1
|
Na ES. Epigenetic Mechanisms of Obesity: Insights from Transgenic Animal Models. Life (Basel) 2025; 15:653. [PMID: 40283207 PMCID: PMC12028693 DOI: 10.3390/life15040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Obesity is a chronic disease with prevalence rates that have risen dramatically over the past four decades. This increase is not due to changes in the human genome but rather to environmental factors that promote maladaptive physiological responses. Emerging evidence suggests that external influences, such as high-fat diets, modify the epigenome-the interface between genes and the environment-leading to persistent alterations in energy homeostasis. This review explores the role of epigenetic mechanisms in obesity, emphasizing insights from transgenic animal models and clinical studies. Additionally, we discuss the evolution of obesity research from homeostatic to allostatic frameworks, highlighting key neuroendocrine regulators of energy balance.
Collapse
Affiliation(s)
- Elisa S Na
- School of Social Work, Psychology, & Philosophy, Texas Woman's University, Denton, TX 76209, USA
| |
Collapse
|
2
|
Llontop N, Mancilla C, Ojeda-Provoste P, Torres AK, Godoy A, Tapia-Rojas C, Kerr B. The methyl-CpG-binding protein 2 (Mecp2) regulates the hypothalamic mitochondrial function and white adipose tissue lipid metabolism. Life Sci 2025; 366-367:123478. [PMID: 39983816 DOI: 10.1016/j.lfs.2025.123478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
OBJECTIVE The neuroepigenetic factor Mecp2 regulates gene expression and is thought to play a crucial role in energy homeostasis. Body weight is regulated at the hypothalamic level, where mitochondrial energy metabolism is necessary for its proper functioning, allowing the hypothalamus to respond to peripheral signals to maintain energy balance and modulate energy expenditure through the sympathetic nervous system. Since the mechanism by which genetic and environmental factors contribute to regulating energy balance is unclear, this study aims to understand the contribution of gene-environment interaction to maintaining energy balance and how its disruption alters hypothalamic cellular energy production, impacting the control of systemic metabolism. METHODS We used a mouse model of epigenetic disruption (Mecp2-null) to evaluate the impact of Mecp2 deletion on systemic and hypothalamic metabolism using physiological and cellular approaches. RESULTS Our study shows that the previously reported body weight gain in mice lacking the expression of Mecp2 is preceded by a hypothalamic mitochondrial dysfunction that disrupts hypothalamic function, leading to a dysfunctional communication between the hypothalamus and adipose tissue, thus impairing lipid metabolism. Our study has revealed three crucial aspects of the contribution of this critical epigenetic factor pivotal for a proper gene-environment interaction: i) Mecp2 drives a molecular mechanism to maintain cellular energy homeostasis, which is necessary for the proper functioning of the hypothalamus. ii) Mecp2 is necessary to maintain lipid metabolism in adipose tissue. iii) Mecp2 is a molecular bridge linking hypothalamic cellular energy metabolism and adipose tissue lipid metabolism. CONCLUSIONS Our results show that Mecp2 regulates the hypothalamic mitochondrial function and white adipose tissue lipid metabolism and probably alters the communication between these two tissues, which is critical for corporal energy homeostasis maintenance.
Collapse
Affiliation(s)
- Nuria Llontop
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile
| | | | | | - Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, 8580702 Santiago, Chile
| | - Alejandro Godoy
- Laboratory of Endocrinology and Tumor Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, 8580702 Santiago, Chile.
| | - Bredford Kerr
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile.
| |
Collapse
|
3
|
Pepe G, Coco R, Corica D, Luppino G, Morabito LA, Lugarà C, Abbate T, Zirilli G, Aversa T, Stagi S, Wasniewska M. Endocrine disorders in Rett syndrome: a systematic review of the literature. Front Endocrinol (Lausanne) 2024; 15:1477227. [PMID: 39544232 PMCID: PMC11560452 DOI: 10.3389/fendo.2024.1477227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
Background Rett syndrome (RTT) is an X-linked progressive neurodevelopmental disorder that involves mainly girls and is the second most frequent cause of genetic intellectual disability. RTT leads to neurological regression between 6 and 18 months of life and could be associated with a variable neurological impairment. However, RTT affects not only neurological function but also wide aspects of non-neurological organs. Recent data showed that the endocrine system is often involved in RTT patients, including disorders of growth, bone health, thyroid, puberty onset, and weight abnormalities However, systematic data on endocrinopathies in RTT are scarce and limited. Objective This review aims to analyze the prevalence and type of endocrine comorbidities in RTT population, to allow a precocious diagnosis and appropriate endocrinological management. Methods Systematic research was carried out from January 2000 to March 2024 through MEDLINE via PubMed, Scopus, and the Cochrane Library. Results After the selection phase, a total of 22 studies (1090 screened) met the inclusion criteria and were reported in the present review. Five studies were observational-retrospective, four were cross-sectional and case report or series, three were survey, prospective, and case-control, and finally one study for descriptive-transversal and longitudinal population-based study. The sample population consisted of multiethnic groups or single ethnic groups. The main endocrinopathies reported were malnutrition, bone alterations, and alterations of puberty onset. Conclusions Our analysis shows that endocrinopathies are not rare in RTT patients. Therefore, in the context of a multidisciplinary approach, accurate screening and monitoring for endocrinopathies should be recommended in all RTT patients, to improve clinical practice, healthcare management, and, finally, patients' quality of life.
Collapse
Affiliation(s)
- Giorgia Pepe
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Roberto Coco
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Domenico Corica
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Giovanni Luppino
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Letteria Anna Morabito
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Cecilia Lugarà
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Tiziana Abbate
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Giuseppina Zirilli
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Tommaso Aversa
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Malgorzata Wasniewska
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Maia RDCA, Lima TC, Barbosa CM, Barbosa MA, de Queiroz KB, Alzamora AC. Intergenerational inheritance induced by a high-fat diet causes hyperphagia and reduced hypothalamic sensitivity to insulin and leptin in the second-generation of rats. Nutrition 2024; 120:112333. [PMID: 38271759 DOI: 10.1016/j.nut.2023.112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
OBJECTIVE The aim was to investigate the intergenerational inheritance induced by a high-fat diet on sensitivity to insulin and leptin in the hypothalamic control of satiety in second-generation offspring, which were fed a control diet. METHODS Progenitor rats were fed a high-fat or a control diet for 59 d until weaning. The first-generation and second-generation offspring were fed the control diet until 90 d of age. Body mass and adiposity index of the progenitors fed the high-fat diet and the second-generation offspring from progenitors fed the high-fat diet were evaluated as were the gene expression of DNA methyltransferase 3a, angiotensin-converting enzyme type 2, angiotensin II type 2 receptor, insulin and leptin signaling pathway (insulin receptor, leptin receptor, insulin receptor substrate 2, protein kinase B, signal transducer and transcriptional activator 3, pro-opiomelanocortin, and neuropeptide Agouti-related protein), superoxide dismutase activity, and the concentration of carbonyl protein and satiety-regulating neuropeptides, pro-opiomelanocortin and neuropeptide Agouti-related protein, in the hypothalamus. RESULTS The progenitor group fed a high-fat diet showed increased insulin resistance and reduced insulin-secreting beta-cell function and reduced food intake, without changes in caloric intake. The second-generation offspring from progenitors fed a high-fat diet, compared with second-generation offspring from progenitors fed a control diet group, had decreased insulin-secreting beta-cell function and increased food and caloric intake, insulin resistance, body mass, and adiposity index. Furthermore, second-generation offspring from progenitors fed a high-fat diet had increased DNA methyltransferase 3a, neuropeptide Agouti-related protein, angiotensin II type 1 receptor, and nicotinamide adenine dinucleotide phosphate oxidase p47phox gene expression, superoxide dismutase activity, and neuropeptide Agouti-related protein concentration in the hypothalamus. In addition, there were reduced in gene expression of the insulin receptor, leptin receptor, insulin receptor substrate 2, pro-opiomelanocortin, angiotensin II type 2 receptor, angiotensin-converting enzyme type 2, and angiotensin-(1-7) receptor and pro-opiomelanocortin concentration in the second-generation offspring from progenitors fed the high-fat diet. CONCLUSIONS Overall, progenitors fed a high-fat diet induced changes in the hypothalamic control of satiety of the second-generation offspring from progenitors fed the high-fat diet through intergenerational inheritance. These changes led to hyperphagia, alterations in the hypothalamic pathways of insulin, and leptin and adiposity index increase, favoring the occurrence of different cardiometabolic disorders in the second-generation offspring from progenitors fed the high-fat diet fed only with the control diet.
Collapse
Affiliation(s)
- Rosana da Conceição Araújo Maia
- Núcleo de Pesquisa em Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Taynara Carolina Lima
- Núcleo de Pesquisa em Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Claudiane Maria Barbosa
- Núcleo de Pesquisa em Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Maria Andréa Barbosa
- Núcleo de Pesquisa em Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Karina Barbosa de Queiroz
- Departamento de Alimentos, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Andréia Carvalho Alzamora
- Núcleo de Pesquisa em Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil; Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
| |
Collapse
|
5
|
Frayre P, Ponce-Rubio K, Frayre J, Medrano J, Na ES. POMC-specific knockdown of MeCP2 leads to adverse phenotypes in mice chronically exposed to high fat diet. Behav Brain Res 2024; 461:114863. [PMID: 38224819 PMCID: PMC10872214 DOI: 10.1016/j.bbr.2024.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
Methyl-CpG binding protein 2 (MeCP2) is an epigenetic factor associated with the neurodevelopmental disorders Rett Syndrome and MECP2 duplication syndrome. Previous studies have demonstrated that knocking out MeCP2 globally in the central nervous system leads to an obese phenotype and hyperphagia, however it is not clear if the hyperphagia is the result of an increased preference for food reward or due to an increase in motivation to obtain food reward. We show that mice deficient in MeCP2 specifically in pro-opiomelanocortin (POMC) neurons have an increased preference for high fat diet as measured by conditioned place preference but do not have a greater motivation to obtain food reward using a progressive ratio task, relative to wildtype littermate controls. We also demonstrate that POMC-Cre MeCP2 knockout (KO) mice have increased body weight after long-term high fat diet exposure as well as elevated plasma leptin and corticosterone levels compared to wildtype mice. Taken together, these results are the first to show that POMC-specific loss-of-function Mecp2 mutations leads to dissociable effects on the rewarding/motivational properties of food as well as changes to hormones associated with body weight homeostasis and stress.
Collapse
Affiliation(s)
- Priscila Frayre
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA
| | - Karen Ponce-Rubio
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA
| | - Jessica Frayre
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA
| | - Jacquelin Medrano
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA
| | - Elisa Sun Na
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA.
| |
Collapse
|
6
|
Pepe G, Coco R, Corica D, Di Rosa G, Bossowski F, Skorupska M, Aversa T, Stagi S, Wasniewska M. Prevalence of Endocrinopathies in a Cohort of Patients with Rett Syndrome: A Two-Center Observational Study. Genes (Basel) 2024; 15:287. [PMID: 38540345 PMCID: PMC10970698 DOI: 10.3390/genes15030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
Systematic data on endocrinopathies in Rett syndrome (RTT) patients remain limited and inconclusive. The aim of this retrospective observational two-center study was to assess the prevalence of endocrinopathies in a pediatric population of RTT patients. A total of 51 Caucasian patients (47 girls, 4 boys) with a genetically confirmed diagnosis of RTT were enrolled (mean age 9.65 ± 5.9 years). The patients were referred from the Rett Center of two Italian Hospitals for endocrinological evaluation. All the study population underwent clinical and auxological assessments and hormonal workups. MeCP2 mutations were detected in 38 cases (74.5%), CDKL5 deletions in 11 (21.6%), and FOXG1 mutations in 2 (3.9%). Overall, 40 patients were treated with anti-seizure medications. The most frequent endocrinological finding was short stature (47%), followed by menstrual cycle abnormalities (46.2%), weight disorders (45.1%), low bone mineral density (19.6%), hyperprolactinemia (13.7%) and thyroid disorders (9.8%). In the entire study population, endocrinopathies were significantly more frequent in patients with MeCP2 mutations (p = 0.0005), and epilepsy was more frequent in CDKL5 deletions (p = 0.02). In conclusion, our data highlighted that endocrinopathies are not rare in RTT, especially in patients with MeCP2 deletions. Therefore, in the context of a multidisciplinary approach, endocrinological evaluation should be recommended for RTT patients.
Collapse
Affiliation(s)
- Giorgia Pepe
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Roberto Coco
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Domenico Corica
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Gabriella Di Rosa
- Child Neuropsychiatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, 98128 Messina, Italy;
| | - Filip Bossowski
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Magdalena Skorupska
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Tommaso Aversa
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
- Meyer Children Hospital IRCCS, 50139 Florence, Italy
| | - Malgorzata Wasniewska
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| |
Collapse
|
7
|
Engin A. The Mechanism of Leptin Resistance in Obesity and Therapeutic Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:463-487. [PMID: 39287862 DOI: 10.1007/978-3-031-63657-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Leptin resistance is induced via leptin signaling blockade by chronic overstimulation of the leptin receptor and intracellular signaling defect or increased hypothalamic inflammation and suppressor of cytokine signaling (SOCS)-3 expression. High-fat diet triggers leptin resistance induced by at least two independent causes: first, the limited ability of peripheral leptin to activate hypothalamic signaling transducers and activators of transcription (STAT) signaling and secondly a signaling defect in leptin-responsive hypothalamic neurons. Central leptin resistance is dependent on decreased leptin transport efficiency across the blood brain barrier (BBB) rather than hypothalamic leptin insensitivity. Since the hypothalamic phosphorylated STAT3 (pSTAT3) represents a sensitive and specific readout of leptin receptor-B signaling, the assessment of pSTAT3 levels is the gold standard. Hypertriglyceridemia is one of important factors to inhibit the transport of leptin across BBB in obesity. Mismatch between high leptin and the amount of leptin receptor expression in obesity triggers brain leptin resistance via increasing hypothalamic inflammation and SOCS-3 expression. Therapeutic strategies that regulate the passage of leptin to the brain include the development of modifications in the structure of leptin analogues as well as the synthesis of new leptin receptor agonists with increased BBB permeability. In the hyperleptinemic state, polyethylene glycol (PEG)-modified leptin is unable to pass through the BBB. Peripheral histone deacetylase (HDAC) 6 inhibitor, tubastatin, and metformin increase central leptin sensitization. While add-on therapy with anagliptin, metformin and miglitol reduce leptin concentrations, the use of long-acting leptin analogs, and exendin-4 lead to the recovery of leptin sensitivity. Contouring surgery with fat removal, and bariatric surgery independently of the type of surgery performed provide significant improvement in leptin concentrations. Although approaches to correcting leptin resistance have shown some success, no clinically effective application has been developed to date. Due to the impairment of central and peripheral leptin signaling, as well as the extensive integration of leptin-sensitive metabolic pathways with other neurons, the effectiveness of methods used to eliminate leptin resistance is extremely limited.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
8
|
Yoshikawa C, Ariyani W, Kohno D. DNA Methylation in the Hypothalamic Feeding Center and Obesity. J Obes Metab Syndr 2023; 32:303-311. [PMID: 38124554 PMCID: PMC10786209 DOI: 10.7570/jomes23073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Obesity rates have been increasing worldwide for decades, mainly due to environmental factors, such as diet, nutrition, and exercise. However, the molecular mechanisms through which environmental factors induce obesity remain unclear. Several mechanisms underlie the body's response to environmental factors, and one of the main mechanisms involves epigenetic modifications, such as DNA methylation. The pattern of DNA methylation is influenced by environmental factors, and altered DNA methylation patterns can affect gene expression profiles and phenotypes. DNA methylation may mediate the development of obesity caused by environmental factors. Similar to the factors governing obesity, DNA methylation is influenced by nutrients and metabolites. Notably, DNA methylation is associated with body size and weight programming. The DNA methylation levels of proopiomelanocortin (Pomc) and neuropeptide Y (Npy) in the hypothalamic feeding center, a key region controlling systemic energy balance, are affected by diet. Conditional knockout mouse studies of epigenetic enzymes have shown that DNA methylation in the hypothalamic feeding center plays an indispensable role in energy homeostasis. In this review, we discuss the role of DNA methylation in the hypothalamic feeding center as a potential mechanism underlying the development of obesity induced by environmental factors.
Collapse
Affiliation(s)
- Chiharu Yoshikawa
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
9
|
McFadden T, Carucci I, Farrell K, Fletchall E, Jarome TJ. Hypothalamic DNA 5-hydroxymethylation levels are altered by diet-induced weight gain during the development of obesity in a sex-specific manner. Brain Res 2023; 1817:148478. [PMID: 37422205 PMCID: PMC10529936 DOI: 10.1016/j.brainres.2023.148478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Obesity is a major health concern that is associated with altered gene transcription in the hypothalamus. However, the mechanisms controlling this gene expression dysregulation remain largely unknown. DNA 5-hydroxymethylation (5-hmC) is a potent transcriptional activator that is expressed at 10 times higher levels in the brain than the periphery. Despite this, no study has examined if DNA 5-hmC is altered in the brain following exposure to obesogenic diets or contributes to abnormal weight gain over time. Here, we used a rodent diet-induced obesity model in combination with quantitative molecular assays and CRISPR-dCas9 manipulations to test the role of hypothalamic DNA 5-hmC in abnormal weight gain in male and female rats. We found that males, but not females, have decreased levels of DNA 5-hmC in the hypothalamus following exposure to a high fat diet, which directly correlate with increased body weight. Short-term exposure to a high fat diet, which does not result in significant weight gain, resulted in decreased hypothalamic DNA 5-hmC levels, suggesting these changes occur prior to obesity development. Moreover, decreases in DNA 5-hmC persist even after the high fat diet is removed, though the extent of this is diet-dependent. Importantly, CRISPR-dCas9-mediated upregulation of DNA 5-hmC enzymes in the male, but not female, ventromedial nucleus of the hypothalamus significantly reduced the percentage of weight gained on the high fat diet relative to controls. These results suggest that hypothalamic DNA 5-hmC is an important sex-specific regulator of abnormal weight gain following exposure to high fat diets.
Collapse
Affiliation(s)
| | - Isabella Carucci
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | - Timothy J Jarome
- School of Animal Sciences, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
10
|
Stoccoro A, Nicolì V, Coppedè F, Grossi E, Fedrizzi G, Menotta S, Lorenzoni F, Caretto M, Carmignani A, Pistolesi S, Burgio E, Fanos V, Migliore L. Prenatal Environmental Stressors and DNA Methylation Levels in Placenta and Peripheral Tissues of Mothers and Neonates Evaluated by Applying Artificial Neural Networks. Genes (Basel) 2023; 14:836. [PMID: 37107594 PMCID: PMC10138241 DOI: 10.3390/genes14040836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure to environmental stressors during pregnancy plays an important role in influencing subsequent susceptibility to certain chronic diseases through the modulation of epigenetic mechanisms, including DNA methylation. Our aim was to explore the connections between environmental exposures during gestation with DNA methylation of placental cells, maternal and neonatal buccal cells by applying artificial neural networks (ANNs). A total of 28 mother-infant pairs were enrolled. Data on gestational exposure to adverse environmental factors and on mother health status were collected through the administration of a questionnaire. DNA methylation analyses at both gene-specific and global level were analyzed in placentas, maternal and neonatal buccal cells. In the placenta, the concentrations of various metals and dioxins were also analyzed. Analysis of ANNs revealed that suboptimal birth weight is associated with placental H19 methylation, maternal stress during pregnancy with methylation levels of NR3C1 and BDNF in placentas and mother's buccal DNA, respectively, and exposure to air pollutants with maternal MGMT methylation. Associations were also observed between placental concentrations of lead, chromium, cadmium and mercury with methylation levels of OXTR in placentas, HSD11B2 in maternal buccal cells and placentas, MECP2 in neonatal buccal cells, and MTHFR in maternal buccal cells. Furthermore, dioxin concentrations were associated with placental RELN, neonatal HSD11B2 and maternal H19 gene methylation levels. Current results suggest that exposure of pregnant women to environmental stressors during pregnancy could induce aberrant methylation levels in genes linked to several pathways important for embryogenesis in both the placenta, potentially affecting foetal development, and in the peripheral tissues of mothers and infants, potentially providing peripheral biomarkers of environmental exposure.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Enzo Grossi
- Autism Research Unit, Villa Santa Maria Foundation, 22038 Tavernerio, Italy
| | - Giorgio Fedrizzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Chemical Department, Via P. Fiorini 5, 40127 Bologna, Italy
| | - Simonetta Menotta
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Chemical Department, Via P. Fiorini 5, 40127 Bologna, Italy
| | - Francesca Lorenzoni
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, 56126 Pisa, Italy
| | - Marta Caretto
- Obstetrics and Gynecology Unit 1, Department of Experimental and Clinical Medicine, University of Pisa, 56126 Pisa, Italy
| | - Arianna Carmignani
- Obstetrics and Gynecology Unit 2, Pisa University Hospital, 56126 Pisa, Italy
| | - Sabina Pistolesi
- First Division of Pathology, Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| | - Ernesto Burgio
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, 09124 Cagliari, Italy
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| |
Collapse
|
11
|
Belaïdouni Y, Diabira D, Brosset-Heckel M, Valsamides V, Graziano JC, Santos C, Menuet C, Wayman GA, Gaiarsa JL. Leptin antagonism improves Rett syndrome phenotype in symptomatic male Mecp2-null mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526251. [PMID: 36778454 PMCID: PMC9915649 DOI: 10.1101/2023.02.03.526251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that arise from de novo mutations in the X-linked gene MECP2 (methyl-CpG-binding protein 2). Circulating levels of the adipocyte hormone leptin are elevated in RTT patients and rodent models of the disease. Leptin targets a large number of brain structures and regulates a wide range of developmental and physiological functions which are altered in RTT. We hypothesized that elevated leptin levels might contribute to RTT pathogenesis. Accordingly, we show that pharmacological antagonism of leptin or genetic reduction of leptin production prevents the degradation of health status, weight loss and the progression of breathing and locomotor deficits. At the neuronal level, the anti-leptin strategies rescue the hippocampal excitatory/inhibitory imbalance and synaptic plasticity impairment. Targeting leptin might therefore represent a new approach for RTT treatment.
Collapse
|
12
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
13
|
Liu J, Lai F, Hou Y, Zheng R. Leptin signaling and leptin resistance. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:363-384. [PMID: 37724323 PMCID: PMC10388810 DOI: 10.1515/mr-2022-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 09/20/2023]
Abstract
With the prevalence of obesity and associated comorbidities, studies aimed at revealing mechanisms that regulate energy homeostasis have gained increasing interest. In 1994, the cloning of leptin was a milestone in metabolic research. As an adipocytokine, leptin governs food intake and energy homeostasis through leptin receptors (LepR) in the brain. The failure of increased leptin levels to suppress feeding and elevate energy expenditure is referred to as leptin resistance, which encompasses complex pathophysiological processes. Within the brain, LepR-expressing neurons are distributed in hypothalamus and other brain areas, and each population of the LepR-expressing neurons may mediate particular aspects of leptin effects. In LepR-expressing neurons, the binding of leptin to LepR initiates multiple signaling cascades including janus kinase (JAK)-signal transducers and activators of transcription (STAT) phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), extracellular regulated protein kinase (ERK), and AMP-activated protein kinase (AMPK) signaling, etc., mediating leptin actions. These findings place leptin at the intersection of metabolic and neuroendocrine regulations, and render leptin a key target for treating obesity and associated comorbidities. This review highlights the main discoveries that shaped the field of leptin for better understanding of the mechanism governing metabolic homeostasis, and guides the development of safe and effective interventions to treat obesity and associated diseases.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Futing Lai
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing 100191, China
| |
Collapse
|
14
|
Frayre J, Frayre P, Wong I, Mithani A, Bishop S, Mani C, Ponce-Rubio K, Virk R, Morris MJ, Na ES. Perinatal exposure to high fat diet alters expression of MeCP2 in the hypothalamus. Behav Brain Res 2021; 415:113518. [PMID: 34391798 DOI: 10.1016/j.bbr.2021.113518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/27/2022]
Abstract
Obesity is a complex disease that is the result of a number of different factors including genetic, environmental, and endocrine abnormalities. Given that monogenic forms of obesity are rare, it is important to identify other mechanisms that contribute to its etiology. Methyl-Cp-G binding protein 2 (MeCP2) is a neuroepigenetic factor that binds to methylated regions of DNA to influence transcription. Past studies demonstrate that disruption in MeCP2 function produces obesity in mice. Using a diet-induced obesity mouse model, we show that perinatal exposure to high fat diet significantly decreases MeCP2 protein expression in the hypothalamus of female mice, effects not seen when high fat diet is given to mice during adulthood. Moreover, these effects are seen specifically in a subregion of the hypothalamus known as the arcuate nucleus with females having decreased MeCP2 expression in rostral areas and males having decreased MeCP2 expression in intermediate regions of the arcuate nucleus. Interestingly, mice gain more weight when exposed to high fat diet during adulthood relative to mice exposed to high fat diet perinatally, suggesting that perhaps high fat diet exposure during adulthood may be affecting mechanisms independent of MeCP2 function. Collectively, our data demonstrate that there are developmentally sensitive periods in which MeCP2 expression is influenced by high fat diet exposure and this occurs in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Jessica Frayre
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Priscila Frayre
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Ida Wong
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Anusha Mithani
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Stephanie Bishop
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Chelsy Mani
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Karen Ponce-Rubio
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Ruvaid Virk
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Michael J Morris
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Elisa S Na
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| |
Collapse
|
15
|
Guardia-Escote L, Blanco J, Basaure P, Biosca-Brull J, Verkaik-Schakel RN, Cabré M, Peris-Sampedro F, Pérez-Fernández C, Sánchez-Santed F, Plösch T, Domingo JL, Colomina MT. Sex and Exposure to Postnatal Chlorpyrifos Influence the Epigenetics of Feeding-Related Genes in a Transgenic APOE Mouse Model: Long-Term Implications on Body Weight after a High-Fat Diet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010184. [PMID: 33383760 PMCID: PMC7795072 DOI: 10.3390/ijerph18010184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/25/2022]
Abstract
Developmental exposure to toxicants and diet can interact with an individual's genetics and produce long-lasting metabolic adaptations. The different isoforms of the apolipoprotein E (APOE) are an important source of variability in metabolic disorders and influence the response to the pesticide chlorpyrifos (CPF). We aimed to study the epigenetic regulation on feeding control genes and the influence of postnatal CPF exposure, APOE genotype, and sex, and how these modifications impact on the metabolic response to a high-fat diet (HFD). Both male and female apoE3- and apoE4-TR mice were exposed to CPF on postnatal days 10-15. The DNA methylation pattern of proopiomelanocortin, neuropeptide Y, leptin receptor, and insulin-like growth factor 2 was studied in the hypothalamus. At adulthood, the mice were given a HFD for eight weeks. The results highlight the importance of sex in the epigenetic regulation and the implication of CPF treatment and APOE genotype. The body weight progression exhibited sex-dimorphic differences, apoE4-TR males being the most susceptible to the effects induced by CPF and HFD. Overall, these results underscore the pivotal role of sex, APOE genotype, and developmental exposure to CPF on subsequent metabolic disturbances later in life and show that sex is a key variable in epigenetic regulation.
Collapse
Affiliation(s)
- Laia Guardia-Escote
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
| | - Jordi Blanco
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Pia Basaure
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
| | - Judit Biosca-Brull
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
| | - Rikst Nynke Verkaik-Schakel
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (R.N.V.-S.); (T.P.)
| | - Maria Cabré
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Fiona Peris-Sampedro
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Cristian Pérez-Fernández
- Department of Psychology and Health Research Center (CEINSA), Almeria University-ceiA3, 04120 Almeria, Spain; (C.P.-F.); (F.S.-S.)
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center (CEINSA), Almeria University-ceiA3, 04120 Almeria, Spain; (C.P.-F.); (F.S.-S.)
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (R.N.V.-S.); (T.P.)
| | - José L. Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Maria Teresa Colomina
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
- Correspondence:
| |
Collapse
|
16
|
Aylwin CF, Lomniczi A. Sirtuin (SIRT)-1: At the crossroads of puberty and metabolism. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 14:65-72. [PMID: 32905232 PMCID: PMC7467505 DOI: 10.1016/j.coemr.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the arcuate nucleus (ARC) of the hypothalamus reside two neuronal systems in charge of regulating feeding control and reproductive development. The melanocortin system responds to metabolic fluctuations adjusting food intake, whereas kisspeptin neurons are in charge of the excitatory control of Gonadotropin Hormone Releasing Hormone (GnRH) neurons. While it is known that the melanocortin system regulates GnRH neuronal activity, it was recently demonstrated that kisspeptin neurons not only innervate melanocortin neurons, but also play an active role in the control of metabolism. These two neuronal systems are intricately interconnected forming loops of stimulation and inhibition according to metabolic status. Furthermore, intracellular and epigenetic pathways respond to external environmental signals by changing DNA conformation and gene expression. Here we review the role of Silent mating type Information Regulation 2 homologue 1 (Sirt1), a class III NAD+ dependent protein deacetylase, in the ARC control of pubertal development and feeding behavior.
Collapse
Affiliation(s)
- Carlos F Aylwin
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| |
Collapse
|
17
|
Lavery LA, Ure K, Wan YW, Luo C, Trostle AJ, Wang W, Jin H, Lopez J, Lucero J, Durham MA, Castanon R, Nery JR, Liu Z, Goodell M, Ecker JR, Behrens MM, Zoghbi HY. Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. eLife 2020; 9:e52981. [PMID: 32159514 PMCID: PMC7065908 DOI: 10.7554/elife.52981] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Methylated cytosine is an effector of epigenetic gene regulation. In the brain, Dnmt3a is the sole 'writer' of atypical non-CpG methylation (mCH), and MeCP2 is the only known 'reader' for mCH. We asked if MeCP2 is the sole reader for Dnmt3a dependent methylation by comparing mice lacking either protein in GABAergic inhibitory neurons. Loss of either protein causes overlapping and distinct features from the behavioral to molecular level. Loss of Dnmt3a causes global loss of mCH and a subset of mCG sites resulting in more widespread transcriptional alterations and severe neurological dysfunction than MeCP2 loss. These data suggest that MeCP2 is responsible for reading only part of the Dnmt3a dependent methylation in the brain. Importantly, the impact of MeCP2 on genes differentially expressed in both models shows a strong dependence on mCH, but not Dnmt3a dependent mCG, consistent with mCH playing a central role in the pathogenesis of Rett Syndrome.
Collapse
Affiliation(s)
- Laura A Lavery
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Kerstin Ure
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Chongyuan Luo
- Genomic Analysis Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Howard Hughes Medical Institute, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Alexander J Trostle
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Wei Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Haijing Jin
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of MedicineHoustonUnited States
| | - Joanna Lopez
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Jacinta Lucero
- Computational Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Mark A Durham
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
| | - Rosa Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of MedicineHoustonUnited States
| | - Margaret Goodell
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene Therapy, Baylor College of MedicineHoustonUnited States
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Howard Hughes Medical Institute, The Salk Institute for Biological StudiesLa JollaUnited States
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Department of Psychiatry, University of California San DiegoLa JollaUnited States
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
18
|
Ramírez-Orozco RE, García-Ruiz R, Morales P, Villalón CM, Villafán-Bernal JR, Marichal-Cancino BA. Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding. Curr Neuropharmacol 2020; 17:947-960. [PMID: 31146657 PMCID: PMC7052828 DOI: 10.2174/1570159x17666190118143014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 01/28/2023] Open
Abstract
Endocannabinoids are ancient biomolecules involved in several cellular (e.g., metabolism) and physiological (e.g., eating behaviour) functions. Indeed, eating behaviour alterations in marijuana users have led to investigate the orexigen-ic/anorexigenic effects of cannabinoids in animal/human models. This increasing body of research suggests that the endo-cannabinoid system plays an important role in feeding control. Accordingly, within the endocannabinoid system, canna-binoid receptors, enzymes and genes represent potential therapeutic targets for dealing with multiple metabolic and behav-ioural dysfunctions (e.g., obesity, anorexia, etc.). Paradoxically, our understanding on the endocannabinoid system as a cel-lular mediator is yet limited. For example: (i) only two cannabinoid receptors have been classified, but they are not enough to explain the pharmacological profile of several experimental effects induced by cannabinoids; and (ii) several orphan G pro-tein-coupled receptors (GPCRs) interact with cannabinoids and we do not know how to classify them (e.g., GPR18, GPR55 and GPR119; amongst others). On this basis, the present review attempts to summarize the lines of evidence supporting the potential role of GPR18, GPR55 and GPR119 in metabolism and feeding control that may explain some of the divergent effects and puzzling data re-lated to cannabinoid research. Moreover, their therapeutic potential in feeding behaviour alterations will be considered.
Collapse
Affiliation(s)
- Ricardo E Ramírez-Orozco
- Departamento de Nutricion y Cultura Fisica, Centro de Ciencias de la Salud, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags, Mexico
| | - Ricardo García-Ruiz
- Departamento de Fisiologia, Facultad de Medicina. Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Paula Morales
- Instituto de Quimica Fisica Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Carlos M Villalón
- Departamento de Farmacobiologia, Cinvestav- Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330 Ciudad de Mexico, Mexico
| | - J Rafael Villafán-Bernal
- Departamento de Cirugia, Centro de Ciencias de la Salud, Universidad Autonoma de Aguascalientes, CP 20131 Aguascalientes, Ags, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiologia y Farmacologia, Centro de Ciencias Basicas, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags, Mexico
| |
Collapse
|
19
|
Liu C, Wang J, Wei Y, Zhang W, Geng M, Yuan Y, Chen Y, Sun Y, Chen H, Zhang Y, Xiong M, Li Y, Zheng L, Huang K. Fat-Specific Knockout of Mecp2 Upregulates Slpi to Reduce Obesity by Enhancing Browning. Diabetes 2020; 69:35-47. [PMID: 31597640 DOI: 10.2337/db19-0502] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/06/2019] [Indexed: 11/13/2022]
Abstract
Abnormalities of methyl-CpG binding protein 2 (Mecp2) cause neurological disorders with metabolic dysfunction; however, its role in adipose tissues remains unclear. Here, we report upregulated Mecp2 in white adipose tissues (WAT) of obese humans, as well as in obese mice and during in vitro adipogenesis. Normal chow-fed adipocyte-specific Mecp2 knockout mice (Mecp2 Adi KO mice) showed a lean phenotype, with downregulated lipogenic genes and upregulated thermogenic genes that were identified using RNA sequencing. Consistently, the deficiency of Mecp2 in adipocytes protected mice from high-fat diet (HFD)-induced obesity and inhibited in vitro adipogenesis. Furthermore, Mecp2 Adi KO mice showed increased browning under different stimuli, including cold treatment. Mechanistically, Mecp2 bound to the promoter of secretory leukocyte protease inhibitor (Slpi) and negatively regulated its expression. Knockdown of Slpi in inguinal WAT of Mecp2 Adi KO mice prevented cold-induced browning. Moreover, recombinant SLPI treatment reduced the HFD-induced obesity via enhancing browning. Together, our results suggest a novel non-central nervous system function of Mecp2 in obesity by suppressing browning, at least partially, through regulating adipokine Slpi.
Collapse
Affiliation(s)
- Chengyu Liu
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiao Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujuan Wei
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenquan Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mengyuan Geng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yangmian Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Zhang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingrui Xiong
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangkai Li
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Samodien E, Pheiffer C, Erasmus M, Mabasa L, Louw J, Johnson R. Diet-induced DNA methylation within the hypothalamic arcuate nucleus and dysregulated leptin and insulin signaling in the pathophysiology of obesity. Food Sci Nutr 2019; 7:3131-3145. [PMID: 31660128 PMCID: PMC6804761 DOI: 10.1002/fsn3.1169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
Obesity rates continue to rise in an unprecedented manner in what could be the most rapid population‐scale shift in human phenotype ever to occur. Increased consumption of unhealthy, calorie‐dense foods, coupled with sedentary lifestyles, is the main factor contributing to a positive energy balance and the development of obesity. Leptin and insulin are key hormones implicated in pathogenesis of this disorder and are crucial for controlling whole‐body energy homeostasis. Their respective function is mediated by the counterbalance of anorexigenic and orexigenic neurons located within the hypothalamic arcuate nucleus. Dysregulation of leptin and insulin signaling pathways within this brain region may contribute not only to the development of obesity, but also systemically affect the peripheral organs, thereby manifesting as metabolic diseases. Although the exact mechanisms detailing how these hypothalamic nuclei contribute to disease pathology are still unclear, increasing evidence suggests that altered DNA methylation may be involved. This review evaluates animal studies that have demonstrated diet‐induced DNA methylation changes in genes that regulate energy homeostasis within the arcuate nucleus, and elucidates possible mechanisms causing hypothalamic leptin and insulin resistance leading to the development of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Ebrahim Samodien
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Medical Physiology Stellenbosch University Tygerberg South Africa
| | - Melisse Erasmus
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Medical Physiology Stellenbosch University Tygerberg South Africa
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Biochemistry and Microbiology University of Zululand KwaDlangezwa South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Medical Physiology Stellenbosch University Tygerberg South Africa
| |
Collapse
|
21
|
Epigenetic regulation of POMC; implications for nutritional programming, obesity and metabolic disease. Front Neuroendocrinol 2019; 54:100773. [PMID: 31344387 DOI: 10.1016/j.yfrne.2019.100773] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 01/07/2023]
Abstract
Proopiomelanocortin (POMC) is a key mediator of satiety. Epigenetic marks such as DNA methylation may modulate POMC expression and provide a biological link between early life exposures and later phenotype. Animal studies suggest epigenetic marks at POMC are influenced by maternal energy excess and restriction, prenatal stress and Triclosan exposure. Postnatal factors including energy excess, folate, vitamin A, conjugated linoleic acid and leptin may also affect POMC methylation. Recent human studies suggest POMC DNA methylation is influenced by maternal nutrition in early pregnancy and associated with childhood and adult obesity. Studies in children propose a link between POMC DNA methylation and elevated lipids and insulin, independent of body habitus. This review brings together evidence from animal and human studies and suggests that POMC is sensitive to nutritional programming and is associated with a wide range of weight-related and metabolic outcomes.
Collapse
|
22
|
Mangge H, Bengesser S, Dalkner N, Birner A, Fellendorf F, Platzer M, Queissner R, Pilz R, Maget A, Reininghaus B, Hamm C, Bauer K, Rieger A, Zelzer S, Fuchs D, Reininghaus E. Weight Gain During Treatment of Bipolar Disorder (BD)-Facts and Therapeutic Options. Front Nutr 2019; 6:76. [PMID: 31245376 PMCID: PMC6579840 DOI: 10.3389/fnut.2019.00076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
Bipolar disorder (BPD) is a mood disorder, which is characterized by alternating affective states, namely (hypo)mania, depression, and euthymia. Evidence is growing that BPD has indeed a biologic substrate characterized by chronic inflammation, oxidative stress, and disturbed energy metabolism. Apart from this, there is obviously a hereditary component of this disease with multi-genetic factors. Most probably a susceptibility threshold favors the outbreak of clinical disease after a cascade of stress events that remain to be elucidated in more detail. Evidence is also growing that weak points in brain energy metabolism contribute to outbreak and severity of BPD. Conventional psychopharmacologic therapy must be reassessed under the aspects of weight cycling and development of central obesity as a deterioration factor for a worse clinical course leading to early cardiovascular events in BPD subgroups.
Collapse
Affiliation(s)
- Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Graz, Austria
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Frederike Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Martina Platzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Robert Queissner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Rene Pilz
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Maget
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Bernd Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Carlo Hamm
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Konstantin Bauer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Alexandra Rieger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Graz, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
23
|
Obri A, Claret M. The role of epigenetics in hypothalamic energy balance control: implications for obesity. Cell Stress 2019; 3:208-220. [PMID: 31309172 PMCID: PMC6612891 DOI: 10.15698/cst2019.07.191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite enormous social and scientific efforts, obesity rates continue to increase worldwide. While genetic factors contribute to obesity development, genetics alone cannot explain the current epidemic. Obesity is essentially the consequence of complex genetic-environmental interactions. Evidence suggests that contemporary lifestyles trigger epigenetic changes, which can dysregulate energy balance and thus contribute to obesity. The hypothalamus plays a pivotal role in the regulation of body weight, through a sophisticated network of neuronal systems. Alterations in the activity of these neuronal pathways have been implicated in the pathophysiology of obesity. Here, we review the current knowledge on the central control of energy balance with a focus on recent studies linking epigenetic mechanisms in the hypothalamus to the development of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| |
Collapse
|
24
|
Fukuhara S, Nakajima H, Sugimoto S, Kodo K, Shigehara K, Morimoto H, Tsuma Y, Moroto M, Mori J, Kosaka K, Morimoto M, Hosoi H. High-fat diet accelerates extreme obesity with hyperphagia in female heterozygous Mecp2-null mice. PLoS One 2019; 14:e0210184. [PMID: 30608967 PMCID: PMC6319720 DOI: 10.1371/journal.pone.0210184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutation of the methyl-CpG-binding protein 2 (MECP2) gene. Although RTT has been associated with obesity, the underlying mechanism has not yet been elucidated. In this study, female heterozygous Mecp2-null mice (Mecp2+/- mice), a model of RTT, were fed a normal chow diet or high-fat diet (HFD), and the changes in molecular signaling pathways were investigated. Specifically, we examined the expression of genes related to the hypothalamus and dopamine reward circuitry, which represent a central network of feeding behavior control. In particular, dopamine reward circuitry has been shown to regulate hedonic feeding behavior, and its disruption is associated with HFD-related changes in palatability. The Mecp2+/- mice that were fed the normal chow showed normal body weight and food consumption, whereas those fed the HFD showed extreme obesity with hyperphagia, an increase of body fat mass, glucose intolerance, and insulin resistance compared with wild-type mice fed the HFD (WT-HFD mice). The main cause of obesity in Mecp2+/--HFD mice was a remarkable increase in calorie intake, with no difference in oxygen consumption or locomotor activity. Agouti-related peptide mRNA and protein levels were increased, whereas proopiomelanocortin mRNA and protein levels were reduced in Mecp2+/--HFD mice with hyperleptinemia, which play an essential role in appetite and satiety in the hypothalamus. The conditioned place preference test revealed that Mecp2+/- mice preferred the HFD. Tyrosine hydroxylase and dopamine transporter mRNA levels in the ventral tegmental area, and dopamine receptor and dopamine- and cAMP-regulated phosphoprotein mRNA levels in the nucleus accumbens were significantly lower in Mecp2+/--HFD mice than those of WT-HFD mice. Thus, HFD feeding induced dysregulation of food intake in the hypothalamus and dopamine reward circuitry, and accelerated the development of extreme obesity associated with addiction-like eating behavior in Mecp2+/- mice.
Collapse
Affiliation(s)
- Shota Fukuhara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hisakazu Nakajima
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
- Department of Pediatrics, North Medical Center, Kyoto, Prefectural University of Medicine, Yosa-gun, Japan
- * E-mail:
| | - Satoru Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Kazuki Kodo
- Department of Pediatrics, North Medical Center, Kyoto, Prefectural University of Medicine, Yosa-gun, Japan
| | - Keiichi Shigehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hidechika Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Yusuke Tsuma
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Masaharu Moroto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Jun Mori
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Kitaro Kosaka
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Masafumi Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| |
Collapse
|
25
|
Vogel Ciernia A, Yasui DH, Pride MC, Durbin-Johnson B, Noronha AB, Chang A, Knotts TA, Rutkowsky JR, Ramsey JJ, Crawley JN, LaSalle JM. MeCP2 isoform e1 mutant mice recapitulate motor and metabolic phenotypes of Rett syndrome. Hum Mol Genet 2018; 27:4077-4093. [PMID: 30137367 PMCID: PMC6240741 DOI: 10.1093/hmg/ddy301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/27/2023] Open
Abstract
Mutations in the X-linked gene MECP2 cause the majority of Rett syndrome (RTT) cases. Two differentially spliced isoforms of exons 1 and 2 (MeCP2-e1 and MeCP2-e2) contribute to the diverse functions of MeCP2, but only mutations in exon 1, not exon 2, are observed in RTT. We previously described an isoform-specific MeCP2-e1-deficient male mouse model of a human RTT mutation that lacks MeCP2-e1 while preserving expression of MeCP2-e2. However, RTT patients are heterozygous females that exhibit delayed and progressive symptom onset beginning in late infancy, including neurologic as well as metabolic, immune, respiratory and gastrointestinal phenotypes. Consequently, we conducted a longitudinal assessment of symptom development in MeCP2-e1 mutant females and males. A delayed and progressive onset of motor impairments was observed in both female and male MeCP2-e1 mutant mice, including hind limb clasping and motor deficits in gait and balance. Because these motor impairments were significantly impacted by age-dependent increases in body weight, we also investigated metabolic phenotypes at an early stage of disease progression. Both male and female MeCP2-e1 mutants exhibited significantly increased body fat compared to sex-matched wild-type littermates prior to weight differences. Mecp2e1-/y males exhibited significant metabolic phenotypes of hypoactivity, decreased energy expenditure, increased respiratory exchange ratio, but decreased food intake compared to wild-type. Untargeted analysis of lipid metabolites demonstrated a distinguishable profile in MeCP2-e1 female mutant liver characterized by increased triglycerides. Together, these results demonstrate that MeCP2-e1 mutation in mice of both sexes recapitulates early and progressive metabolic and motor phenotypes of human RTT.
Collapse
Affiliation(s)
- Annie Vogel Ciernia
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
- UC Davis Genome Center, University of California, Davis, CA, USA
- UC Davis MIND Institute, University of California, Davis, CA, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Michael C Pride
- UC Davis MIND Institute, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Adriana B Noronha
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Alene Chang
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Trina A Knotts
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jennifer R Rutkowsky
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jon J Ramsey
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jacqueline N Crawley
- UC Davis MIND Institute, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
- UC Davis Genome Center, University of California, Davis, CA, USA
- UC Davis MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
26
|
Cui P, Ma T, Tamadon A, Han S, Li B, Chen Z, An X, Shao LR, Wang Y, Feng Y. Hypothalamic DNA methylation in rats with dihydrotestosterone-induced polycystic ovary syndrome: effects of low-frequency electro-acupuncture. Exp Physiol 2018; 103:1618-1632. [PMID: 30204276 DOI: 10.1113/ep087163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/10/2018] [Indexed: 04/30/2025]
Abstract
NEW FINDINGS What is the central question of this study? What is the role of hypothalamic DNA methylation in the development of polycystic ovary syndrome (PCOS) and the response to electro-acupuncture treatment. What is the main finding and its importance? Global DNA methylation and expression of DNA methyltransferases (DNMTs) were increased in PCOS-like rats, and electro-acupuncture (EA) decreased global DNA methylation and DNMT3b expression. Pyrosequencing showed that the DNA methylation of some PCOS candidate genes was changed in the PCOS and PCOS+EA groups, suggesting that hypothalamic DNA methylation plays an important role in the development of PCOS and in mediating the effects of electro-acupuncture treatment. ABSTRACT Polycystic ovary syndrome (PCOS) is a common reproductive and endocrine disease of unknown aetiology. Recently, epigenetic studies focusing on DNA methylation in PCOS have received much attention, but the mechanisms are still unclear. In the present study, we used the 5α-dihydrotestosterone-induced PCOS-like rat model and treated the rats with electro-acupuncture (EA). Rats were randomly divided into four groups - controls, diet-induced obesity, PCOS and PCOS+EA. We examined the reproductive, metabolic and behavioural phenotypes, validated the effect of EA, and explored the role of hypothalamic DNA methylation by analysing the methylation of global DNA and selected candidate genes. The PCOS rats presented with reproductive dysfunctions such as lack of regular oestrous cyclicity, metabolic disorders such as increased body weight and insulin resistance, and depression and anxiety-like behaviours. EA improved the reproductive functions, decreased body weight and improved experimental depressive behaviour. Furthermore, global DNA methylation and the expression of DNA methyltransferases (DNMTs) were increased in PCOS rats compared to the control group, and EA decreased the global DNA methylation and the expression of DNMT3b. In addition, pyrosequencing showed that the DNA methylation of certain CpG sites in targeted genes (Plcg1, Camk2b, Esr2 and Pgr) was increased in the PCOS group, but the DNA methylation of Camk2b and Ar was decreased after EA treatment. These results indicate that hypothalamic DNA methylation might be correlated with the development of PCOS and that EA has an effect on hypothalamic DNA methylation in PCOS rats.
Collapse
Affiliation(s)
- Peng Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Amin Tamadon
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Sha Han
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Bing Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Zheyi Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function
| |
Collapse
|
27
|
Ávalos Y, Kerr B, Maliqueo M, Dorfman M. Cell and molecular mechanisms behind diet-induced hypothalamic inflammation and obesity. J Neuroendocrinol 2018; 30:e12598. [PMID: 29645315 DOI: 10.1111/jne.12598] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Diet-induced obesity (DIO) is associated with chronic, low-grade inflammation in the hypothalamus, a key regulator of energy homeostasis. Current studies have revealed the involvement of different cell types, as well as cell and molecular mechanisms, that contribute to diet-induced hypothalamic inflammation (DIHI) and DIO. Subsequent to the discovery that high-fat diet and saturated fatty acids increase the expression of hypothalamic cytokines prior to weight gain, research has focused on understanding the cellular and molecular mechanisms underlying these changes, in addition to the role of inflammation in the pathogenesis of obesity. Recent studies have proposed that the inhibition of pro-inflammatory pathways in microglia and astrocytes is sufficient to protect against DIHI and prevent obesity. In addition, impairment of intracellular and epigenetic mechanisms, such as hypothalamic autophagy and changes in the methylation pattern of certain genes, have been implicated in susceptibility to DIHI and DIO. Interestingly, a sexual dimorphism has been found during DIO in hypothalamic inflammation, glial activation and metabolic diseases, and recent data support an important role of sex steroids in DIHI. These new exciting findings uncover novel obesity pathogenic mechanisms and provide targets to develop therapeutic approaches.
Collapse
Affiliation(s)
- Y Ávalos
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - B Kerr
- Centro de Estudios Científicos, Valdivia, Chile
| | - M Maliqueo
- Endocrinology and Metabolism Laboratory, Department of Medicine West Division, School of Medicine, University of Chile, Santiago, Chile
| | - M Dorfman
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
28
|
Abstract
Leptin is an adipocyte-derived hormone, which contributes to the homeostatic regulation of energy balance and metabolism through humoral and neural pathways. Leptin acts on the neurons in certain brain areas such as the hypothalamus, hippocampus, and brain stem to regulate food intake, thermogenesis, energy expenditure, and homeostasis of glucose/lipid metabolism. The pathologically increased circulating leptin is a biomarker of leptin resistance, which is common in obese individuals. Leptin resistance is defined by a reduced sensitivity or a failure in response of the brain to leptin, showing a decrease in the ability of leptin to suppress appetite or enhance energy expenditure, which causes an increased food intake and finally leads to overweight, obesity, cardiovascular diseases, and other metabolic disorders. Leptin resistance is a challenge for clinical treatment or drug discovery of obesity. Until recently, emerging evidence has been showing novel mechanisms of the leptin resistance. Here, we summarized the advances and controversy of leptin resistance and associated diseases, for better understanding the physiology and pathophysiology of leptin as well as the new strategies for treating obesity and metabolic disorders.
Collapse
|
29
|
Bruggeman EC, Garretson JT, Wu R, Shi H, Xue B. Neuronal Dnmt1 Deficiency Attenuates Diet-Induced Obesity in Mice. Endocrinology 2018; 159:145-162. [PMID: 29145563 PMCID: PMC5761599 DOI: 10.1210/en.2017-00267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 11/09/2017] [Indexed: 12/22/2022]
Abstract
Aberrant neuronal DNA methylation patterns have been implicated in the promotion of obesity development; however, the role of neuronal DNA methyltransferases (Dnmts), enzymes that catalyze DNA methylation, in energy balance remains poorly understood. We investigated whether neuronal Dnmt1 regulates normal energy homeostasis and obesity development using a neuronal Dnmt1 knockout (ND1KO) mouse model, Dnmt1fl/fl Synapsin1Cre, which specifically deletes Dnmt1 in neurons. Neuronal Dnmt1 deficiency reduced adiposity in chow-fed mice and attenuated obesity in high-fat diet (HFD)-fed male mice. ND1KO male mice had reduced food intake and increased energy expenditure with the HFD. Furthermore, these mice had improved insulin sensitivity, as measured using an insulin tolerance test. The HFD-fed ND1KO mice had smaller fat pads and upregulation of thermogenic genes in brown adipose tissue. These data suggest that neuronal Dnmt1 plays an important role in regulating energy homeostasis. Notably, ND1KO male mice had elevated estrogen receptor-α (ERα) gene expression in the medial hypothalamus, which previously has been shown to control body weight. Immunohistochemistry experiments revealed that ERα protein expression was upregulated specifically in the dorsomedial region of the ventromedial hypothalamus, a region that might mediate the central effect of leptin. We conclude that neuronal Dnmt1 regulates energy homeostasis through pathways controlling food intake and energy expenditure. In addition, ERα expression in the dorsomedial region of the ventromedial hypothalamus might mediate these effects.
Collapse
MESH Headings
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Adiposity
- Animals
- Crosses, Genetic
- DNA (Cytosine-5-)-Methyltransferase 1/deficiency
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA Methylation
- Diet, High-Fat/adverse effects
- Energy Intake
- Energy Metabolism
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation
- Hypothalamus, Middle/enzymology
- Hypothalamus, Middle/metabolism
- Hypothalamus, Middle/pathology
- Insulin Resistance
- Male
- Mice, Knockout
- Mice, Transgenic
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/enzymology
- Neurons/metabolism
- Neurons/pathology
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Obesity/prevention & control
- Promoter Regions, Genetic
- Sex Characteristics
Collapse
Affiliation(s)
- Emily C. Bruggeman
- Neuroscience Institute, Georgia State University,
Atlanta, Georgia 30302
- Center for Obesity Reversal, Georgia State University,
Atlanta, Georgia 30302
| | - John T. Garretson
- Neuroscience Institute, Georgia State University,
Atlanta, Georgia 30302
- Center for Obesity Reversal, Georgia State University,
Atlanta, Georgia 30302
| | - Rui Wu
- Center for Obesity Reversal, Georgia State University,
Atlanta, Georgia 30302
- Department of Biology, Georgia State University, Atlanta,
Georgia 30302
| | - Hang Shi
- Neuroscience Institute, Georgia State University,
Atlanta, Georgia 30302
- Center for Obesity Reversal, Georgia State University,
Atlanta, Georgia 30302
- Department of Biology, Georgia State University, Atlanta,
Georgia 30302
| | - Bingzhong Xue
- Neuroscience Institute, Georgia State University,
Atlanta, Georgia 30302
- Center for Obesity Reversal, Georgia State University,
Atlanta, Georgia 30302
- Department of Biology, Georgia State University, Atlanta,
Georgia 30302
| |
Collapse
|
30
|
Hu Y, Le L, Qi LX, Zhao Y, Fu H, Duan C, Wang XY, Hu KP. Comprehensive Evaluation on Effect of IMPX977 on Expression of Methyl-CpG-binding Protein 2 in Rats. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
31
|
Vogel Ciernia A, Pride MC, Durbin-Johnson B, Noronha A, Chang A, Yasui DH, Crawley JN, LaSalle JM. Early motor phenotype detection in a female mouse model of Rett syndrome is improved by cross-fostering. Hum Mol Genet 2017; 26:1839-1854. [PMID: 28334953 PMCID: PMC6075042 DOI: 10.1093/hmg/ddx087] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the gene encoding methyl CpG binding protein 2 (MeCP2) that occur sporadically in 1:10,000 female births. RTT is characterized by a period of largely normal development followed by regression in language and motor skills at 6-18 months of age. Mecp2 mutant mice recapitulate many of the clinical features of RTT, but the majority of behavioral assessments have been conducted in male Mecp2 hemizygous null mice as offspring of heterozygous dams. Given that RTT patients are predominantly female, we conducted a systematic analysis of developmental milestones, sensory abilities, and motor deficits, following the longitudinal decline of function from early postnatal to adult ages in female Mecp2 heterozygotes of the conventional Bird line (Mecp2tm1.1bird-/+), as compared to their female wildtype littermate controls. Further, we assessed the impact of postnatal maternal environment on developmental milestones and behavioral phenotypes. Cross-fostering to CD1 dams accelerated several developmental milestones independent of genotype, and induced earlier onset of weight gain in adult female Mecp2tm1.1bird-/+ mice. Cross-fostering improved the sensitivity of a number of motor behaviors that resulted in observable deficits in Mecp2tm1.1bird-/+ mice at much earlier (6-7 weeks) ages than were previously reported (6-9 months). Our findings indicate that female Mecp2tm1.1bird-/+ mice recapitulate many of the motor aspects of RTT syndrome earlier than previously appreciated. In addition, rearing conditions may impact the phenotypic severity and improve the ability to detect genotype differences in female Mecp2 mutant mice.
Collapse
Affiliation(s)
| | | | | | - Adriana Noronha
- Medical Microbiology and Immunology
- Genome Center
- MIND Institute
| | - Alene Chang
- Medical Microbiology and Immunology
- Genome Center
- MIND Institute
| | - Dag H. Yasui
- Medical Microbiology and Immunology
- Genome Center
- MIND Institute
- Department of Psychiatry and Behavioral Sciences
| | | | - Janine M. LaSalle
- Medical Microbiology and Immunology
- Genome Center
- MIND Institute
- Department of Psychiatry and Behavioral Sciences
- Center for Children's Environmental Health, University of California, Davis, UC Davis, CA, USA
| |
Collapse
|
32
|
Engin A. Diet-Induced Obesity and the Mechanism of Leptin Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:381-397. [PMID: 28585208 DOI: 10.1007/978-3-319-48382-5_16] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leptin signaling blockade by chronic overstimulation of the leptin receptor or hypothalamic pro-inflammatory responses due to elevated levels of saturated fatty acid can induce leptin resistance by activating negative feedback pathways. Although, long form leptin receptor (Ob-Rb) initiates leptin signaling through more than seven different signal transduction pathways, excessive suppressor of cytokine signaling-3 (SOCS-3) activity is a potential mechanism for the leptin resistance that characterizes human obesity. Because the leptin-responsive metabolic pathways broadly integrate with other neurons to control energy balance, the methods used to counteract the leptin resistance has extremely limited effect. In this chapter, besides the impairment of central and peripheral leptin signaling pathways, limited access of leptin to central nervous system (CNS) through blood-brain barrier, mismatch between high leptin and the amount of leptin receptor expression, contradictory effects of cellular and circulating molecules on leptin signaling, the connection between leptin signaling and endoplasmic reticulum (ER) stress and self-regulation of leptin signaling has been discussed in terms of leptin resistance.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
33
|
Leonard H, Cobb S, Downs J. Clinical and biological progress over 50 years in Rett syndrome. Nat Rev Neurol 2016; 13:37-51. [PMID: 27934853 DOI: 10.1038/nrneurol.2016.186] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the 50 years since Andreas Rett first described the syndrome that came to bear his name, and is now known to be caused by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, a compelling blend of astute clinical observations and clinical and laboratory research has substantially enhanced our understanding of this rare disorder. Here, we document the contributions of the early pioneers in Rett syndrome (RTT) research, and describe the evolution of knowledge in terms of diagnostic criteria, clinical variation, and the interplay with other Rett-related disorders. We provide a synthesis of what is known about the neurobiology of MeCP2, considering the lessons learned from both cell and animal models, and how they might inform future clinical trials. With a focus on the core criteria, we examine the relationships between genotype and clinical severity. We review current knowledge about the many comorbidities that occur in RTT, and how genotype may modify their presentation. We also acknowledge the important drivers that are accelerating this research programme, including the roles of research infrastructure, international collaboration and advocacy groups. Finally, we highlight the major milestones since 1966, and what they mean for the day-to-day lives of individuals with RTT and their families.
Collapse
Affiliation(s)
- Helen Leonard
- Telethon Kids Institute, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Jenny Downs
- Telethon Kids Institute, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| |
Collapse
|
34
|
Benite-Ribeiro SA, Putt DA, Soares-Filho MC, Santos JM. The link between hypothalamic epigenetic modifications and long-term feeding control. Appetite 2016; 107:445-453. [PMID: 27565376 DOI: 10.1016/j.appet.2016.08.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/08/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023]
Abstract
The incidence of obesity, one of the main risks for type 2 diabetes and cardiovascular disease, has been rising, and changes in eating behavior are associated with this increasing rate. Body weight is maintained via a complex integration of endocrine and neuronal inputs that regulate the control of orexigenic and anorexigenic neuropeptides in the arcuate nucleus of the hypothalamus. Overfeeding may disrupt the mechanisms of feeding control, increasing orexigenic peptides such as neuropeptide Y (NPY), and/or decreasing the anorexigenic peptide proopiomelanocortin (POMC) leading to a change in energy balance and body-weight index. Despite of the great interest in this field, the mechanism by which expression of POMC and NPY is modified is not entirely clear. Over the past decades, studies have demonstrated that epigenetic modifications such as DNA methylation, histone modification and changes in miRNA dynamics, could be modulated by external stimuli and these could affect protein expression in different cells. Therefore, this review discusses the recent reports that link epigenetic modifications in the hypothalamus to changes on long-term feeding control and its role in the onset of obesity.
Collapse
Affiliation(s)
| | | | | | - Júlia Matzenbacher Santos
- Federal University of Goiás, Regional Jataí, Bioscience Institute, Jataí, GO, Brazil; Detroit R&D, Research Department, Detroit, MI, USA.
| |
Collapse
|
35
|
Marco A, Kisliouk T, Tabachnik T, Weller A, Meiri N. DNA CpG Methylation (5-Methylcytosine) and Its Derivative (5-Hydroxymethylcytosine) Alter Histone Posttranslational Modifications at the Pomc Promoter, Affecting the Impact of Perinatal Diet on Leanness and Obesity of the Offspring. Diabetes 2016; 65:2258-67. [PMID: 27217481 DOI: 10.2337/db15-1608] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/27/2016] [Indexed: 11/13/2022]
Abstract
A maternal high-fat diet (HFD) alters the offspring's feeding regulation, leading to obesity. This phenomenon is partially mediated by aberrant expression of the hypothalamic anorexigenic neuropeptide proopiomelanocortin (POMC). Nevertheless, although some individual offspring suffer from morbid obesity, others escape the malprogramming. It is suggested that this difference is due to epigenetic programming. In this study, we report that in lean offspring of non-HFD-fed dams, essential promoter regions for Pomc expression were enriched with 5-hydroxymethylcytosine (5hmC) together with a reduction in the level of 5-methylcytosine (5mC). Moreover, 5hmC was negatively correlated whereas 5mC was positively correlated with body weight in offspring from both HFD- and control-fed dams. We further found that Pomc expression in obese offspring is determined by a two-step epigenetic inhibitory mechanism in which CpG methylation is linked with histone posttranslational modifications. An increase in CpG methylation at the Poxmc promoter enables binding of methyl-binding domain 1 (MBD1) to 5mC, but not to its derivative 5hmC. MBD1 then interacts with SET domain bifurcated 1 methyltransferase to promote bimethylation on the histone 3 lysine 9 residue, reducing Pomc mRNA expression. These results suggest an epigenetic regulatory mechanism that affects obesity-prone or resilient traits.
Collapse
Affiliation(s)
- Asaf Marco
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tzlil Tabachnik
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Aron Weller
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| |
Collapse
|
36
|
Kyle SM, Saha PK, Brown HM, Chan LC, Justice MJ. MeCP2 co-ordinates liver lipid metabolism with the NCoR1/HDAC3 corepressor complex. Hum Mol Genet 2016; 25:3029-3041. [PMID: 27288453 PMCID: PMC5181597 DOI: 10.1093/hmg/ddw156] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/18/2016] [Indexed: 01/11/2023] Open
Abstract
Rett syndrome (RTT; OMIM 312750), a progressive neurological disorder, is caused by mutations in methyl-CpG-binding protein 2 (MECP2; OMIM 300005), a ubiquitously expressed factor. A genetic suppressor screen designed to identify therapeutic targets surprisingly revealed that downregulation of the cholesterol biosynthesis pathway improves neurological phenotypes in Mecp2 mutant mice. Here, we show that MeCP2 plays a direct role in regulating lipid metabolism. Mecp2 deletion in mice results in a host of severe metabolic defects caused by lipid accumulation, including insulin resistance, fatty liver, perturbed energy utilization, and adipose inflammation by macrophage infiltration. We show that MeCP2 regulates lipid homeostasis by anchoring the repressor complex containing NCoR1 and HDAC3 to its lipogenesis targets in hepatocytes. Consistently, we find that liver targeted deletion of Mecp2 causes fatty liver disease and dyslipidemia similar to HDAC3 liver-specific deletion. These findings position MeCP2 as a novel component in metabolic homeostasis. Rett syndrome patients also show signs of peripheral dyslipidemia; thus, together these data suggest that RTT should be classified as a neurological disorder with systemic metabolic components. We previously showed that treatment of Mecp2 mice with statin drugs alleviated motor symptoms and improved health and longevity. Lipid metabolism is a highly treatable target; therefore, our results shed light on new metabolic pathways for treatment of Rett syndrome.
Collapse
Affiliation(s)
- Stephanie M Kyle
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada.,Department of Molecular and Human Genetics
| | - Pradip K Saha
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Lawrence C Chan
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Monica J Justice
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada .,Department of Molecular and Human Genetics.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
37
|
Lemche E, Chaban OS, Lemche AV. Neuroendocrinological and Epigenetic Mechanisms Subserving Autonomic Imbalance and HPA Dysfunction in the Metabolic Syndrome. Front Neurosci 2016; 10:142. [PMID: 27147943 PMCID: PMC4830841 DOI: 10.3389/fnins.2016.00142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
Impact of environmental stress upon pathophysiology of the metabolic syndrome (MetS) has been substantiated by epidemiological, psychophysiological, and endocrinological studies. This review discusses recent advances in the understanding of causative roles of nutritional factors, sympathomedullo-adrenal (SMA) and hypothalamic-pituitary adrenocortical (HPA) axes, and adipose tissue chronic low-grade inflammation processes in MetS. Disturbances in the neuroendocrine systems for leptin, melanocortin, and neuropeptide Y (NPY)/agouti-related protein systems have been found resulting directly in MetS-like conditions. The review identifies candidate risk genes from factors shown critical for the functioning of each of these neuroendocrine signaling cascades. In its meta-analytic part, recent studies in epigenetic modification (histone methylation, acetylation, phosphorylation, ubiquitination) and posttranscriptional gene regulation by microRNAs are evaluated. Several studies suggest modification mechanisms of early life stress (ELS) and diet-induced obesity (DIO) programming in the hypothalamic regions with populations of POMC-expressing neurons. Epigenetic modifications were found in cortisol (here HSD11B1 expression), melanocortin, leptin, NPY, and adiponectin genes. With respect to adiposity genes, epigenetic modifications were documented for fat mass gene cluster APOA1/C3/A4/A5, and the lipolysis gene LIPE. With regard to inflammatory, immune and subcellular metabolism, PPARG, NKBF1, TNFA, TCF7C2, and those genes expressing cytochrome P450 family enzymes involved in steroidogenesis and in hepatic lipoproteins were documented for epigenetic modifications.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Oleg S Chaban
- Section of Psychosomatic Medicine, Bogomolets National Medical University Kiev, Ukraine
| | - Alexandra V Lemche
- Department of Medical Science, Institute of Clinical Research Berlin, Germany
| |
Collapse
|
38
|
Expression of epigenetic machinery genes is sensitive to maternal obesity and weight loss in relation to fetal growth in mice. Clin Epigenetics 2016; 8:22. [PMID: 26925174 PMCID: PMC4769534 DOI: 10.1186/s13148-016-0188-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/12/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Maternal obesity impacts fetal growth and pregnancy outcomes. To counteract the deleterious effects of obesity on fertility and pregnancy issue, preconceptional weight loss is recommended to obese women. Whether this weight loss is beneficial/detrimental for offspring remains poorly explored. Epigenetic mechanisms could be affected by maternal weight changes, perturbing expression of key developmental genes in the placenta or fetus. Our aim was to investigate the effects of chronic maternal obesity on feto-placental growth along with the underlying epigenetic mechanisms. We also tested whether preconceptional weight loss could alleviate these effects. RESULTS Female mice were fed either a control diet (CTRL group), a high-fat diet (obese (OB) group), or a high-fat diet switched to a control diet 2 months before conception (weight loss (WL) group). At mating, OB females presented an obese phenotype while WL females normalized metabolic parameters. At embryonic day 18.5 (E18.5), fetuses from OB females presented fetal growth restriction (FGR; -13 %) and 28 % of the fetuses were small for gestational age (SGA). Fetuses from WL females normalized this phenotype. The expression of 60 epigenetic machinery genes and 32 metabolic genes was measured in the fetal liver, placental labyrinth, and junctional zone. We revealed 23 genes altered by maternal weight trajectories in at least one of three tissues. The fetal liver and placental labyrinth were more responsive to maternal obesity than junctional zone. One third (18/60) of the epigenetic machinery genes were differentially expressed between at least two maternal groups. Interestingly, genes involved in the histone acetylation pathway were particularly altered (13/18). In OB group, lysine acetyltransferases and Bromodomain-containing protein 2 were upregulated, while most histone deacetylases were downregulated. In WL group, the expression of only a subset of these genes was normalized. CONCLUSIONS This study highlights the high sensitivity of the epigenetic machinery gene expression, and particularly the histone acetylation pathway, to maternal obesity. These obesity-induced transcriptional changes could alter the placental and the hepatic epigenome, leading to FGR. Preconceptional weight loss appears beneficial to fetal growth, but some effects of previous obesity were retained in offspring phenotype.
Collapse
|
39
|
Lopomo A, Burgio E, Migliore L. Epigenetics of Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:151-84. [PMID: 27288829 DOI: 10.1016/bs.pmbts.2016.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Cacabelos R, Torrellas C. Epigenetics of Aging and Alzheimer's Disease: Implications for Pharmacogenomics and Drug Response. Int J Mol Sci 2015; 16:30483-543. [PMID: 26703582 PMCID: PMC4691177 DOI: 10.3390/ijms161226236] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/16/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023] Open
Abstract
Epigenetic variability (DNA methylation/demethylation, histone modifications, microRNA regulation) is common in physiological and pathological conditions. Epigenetic alterations are present in different tissues along the aging process and in neurodegenerative disorders, such as Alzheimer’s disease (AD). Epigenetics affect life span and longevity. AD-related genes exhibit epigenetic changes, indicating that epigenetics might exert a pathogenic role in dementia. Epigenetic modifications are reversible and can potentially be targeted by pharmacological intervention. Epigenetic drugs may be useful for the treatment of major problems of health (e.g., cancer, cardiovascular disorders, brain disorders). The efficacy and safety of these and other medications depend upon the efficiency of the pharmacogenetic process in which different clusters of genes (pathogenic, mechanistic, metabolic, transporter, pleiotropic) are involved. Most of these genes are also under the influence of the epigenetic machinery. The information available on the pharmacoepigenomics of most drugs is very limited; however, growing evidence indicates that epigenetic changes are determinant in the pathogenesis of many medical conditions and in drug response and drug resistance. Consequently, pharmacoepigenetic studies should be incorporated in drug development and personalized treatments.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain.
- Chair of Genomic Medicine, Camilo José Cela University, 28692-Madrid, Spain.
| | - Clara Torrellas
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain.
- Chair of Genomic Medicine, Camilo José Cela University, 28692-Madrid, Spain.
| |
Collapse
|
41
|
Xue J, Ideraabdullah FY. An assessment of molecular pathways of obesity susceptible to nutrient, toxicant and genetically induced epigenetic perturbation. J Nutr Biochem 2015; 30:1-13. [PMID: 27012616 DOI: 10.1016/j.jnutbio.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 08/20/2015] [Accepted: 09/09/2015] [Indexed: 12/12/2022]
Abstract
In recent years, the etiology of human disease has greatly improved with the inclusion of epigenetic mechanisms, in particular as a common link between environment and disease. However, for most diseases we lack a detailed interpretation of the epigenetic regulatory pathways perturbed by environment and causal mechanisms. Here, we focus on recent findings elucidating nutrient-related epigenetic changes linked to obesity. We highlight studies demonstrating that obesity is a complex disease linked to disruption of epigenetically regulated metabolic pathways in the brain, adipose tissue and liver. These pathways regulate (1) homeostatic and hedonic eating behaviors, (2) adipocyte differentiation and fat accumulation, and (3) energy expenditure. By compiling these data, we illustrate that obesity-related phenotypes are repeatedly linked to disruption of critical epigenetic mechanisms that regulate key metabolic genes. These data are supported by genetic mutation of key epigenetic regulators, and many of the diet-induced epigenetic mechanisms of obesity are also perturbed by exposure to environmental toxicants. Identifying similarly perturbed epigenetic mechanisms in multiple experimental models of obesity strengthens the translational applications of these findings. We also discuss many of the ongoing challenges to understanding the role of environmentally induced epigenetic pathways in obesity and suggest future studies to elucidate these roles. This assessment illustrates our current understanding of molecular pathways of obesity that are susceptible to environmental perturbation via epigenetic mechanisms. Thus, it lays the groundwork for dissecting the complex interactions between diet, genes and toxicants that contribute to obesity and obesity-related phenotypes.
Collapse
Affiliation(s)
- Jing Xue
- Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Folami Y Ideraabdullah
- Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Chapel Hill, NC 27599, United States; Department of Nutrition, 120 Mason Farm Rd, Chapel Hill, NC 27599, United States.
| |
Collapse
|
42
|
Leptin resistance in obesity: An epigenetic landscape. Life Sci 2015; 140:57-63. [PMID: 25998029 DOI: 10.1016/j.lfs.2015.05.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/02/2015] [Accepted: 05/12/2015] [Indexed: 01/14/2023]
Abstract
Leptin is an adipocyte-secreted hormone that inhibits food intake and stimulates energy expenditure through interactions with neuronal pathways in the brain, particularly pathways involving the hypothalamus. Intact functioning of the leptin route is required for body weight and energy homeostasis. Given its function, the discovery of leptin increased expectations for the treatment of obesity. However, most obese individuals and subjects with a predisposition to regain weight after losing it have leptin concentrations than lean individuals, but despite the anorexigenic function of this hormone, appetite is not effectively suppressed in these individuals. This phenomenon has been deemed leptin resistance and could be the result of impairments at a number of levels in the leptin signalling pathway, including reduced access of the hormone to its receptor due to changes in receptor expression or changes in post-receptor signal transduction. Epigenetic regulation of the leptin signalling circuit could be a potential mechanism of leptin function disturbance. This review discusses the molecular mechanisms, particularly the epigenetic regulation mechanisms, involved in leptin resistance associated with obesity and the therapeutic potential of these molecular mechanisms in the battle against the obesity pandemic.
Collapse
|
43
|
Daulatzai MA. “Boomerang Neuropathology” of Late-Onset Alzheimer’s Disease is Shrouded in Harmful “BDDS”: Breathing, Diet, Drinking, and Sleep During Aging. Neurotox Res 2015; 28:55-93. [PMID: 25911292 DOI: 10.1007/s12640-015-9528-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
|
44
|
Abstract
Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the X-linked gene MECP2 (methyl-CpG-binding protein 2). Two decades of research have fostered the view that MeCP2 is a multifunctional chromatin protein that integrates diverse aspects of neuronal biology. More recently, studies have focused on specific RTT-associated mutations within the protein. This work has yielded molecular insights into the critical functions of MeCP2 that promise to simplify our understanding of RTT pathology.
Collapse
Affiliation(s)
- Matthew J Lyst
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Adrian Bird
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| |
Collapse
|
45
|
Li H, Liu T, Lim J, Gounko NV, Hong W, Han W. Increased biogenesis of glucagon-containing secretory granules and glucagon secretion in BIG3-knockout mice. Mol Metab 2015; 4:246-52. [PMID: 25737957 PMCID: PMC4338310 DOI: 10.1016/j.molmet.2015.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 12/24/2014] [Accepted: 01/03/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Although both insulin and glucagon are intimately involved in the regulation of glucose homeostasis, the intrinsic control of glucagon secretion, including the biogenesis and exocytosis of glucagon-containing granules, is far less understood compared with that of insulin. As Brefeldin A-inhibited guanine nucleotide exchange protein 3 (BIG3) is a negative regulator of insulin-granule biogenesis and insulin secretion, we investigated whether BIG3 plays any role in alpha-cells and glucagon secretion. METHODS We examined the expression of BIG3 in islet cells by immuno-fluorescence and confocal microscopy, and measured glucagon production and secretion in BIG3-depleted and wild-type mice, islets and cells. RESULTS BIG3 is highly expressed in pancreatic alpha-cells in addition to beta-cells, but is absent in delta-cells. Depletion of BIG3 in alpha-cells leads to elevated glucagon production and secretion. Consistently, BIG3-knockout (BKO) mice display increased glucagon release under hypoglycemic conditions. CONCLUSIONS Together with our previous studies, the current data reveal a conserved role for BIG3 in regulating alpha- and beta-cell functions. We propose that BIG3 negatively regulates hormone production at the secretory granule biogenesis stage and that such regulatory mechanism may be used in secretory pathways of other endocrine cells.
Collapse
Affiliation(s)
- Hongyu Li
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (ASTAR), #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore
| | - Tao Liu
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (ASTAR), #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore
| | - Joy Lim
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (ASTAR), #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore
| | - Natalia V Gounko
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore 138667, Singapore ; Joint IMB-IMCB Electron Microscopy Suite, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore 138667, Singapore
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (ASTAR), #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore
| |
Collapse
|
46
|
Wellhauser L, Gojska NM, Belsham DD. Delineating the regulation of energy homeostasis using hypothalamic cell models. Front Neuroendocrinol 2015; 36:130-49. [PMID: 25223866 DOI: 10.1016/j.yfrne.2014.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function.
Collapse
Affiliation(s)
- Leigh Wellhauser
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Nicole M Gojska
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Denise D Belsham
- Departments of Physiology, Medicine and OB/GYN, University of Toronto, Toronto, Ontario M5G 1A8, Canada; Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
47
|
Burgio E, Lopomo A, Migliore L. Obesity and diabetes: from genetics to epigenetics. Mol Biol Rep 2014; 42:799-818. [DOI: 10.1007/s11033-014-3751-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Majnik A, Gunn V, Fu Q, Lane RH. Epigenetics: an accessible mechanism through which to track and respond to an obesogenic environment. Expert Rev Endocrinol Metab 2014; 9:605-614. [PMID: 30736198 DOI: 10.1586/17446651.2014.949241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Obesity and its consequences impact everyone. Obesity occurs because of an interaction between an obesogenic environment and genetics. In order to confront obesity, we must understand the contribution of each of these components. Environmental influences on obesity include our extrinsic environment, such as food deserts, as well as our intrinsic environment, like perinatal exposures. Epigenetics provides a biological mechanism to reveal the accumulation of extrinsic and intrinsic environmental exposures from fetal life to adulthood. Human and animal studies demonstrate changes in epigenetic modifications which are associated with an obesogenic environment. Furthermore, evidence exists in humans and animal models that suggest environmental epigenetics may serve as a biomarker or a target for intervention. To successfully target obesity, we must intervene on an environmental as well as genetic level. Combating food deserts for example will help to change the extrinsic environment, while targeting epigenetic modification remains a goal for changing our biology.
Collapse
Affiliation(s)
- Amber Majnik
- a Medical College of Wisconsin, 8701 Watertown Plank Rd, TBRC-CRI C2485, Milwaukee WI 53226, USA
| | - Veronica Gunn
- b Children's Hospital of Wisconsin, Children's Corporate Center, Suite 525, PO Box 1997, Milwaukee, WI 53201-1997, USA
| | - Qi Fu
- a Medical College of Wisconsin, 8701 Watertown Plank Rd, TBRC-CRI C2485, Milwaukee WI 53226, USA
| | - Robert H Lane
- b Children's Hospital of Wisconsin, Children's Corporate Center, Suite 525, PO Box 1997, Milwaukee, WI 53201-1997, USA
| |
Collapse
|
49
|
Torres-Andrade R, Moldenhauer R, Gutierrez-Bertín N, Soto-Covasich J, Mancilla-Medina C, Ehrenfeld C, Kerr B. The increase in body weight induced by lack of methyl CpG binding protein-2 is associated with altered leptin signalling in the hypothalamus. Exp Physiol 2014; 99:1229-40. [PMID: 24996410 DOI: 10.1113/expphysiol.2014.079798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methyl CpG binding protein-2 (MECP2) is a chromatin-remodelling factor with a dual role in gene expression. Evidence from patients carrying MECP2 mutations and from transgenic mouse models demonstrates that this protein is involved in the control of body weight. However, the mechanism for this has not been fully elucidated. To address this, we used a previously characterized Mecp2-null mouse model and found that the increase in body weight is associated with an increased amount of adipose tissue and high leptin levels. Appropriate body weight control requires the proper expression of pro-opiomelanocortin (Pomc) and agouti-related peptide (Agrp), two neuropeptides essential for satiety and appetite signals, respectively. Our results show that in the absence of Mecp2, Pomc and Agrp mRNA expression are altered, and the mice are leptin resistant. To determine the mechanism underlying the defective leptin sensing, we evaluated the expression of genes and the post-translational modifications associated with leptin signalling, which are fundamental to Pomc and Agrp transcriptional control and proper leptin response. We found a decrease in the phosphorylation level of Akt and its target protein Foxo1, which indicate an alteration in leptin-induced signal transduction. Our results demonstrate that the absence of Mecp2 disrupted body weight balance by altering post-translational modifications in leptin-signalling components that regulate Pomc and Agrp expression.
Collapse
Affiliation(s)
| | - Rodrigo Moldenhauer
- Centro de Estudios Científicos, Valdivia, Chile Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | - Carolina Ehrenfeld
- Centro de Estudios Científicos, Valdivia, Chile Universidad Austral de Chile, Valdivia, Chile
| | | |
Collapse
|