provide an overview of the fatty acid actions on β cells by discussing how they can cause lipotoxicity or regulate inflammatory response during insulitis. We also discuss how diet can affect the availability of fatty acids and disease development. Finally, we discuss development avenues that need further exploration. EXPERT OPINION Fatty acids, such as hydroxyl fatty acids, ω-3 fatty acids, and their downstream products, are druggable candidates that promote protective signaling. Inhibitors and antagonists of enzymes and receptors of arachidonic acid and free fatty acids, along with their derived metabolites, which cause pro-inflammatory and cytotoxic responses, have the potential to be developed as therapeutic targets also. Further, because diet is the main source of fatty acid intake in humans, balancing protective and pro-inflammatory/cytotoxic fatty acid levels through dietary therapy may have beneficial effects, delaying T1D progression. Therefore, therapeutic interventions targeting fatty acid signaling hold potential as avenues to treat T1D.
Collapse
Affiliation(s)
- Ivo Díaz Ludovico
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Emily Elliott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Suvi M. Virtanen
- Health and Well-Being Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland
- Tampere University Hospital, Research, Development and Innovation Center, Tampere, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Iris Erlund
- Department of Governmental Services, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
16
|
Mu-U-Min RBA, Diane A, Allouch A, Al-Siddiqi HH. Ca 2+-Mediated Signaling Pathways: A Promising Target for the Successful Generation of Mature and Functional Stem Cell-Derived Pancreatic Beta Cells In Vitro. Biomedicines 2023; 11:1577. [PMID: 37371672 DOI: 10.3390/biomedicines11061577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus is a chronic disease affecting over 500 million adults globally and is mainly categorized as type 1 diabetes mellitus (T1DM), where pancreatic beta cells are destroyed, and type 2 diabetes mellitus (T2DM), characterized by beta cell dysfunction. This review highlights the importance of the divalent cation calcium (Ca2+) and its associated signaling pathways in the proper functioning of beta cells and underlines the effects of Ca2+ dysfunction on beta cell function and its implications for the onset of diabetes. Great interest and promise are held by human pluripotent stem cell (hPSC) technology to generate functional pancreatic beta cells from diabetic patient-derived stem cells to replace the dysfunctional cells, thereby compensating for insulin deficiency and reducing the comorbidities of the disease and its associated financial and social burden on the patient and society. Beta-like cells generated by most current differentiation protocols have blunted functionality compared to their adult human counterparts. The Ca2+ dynamics in stem cell-derived beta-like cells and adult beta cells are summarized in this review, revealing the importance of proper Ca2+ homeostasis in beta-cell function. Consequently, the importance of targeting Ca2+ function in differentiation protocols is suggested to improve current strategies to use hPSCs to generate mature and functional beta-like cells with a comparable glucose-stimulated insulin secretion (GSIS) profile to adult beta cells.
Collapse
Affiliation(s)
- Razik Bin Abdul Mu-U-Min
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Asma Allouch
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Heba H Al-Siddiqi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| |
Collapse
|
17
|
Richter MM, Galsgaard KD, Elmelund E, Knop FK, Suppli MP, Holst JJ, Winther-Sørensen M, Kjeldsen SA, Wewer Albrechtsen NJ. The Liver-α-Cell Axis in Health and in Disease. Diabetes 2022; 71:1852-1861. [PMID: 35657688 PMCID: PMC9862287 DOI: 10.2337/dbi22-0004] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
Abstract
Glucagon and insulin are the main regulators of blood glucose. While the actions of insulin are extensively mapped, less is known about glucagon. Besides glucagon's role in glucose homeostasis, there are additional links between the pancreatic α-cells and the hepatocytes, often collectively referred to as the liver-α-cell axis, that may be of importance for health and disease. Thus, glucagon receptor antagonism (pharmacological or genetic), which disrupts the liver-α-cell axis, results not only in lower fasting glucose but also in reduced amino acid turnover and dyslipidemia. Here, we review the actions of glucagon on glucose homeostasis, amino acid catabolism, and lipid metabolism in the context of the liver-α-cell axis. The concept of glucagon resistance is also discussed, and we argue that the various elements of the liver-α-cell axis may be differentially affected in metabolic diseases such as diabetes, obesity, and nonalcoholic fatty liver disease (NAFLD). This conceptual rethinking of glucagon biology may explain why patients with type 2 diabetes have hyperglucagonemia and how NAFLD disrupts the liver-α-cell axis, compromising the normal glucagon-mediated enhancement of substrate-induced amino acid turnover and possibly fatty acid β-oxidation. In contrast to amino acid catabolism, glucagon-induced glucose production may not be affected by NAFLD, explaining the diabetogenic effect of NAFLD-associated hyperglucagonemia. Consideration of the liver-α-cell axis is essential to understanding the complex pathophysiology underlying diabetes and other metabolic diseases.
Collapse
Affiliation(s)
- Michael M. Richter
- Department of Clinical Biochemistry, Diagnostic Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Elmelund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Malte P. Suppli
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sasha A.S. Kjeldsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Clinical Biochemistry, Diagnostic Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital—Bispebjerg and Frederiksberg Hospital, Bispebjerg, Denmark
- Corresponding author: Nicolai J. Wewer Albrechtsen,
| |
Collapse
|
18
|
Lv C, Sun Y, Zhang ZY, Aboelela Z, Qiu X, Meng ZX. β-cell dynamics in type 2 diabetes and in dietary and exercise interventions. J Mol Cell Biol 2022; 14:6656373. [PMID: 35929791 PMCID: PMC9710517 DOI: 10.1093/jmcb/mjac046] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/07/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023] Open
Abstract
Pancreatic β-cell dysfunction and insulin resistance are two of the major causes of type 2 diabetes (T2D). Recent clinical and experimental studies have suggested that the functional capacity of β-cells, particularly in the first phase of insulin secretion, is a primary contributor to the progression of T2D and its associated complications. Pancreatic β-cells undergo dynamic compensation and decompensation processes during the development of T2D, in which metabolic stresses such as endoplasmic reticulum stress, oxidative stress, and inflammatory signals are key regulators of β-cell dynamics. Dietary and exercise interventions have been shown to be effective approaches for the treatment of obesity and T2D, especially in the early stages. Whilst the targeted tissues and underlying mechanisms of dietary and exercise interventions remain somewhat vague, accumulating evidence has implicated the improvement of β-cell functional capacity. In this review, we summarize recent advances in the understanding of the dynamic adaptations of β-cell function in T2D progression and clarify the effects and mechanisms of dietary and exercise interventions on β-cell dysfunction in T2D. This review provides molecular insights into the therapeutic effects of dietary and exercise interventions on T2D, and more importantly, it paves the way for future research on the related underlying mechanisms for developing precision prevention and treatment of T2D.
Collapse
Affiliation(s)
- Chengan Lv
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuchen Sun
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University, Haining 314400, China
| | - Zhe Yu Zhang
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zeyad Aboelela
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Bachelors of Surgery, Bachelors of Medicine (MBBS), Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | |
Collapse
|
19
|
Pyo HJ, An X, Cho H. The role of free fatty acid receptor pathways in a selective regulation of TRPA1 and TRPV1 by resolvins in primary sensory neurons. J Cell Physiol 2022; 237:3651-3660. [PMID: 35802479 PMCID: PMC9544928 DOI: 10.1002/jcp.30826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
Transient receptor potential ankyrin 1 and vanilloid 1 (TRPA1 and TRPV1, respectively) channels contribute to inflammatory and neuropathic pain, indicating that their pharmacological inhibition could be a novel strategy for treating painful diseases. However, the mechanisms of TRPA1/V1 channel modulation have been mostly characterized to be upregulation and sensitization via variety of exogenous stimuli, endogenous inflammatory mediators, and metabolites of oxidative stress. Here we used calcium imaging of dorsal root ganglion neurons to identify an inhibitor signaling pathway for TRPA1 and TRPV1 regulated by resolvins (RvD1 and RvE1), which are endogenous anti‐inflammatory lipid mediators. TRPA1 and TRPV1 channel activations were evoked by the TRPA1 agonist allyl isothiocyanate and the TRPV1 agonist capsaicin. Our results show that RvD1‐induced selective inhibition of TRPA1 activity was mediated by free fatty acid receptor 4 (FFAR4)‐protein kinase C (PKC) signaling. Experiments assessing RvE1‐induced TRPV1 inhibition showed that RvE1 actions required both FFAR1 and FFAR4. Combined stimulation of FFAR1/FFAR4 or FFAR1/PKC mimicked TRPV1 inhibition by RvE1, and these effects were blocked by a protein kinase D (PKD) inhibitor, implying that PKD is an effector of the FFAR/PKC signaling axis in RvE1‐induced TRPV1 inhibition. Despite selective inhibition of TRPV1 in the nanomolar range of RvE1, higher concentrations of RvE1 also inhibited TRPA1, possibly through PKC. Collectively, our findings reveal FFAR1 and FFAR4 as key signaling pathways mediating the selective targeting of resolvins to regulate TRPA1 and TRPV1, elucidating endogenous analgesic mechanisms that could be exploited as potential therapeutic targets.
Collapse
Affiliation(s)
- Hyun-Jeong Pyo
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Xue An
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
20
|
Ježek P, Holendová B, Jabůrek M, Dlasková A, Plecitá-Hlavatá L. Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxid Redox Signal 2022; 36:920-952. [PMID: 34180254 PMCID: PMC9125579 DOI: 10.1089/ars.2021.0113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub β-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
21
|
Petry SF, Römer A, Rawat D, Brunner L, Lerch N, Zhou M, Grewal R, Sharifpanah F, Sauer H, Eckert GP, Linn T. Loss and Recovery of Glutaredoxin 5 Is Inducible by Diet in a Murine Model of Diabesity and Mediated by Free Fatty Acids In Vitro. Antioxidants (Basel) 2022; 11:antiox11040788. [PMID: 35453472 PMCID: PMC9025089 DOI: 10.3390/antiox11040788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
Free fatty acids (FFA), hyperglycemia, and inflammatory cytokines are major mediators of β-cell toxicity in type 2 diabetes mellitus, impairing mitochondrial metabolism. Glutaredoxin 5 (Glrx5) is a mitochondrial protein involved in the assembly of iron–sulfur clusters required for complexes of the respiratory chain. We have provided evidence that islet cells are deprived of Glrx5, correlating with impaired insulin secretion during diabetes in genetically obese mice. In this study, we induced diabesity in C57BL/6J mice in vivo by feeding the mice a high-fat diet (HFD) and modelled the diabetic metabolism in MIN6 cells through exposure to FFA, glucose, or inflammatory cytokines in vitro. qRT-PCR, ELISA, immunohisto-/cytochemistry, bioluminescence, and respirometry were employed to study Glrx5, insulin secretion, and mitochondrial biomarkers. The HFD induced a depletion of islet Glrx5 concomitant with an obese phenotype, elevated FFA in serum and reactive oxygen species in islets, and impaired glucose tolerance. Exposure of MIN6 cells to FFA led to a loss of Glrx5 in vitro. The FFA-induced depletion of Glrx5 coincided with significantly altered mitochondrial biomarkers. In summary, we provide evidence that Glrx5 is regulated by FFA in type 2 diabetes mellitus and is linked to mitochondrial dysfunction and blunted insulin secretion.
Collapse
Affiliation(s)
- Sebastian Friedrich Petry
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
- Correspondence: ; Tel.: +49-641-985-57010
| | - Axel Römer
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Divya Rawat
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Lara Brunner
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Nina Lerch
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Mengmeng Zhou
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Rekha Grewal
- Laboratory for Nutrition in Prevention & Therapy, Department of Nutritional Sciences, Justus Liebig University, 35392 Giessen, Germany; (R.G.); (G.P.E.)
| | - Fatemeh Sharifpanah
- Faculty of Medicine, Philipps University, 35037 Marburg, Germany;
- Cyntegrity Germany GmbH, 60438 Frankfurt, Germany
| | - Heinrich Sauer
- Department of Physiology, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Gunter Peter Eckert
- Laboratory for Nutrition in Prevention & Therapy, Department of Nutritional Sciences, Justus Liebig University, 35392 Giessen, Germany; (R.G.); (G.P.E.)
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| |
Collapse
|
22
|
Rady B, Liu J, Huang H, Bakaj I, Qi J, Lee SP, Martin T, Norquay L, Player M, Pocai A. A FFAR1 full agonist restores islet function in models of impaired glucose-stimulated insulin secretion and diabetic non-human primates. Front Endocrinol (Lausanne) 2022; 13:1061688. [PMID: 36482991 PMCID: PMC9723222 DOI: 10.3389/fendo.2022.1061688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
The free fatty acid receptor 1 (FFAR1/GPR40) mediates fatty acid-induced insulin secretion from pancreatic β-cells. At least 3 distinct binding sites exist on the FFAR1 receptor and numerous synthetic ligands have been investigated for their anti-diabetic actions. Fasiglifam, binds to site-1 and stimulates intra-cellular calcium release and improves glycemic control in diabetic patients. Recently, small molecule FFAR1 agonists were discovered which bind to site-3, stimulating both intra-cellular calcium and cAMP, resulting in insulin and glucagon-like peptide-1 (GLP-1) secretion. The ability of our site-3 FFAR1 agonist (compound A) to control blood glucose was evaluated in spontaneously diabetic cynomolgus monkeys during an oral glucose tolerance test. In type-2 diabetic (T2D) animals, significant reductions in blood glucose and insulin were noted. To better understand the mechanism of these in vivo findings, we evaluated the effect of compound A in islets under several conditions of dysfunction. First, healthy human and non-human primate islets were treated with compound A and showed potentiation of insulin and glucagon secretion from both species. Next, we determined glucose-responsive insulin secretion under gluco-lipotoxic conditions and from islets isolated from type-2 diabetic humans. Despite a dysfunctional phenotype that failed to secrete insulin in response to glucose, site-3 FFAR1 agonism not only enhanced insulin secretion, but restored glucose responsiveness across a range of glucose concentrations. Lastly, we treated ex vivo human islets chronically with a sulfonylurea to induce secondary beta-cell failure. Again, this model showed reduced glucose-responsive insulin secretion that was restored and potentiated by site-3 FFAR1 agonism. Together these data suggest a mechanism for FFAR1 where agonists have direct effects on islet hormone secretion that can overcome a dysfunctional T2D phenotype. These unique characteristics of FFAR1 site-3 agonists make them an appealing potential therapy to treat type-2 diabetes.
Collapse
Affiliation(s)
- Brian Rady
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- *Correspondence: Brian Rady,
| | - Jianying Liu
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Hui Huang
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Discovery Chemistry, Janssen R&D, Spring House, PA, United States
| | - Ivona Bakaj
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Jenson Qi
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - S. P. Lee
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Tonya Martin
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Medical Affairs, Janssen R&D, Spring House, PA, United States
| | - Lisa Norquay
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Business Development, Janssen R&D, Raritan, NJ, United States
| | - Mark Player
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Discovery Chemistry, Janssen R&D, Spring House, PA, United States
| | - Alessandro Pocai
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| |
Collapse
|
23
|
Mansour R, El-Fayoumi HM, Fahmy A, Ibrahim IAAEH. Oleic acid acutely impairs glucose homeostasis in standard chow diet but not high-fructose, high-fat diet-fed mice by acting on free fatty acid receptor 1. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20710s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
24
|
Lin H, Smith N, Spigelman AF, Suzuki K, Ferdaoussi M, Alghamdi TA, Lewandowski SL, Jin Y, Bautista A, Wang YW, Manning Fox JE, Merrins MJ, Buteau J, MacDonald PE. β-Cell Knockout of SENP1 Reduces Responses to Incretins and Worsens Oral Glucose Tolerance in High-Fat Diet-Fed Mice. Diabetes 2021; 70:2626-2638. [PMID: 34462260 PMCID: PMC8564408 DOI: 10.2337/db20-1235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/19/2021] [Indexed: 01/17/2023]
Abstract
SUMOylation reduces oxidative stress and preserves islet mass at the expense of robust insulin secretion. To investigate a role for the deSUMOylating enzyme sentrin-specific protease 1 (SENP1) following metabolic stress, we put pancreas/gut-specific SENP1 knockout (pSENP1-KO) mice on a high-fat diet (HFD). Male pSENP1-KO mice were more glucose intolerant following HFD than littermate controls but only in response to oral glucose. A similar phenotype was observed in females. Plasma glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) responses were identical in pSENP1-KO and wild-type littermates, including the HFD-induced upregulation of GIP responses. Islet mass was not different, but insulin secretion and β-cell exocytotic responses to the GLP-1 receptor agonist exendin-4 (Ex4) and GIP were impaired in islets lacking SENP1. Glucagon secretion from pSENP1-KO islets was also reduced, so we generated β-cell-specific SENP1 KO mice. These phenocopied the pSENP1-KO mice with selective impairment in oral glucose tolerance following HFD, preserved islet mass expansion, and impaired β-cell exocytosis and insulin secretion to Ex4 and GIP without changes in cAMP or Ca2+ levels. Thus, β-cell SENP1 limits oral glucose intolerance following HFD by ensuring robust insulin secretion at a point downstream of incretin signaling.
Collapse
Affiliation(s)
- Haopeng Lin
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mourad Ferdaoussi
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Tamadher A Alghamdi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie L Lewandowski
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison
| | - Yaxing Jin
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ying Wayne Wang
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison
| | - Jean Buteau
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Bazydlo-Guzenda K, Buda P, Matloka M, Mach M, Stelmach F, Dzida R, Smuga D, Hucz-Kalitowska J, Teska-Kaminska M, Vialichka V, Dubiel K, Kaminska B, Wieczorek M, Pieczykolan J. CPL207280, a Novel G Protein-Coupled Receptor 40/Free Fatty Acid Receptor 1-Specific Agonist, Shows a Favorable Safety Profile and Exerts Antidiabetic Effects in Type 2 Diabetic Animals. Mol Pharmacol 2021; 100:335-347. [PMID: 34349026 DOI: 10.1124/molpharm.121.000260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor (GPR) 40 is a free fatty acid receptor mainly expressed in pancreatic β-cells activated by medium- and long-chain fatty acids and regulating insulin secretion via an increase in cytosolic free calcium ([Ca2+]i). Activation of GPR40 in pancreatic β-cells may improve glycemic control in type 2 diabetes through enhancement of glucose-stimulated insulin secretion. However, the most clinically advanced GPR40 agonist-TAK-875 (fasiglifam)-was withdrawn from phase III because of its hepatotoxicity resulting from the inhibition of pivotal bile acid transporters. Here, we present a new, potent CPL207280 agonist and compare it with fasiglifam in numerous in vitro and in vivo studies. CPL207280 showed greater potency than fasiglifam in a Ca2+ influx assay with a human GPR40 protein (EC50 = 80 vs. 270 nM, respectively). At the 10 µM concentration, it showed 3.9 times greater enhancement of glucose-stimulated insulin secretion in mouse MIN6 pancreatic β-cells. In Wistar Han rats and C57BL6 mice challenged with glucose, CPL207280 stimulated 2.5 times greater insulin secretion without causing hypoglycemia at 10 mg/kg compared with fasiglifam. In three diabetic rat models, CPL207280 improved glucose tolerance and increased insulin area under the curve by 212%, 142%, and 347%, respectively. Evaluation of potential off-target activity (Safety47) and selectivity of CPL207280 (at 10 μM) did not show any significant off-target activity. We conclude that CPL207280 is a potent enhancer of glucose-stimulated insulin secretion in animal disease models with no risk of hypoglycemia at therapeutic doses. Therefore, we propose the CPL207280 compound as a compelling candidate for type 2 diabetes treatment. SIGNIFICANCE STATEMENT: GPR40 is a well-known and promising target for diabetes. This study is the first to show the safety and effects of CPL207280, a novel GPR40/free fatty acid receptor 1 agonist, on glucose homeostasis both in vitro and in vivo in different diabetic animal models. Therefore, we propose the CPL207280 compound as a novel, glucose-lowering agent, overcoming the unmet medical needs of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Katarzyna Bazydlo-Guzenda
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.).
| | - Pawel Buda
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Mikolaj Matloka
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Mateusz Mach
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Filip Stelmach
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Radoslaw Dzida
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Damian Smuga
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Joanna Hucz-Kalitowska
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Malgorzata Teska-Kaminska
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Varvara Vialichka
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Krzysztof Dubiel
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Bozena Kaminska
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Maciej Wieczorek
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Jerzy Pieczykolan
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| |
Collapse
|
26
|
Caroleo MC, Plastina P, Fazio A, La Torre C, Manetti F, Cione E. Olive Oil Lipophenols Induce Insulin Secretion in 832/13 β-Cell Models. Pharmaceutics 2021; 13:pharmaceutics13071085. [PMID: 34371780 PMCID: PMC8309142 DOI: 10.3390/pharmaceutics13071085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 01/12/2023] Open
Abstract
Glycemic control is a mainstay of type 2 diabetes mellitus (T2DM) clinical management. Despite the continuous improvement in knowledge and progress in terms of treatment, the achievement of the physiologic metabolic profile is still an ongoing challenge in diabetic patients. Pancreatic β-cell line INS-1 832/13 was used to assess the insulin secretagogue activity of hydroxytyrosyl oleate (HtyOle) and tyrosyl oleate (TyOle), two naturally occurring lipophenols deriving from the conjugation of oleic acid (OA) and hydroxytyrosol (Hty) or tyrosol (Ty), respectively. The insulin secretion was determined under a glucose-induced insulin secretion (GSIS) condition by the ELISA method. The potential involvement of G-protein-coupled receptor 40 (GPR40), also known as free fatty acid receptor 1 (FFAR1), was investigated by both molecular docking and functional pharmacological approaches. Herein, we demonstrated that HtyOle and TyOle exerted a facilitatory activity on insulin secretion under the GSIS condition. Moreover, we provided evidence that both lipophenols are natural modulators of FFAR1 receptor. From our results, the anti-diabetes properties associated with olive oil consumption can be partly explained by the HtyOle and TyOle effects.
Collapse
Affiliation(s)
- Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.C.); (P.P.); (A.F.); (C.L.T.)
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.C.); (P.P.); (A.F.); (C.L.T.)
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.C.); (P.P.); (A.F.); (C.L.T.)
| | - Chiara La Torre
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.C.); (P.P.); (A.F.); (C.L.T.)
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
- Correspondence: (F.M.); (E.C.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.C.); (P.P.); (A.F.); (C.L.T.)
- Correspondence: (F.M.); (E.C.)
| |
Collapse
|
27
|
Lv D, Chen H, Feng Y, Cui B, Kang Y, Zhang P, Luo M, Chen J. Small-Molecule Inhibitor Targeting Protein Kinase D: A Potential Therapeutic Strategy. Front Oncol 2021; 11:680221. [PMID: 34249722 PMCID: PMC8263921 DOI: 10.3389/fonc.2021.680221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
The protein kinase D (PKD) family is a family of serine-threonine kinases that are members of the calcium/calmodulin-dependent kinase (CaMK) superfamily. PKDs have been increasingly implicated in multiple pivotal cellular processes and pathological conditions. PKD dysregulation is associated with several diseases, including cancer, inflammation, and obesity. Over the past few years, small-molecule inhibitors have emerged as alternative targeted therapy with fewer adverse side effects than currently available chemotherapy, and these specifically targeted inhibitors limit non-specific toxicities. The successful development of PKD inhibitors would significantly suppress the growth and proliferation of various cancers and inhibit the progression of other diseases. Various PKD inhibitors have been studied in the preclinical setting. In this context, we summarize the PKD inhibitors under investigation and their application for different kinds of diseases.
Collapse
Affiliation(s)
- Die Lv
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongli Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bomiao Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingzhu Kang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Abstract
The aim of this work was to review studies in which genetic variants were assessed with respect to metabolic response to treatment with novel glucose-lowering drugs: dipeptidyl peptidase-4 inhibitors (DPP-4i), glucagon-like peptide-1 receptor agonists (GLP-1 RA) and sodium-glucose cotransporter 2 inhibitors (SGLT2i). In total, 22 studies were retrieved from the literature (MEDLINE). Variants of the GLP-1 receptor gene (GLP1R) were associated with a smaller reduction in HbA1c in response to DPP-4i. Variants of a number of other genes (KCNQ1, KCNJ11, CTRB1/2, PRKD1, CDKAL1, IL6 promoter region, TCF7L2, DPP4, PNPLA3) have also been related to DPP-4i response, although replication studies are lacking. The GLP1R gene was also reported to play a role in the response to GLP-1 RA, with larger weight reductions being reported in carriers of GLP1R variant alleles. There were variants of a few other genes (CNR1, TCF7L2, SORCS1) described to be related to GLP-1 RA. For SGLT2i, studies have focused on genes affecting renal glucose reabsorption (e.g. SLC5A2) but no relationship between SLC5A2 variants and response to empagliflozin has been found. The relevance of the included studies is limited due to small genetic effects, low sample sizes, limited statistical power, inadequate statistics (lack of gene-drug interactions), inadequate accounting for confounders and effects modifiers, and a lack of replication studies. Most studies have been based on candidate genes. Genome-wide association studies, in that respect, may be a more promising approach to providing novel insights. However, the identification of distinct subgroups of type 2 diabetes might also be necessary before pharmacogenetic studies can be successfully used for a stratified prescription of novel glucose-lowering drugs.
Collapse
Affiliation(s)
- Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Brenda Bongaerts
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
29
|
Zhao X, Yoon DO, Yoo J, Park HJ. Structure-Activity Relationship Study and Biological Evaluation of 2-(Disubstituted phenyl)-indole-5-propanoic Acid Derivatives as GPR40 Full Agonists. J Med Chem 2021; 64:4130-4149. [PMID: 33769827 DOI: 10.1021/acs.jmedchem.1c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G-protein-coupled receptor 40 (GPR40) is considered as an attractive drug target for treating type 2 diabetes, owing to its role in the free fatty acid-mediated increase in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. To identify a new chemotype of GPR40 agonist, a series of 2-aryl-substituted indole-5-propanoic acid derivatives were designed and synthesized. We identified two GPR40 agonist lead compounds-4k (3-[2-(4-fluoro-2-methylphenyl)-1H-indol-5-yl]propanoic acid) and 4o (3-[2-(2,5-dimethylphenyl)-1H-indol-5-yl]propanoic acid), having GSIS and glucagon-like peptide 1 secretory effects. Unlike previously reported GPR40 partial agonists that only activate the Gq pathway, 4k and 4o activated both the Gq and Gs signaling pathways and were characterized as GPR40 full agonists. In in vivo efficacy studies, 4o significantly improved glycemic control in both C57BL/6J and db/db mice and increased plasma-active GLP-1 in C57BL/6J mice. Thus, 4o represents a promising lead for further development as a novel GPR40 full agonist against type 2 diabetes.
Collapse
Affiliation(s)
- Xiaodi Zhao
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dong-Oh Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jaeho Yoo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
30
|
Benito-Vicente A, Jebari-Benslaiman S, Galicia-Garcia U, Larrea-Sebal A, Uribe KB, Martin C. Molecular mechanisms of lipotoxicity-induced pancreatic β-cell dysfunction. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:357-402. [PMID: 33832653 DOI: 10.1016/bs.ircmb.2021.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D), a heterogeneous disorder derived from metabolic dysfunctions, leads to a glucose overflow in the circulation due to both defective insulin secretion and peripheral insulin resistance. One of the critical risk factor for T2D is obesity, which represents a global epidemic that has nearly tripled since 1975. Obesity is characterized by chronically elevated free fatty acid (FFA) levels, which cause deleterious effects on glucose homeostasis referred to as lipotoxicity. Here, we review the physiological FFA roles onto glucose-stimulated insulin secretion (GSIS) and the pathological ones affecting many steps of the mechanisms and modulation of GSIS. We also describe in vitro and in vivo experimental evidences addressing lipotoxicity in β-cells and the role of saturation and chain length of FFA on the potency of GSIS stimulation. The molecular mechanisms underpinning lipotoxic-β-cell dysfunction are also reviewed. Among them, endoplasmic reticulum stress, oxidative stress and mitochondrial dysfunction, inflammation, impaired autophagy and β-cell dedifferentiation. Finally therapeutic strategies for the β-cells dysfunctions such as the use of metformin, glucagon-like peptide 1, thiazolidinediones, anti-inflammatory drugs, chemical chaperones and weight are discussed.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Shifa Jebari-Benslaiman
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Unai Galicia-Garcia
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Molecular Biophysics, Fundación Biofísica Bizkaia, Leioa, Spain
| | - Asier Larrea-Sebal
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Molecular Biophysics, Fundación Biofísica Bizkaia, Leioa, Spain
| | - Kepa B Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain
| | - Cesar Martin
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
31
|
In silico design of bioisosteric modifications of drugs for the treatment of diabetes. Future Med Chem 2021; 13:691-700. [PMID: 33715419 DOI: 10.4155/fmc-2020-0374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: To identify virtual bioisosteric replacements of two GPR40 agonists. Materials & methods: Bioinformatic docking of candidate molecules featuring a wide range of carboxylic acid bioisosteres into complex with GPR40 was performed using TAK-875 and GW9508 templates. Results: This study suggests that 2,6-difluorophenol and squaric acid motifs are the preferred bioisosteric groups for conferring GPR40 affinity. Conclusion: This study suggests that compounds 10 and 20 are worthy synthetic targets.
Collapse
|
32
|
Ghislain J, Poitout V. Targeting lipid GPCRs to treat type 2 diabetes mellitus - progress and challenges. Nat Rev Endocrinol 2021; 17:162-175. [PMID: 33495605 DOI: 10.1038/s41574-020-00459-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Therapeutic approaches to the treatment of type 2 diabetes mellitus that are designed to increase insulin secretion either directly target β-cells or indirectly target gastrointestinal enteroendocrine cells (EECs), which release hormones that modulate insulin secretion (for example, incretins). Given that β-cells and EECs both express a large array of G protein-coupled receptors (GPCRs) that modulate insulin secretion, considerable research and development efforts have been undertaken to design therapeutic drugs targeting these GPCRs. Among them are GPCRs specific for free fatty acid ligands (lipid GPCRs), including free fatty acid receptor 1 (FFA1, otherwise known as GPR40), FFA2 (GPR43), FFA3 (GPR41) and FFA4 (GPR120), as well as the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). These lipid GPCRs have demonstrated important roles in the control of islet and gut hormone secretion. Advances in lipid GPCR pharmacology have led to the identification of a number of synthetic agonists that exert beneficial effects on glucose homeostasis in preclinical studies. Yet, translation of these promising results to the clinic has so far been disappointing. In this Review, we present the physiological roles, pharmacology and clinical studies of these lipid receptors and discuss the challenges associated with their clinical development for the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Julien Ghislain
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.
- Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
33
|
Renton MC, McGee SL, Howlett KF. The role of protein kinase D (PKD) in intracellular nutrient sensing and regulation of adaptive responses to the obese environment. Obes Rev 2021; 22:e13145. [PMID: 32929844 DOI: 10.1111/obr.13145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Obesity is associated with ectopic accumulation of lipids, which is implicated in the development of insulin resistance, type 2 diabetes mellitus and cardiovascular disease. As the global prevalence of obesity continues to rise, it is becoming increasingly important to understand the underlying cellular mechanisms of this disease. Protein kinase D (PKD) is an intracellular signalling kinase with well characterized roles in intracellular vesicle transport and secretion, cancer cell proliferation and cardiac hypertrophy. However, emerging evidence also highlights PKD as a novel nutrient sensor. PKD activation is mediated by the accumulation of the lipid intermediate diacylglycerol, and PKD activity in the liver, heart and adipose tissue increases upon feeding. In obesity, PKD signalling is linked to reduced insulin signalling and dysfunction in adipose tissue, liver and heart, whilst in the pancreas, PKD is essential for the compensatory increase in glucose-stimulated insulin secretion from β-cells during obesity. Collectively, these studies reveal aspects of PKD signalling that are involved in the tissue-specific responses to obesity. This review summarizes the emerging evidence suggesting that PKD plays an important role in regulating the adaptive response to the obese environment.
Collapse
Affiliation(s)
- Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia
| |
Collapse
|
34
|
Croze ML, Guillaume A, Ethier M, Fergusson G, Tremblay C, Campbell SA, Maachi H, Ghislain J, Poitout V. Combined Deletion of Free Fatty-Acid Receptors 1 and 4 Minimally Impacts Glucose Homeostasis in Mice. Endocrinology 2021; 162:6128704. [PMID: 33543237 DOI: 10.1210/endocr/bqab002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 12/16/2022]
Abstract
The free fatty-acid receptors FFAR1 (GPR40) and FFAR4 (GPR120) are implicated in the regulation of insulin secretion and insulin sensitivity, respectively. Although GPR120 and GPR40 share similar ligands, few studies have addressed possible interactions between these 2 receptors in the control of glucose homeostasis. Here we generated mice deficient in gpr120 (Gpr120KO) or gpr40 (Gpr40KO), alone or in combination (Gpr120/40KO), and metabolically phenotyped male and female mice fed a normal chow or high-fat diet. We assessed insulin secretion in isolated mouse islets exposed to selective GPR120 and GPR40 agonists singly or in combination. Following normal chow feeding, body weight and energy intake were unaffected by deletion of either receptor, although fat mass increased in Gpr120KO females. Fasting blood glucose levels were mildly increased in Gpr120/40KO mice and in a sex-dependent manner in Gpr120KO and Gpr40KO animals. Oral glucose tolerance was slightly reduced in male Gpr120/40KO mice and in Gpr120KO females, whereas insulin secretion and insulin sensitivity were unaffected. In hyperglycemic clamps, the glucose infusion rate was lower in male Gpr120/40KO mice, but insulin and c-peptide levels were unaffected. No changes in glucose tolerance were observed in either single or double knock-out animals under high-fat feeding. In isolated islets from wild-type mice, the combination of selective GPR120 and GPR40 agonists additively increased insulin secretion. We conclude that while simultaneous activation of GPR120 and GPR40 enhances insulin secretion ex vivo, combined deletion of these 2 receptors only minimally affects glucose homeostasis in vivo in mice.
Collapse
Affiliation(s)
- Marine L Croze
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | | | - Mélanie Ethier
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Grace Fergusson
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | | | | | - Hasna Maachi
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
35
|
Parnova RG. GPR40/FFA1 Free Fatty Acid Receptors and Their Functional Role. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2021; 51:256-264. [DOI: 10.1007/s11055-021-01064-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 01/05/2025]
|
36
|
Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol 2021; 22:142-158. [PMID: 33398164 PMCID: PMC8115730 DOI: 10.1038/s41580-020-00317-7] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Metabolic homeostasis in mammals is tightly regulated by the complementary actions of insulin and glucagon. The secretion of these hormones from pancreatic β-cells and α-cells, respectively, is controlled by metabolic, endocrine, and paracrine regulatory mechanisms and is essential for the control of blood levels of glucose. The deregulation of these mechanisms leads to various pathologies, most notably type 2 diabetes, which is driven by the combined lesions of impaired insulin action and a loss of the normal insulin secretion response to glucose. Glucose stimulates insulin secretion from β-cells in a bi-modal fashion, and new insights about the underlying mechanisms, particularly relating to the second or amplifying phase of this secretory response, have been recently gained. Other recent work highlights the importance of α-cell-produced proglucagon-derived peptides, incretin hormones from the gastrointestinal tract and other dietary components, including certain amino acids and fatty acids, in priming and potentiation of the β-cell glucose response. These advances provide a new perspective for the understanding of the β-cell failure that triggers type 2 diabetes.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.
- Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
37
|
Ježek P, Holendová B, Jabůrek M, Tauber J, Dlasková A, Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants (Basel) 2021; 10:antiox10020197. [PMID: 33572903 PMCID: PMC7912581 DOI: 10.3390/antiox10020197] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
Collapse
|
38
|
Kolczynska K, Loza-Valdes A, Hawro I, Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis 2020; 19:113. [PMID: 32466765 PMCID: PMC7257441 DOI: 10.1186/s12944-020-01286-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Protein kinase C (PKC) and Protein kinase D (PKD) isoforms can sense diacylglycerol (DAG) generated in the different cellular compartments in various physiological processes. DAG accumulates in multiple organs of the obese subjects, which leads to the disruption of metabolic homeostasis and the development of diabetes as well as associated diseases. Multiple studies proved that aberrant activation of PKCs and PKDs contributes to the development of metabolic diseases. DAG-sensing PKC and PKD isoforms play a crucial role in the regulation of metabolic homeostasis and therefore might serve as targets for the treatment of metabolic disorders such as obesity and diabetes.
Collapse
Affiliation(s)
- Katarzyna Kolczynska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Angel Loza-Valdes
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland.
| |
Collapse
|
39
|
Barón-Mendoza I, González-Arenas A. Relationship between the effect of polyunsaturated fatty acids (PUFAs) on brain plasticity and the improvement on cognition and behavior in individuals with autism spectrum disorder. Nutr Neurosci 2020; 25:387-410. [PMID: 32338174 DOI: 10.1080/1028415x.2020.1755793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: This work aimed to compile information about the neuronal processes in which polyunsaturated fatty acids (PUFAs) could modulate brain plasticity, in order to analyze the role of nutritional intervention with the ω-3 and ω-6 fatty acids as a therapeutic strategy for the Autism Spectrum Disorder (ASD)-related signs and symptoms.Methods: We reviewed different articles reporting the effect of PUFAS on neurite elongation, membrane expansion, cytoskeleton rearrangement and neurotransmission, considering the ASD-related abnormalities in these processes.Results: In accordance to the reviewed studies, it is clear that ASD is one of the neurological conditions associated with an impairment in neuronal plasticity; therefore, PUFAs-rich diet improvements on cognition and behavioral deficits in individuals with autism, could be involved with the regulation of neuronal processes implicated in the atypical brain plasticity related with this neurodevelopmental disorder.Discussion: The behavioral and cognitive improvement observed in individuals with ASD after PUFAs treatment might underlie, at least in part, in the ability of ω-3 and ω-6 fatty acids to induce neurite outgrowth, probably, through the dynamic regulation of the neuronal cytoskeleton along with the expansion of neuronal membranes. Furthermore, it might also be associated with an enhancement of the efficacy of synaptic transmission and the modulation of neurotransmitters release.
Collapse
Affiliation(s)
- Isabel Barón-Mendoza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
40
|
Maachi H, Fergusson G, Ethier M, Brill GN, Katz LS, Honig LB, Metukuri MR, Scott DK, Ghislain J, Poitout V. HB-EGF Signaling Is Required for Glucose-Induced Pancreatic β-Cell Proliferation in Rats. Diabetes 2020; 69:369-380. [PMID: 31882563 PMCID: PMC7034189 DOI: 10.2337/db19-0643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms of β-cell compensation to metabolic stress are poorly understood. We previously observed that nutrient-induced β-cell proliferation in rats is dependent on epidermal growth factor receptor (EGFR) signaling. The aim of this study was to determine the role of the EGFR ligand heparin-binding EGF-like growth factor (HB-EGF) in the β-cell proliferative response to glucose, a β-cell mitogen and key regulator of β-cell mass in response to increased insulin demand. We show that exposure of isolated rat and human islets to HB-EGF stimulates β-cell proliferation. In rat islets, inhibition of EGFR or HB-EGF blocks the proliferative response not only to HB-EGF but also to glucose. Furthermore, knockdown of HB-EGF in rat islets blocks β-cell proliferation in response to glucose ex vivo and in vivo in transplanted glucose-infused rats. Mechanistically, we demonstrate that HB-EGF mRNA levels are increased in β-cells in response to glucose in a carbohydrate-response element-binding protein (ChREBP)-dependent manner. In addition, chromatin immunoprecipitation studies identified ChREBP binding sites in proximity to the HB-EGF gene. Finally, inhibition of Src family kinases, known to be involved in HB-EGF processing, abrogated glucose-induced β-cell proliferation. Our findings identify a novel glucose/HB-EGF/EGFR axis implicated in β-cell compensation to increased metabolic demand.
Collapse
Affiliation(s)
- Hasna Maachi
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, Canada
| | - Grace Fergusson
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Melanie Ethier
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Gabriel N Brill
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liora S Katz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lee B Honig
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Donald K Scott
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Julien Ghislain
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Stimulation of insulin secretion by acetylenic fatty acids in insulinoma MIN6 cells through FFAR1. Biochem Biophys Res Commun 2020; 522:68-73. [PMID: 31740001 DOI: 10.1016/j.bbrc.2019.11.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/05/2019] [Indexed: 11/21/2022]
Abstract
We examined whether the acetylenic fatty acids 6-octadecynoic acid (6-ODA) and 9-octadecynoic acid (9-ODA) perform as ligands for free fatty acid receptors of medium- and long-chain fatty acids FFAR1 and FFAR4, previously called GPR40 and GPR120, respectively. Phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 was increased through FFAR1 but not through FFAR4 expressed in HEK 293 cells, suggesting that 6-ODA and 9-ODA function as an FFAR1 ligand, but not as an FFAR4 ligand. Activation of ERK in FFAR1-expressing HEK293 cells by 6-ODA and 9-ODA peaked at 10 min after stimulation followed by a slow decrease, similar to ERK activation by rosiglitazone, which peaked at 10 min after stimulation and lasted longer. Glucose-dependent production of insulin from MIN6 insulinoma cells was induced by 6-ODA and 9-ODA in an FFAR1-dependent manner. In this process, 6-ODA and 9-ODA stimulated the production of insulin not in the first phase that occurred within 10 min after stimulation but in the second phase. F-actin-remodeling that reflects insulin granule recruiting to the plasma membrane in the second phase of insulin secretion by 6-ODA and 9-ODA suggested that they have an FFAR1-dependent function in insulin secretion from MIN6 cells.
Collapse
|
42
|
Noguchi GM, Huising MO. Integrating the inputs that shape pancreatic islet hormone release. Nat Metab 2019; 1:1189-1201. [PMID: 32694675 PMCID: PMC7378277 DOI: 10.1038/s42255-019-0148-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a complex mini organ composed of a variety of endocrine cells and their support cells, which together tightly control blood glucose homeostasis. Changes in glucose concentration are commonly regarded as the chief signal controlling insulin-secreting beta cells, glucagon-secreting alpha cells and somatostatin-secreting delta cells. However, each of these cell types is highly responsive to a multitude of endocrine, paracrine, nutritional and neural inputs, which collectively shape the final endocrine output of the islet. Here, we review the principal inputs for each islet-cell type and the physiological circumstances in which these signals arise, through the prism of the insights generated by the transcriptomes of each of the major endocrine-cell types. A comprehensive integration of the factors that influence blood glucose homeostasis is essential to successfully improve therapeutic strategies for better diabetes management.
Collapse
Affiliation(s)
- Glyn M Noguchi
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA.
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
43
|
GPR40 activation initiates store-operated Ca 2+ entry and potentiates insulin secretion via the IP3R1/STIM1/Orai1 pathway in pancreatic β-cells. Sci Rep 2019; 9:15562. [PMID: 31664108 PMCID: PMC6820554 DOI: 10.1038/s41598-019-52048-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/12/2019] [Indexed: 12/17/2022] Open
Abstract
The long-chain fatty acid receptor GPR40 plays an important role in potentiation of glucose-induced insulin secretion (GIIS) from pancreatic β-cells. Previous studies demonstrated that GPR40 activation enhances Ca2+ release from the endoplasmic reticulum (ER) by activating inositol 1,4,5-triphosphate (IP3) receptors. However, it remains unknown how ER Ca2+ release via the IP3 receptor is linked to GIIS potentiation. Recently, stromal interaction molecule (STIM) 1 was identified as a key regulator of store-operated Ca2+ entry (SOCE), but little is known about its contribution in GPR40 signaling. We show that GPR40-mediated potentiation of GIIS is abolished by knockdown of IP3 receptor 1 (IP3R1), STIM1 or Ca2+-channel Orai1 in insulin-secreting MIN6 cells. STIM1 and Orai1 knockdown significantly impaired SOCE and the increase of intracellular Ca2+ by the GPR40 agonist, fasiglifam. Furthermore, β-cell-specific STIM1 knockout mice showed impaired fasiglifam-mediated GIIS potentiation not only in isolated islets but also in vivo. These results indicate that the IP3R1/STIM1/Orai1 pathway plays an important role in GPR40-mediated SOCE initiation and GIIS potentiation in pancreatic β-cells.
Collapse
|
44
|
Khan S, Ferdaoussi M, Bautista A, Bergeron V, Smith N, Poitout V, MacDonald PE. A role for PKD1 in insulin secretion downstream of P2Y 1 receptor activation in mouse and human islets. Physiol Rep 2019; 7:e14250. [PMID: 31591827 PMCID: PMC6779929 DOI: 10.14814/phy2.14250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023] Open
Abstract
Along with insulin, β-cells co-secrete the neurotransmitter ATP which acts as a positive autocrine signal via P2Y1 receptors to activate phospholipase C and increase the production of diacylglycerol (DAG). However, the downstream signaling that couples P2Y1 activation to insulin secretion remains to be fully elucidated. Since DAG activates protein kinase D1 (PKD1) to potentiate glucose-stimulated insulin release, we hypothesized that autocrine ATP signaling activates downstream PKD1 to regulate insulin secretion. Indeed, we find that the P2Y1 receptor agonists, MRS2365 and ATP induce, PKD1 phosphorylation at serine 916 in mouse islets. Similarly, direct depolarization of islets by KCl caused PKD1 activation, which is reduced upon P2Y1 antagonism. Potentiation of insulin secretion by P2Y1 activation was lost from PKD1-/- mouse islets, and knockdown of PKD1 reduced the ability of P2Y1 activation to facilitate exocytosis in single mouse β-cells. Finally, qPCR analysis confirmed PKD1 transcript (PRKD1) expression in human islets, and insulin secretion assays showed that inhibition of either P2Y1 or PKD1 signaling impaired glucose-stimulated insulin secretion. Human islets showed donor-to-donor variation in their responses to both P2Y1 and PKD1 inhibition, however, and we find that the P2Y1 -PKD1 pathway contributes a substantially greater proportion of insulin secretion from islets of overweight and obese donors. Thus, PKD1 promotes increased insulin secretion, likely mediating an autocrine ATP effect via P2Y1 receptor activation which may be more important in islets of donors who are overweight or obese.
Collapse
Affiliation(s)
- Shara Khan
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Mourad Ferdaoussi
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Valérie Bergeron
- Département de MédecineUniversité de MontréalMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM)MontréalQuebecCanada
| | - Nancy Smith
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Vincent Poitout
- Département de MédecineUniversité de MontréalMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM)MontréalQuebecCanada
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
45
|
Trans-11 vaccenic acid improves glucose homeostasis in a model of type 2 diabetes by promoting insulin secretion via GPR40. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
Luna-Vital DA, Chatham L, Juvik J, Singh V, Somavat P, de Mejia EG. Activating Effects of Phenolics from Apache Red Zea mays L. on Free Fatty Acid Receptor 1 and Glucokinase Evaluated with a Dual Culture System with Epithelial, Pancreatic, and Liver Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9148-9159. [PMID: 30785272 DOI: 10.1021/acs.jafc.8b06642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim was to characterize a phenolic-rich water extract from the pericarp of an improved genotype of Apache red maize (RPE) and evaluate its ability to activate the type 2 diabetes markers free fatty acid receptor 1 (GPR40) and glucokinase (GK) in vitro. The extract contained mainly phenolic acids, anthocyanins, and other flavonoids. RPE inhibited α-amylase (IC50 = 88.3 μg/mL), α-glucosidase (IC50 = 169.3 μg/mL), and reduced glucose transport in a Caco-2 cell monolayer (up to 25%). Furthermore, RPE activated GPR40 (EC50 = 77.7 μg/mL) in pancreatic INS-1E cells and GK (EC50 = 43.4 μg/mL) in liver HepG2 cells, potentially through allosteric modulation. RPE activated GPR40-related insulin secretory pathway and activated the glucose metabolism regulator AMPK (up to 78%). Our results support the hypothesis that foods with a high concentration of anthocyanins and phenolic acids, such as in the selected variety of maize used, could ameliorate obesity and type 2 diabetes comorbidities.
Collapse
Affiliation(s)
- Diego A Luna-Vital
- Department of Food Science and Human Nutrition , University of Illinois at Urbana-Champaign , 228 Edward R. Madigan Laboratory (ERML), 1201 West Gregory Drive , Urbana , Illinois 61801 , United States
| | - Laura Chatham
- Department of Crop Sciences , University of Illinois at Urbana-Champaign , 307 Edward R. Madigan Laboratory (ERML), 1201 West Gregory Drive , Urbana , Illinois 61801 , United States
| | - John Juvik
- Department of Crop Sciences , University of Illinois at Urbana-Champaign , 307 Edward R. Madigan Laboratory (ERML), 1201 West Gregory Drive , Urbana , Illinois 61801 , United States
| | - Vijay Singh
- Department of Agricultural and Biological Engineering , University of Illinois at Urbana-Champaign , 1304 West Pennsylvania Avenue , Urbana , Illinois 61801 , United States
| | - Pavel Somavat
- School of Earth, Environmental, and Marine Sciences , The University of Texas Rio Grande Valley , ESCNE 1.618, 1201 West University Dr. , Edinburg , Texas 78539 , United States
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition , University of Illinois at Urbana-Champaign , 228 Edward R. Madigan Laboratory (ERML), 1201 West Gregory Drive , Urbana , Illinois 61801 , United States
| |
Collapse
|
47
|
Mayer AE, Löffler MC, Loza Valdés AE, Schmitz W, El-Merahbi R, Viera JT, Erk M, Zhang T, Braun U, Heikenwalder M, Leitges M, Schulze A, Sumara G. The kinase PKD3 provides negative feedback on cholesterol and triglyceride synthesis by suppressing insulin signaling. Sci Signal 2019; 12:12/593/eaav9150. [PMID: 31387939 DOI: 10.1126/scisignal.aav9150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic activation of protein kinase C (PKC) isoforms by diacylglycerol (DAG) promotes insulin resistance and contributes to the development of type 2 diabetes (T2D). The closely related protein kinase D (PKD) isoforms act as effectors for DAG and PKC. Here, we showed that PKD3 was the predominant PKD isoform expressed in hepatocytes and was activated by lipid overload. PKD3 suppressed the activity of downstream insulin effectors including the kinase AKT and mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2). Hepatic deletion of PKD3 in mice improved insulin-induced glucose tolerance. However, increased insulin signaling in the absence of PKD3 promoted lipogenesis mediated by SREBP (sterol regulatory element-binding protein) and consequently increased triglyceride and cholesterol content in the livers of PKD3-deficient mice fed a high-fat diet. Conversely, hepatic-specific overexpression of a constitutively active PKD3 mutant suppressed insulin-induced signaling and caused insulin resistance. Our results indicate that PKD3 provides feedback on hepatic lipid production and suppresses insulin signaling. Therefore, manipulation of PKD3 activity could be used to decrease hepatic lipid content or improve hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Alexander E Mayer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Mona C Löffler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Angel E Loza Valdés
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Rabih El-Merahbi
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Jonathan Trujillo Viera
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Manuela Erk
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Thianzhou Zhang
- Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Ursula Braun
- Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Leitges
- Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Almut Schulze
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Grzegorz Sumara
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany. .,Nencki Institute of Experimental Biology, PAS, 02-093 Warsaw, Poland
| |
Collapse
|
48
|
Targeting GPCRs Activated by Fatty Acid-Derived Lipids in Type 2 Diabetes. Trends Mol Med 2019; 25:915-929. [PMID: 31377146 DOI: 10.1016/j.molmed.2019.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/28/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, because of their diversity, cell-specific expression, and druggable sites accessible at the cell surface. Preclinical and clinical studies suggest that targeting GPCRs activated by fatty acid-derived lipids may have potential to improve glucose homeostasis and reduce complications in patients with type 2 diabetes (T2D). Despite the discontinued development of fasiglifam (TAK-875), the first FFA1 agonist to reach late-stage clinical trials, lipid-sensing receptors remain a viable target, albeit with a need for further characterization of their binding mode, intracellular signaling, and toxicity. Herein, we analyze general discovery trends, various signaling pathways, as well as possible challenges following activation of GPCRs that have been validated clinically to control blood glucose levels.
Collapse
|
49
|
Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. Nat Commun 2019; 10:3312. [PMID: 31346174 PMCID: PMC6658524 DOI: 10.1038/s41467-019-11170-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Compromised function of insulin-secreting pancreatic β cells is central to the development and progression of Type 2 Diabetes (T2D). However, the mechanisms underlying β cell failure remain incompletely understood. Here, we report that metabolic stress markedly enhances macroautophagy-independent lysosomal degradation of nascent insulin granules. In different model systems of diabetes including of human origin, stress-induced nascent granule degradation (SINGD) contributes to loss of insulin along with mammalian/mechanistic Target of Rapamycin (mTOR)-dependent suppression of macroautophagy. Expression of Protein Kinase D (PKD), a negative regulator of SINGD, is reduced in diabetic β cells. Pharmacological activation of PKD counters SINGD and delays the onset of T2D. Conversely, inhibition of PKD exacerbates SINGD, mitigates insulin secretion and accelerates diabetes. Finally, reduced levels of lysosomal tetraspanin CD63 prevent SINGD, leading to increased insulin secretion. Overall, our findings implicate aberrant SINGD in the pathogenesis of diabetes and suggest new therapeutic strategies to prevent β cell failure. Impaired beta-cell insulin secretion is a key pathological feature of type 2 diabetes. Here, the authors describe metabolic stress induced lysosomal degradation of newly formed insulin granules, independent of macroautophagy, as a potential mechanism for beta-cell dysfunction.
Collapse
|
50
|
Current Progress in Pharmacogenetics of Second-Line Antidiabetic Medications: Towards Precision Medicine for Type 2 Diabetes. J Clin Med 2019; 8:jcm8030393. [PMID: 30901912 PMCID: PMC6463061 DOI: 10.3390/jcm8030393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Precision medicine is a scientific and medical practice for personalized therapy based on patients’ individual genetic, environmental, and lifestyle characteristics. Pharmacogenetics and pharmacogenomics are also rapidly developing and expanding as a key element of precision medicine, in which the association between individual genetic variabilities and drug disposition and therapeutic responses are investigated. Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia mainly associated with insulin resistance, with the risk of clinically important cardiovascular, neurological, and renal complications. The latest consensus report from the American Diabetes Association and European Association for the Study of Diabetes (ADA-EASD) on the management of T2D recommends preferential use of glucagon-like peptide-1 (GLP-1) receptor agonists, sodium-glucose cotransporter-2 (SGLT2) inhibitors, and some dipeptidyl peptidase-4 (DPP-4) inhibitors after initial metformin monotherapy for diabetic patients with established atherosclerotic cardiovascular or chronic kidney disease, and with risk of hypoglycemia or body weight-related problems. In this review article, we summarized current progress on pharmacogenetics of newer second-line antidiabetic medications in clinical practices and discussed their therapeutic implications for precision medicine in T2D management. Several biomarkers associated with drug responses have been identified from extensive clinical pharmacogenetic studies, and functional variations in these genes have been shown to significantly affect drug-related glycemic control, adverse reactions, and risk of diabetic complications. More comprehensive pharmacogenetic research in various clinical settings will clarify the therapeutic implications of these genes, which may be useful tools for precision medicine in the treatment and prevention of T2D and its complications.
Collapse
|