1
|
Holder M, Kamrath C, Lange K, Kummer S, Ziegler R. Diagnosis, Therapy and Follow-Up of Type 1 Diabetes Mellitus in Children and Adolescents. Exp Clin Endocrinol Diabetes 2025; 133:205-223. [PMID: 40328265 DOI: 10.1055/a-2490-5096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Affiliation(s)
- Martin Holder
- Olgahospital, Stuttgart Hospital, Stuttgart, Germany
| | | | - Karin Lange
- Hannover Medical School (MHH), Hannover, Germany
| | | | - Ralph Ziegler
- Diabetological Practice for Children and Adolescents, Münster, Germany
| |
Collapse
|
2
|
Dzhemileva LU, Zakharova EN, Goncharenko AO, Vorontsova MV, Rumyantsev SA, Mokrysheva NG, Loguinova MY, Chekhonin VP. Current views on etiology, diagnosis, epidemiology and gene therapy of maturity onset diabetes in the young. Front Endocrinol (Lausanne) 2025; 15:1497298. [PMID: 39902162 PMCID: PMC11788143 DOI: 10.3389/fendo.2024.1497298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025] Open
Abstract
MODY, or maturity-onset diabetes of the young, is a group of monogenic diseases characterized by autosomal dominant inheritance of a non-insulin-dependent form of diabetes that classically manifests in adolescence or in young adults under 25 years of age. MODY is a rare cause of diabetes, accounting for 1% of all cases, and is often misdiagnosed as type 1 or type 2 diabetes. It is of great importance to accurately diagnose MODY, as this allows for the most appropriate treatment of patients and facilitates early diagnosis for them and their families. This disease has a high degree of phenotypic and genetic polymorphism. The most prevalent forms of the disease are attributed to mutations in three genes: GCK (MODY 2) and (HNF)1A/4A (MODY 3 and MODY 1). The remaining MODY subtypes, which are less prevalent, have been identified by next generation sequencing (NGS) in the last decade. Mutations in the GCK gene result in asymptomatic, stable fasting hyperglycemia, which does not require specific treatment. Mutations in the HNF1A and HNF4A genes result in pancreatic β-cell dysfunction, which in turn causes hyperglycemia. This often leads to diabetic angiopathy. The most commonly prescribed drugs for the treatment of hyperglycemia are sulfonylurea derivatives. Nevertheless, with advancing age, some patients may require insulin therapy due to the development of resistance to sulfonylurea drugs. The strategy of gene therapy for monogenic forms of MODY is still an experimental approach, and it is unlikely to be widely used in the clinic due to the peculiarities of MODY structure and the high genetic polymorphism and clinical variability even within the same form of the disease. Furthermore, there is a lack of clear gene-phenotypic correlations, and there is quite satisfactory curability in the majority of patients. This review presents the main clinical and genetic characteristics and mutation spectrum of common and rarer forms of MODY, with a detailed analysis of the field of application of AVV vectors in the correction of hyperglycemia and insulin resistance.
Collapse
|
3
|
McCullough ME, Letourneau-Freiberg LR, Naylor RN, Greeley SAW, Broome DT, Tosur M, Kreienkamp RJ, Cobry E, Rasouli N, Pollin TI, Udler MS, Billings LK, Desouza C, Evans-Molina C, Birz S, Furner B, Watkins M, Ott K, Volchenboum SL, Philipson LH. Advancing Monogenic Diabetes Research and Clinical Care by Creating a Data Commons: The Precision Diabetes Consortium (PREDICT). J Diabetes Sci Technol 2025:19322968241310896. [PMID: 39781649 PMCID: PMC11713946 DOI: 10.1177/19322968241310896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Monogenic diabetes mellitus (MDM) is a group of relatively rare disorders caused by pathogenic variants in key genes that result in hyperglycemia. Lack of identified cases, along with absent data standards, and limited collaboration across institutions have hindered research progress. To address this, the UChicago Monogenic Diabetes Registry (UCMDMR) and UChicago Data for the Common Good (D4CG) created a national consortium of MDM research institutions called the PREcision DIabetes ConsorTium (PREDICT). Following the D4CG model, PREDICT has successfully established a multicenter MDM data commons. PREDICT has created a consensus data dictionary that will be utilized to address critical gaps in understanding of these rare types of diabetes. This approach may be useful for other rare conditions that would benefit from access to harmonized pooled data.
Collapse
Affiliation(s)
| | | | - Rochelle N. Naylor
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Siri Atma W. Greeley
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | | | - Mustafa Tosur
- Division of Diabetes and Endocrinology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Children’s Nutrition Research Center, U.S. Department of Agriculture, Agricultural Research Service, Houston, TX, USA
| | | | - Erin Cobry
- Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Neda Rasouli
- Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Toni I. Pollin
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Liana K. Billings
- Division of Endocrinology, Endeavor Health, NorthShore Hospitals, Evanston, IL, USA
- Department of Medicine, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - Cyrus Desouza
- University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Suzi Birz
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Brian Furner
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Michael Watkins
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Kaitlyn Ott
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
4
|
Tans R, Glendorf T, van Herwaarden AE, Venselaar H, van Rijswijck DMH, Wevers RA, Gloerich J, van Gool A, Tack CJ. A rare homozygous INS variant causes adult-onset diabetes. BMJ Open Diabetes Res Care 2024; 12:e004418. [PMID: 39706672 PMCID: PMC11667383 DOI: 10.1136/bmjdrc-2024-004418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/09/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION Maturity-onset diabetes of the young (MODY) and neonatal diabetes mellitus (NDM) are the most prevalent causes of monogenic diabetes. MODY is an autosomal dominant condition with onset in childhood and young adulthood, while NDM is defined with diabetes onset within 6 months of age and can be caused by dominant, recessive, X-linked genes or by chromosomal abnormalities. Here, we describe a rare case of monogenic diabetes in a patient who is homozygous for an INS gene variant. RESEARCH DESIGN AND METHODS The index patient, a male diagnosed with type 2 diabetes, was treated with low-dose insulin and metformin. Blood plasma was collected under fasting conditions for analysis. MODY screening was performed using a next-generation sequencing panel. In silico analysis of the insulin variant's three-dimensional structure and its interaction with the insulin receptor was conducted. Insulin receptor affinity and downstream signaling potency were evaluated in vitro. RESULTS Auto-immune diabetes was excluded. A homozygous missense variant of the INS gene (c.130G>A, p.Gly44Arg) was identified in the patient. The combination of three different insulin assays showed that the biosynthesis of proinsulin into insulin was intact. In silico analysis of the mutant insulin 3D structure revealed that the INS variant is likely to affect insulin receptor binding and subsequent in vitro analysis suggested reduced potency in downstream signaling. CONCLUSIONS The homozygous c.130G>A variant in the INS gene results in reduced insulin receptor binding and signaling potency. This, combined with pancreatic β-cell apoptosis or dedifferentiation supposedly, has contributed in the late-onset of monogenic diabetes in the index patient.
Collapse
Affiliation(s)
- Roel Tans
- Translational Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tine Glendorf
- Research and Development, Novo Nordisk A/S, Bagsvaerd, Hovedstaden, Denmark
| | | | - Hanka Venselaar
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Danique M H van Rijswijck
- Translational Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jolein Gloerich
- Translational Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alain van Gool
- Translational Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
| |
Collapse
|
5
|
Astudillo MF, Winter WE, Billings LK, Kreienkamp R, Balasubramanyam A, Redondo MJ, Tosur M. Identification of atypical pediatric diabetes mellitus cases using electronic medical records. BMJ Open Diabetes Res Care 2024; 12:e004471. [PMID: 39510599 PMCID: PMC11551976 DOI: 10.1136/bmjdrc-2024-004471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION There are no established methods to identify children with atypical diabetes for further study. We aimed to develop strategies to systematically ascertain cases of atypical pediatric diabetes using electronic medical records (EMR). RESEARCH DESIGN AND METHODS We tested two strategies in a large pediatric hospital in the USA. Strategy 1: we designed a questionnaire to rule out typical diabetes and applied it to the EMR of 100 youth with diabetes. Strategy 2: we built three electronic queries to generate reports of three atypical pediatric diabetes phenotypes: unknown type, type 2 diabetes (T2D) diagnosed <10 years old and autoantibody-negative type 1 diabetes (AbNegT1D). RESULTS Strategy 1 identified six cases (6%) of atypical diabetes (mean diagnosis age=11±2.6 years, 16.6% men, 33% non-Hispanic white (NHW) and 66.6% Hispanic). Strategy 2: unknown diabetes type: n=68 (1%) out of 6676 patients with diabetes; mean diagnosis age=12.6±3.3 years, 32.8% men, 23.8% NHW, 47.6% Hispanic, 25.4% African American (AA), 3.2% other. T2D <10 years old: n=64 (6.6%) out of 1142 patients with T2D; mean diagnosis age=8.6±1.6 years, 20.3% men, 4.7% NHW, 65.6% Hispanic, 28.1% AA, 1.6% other. AbNegT1D: n=38 (5.6%) out of 680 patients with new onset T1D; mean diagnosis age=11.3±3.8 years; 57.9% men, 50% NHW, 19.4% Hispanic, 22.3% AA, 8.3% other. CONCLUSIONS In sum, we identified 1%-6.6% of atypical diabetes cases in a pediatric diabetes population with high racial and ethnic diversity using systematic review of the EMR. Better identification of these cases using unbiased approaches may advance precision diabetes.
Collapse
Affiliation(s)
- Marcela F Astudillo
- Texas Children's Hospital—Pediatric Diabetes & Endocrinology, Baylor College of Medicine Department of Pediatrics, Houston, Texas, USA
| | - William E Winter
- Department of Pathology, University of Florida, Gainesville, Florida, USA
| | | | - Raymond Kreienkamp
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Maria J Redondo
- Texas Children's Hospital—Pediatric Diabetes & Endocrinology, Baylor College of Medicine Department of Pediatrics, Houston, Texas, USA
| | - Mustafa Tosur
- Texas Children's Hospital—Pediatric Diabetes & Endocrinology, Baylor College of Medicine Department of Pediatrics, Houston, Texas, USA
- Children’s Nutrition Research Center, USDA-ARS, Houston, Texas, USA
| |
Collapse
|
6
|
Lanzinger S, Laubner K, Warncke K, Mader JK, Kummer S, Boettcher C, Biester T, Galler A, Klose D, Holl RW. Clinical characteristics, treatment, and treatment switch after molecular-genetic classification in individuals with maturity-onset diabetes of the young: Insights from the multicenter real-world DPV registry. J Diabetes 2024; 16:e70028. [PMID: 39511990 PMCID: PMC11544032 DOI: 10.1111/1753-0407.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/30/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Individuals with maturity-onset diabetes of the young (MODY) are often misdiagnosed as type 1 or type 2 diabetes and receive inappropriate care. We aimed to investigate the characteristics and treatment of all MODY types in a multicenter, real-world setting. METHODS Individuals with MODY from the diabetes prospective follow-up (DPV) registry were studied. We compared clinical parameters during the first year of diabetes and the most recent treatment year after MODY diagnosis. RESULTS A total of 1640 individuals were identified with GCK-MODY (n = 941) and HNF1A-MODY (n = 417) as the most frequent types. Among these, 912 individuals were available with information during the first and the most recent treatment year (median duration of follow-up: 4.2 years [2.6-6.6]). Positive beta cell autoantibodies were present in 20.6% (15.2% IAA). Median age at diagnosis ranged from 9.9 years in GCK-MODY (Q1-Q3: 6.2-13.1 years) and INS-MODY (2.7-13.7 years) to 14.3 years (5.0-17.1) in KCNJ11-MODY. Frequency of oral antidiabetic agents (OAD) use increased and insulin decreased in HNF4A-MODY (OAD: 18% to 39%, insulin: 34% to 23%) and in HNF1A-MODY (OAD: 18% to 31%, insulin: 35% to 25%). ABCC8-MODY was characterized by a decrement in nonpharmacological treatment (26% to 16%) and "insulin only" treatment (53% to 42%), while the proportion of individuals treated with OAD but no insulin increased from 0% to 21%. CONCLUSIONS Our results indicate that some teams caring for individuals with MODY are hesitant with regard to current recommendations. Registries are an essential source of information and provide a basis for discussing treatment guidelines for MODY.
Collapse
Affiliation(s)
- Stefanie Lanzinger
- Institute of Epidemiology and Medical Biometry, CAQM, Ulm University, Ulm, Germany
- Munich-Neuherberg, German Center for Diabetes Research (DZD), Munich, Germany
| | - Katharina Laubner
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Katharina Warncke
- Department of Pediatrics, Kinderklinik München Schwabing, Technical University of Munich School of Medicine, Munich, Germany
| | - Julia K Mader
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Sebastian Kummer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Claudia Boettcher
- Paediatric Endocrinology and Diabetology, University Children's Hospital, University of Bern, Bern, Switzerland
| | - Torben Biester
- AUF DER BULT, Diabetes-Center for Children and Adolescents, Hannover, Germany
| | - Angela Galler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Sozialpädiatrisches Zentrum, Paediatric Diabetology, Berlin, Germany
| | - Daniela Klose
- Division of Pediatric Endocrinology und Diabetes, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, CAQM, Ulm University, Ulm, Germany
- Munich-Neuherberg, German Center for Diabetes Research (DZD), Munich, Germany
| |
Collapse
|
7
|
Tanaka S, Akagawa H, Azuma K, Higuchi S, Ujiie A, Hashimoto K, Iwasaki N. High prevalence of copy number variations in the Japanese participants with suspected MODY. Clin Genet 2024; 106:293-304. [PMID: 38733153 DOI: 10.1111/cge.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Maturity-Onset Diabetes of the Young (MODY) is a diabetes mellitus subtype caused by a single gene. The detection rate of the responsible gene is 27% in the United Kingdom, indicating that the causative gene remains unknown in the majority of clinically diagnosed MODY cases. To improve the detection rate, we applied comprehensive genetic testing using whole exome sequencing (WES) followed by Multiplex Ligation-dependent Probe Amplification (MLPA) and functional analyses. Twenty-one unrelated Japanese participants with MODY were enrolled in the study. To detect copy number variations (CNVs), WES was performed first, followed by MLPA analysis for participants who were negative on the basis of WES. Undetermined variants were analyzed according to their functional properties. WES identified 7 pathogenic and 3 novel likely pathogenic variants in the 21 participants. Functional analyses revealed that 1 in 3 variants was pathogenic. MLPA analysis applied to the remaining 13 undetermined samples identified 4 cases with pathogenic CNVs: 3 in HNF4A and 1 in HNF1B. Pathogenic variants were identified in 12 participants (12/21, 57.1%) - relatively high rate reported to date. Notably, one-third of the participants had CNVs in HNF4A or HNF1B, indicating a limitation of WES-only screening.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Diabetes and Metabolism, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Akagawa
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
| | - Kenkou Azuma
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Sayaka Higuchi
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Ujiie
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Koshi Hashimoto
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Naoko Iwasaki
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Diabetes and Metabolism, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Division of Diabetes, Endocrinology and Metabolism, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| |
Collapse
|
8
|
Menon JC, Singh P, Archana A, Singh P, Mittal M, Kanga U, Mandal K, Seth A, Bhatia V, Dabadghao P, Sudhanshu S, Garg A, Vishwakarma R, Sarangi AN, Verma S, Singh SK, Bhatia E. High Frequency of Recessive WFS1 Mutations Among Indian Children With Islet Antibody-negative Type 1 Diabetes. J Clin Endocrinol Metab 2024; 109:e1072-e1082. [PMID: 37931151 DOI: 10.1210/clinem/dgad644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND While the frequency of islet antibody-negative (idiopathic) type 1 diabetes mellitus (T1DM) is reported to be increased in Indian children, its aetiology has not been studied. We investigated the role of monogenic diabetes in the causation of islet antibody-negative T1DM. METHODS We conducted a multicenter, prospective, observational study of 169 Indian children (age 1-18 years) with recent-onset T1DM. All were tested for antibodies against GAD65, islet antigen-2, and zinc transporter 8 using validated ELISA. Thirty-four islet antibody-negative children underwent targeted next-generation sequencing for 31 genes implicated in monogenic diabetes using the Illumina platform. All mutations were confirmed by Sanger sequencing. RESULTS Thirty-five (21%) children were negative for all islet antibodies. Twelve patients (7% of entire cohort, 34% of patients with islet antibody-negative T1DM) were detected to have pathogenic or likely pathogenic genetic variants. The most frequently affected locus was WFS1, with 9 patients (5% of entire cohort, 26% of islet antibody-negative). These included 7 children with homozygous and 1 patient each with a compound heterozygous and heterozygous mutation. Children with Wolfram syndrome 1 (WS) presented with severe insulin-requiring diabetes (including 3 patients with ketoacidosis), but other syndromic manifestations were not detected. In 3 patients, heterozygous mutations in HNF4A, ABCC8, and PTF1A loci were detected. CONCLUSION Nearly one-quarter of Indian children with islet antibody-negative T1DM had recessive mutations in the WFS1 gene. These patients did not exhibit other features of WS at the time of diagnosis. Testing for monogenic diabetes, especially WS, should be considered in Indian children with antibody-negative T1DM.
Collapse
Affiliation(s)
- Jayakrishnan C Menon
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Pratibha Singh
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Archana Archana
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Preeti Singh
- Department of Paediatrics, Lady Hardinge Medical College, Delhi 110001, India
| | - Medha Mittal
- Department of Paediatrics, Chacha Nehru Bal Chikitsalay, Delhi 110031, India
| | - Uma Kanga
- Department of Immunogenetics and Transplant Immunology, All India Institute of Medical Sciences, Delhi 110029, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Anju Seth
- Department of Paediatrics, Lady Hardinge Medical College, Delhi 110001, India
| | - Vijayalakshmi Bhatia
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Preeti Dabadghao
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Siddhnath Sudhanshu
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Atul Garg
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Ruchira Vishwakarma
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Aditya Narayan Sarangi
- Department of Genome Analytics, BaseSolve Informatics Pvt Ltd, Ahmedabad, Gujrat 380006, India
| | - Shivendra Verma
- Department of General Medicine, GSVM Medical College, Kanpur, Uttar Pradesh 208002, India
| | - Surya Kumar Singh
- Department of Endocrinology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Eesh Bhatia
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
9
|
Sun HY, Lin XY. Genetic perspectives on childhood monogenic diabetes: Diagnosis, management, and future directions. World J Diabetes 2023; 14:1738-1753. [PMID: 38222792 PMCID: PMC10784795 DOI: 10.4239/wjd.v14.i12.1738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/14/2023] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1 to 5% of children, and early detection and gene-tically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and mana-gement.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
10
|
Svalastoga P, Kaci A, Molnes J, Solheim MH, Johansson BB, Krogvold L, Skrivarhaug T, Valen E, Johansson S, Molven A, Sagen JV, Søfteland E, Bjørkhaug L, Tjora E, Aukrust I, Njølstad PR. Characterisation of HNF1A variants in paediatric diabetes in Norway using functional and clinical investigations to unmask phenotype and monogenic diabetes. Diabetologia 2023; 66:2226-2237. [PMID: 37798422 PMCID: PMC10627920 DOI: 10.1007/s00125-023-06012-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/09/2023] [Indexed: 10/07/2023]
Abstract
AIMS/HYPOTHESIS Correctly diagnosing MODY is important, as individuals with this diagnosis can discontinue insulin injections; however, many people are misdiagnosed. We aimed to develop a robust approach for determining the pathogenicity of variants of uncertain significance in hepatocyte nuclear factor-1 alpha (HNF1A)-MODY and to obtain an accurate estimate of the prevalence of HNF1A-MODY in paediatric cases of diabetes. METHODS We extended our previous screening of the Norwegian Childhood Diabetes Registry by 830 additional samples and comprehensively genotyped HNF1A variants in autoantibody-negative participants using next-generation sequencing. Carriers of pathogenic variants were treated by local healthcare providers, and participants with novel likely pathogenic variants and variants of uncertain significance were enrolled in an investigator-initiated, non-randomised, open-label pilot study (ClinicalTrials.gov registration no. NCT04239586). To identify variants associated with HNF1A-MODY, we functionally characterised their pathogenicity and assessed the carriers' phenotype and treatment response to sulfonylurea. RESULTS In total, 615 autoantibody-negative participants among 4712 cases of paediatric diabetes underwent genetic sequencing, revealing 19 with HNF1A variants. We identified nine carriers with novel variants classified as variants of uncertain significance or likely to be pathogenic, while the remaining ten participants carried five pathogenic variants previously reported. Of the nine carriers with novel variants, six responded favourably to sulfonylurea. Functional investigations revealed their variants to be dysfunctional and demonstrated a correlation with the resulting phenotype, providing evidence for reclassifying these variants as pathogenic. CONCLUSIONS/INTERPRETATION Based on this robust classification, we estimate that the prevalence of HNF1A-MODY is 0.3% in paediatric diabetes. Clinical phenotyping is challenging and functional investigations provide a strong complementary line of evidence. We demonstrate here that combining clinical phenotyping with functional protein studies provides a powerful tool to obtain a precise diagnosis of HNF1A-MODY.
Collapse
Affiliation(s)
- Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Alba Kaci
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Marie H Solheim
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bente B Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Krogvold
- Division of Childhood and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Torild Skrivarhaug
- Division of Childhood and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jørn V Sagen
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Eirik Søfteland
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lise Bjørkhaug
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Erling Tjora
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
11
|
Murphy R, Colclough K, Pollin TI, Ikle JM, Svalastoga P, Maloney KA, Saint-Martin C, Molnes J, Misra S, Aukrust I, de Franco E, Flanagan SE, Njølstad PR, Billings LK, Owen KR, Gloyn AL. The use of precision diagnostics for monogenic diabetes: a systematic review and expert opinion. COMMUNICATIONS MEDICINE 2023; 3:136. [PMID: 37794142 PMCID: PMC10550998 DOI: 10.1038/s43856-023-00369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Monogenic diabetes presents opportunities for precision medicine but is underdiagnosed. This review systematically assessed the evidence for (1) clinical criteria and (2) methods for genetic testing for monogenic diabetes, summarized resources for (3) considering a gene or (4) variant as causal for monogenic diabetes, provided expert recommendations for (5) reporting of results; and reviewed (6) next steps after monogenic diabetes diagnosis and (7) challenges in precision medicine field. METHODS Pubmed and Embase databases were searched (1990-2022) using inclusion/exclusion criteria for studies that sequenced one or more monogenic diabetes genes in at least 100 probands (Question 1), evaluated a non-obsolete genetic testing method to diagnose monogenic diabetes (Question 2). The risk of bias was assessed using the revised QUADAS-2 tool. Existing guidelines were summarized for questions 3-5, and review of studies for questions 6-7, supplemented by expert recommendations. Results were summarized in tables and informed recommendations for clinical practice. RESULTS There are 100, 32, 36, and 14 studies included for questions 1, 2, 6, and 7 respectively. On this basis, four recommendations for who to test and five on how to test for monogenic diabetes are provided. Existing guidelines for variant curation and gene-disease validity curation are summarized. Reporting by gene names is recommended as an alternative to the term MODY. Key steps after making a genetic diagnosis and major gaps in our current knowledge are highlighted. CONCLUSIONS We provide a synthesis of current evidence and expert opinion on how to use precision diagnostics to identify individuals with monogenic diabetes.
Collapse
Affiliation(s)
- Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
- Auckland Diabetes Centre, Te Whatu Ora Health New Zealand, Te Tokai Tumai, Auckland, New Zealand.
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Toni I Pollin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer M Ikle
- Department of Pediatrics, Division of Endocrinology & Diabetes, Stanford School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA
| | - Pernille Svalastoga
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristin A Maloney
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cécile Saint-Martin
- Department of Medical Genetics, AP-HP Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Elisa de Franco
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Pål R Njølstad
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Liana K Billings
- Division of Endocrinology, NorthShore University HealthSystem, Skokie, IL, USA
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Katharine R Owen
- Oxford Center for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Stanford School of Medicine, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Li M, Popovic N, Wang Y, Chen C, Polychronakos C. Incomplete penetrance and variable expressivity in monogenic diabetes; a challenge but also an opportunity. Rev Endocr Metab Disord 2023; 24:673-684. [PMID: 37165203 DOI: 10.1007/s11154-023-09809-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
Monogenic Forms of Diabetes (MFD) account for about 3% of all diabetes, and their accurate diagnosis often results in life-changing therapeutic reassignment for the patients. Like other Mendelian diseases, reduced penetrance and variable expressivity are often seen in several different types of MFD, where symptoms develop only in a portion of the persons who carry the pathogenic variant or vary widely in symptom severity and age of onset. This complicates diagnosis and disease management in MFD. In addition to its clinical importance, knowledge of genetic modifiers that confer penetrance and expressivity variability opens possibilities to identify protective genetic variants which may help probe the mechanisms of more common forms of diabetes and shed light in new therapeutic strategies. In this review, we will mainly address penetrance and expressivity variation in different types of MFD, factors that confer such variations and opportunities that come with such knowledge. Related literature was searched in PubMed, Medline and Embase. Papers with publication year from 1974 to 2023 are included. Data are either sourced from literatures or from OMIM, Clinvar and 1000 genome browser.
Collapse
Affiliation(s)
- Meihang Li
- College of pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong, China.
- Department of Emergency, Department of Endorinology, Maoming People's Hospital, 101 Weimin Road, Maoming, Guangdong, China.
- Montreal Children's Hospital and the Endocrine Genetics Laboratory, Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, China.
- MaiDa Gene Technology, Zhoushan, China.
| | - Natalija Popovic
- Montreal Children's Hospital and the Endocrine Genetics Laboratory, Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, China
| | - Ying Wang
- College of pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong, China
| | - Chunbo Chen
- Department of Emergency, Department of Endorinology, Maoming People's Hospital, 101 Weimin Road, Maoming, Guangdong, China
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, China
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Constantin Polychronakos
- Montreal Children's Hospital and the Endocrine Genetics Laboratory, Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, China
- MaiDa Gene Technology, Zhoushan, China
| |
Collapse
|
13
|
Murphy R, Colclough K, Pollin TI, Ikle JM, Svalastoga P, Maloney KA, Saint-Martin C, Molnes J, Misra S, Aukrust I, de Franco A, Flanagan SE, Njølstad PR, Billings LK, Owen KR, Gloyn AL. A Systematic Review of the use of Precision Diagnostics in Monogenic Diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.15.23288269. [PMID: 37131594 PMCID: PMC10153302 DOI: 10.1101/2023.04.15.23288269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Monogenic forms of diabetes present opportunities for precision medicine as identification of the underlying genetic cause has implications for treatment and prognosis. However, genetic testing remains inconsistent across countries and health providers, often resulting in both missed diagnosis and misclassification of diabetes type. One of the barriers to deploying genetic testing is uncertainty over whom to test as the clinical features for monogenic diabetes overlap with those for both type 1 and type 2 diabetes. In this review, we perform a systematic evaluation of the evidence for the clinical and biochemical criteria used to guide selection of individuals with diabetes for genetic testing and review the evidence for the optimal methods for variant detection in genes involved in monogenic diabetes. In parallel we revisit the current clinical guidelines for genetic testing for monogenic diabetes and provide expert opinion on the interpretation and reporting of genetic tests. We provide a series of recommendations for the field informed by our systematic review, synthesizing evidence, and expert opinion. Finally, we identify major challenges for the field and highlight areas for future research and investment to support wider implementation of precision diagnostics for monogenic diabetes.
Collapse
Affiliation(s)
- Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Auckland Diabetes Centre, Te Whatu Ora Health New Zealand, Te Tokai Tumai, Auckland, New Zealand
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Toni I Pollin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer M Ikle
- Department of Pediatrics, Division of Endocrinology & Diabetes, Stanford School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA
| | - Pernille Svalastoga
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristin A Maloney
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cécile Saint-Martin
- Department of Medical Genetics, AP-HP Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - aiElisa de Franco
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, UK
| | - Pål R Njølstad
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Liana K Billings
- Division of Endocrinology, NorthShore University HealthSystem, Skokie, IL, USA; Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Katharine R Owen
- Oxford Center for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Stanford School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Harsunen M, Kettunen JLT, Härkönen T, Dwivedi O, Lehtovirta M, Vähäsalo P, Veijola R, Ilonen J, Miettinen PJ, Knip M, Tuomi T. Identification of monogenic variants in more than ten per cent of children without type 1 diabetes-related autoantibodies at diagnosis in the Finnish Pediatric Diabetes Register. Diabetologia 2023; 66:438-449. [PMID: 36418577 PMCID: PMC9892083 DOI: 10.1007/s00125-022-05834-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Monogenic forms of diabetes (MODY, neonatal diabetes mellitus and syndromic forms) are rare, and affected individuals may be misclassified and treated suboptimally. The prevalence of type 1 diabetes is high in Finnish children but systematic screening for monogenic diabetes has not been conducted. We assessed the prevalence and clinical manifestations of monogenic diabetes in children initially registered with type 1 diabetes in the Finnish Pediatric Diabetes Register (FPDR) but who had no type 1 diabetes-related autoantibodies (AABs) or had only low-titre islet cell autoantibodies (ICAs) at diagnosis. METHODS The FPDR, covering approximately 90% of newly diagnosed diabetic individuals aged ≤15 years in Finland starting from 2002, includes data on diabetes-associated HLA genotypes and AAB data (ICA, and autoantibodies against insulin, GAD, islet antigen 2 and zinc transporter 8) at diagnosis. A next generation sequencing gene panel including 42 genes was used to identify monogenic diabetes. We interpreted the variants in HNF1A by using the gene-specific standardised criteria and reported pathogenic and likely pathogenic findings only. For other genes, we also reported variants of unknown significance if an individual's phenotype suggested monogenic diabetes. RESULTS Out of 6482 participants, we sequenced DNA for 152 (2.3%) testing negative for all AABs and 49 (0.8%) positive only for low-titre ICAs (ICAlow). A monogenic form of diabetes was revealed in 19 (12.5%) of the AAB-negative patients (14 [9.2%] had pathogenic or likely pathogenic variants) and two (4.1%) of the ICAlow group. None had ketoacidosis at diagnosis or carried HLA genotypes conferring high risk for type 1 diabetes. The affected genes were GCK, HNF1A, HNF4A, HNF1B, INS, KCNJ11, RFX6, LMNA and WFS1. A switch from insulin to oral medication was successful in four of five patients with variants in HNF1A, HNF4A or KCNJ11. CONCLUSIONS/INTERPRETATION More than 10% of AAB-negative children with newly diagnosed diabetes had a genetic finding associated with monogenic diabetes. Because the genetic diagnosis can lead to major changes in treatment, we recommend referring all AAB-negative paediatric patients with diabetes for genetic testing. Low-titre ICAs in the absence of other AABs does not always indicate a diagnosis of type 1 diabetes.
Collapse
Affiliation(s)
- Minna Harsunen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.
| | - Jarno L T Kettunen
- Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.
- Abdominal Centre, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland.
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Om Dwivedi
- Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Lehtovirta
- Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Paula Vähäsalo
- Department of Pediatrics, PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Päivi J Miettinen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Tiinamaija Tuomi
- Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Abdominal Centre, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Thewjitcharoen Y, Soontaree N, Waralee C, Siriwan B, Sirinate K, Ekgaluck W, Thep H. Prevalence and characteristics of misdiagnosed adult-onset type 1 diabetes mellitus in Thai people by random plasma C-peptide testing. Heliyon 2023; 9:e14262. [PMID: 36923852 PMCID: PMC10009731 DOI: 10.1016/j.heliyon.2023.e14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Background It is critical to determine the exact type of diabetes because misclassification led to inappropriate treatments. The classification of DM can be aided by the measurement of pancreatic autoantibodies and plasma C-peptide levels. Previous studies suggested that random plasma C-peptide testing in those with clinically diagnosed adult T1DM of at least 3 years duration has led to reclassification in some cases. Aim This study aimed to assess the prevalence and characteristics of misdiagnosed adult-onset type 1 diabetes mellitus in Thai people by random plasma C-peptide testing. Methods A cross-sectional study of adult Thai patients diagnosed with clinically diagnosed T1DM and DM duration of at least 3 years at Theptarin Hospital, a diabetes center in Bangkok, Thailand was studied. Clinically misdiagnosis of T1DM was defined by preserved endogenous insulin secretion. Characteristics of the misdiagnosed patients were compared with definite T1DM patients. Results A total of 73 patients (females 52.1%, mean age 42.2 ± 12.5 years, duration of DM 20.3 ± 11.3 years) were studied. The prevalence of available anti-GAD and anti-IA2 were 53.3% and 20.8%, respectively. Preserved endogenous insulin secretion evaluated by random C-peptide or stimulated C-peptide was found in 8 patients (11.0%). The misdiagnosed patients had higher prevalence of hypertension and diabetic complications. Three patients were suspected to have monogenic diabetes and five patients were reclassified as possible T2DM. Conclusions Approximately one-tenth of adult T1DM patients were misdiagnosed. Random plasma C-peptide testing at least 3 years after a diagnosis of T1DM was superior to the measurement of pancreatic autoantibodies. Our present study highlights the need to increase accuracy in the diagnosis of T1DM patients by re-assessing endogenous insulin production with measurement of random plasma C-peptide levels.
Collapse
|
16
|
Guan G, Qin T, Zhao LL, Jin P. Genetic and Functional Analyses of the Novel KLF11 Pro193Thr Variant in a Three-Generation Family with MODY7. Horm Metab Res 2023; 55:136-141. [PMID: 36241199 DOI: 10.1055/a-1961-6281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
KLF11 regulates insulin gene expression through binding to the insulin promoter and has been reported as a causative gene for maturity-onset diabetes of the young 7 (MODY7). Here, we report a novel KLF11 variant associated with a three-generation family with early childhood-onset diabetes and explore its clinical and functional characteristics. The three-generational pedigree contains five patients affected by diabetes. The pathogenic variant identified by whole-exome sequencing was further confirmed by Sanger sequencing and pedigree verification. Luciferase reporter assays and glucose-stimulated insulin secretion were used to examine whether the KLF11 variant binds to the insulin promoter and regulate insulin secretion in vitro. The proband, his son, and his uncle exhibited hyperglycemia at ages 32, 13 and 71 years, respectively. All three patients showed characteristics of metabolic syndrome (obesity, dyslipidemia, and diabetes), but the insulin secretion of islet β-cells was impaired. A novel heterozygous missense variant, c.577 C>A (p.Pro193Thr) of the KLF11 gene was detected in all three patients. This variant co-segregates with the diabetes phenotype, consistent with an autosomal dominant disorder. The identified KLF11 p.Pro193Thr variant drastically decreased the transcriptional activity of KLF11, as demonstrated by luciferase reporter assay. Functional analyses revealed that the KLF11 Pro193Thr variant inhibited glucose-stimulated insulin secretion. We identified a novel KLF11 Pro193Thr variant in a three generation family with MODY7. These findings shed light on the molecular mechanisms underlying the pathogenesis of MODY7 and expand the genotype and clinical spectrum of MODY7.
Collapse
Affiliation(s)
- Gaopeng Guan
- Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China
| | - Tiantian Qin
- Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China
| | - Li-Ling Zhao
- Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China
| | - Ping Jin
- Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China
| |
Collapse
|
17
|
Chen Y, Zhao J, Li X, Xie Z, Huang G, Yan X, Zhou H, Zheng L, Xu T, Zhou K, Zhou Z. Prevalence of maturity-onset diabetes of the young in phenotypic type 2 diabetes in young adults: a nationwide, multi-center, cross-sectional survey in China. Chin Med J (Engl) 2023; 136:56-64. [PMID: 36723869 PMCID: PMC10106210 DOI: 10.1097/cm9.0000000000002321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is the most common monogenic diabetes. The aim of this study was to assess the prevalence of MODY in phenotypic type 2 diabetes (T2DM) among Chinese young adults. METHODS From April 2015 to October 2017, this cross-sectional study involved 2429 consecutive patients from 46 hospitals in China, newly diagnosed between 15 years and 45 years, with T2DM phenotype and negative for standardized glutamic acid decarboxylase antibody at the core laboratory. Sequencing using a custom monogenic diabetes gene panel was performed, and variants of 14 MODY genes were interpreted as per current guidelines. RESULTS The survey determined 18 patients having genetic variants causing MODY (6 HNF1A , 5 GCK , 3 HNF4A , 2 INS , 1 PDX1 , and 1 PAX4 ). The prevalence of MODY was 0.74% (95% confidence interval [CI]: 0.40-1.08%). The clinical characteristics of MODY patients were not specific, 72.2% (13/18) of them were diagnosed after 35 years, 47.1% (8/17) had metabolic syndrome, and only 38.9% (7/18) had a family history of diabetes. No significant difference in manifestations except for hemoglobin A1c levels was found between MODY and non-MODY patients. CONCLUSION The prevalence of MODY in young adults with phenotypic T2DM was 0.74%, among which HNF1A -, GCK -, and HNF4A -MODY were the most common subtypes. Clinical features played a limited role in the recognition of MODY.
Collapse
Affiliation(s)
- Yan Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jing Zhao
- College of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiang Yan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Houde Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Li Zheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- College of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 271016, China
| | - Kaixin Zhou
- College of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 271016, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
18
|
Santos Monteiro S, da Silva Santos T, Fonseca L, Assunção G, Lopes AM, Duarte DB, Soares AR, Laranjeira F, Ribeiro I, Pinto E, Rocha S, Barbosa Gouveia S, Vazquez-Mosquera ME, Oliveira MJ, Borges T, Cardoso MH. Maturity-onset diabetes of the young in a large Portuguese cohort. Acta Diabetol 2023; 60:83-91. [PMID: 36208343 DOI: 10.1007/s00592-022-01980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 01/07/2023]
Abstract
AIMS Monogenic forms of diabetes that develop with autosomal dominant inheritance are classically aggregated in the Maturity-Onset Diabetes of the Young (MODY) categories. Despite increasing awareness, its true prevalence remains largely underestimated. We describe a Portuguese cohort of individuals with suspected monogenic diabetes who were genetically evaluated for MODY-causing genes. METHODS This single-center retrospective cohort study enrolled patients with positive genetic testing for MODY between 2015 and 2021. Automatic sequencing and, in case of initial negative results, next-generation sequencing were performed. Their clinical and molecular characteristics were described. RESULTS Eighty individuals were included, 55 with likely pathogenic/pathogenic variants in one of the MODY genes and 25 MODY-positive family members, identified by cascade genetic testing. The median age at diabetes diagnosis was 23 years, with a median HbA1c of 6.5%. The most frequently mutated genes were identified in HNF1A (40%), GCK (34%) and HNF4A (13%), followed by PDX1, HNF1B, INS, KCNJ11 and APPL1. Thirty-six unique variants were found (29 missense and 7 frameshift variants), of which ten (28%) were novel. CONCLUSIONS Our data highlights the importance of genetic testing in the diagnosis of MODY and the establishment of its subtypes, leading to more personalized treatment and follow-up strategies.
Collapse
Affiliation(s)
- Sílvia Santos Monteiro
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal.
| | - Tiago da Silva Santos
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Liliana Fonseca
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Guilherme Assunção
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Ana M Lopes
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Diana B Duarte
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Ana Rita Soares
- Division of Medical Genetics, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Francisco Laranjeira
- Division of Genetic Biochemistry. Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Unit for Multidisciplinar Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar. Universidade do Porto, Porto, Portugal
| | - Isaura Ribeiro
- Division of Genetic Biochemistry. Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Unit for Multidisciplinar Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar. Universidade do Porto, Porto, Portugal
| | - Eugénia Pinto
- Division of Genetic Biochemistry. Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sónia Rocha
- Division of Genetic Biochemistry. Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sofia Barbosa Gouveia
- University Clinical Hospital of Santiago de Compostela. IDIS, CIBERER, MetabERN, 15701, Santiago de Compostela, Spain
| | | | - Maria João Oliveira
- Division of Pediatric Endocrinology. Department of Pediatrics. Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Teresa Borges
- Division of Pediatric Endocrinology. Department of Pediatrics. Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Maria Helena Cardoso
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| |
Collapse
|
19
|
Harrington F, Greenslade M, Colclough K, Paul R, Jefferies C, Murphy R. Monogenic diabetes in New Zealand - An audit based revision of the monogenic diabetes genetic testing pathway in New Zealand. Front Endocrinol (Lausanne) 2023; 14:1116880. [PMID: 37033247 PMCID: PMC10080040 DOI: 10.3389/fendo.2023.1116880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
AIMS To evaluate (a) the diagnostic yield of genetic testing for monogenic diabetes when using single gene and gene panel-based testing approaches in the New Zealand (NZ) population, (b) whether the MODY (Maturity Onset Diabetes of the Young) pre-test probability calculator can be used to guide referrals for testing in NZ, (c) the number of referrals for testing for Māori/Pacific ethnicities compared to NZ European, and (d) the volume of proband vs cascade tests being requested. METHODS A retrospective audit of 495 referrals, from NZ, for testing of monogenic diabetes genes was performed. Referrals sent to LabPlus (Auckland) laboratory for single gene testing or small multi-gene panel testing, or to the Exeter Genomics Laboratory, UK, for a large gene panel, received from January 2014 - December 2021 were included. Detection rates of single gene, small multi-gene and large gene panels (neonatal and non-neonatal), and cascade testing were analysed. Pre-test probability was calculated using the Exeter MODY probability calculator and ethnicity data was also collected. RESULTS The diagnostic detection rate varied across genes, from 32% in GCK, to 2% in HNF4A, with single gene or small gene panel testing averaging a 12% detection rate. Detection rate by type of panel was 9% for small gene panel, 23% for non-neonatal monogenic diabetes large gene panel and 40% for neonatal monogenic diabetes large gene panel. 45% (67/147) of patients aged 1-35 years at diabetes diagnosis scored <20% on MODY pre-test probability, of whom 3 had class 4/5 variants in HNF1A, HNF4A or HNF1B. Ethnicity data of those selected for genetic testing correlated with population diabetes prevalence for Māori (15% vs 16%), but Pacific People appeared under-represented (8% vs 14%). Only 1 in 6 probands generated a cascade test. CONCLUSIONS A new monogenic diabetes testing algorithm for NZ is proposed, which directs clinicians to choose a large gene panel in patients without syndromic features who score a pre-test MODY probability of above 20%.
Collapse
Affiliation(s)
- Francesca Harrington
- Diagnostic Genetics, Department of Pathology and Laboratory Medicine, Te Whatu Ora – Health New Zealand, Te Toka Tumai Auckland, Auckland, New Zealand
- *Correspondence: Francesca Harrington, ; Rinki Murphy,
| | - Mark Greenslade
- Diagnostic Genetics, Department of Pathology and Laboratory Medicine, Te Whatu Ora – Health New Zealand, Te Toka Tumai Auckland, Auckland, New Zealand
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon University Healthcare National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - Ryan Paul
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand
| | - Craig Jefferies
- Starship Children’s Health, Te Whatu Ora – Health New Zealand, Te Toka Tumai Auckland, Auckland, New Zealand
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- Department of Medicine, University of Auckland, Auckland, New Zealand
- *Correspondence: Francesca Harrington, ; Rinki Murphy,
| |
Collapse
|
20
|
Rapini N, Patera PI, Schiaffini R, Ciampalini P, Pampanini V, Cristina MM, Deodati A, Bracaglia G, Porzio O, Ruta R, Novelli A, Mucciolo M, Cianfarani S, Barbetti F. Monogenic diabetes clinic (MDC): 3-year experience. Acta Diabetol 2023; 60:61-70. [PMID: 36178555 PMCID: PMC9813184 DOI: 10.1007/s00592-022-01972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 01/29/2023]
Abstract
AIM In the pediatric diabetes clinic, patients with type 1 diabetes mellitus (T1D) account for more than 90% of cases, while monogenic forms represent about 6%. Many monogenic diabetes subtypes may respond to therapies other than insulin and have chronic diabetes complication prognosis that is different from T1D. With the aim of providing a better diagnostic pipeline and a tailored care for patients with monogenic diabetes, we set up a monogenic diabetes clinic (MDC). METHODS In the first 3 years of activity 97 patients with non-autoimmune forms of hyperglycemia were referred to MDC. Genetic testing was requested for 80 patients and 68 genetic reports were available for review. RESULTS In 58 subjects hyperglycemia was discovered beyond 1 year of age (Group 1) and in 10 before 1 year of age (Group 2). Genetic variants considered causative of hyperglycemia were identified in 25 and 6 patients of Group 1 and 2, respectively, with a pick up rate of 43.1% (25/58) for Group 1 and 60% (6/10) for Group 2 (global pick-up rate: 45.5%; 31/68). When we considered probands of Group 1 with a parental history of hyperglycemia, 58.3% (21/36) had a positive genetic test for GCK or HNF1A genes, while pick-up rate was 18.1% (4/22) in patients with mute family history for diabetes. Specific treatments for each condition were administered in most cases. CONCLUSION We conclude that MDC may contribute to provide a better diabetes care in the pediatric setting.
Collapse
Affiliation(s)
- Novella Rapini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
| | - Patrizia I Patera
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
| | - Riccardo Schiaffini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
| | - Paolo Ciampalini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
| | - Valentina Pampanini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
| | - Matteoli M Cristina
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
| | - Annalisa Deodati
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
| | - Giorgia Bracaglia
- Clinical Laboratory Unit, Bambino Gesù Children's Hospital, Piazza S Onofrio 4, 00165, Rome, Italy
| | - Ottavia Porzio
- Clinical Laboratory Unit, Bambino Gesù Children's Hospital, Piazza S Onofrio 4, 00165, Rome, Italy
- Department of Experimental Medicine, Univerisity of Rome 'Tor Vergata', 00131, Rome, Italy
| | - Rosario Ruta
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Mafalda Mucciolo
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Stefano Cianfarani
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
- Department of Systems Medicine, University of Rome 'Tor Vergata', 00131, Rome, Italy
- Department of Women's and Children's Health, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Fabrizio Barbetti
- Clinical Laboratory Unit, Bambino Gesù Children's Hospital, Piazza S Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
21
|
Zamanfar D, Ferdosipour F, Ebrahimi P, Moghadam M, Amoli MM, Asadi M, Monajati M. Study of the frequency and clinical features of maturity-onset diabetes in the young in the pediatric and adolescent diabetes population in Iran. J Pediatr Endocrinol Metab 2022; 35:1240-1249. [PMID: 36100423 DOI: 10.1515/jpem-2022-0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Maturity-onset diabetes of the young (MODY), an autosomal dominant disease, is frequently misdiagnosed as type 1 or 2 diabetes. Molecular diagnosis is essential to distinguish them. This study was done to investigate the prevalence of MODY subtypes and patients' clinical characteristics. METHODS A total of 43 out of 230 individuals with diabetes were selected based on the age of diagnosis >6 months, family history of diabetes, absence of marked obesity, and measurable C-peptide. Next-generation and direct SANGER sequencing was performed to screen MODY-related mutations. The variants were interpreted using the Genome Aggregation Database (genomAD), Clinical Variation (ClinVar), and pathogenicity prediction tools. RESULTS There were 23 males (53.5%), and the mean age at diabetes diagnosis was 6.7 ± 3.6 years. Sixteen heterozygote single nucleotide variations (SNVs) from 14 patients (14/230, 6%) were detected, frequently GCK (37.5%) and BLK (18.7%). Two novel variants were identified in HNF4A and ABCC8. Half of the detected variants were categorized as likely pathogenic. Most prediction tools predicted Ser28Cys in HNF4A as benign and Tyr123Phe in ABCC8 as a pathogenic SNV. Six cases (42.8%) with positive MODY SNVs had islet autoantibodies. At diagnosis, age, HbA1c, and C-peptide level were similar between SNV-positive and negative patients. CONCLUSIONS This is the first study investigating 14 variants of MODY in Iran. The results recommend genetic screening for MODY in individuals with unusual type 1 or 2 diabetes even without family history. Treatment modifies depending on the type of patients' MODY and is associated with the quality of life.
Collapse
Affiliation(s)
- Daniel Zamanfar
- Diabetes Research Center of Mazandaran, Mazandaran University of Medical Sciences, Sari, Iran.,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutritional Sciences(DFSSN) University of Calabria, Calabria, Italy
| | - Mohamad Moghadam
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahila Monajati
- Department of Internal Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
22
|
Limbert C, Lanzinger S, deBeaufort C, Iotova V, Pelicand J, Prieto M, Schiaffini R, Šumnik Z, Pacaud D. Diabetes-related antibody-testing is a valuable screening tool for identifying monogenic diabetes - A survey from the worldwide SWEET registry. Diabetes Res Clin Pract 2022; 192:110110. [PMID: 36183869 DOI: 10.1016/j.diabres.2022.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022]
Abstract
AIMS To evaluate access to screening tools for monogenic diabetes in paediatric diabetes centres across the world and its impact on diagnosis and clinical outcomes of children and youth with genetic forms of diabetes. METHODS 79 centres from the SWEET diabetes registry including 53,207 children with diabetes participated in a survey on accessibility and use of diabetes related antibodies, c-peptide and genetic testing. RESULTS 73, 63 and 62 participating centres had access to c-peptide, antibody and genetic testing, respectively. Access to antibody testing was associated with higher proportion of patients with rare forms of diabetes identified with monogenic diabetes (54 % versus 17 %, p = 0.01), lower average whole clinic HbA1c (7.7[Q1,Q2: 7.3-8.0]%/61[56-64]mmol/mol versus 9.2[8.6-10.0]%/77[70-86]mmol/mol, p < 0.001) and younger age at onset (8.3 [7.3-8.8] versus 9.7 [8.6-12.7] years p < 0.001). Additional access to c-peptide or genetic testing was not related to differences in age at onset or HbA1c outcome. CONCLUSIONS Clinical suspicion and antibody testing are related to identification of different types of diabetes. Implementing access to comprehensive antibody screening may provide important information for selecting individuals for further genetic evaluation. In addition, worse overall clinical outcomes in centers with limited diagnostic capabilities indicate they may also need support for individualized diabetes management. TRIAL REGISTRATION NCT04427189.
Collapse
Affiliation(s)
- Catarina Limbert
- Hospital Dona Estefânia, Unit of Paediatric Endocrinology and Diabetes, Lisbon, Portugal; Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal.
| | - Stefanie Lanzinger
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany; German Centre for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Carine deBeaufort
- Department of Paediatric Diabetes and Endocrinology, Centre Hospitalier Luxembourg, Luxembourg, Luxembourg
| | - Violeta Iotova
- Department of Paediatrics, Medical University of Varna, Varna, Bulgaria
| | - Julie Pelicand
- San Camilo Hospital-Medicine School, Universidad de Valparaíso, San Felipe, Chile
| | - Mariana Prieto
- Servicio de Nutrición, Hospital de Pediatría SAMIC J. P. Garrahan, 1245 Buenos Aieres, Argentina
| | | | - Zdeněk Šumnik
- Department of Paediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Danièle Pacaud
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
da Silva Santos T, Fonseca L, Santos Monteiro S, Borges Duarte D, Martins Lopes A, Couto de Carvalho A, Oliveira MJ, Borges T, Laranjeira F, Couce ML, Cardoso MH. MODY probability calculator utility in individuals' selection for genetic testing: Its accuracy and performance. Endocrinol Diabetes Metab 2022; 5:e00332. [PMID: 35822264 PMCID: PMC9471596 DOI: 10.1002/edm2.332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction MODY probability calculator (MPC) represents an easy‐to‐use tool developed by Exeter University to help clinicians prioritize which individuals should be oriented to genetic testing. We aimed to assess the utility of MPC in a Portuguese cohort with early‐onset monogenic diabetes. Methods This single‐centre retrospective study enrolled 132 participants submitted to genetic testing between 2015 and 2020. Automatic sequencing and, in case of initial negative results, generation sequencing were performed. MODY probability was calculated using the probability calculator available online. Positive and negative predictive values (PPV and NPV, respectively), accuracy, sensitivity and specificity of the calculator were determined for this cohort. Results Seventy‐three individuals were included according to inclusion criteria: 20 glucokinase (GCK‐MODY); 16 hepatocyte nuclear factor 1A (HNF1A‐MODY); 2 hepatocyte nuclear factor 4A (HNF4A‐MODY) and 35 DM individuals with no monogenic mutations found. The median probability score of MODY was significantly higher in monogenic diabetes‐positive subgroup (75.5% vs. 24.2%, p < .001). The discriminative accuracy of the calculator, as expressed by area under the curve, was 75% (95% CI: 64%–85%). In our cohort, the best cut‐off value for the MODY calculator was found to be 36%, with a PPV of 74.4%, NPV of 73.5% and corresponding sensitivity and specificity of 76.2% and 71.4%, respectively. Conclusions In a highly pre‐selected group of probands qualified for genetic testing, the Exeter MODY probability calculator provided a useful tool in individuals' selection for genetic testing, with good discrimination ability under an optimal probability cut‐off of 36%. Further geographical and population adjustments are warranted for general use.
Collapse
Affiliation(s)
- Tiago da Silva Santos
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Liliana Fonseca
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Sílvia Santos Monteiro
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Diana Borges Duarte
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Ana Martins Lopes
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - André Couto de Carvalho
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Maria João Oliveira
- Division of Pediatric Endocrinology Department of Pediatrics Centro Materno‐Infantil do Norte – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Teresa Borges
- Division of Pediatric Endocrinology Department of Pediatrics Centro Materno‐Infantil do Norte – Centro Hospitalar e Universitário do Porto Porto Portugal
| | | | - María Luz Couce
- University Clinical Hospital of Santiago de Compostela, IDIS CIBERER MetabERN Santiago de Compostela Spain
| | - Maria Helena Cardoso
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| |
Collapse
|
24
|
Mifsud F, Saint-Martin C, Dubois-Laforgue D, Bouvet D, Timsit J, Bellanné-Chantelot C. Monogenic diabetes in adults: A multi-ancestry study reveals strong disparities in diagnosis rates and clinical presentation. Diabetes Res Clin Pract 2022; 188:109908. [PMID: 35533745 DOI: 10.1016/j.diabres.2022.109908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/03/2022]
Abstract
AIM Identification of monogenic diabetes (MgD) conveys benefits for patients' care. Algorithms for selecting the patients to be genetically tested have been established in EuroCaucasians, but not in non-EuroCaucasian individuals. We assessed the diagnosis rate, the phenotype of MgD, and the relevance of selection criteria, according to ancestry in patients referred for a suspected MgD. METHODS Seven genes (GCK, HNF1A, HNF4A, HNF1B, ABCC8, KCNJ11, INS) were analyzed in 1975 adult probands (42% non-EuroCaucasians), selected on the absence of diabetes autoantibodies and ≥2 of the following criteria: age ≤40 years and body mass index <30 kg/m2 at diagnosis, and a family history of diabetes in ≥2 generations. RESULTS Pathogenic/likely pathogenic variants were identified in 6.2% of non-EuroCaucasian and 23.6% of EuroCaucasian patients (OR 0.21, [0.16-0.29]). Diagnosis rate was low in all non-EuroCaucasian subgroups (4.1-11.8%). Common causes of MgD (GCK, HNF1A, HNF4A), but not rare causes, were less frequent in non-EuroCaucasians than in EuroCaucasians (4.1%, vs. 21.1%, OR 0.16 [0.11-0.23]). Using ethnicity-specific body mass index cutoffs increased the diagnosis rate in several non-EuroCaucasian subgroups. CONCLUSION The diagnosis rate of MgD is low in non-EuroCaucasian patients, but may be improved by tailoring selection criteria according to patients'ancestry.
Collapse
Affiliation(s)
- F Mifsud
- Université de Paris, AP-HP, Cochin Hospital, Department of Diabetology, DMU ENDROMED, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France; Université de Paris, BFA, CNRS UMR 8251, 75013 Paris, France; Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - C Saint-Martin
- Sorbonne Université, AP-HP, Pitié-Salpêtrière Hospital, Department of Medical Genetics, DMU BioGeM, 47/83 Boulevard de l'Hôpital, 75013 Paris, France; PRISIS Reference Center for Rare Diseases, Paris, France
| | - D Dubois-Laforgue
- Université de Paris, AP-HP, Cochin Hospital, Department of Diabetology, DMU ENDROMED, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France; PRISIS Reference Center for Rare Diseases, Paris, France; INSERM U1016, Cochin Hospital, 22 Rue Méchain, 75014 Paris, France
| | - D Bouvet
- Sorbonne Université, AP-HP, Pitié-Salpêtrière Hospital, Department of Medical Genetics, DMU BioGeM, 47/83 Boulevard de l'Hôpital, 75013 Paris, France; PRISIS Reference Center for Rare Diseases, Paris, France
| | - J Timsit
- Université de Paris, AP-HP, Cochin Hospital, Department of Diabetology, DMU ENDROMED, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France; PRISIS Reference Center for Rare Diseases, Paris, France
| | - C Bellanné-Chantelot
- Sorbonne Université, AP-HP, Pitié-Salpêtrière Hospital, Department of Medical Genetics, DMU BioGeM, 47/83 Boulevard de l'Hôpital, 75013 Paris, France; PRISIS Reference Center for Rare Diseases, Paris, France.
| |
Collapse
|
25
|
Firdous P, Nissar K, Masoodi SR, Ganai BA. Biomarkers: Tools for Discriminating MODY from Other Diabetic Subtypes. Indian J Endocrinol Metab 2022; 26:223-231. [PMID: 36248040 PMCID: PMC9555386 DOI: 10.4103/ijem.ijem_266_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/24/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Maturity Onset Diabetes of Young (MODY), characterized by the pancreatic b-cell dysfunction, the autosomal dominant mode of inheritance and early age of onset (often ≤25 years). It differs from normal type 1 and type 2 diabetes in that it occurs at a low rate of 1-5%, three-generational autosomal dominant patterns of inheritance and lacks typical diabetic features such as obesity. MODY patients can be managed by diet alone for many years, and sulfonylureas are also recommended to be very effective for managing glucose levels for more than 30 years. Despite rapid advancements in molecular disease diagnosis methods, MODY cases are frequently misdiagnosed as type 1 or type 2 due to overlapping clinical features, genetic testing expenses, and a lack of disease understanding. A timely and accurate diagnosis method is critical for disease management and its complications. An early diagnosis and differentiation of MODY at the clinical level could reduce the risk of inappropriate insulin or sulfonylurea treatment therapy and its associated side effects. We present a broader review to highlight the role and efficacy of biomarkers in MODY differentiation and patient selection for genetic testing analysis.
Collapse
Affiliation(s)
- Parveena Firdous
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
| | - Kamran Nissar
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir
| | | | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
| |
Collapse
|
26
|
El Jellas K, Dušátková P, Haldorsen IS, Molnes J, Tjora E, Johansson BB, Fjeld K, Johansson S, Průhová Š, Groop L, Löhr JM, Njølstad PR, Molven A. Two New Mutations in the CEL Gene Causing Diabetes and Hereditary Pancreatitis: How to Correctly Identify MODY8 Cases. J Clin Endocrinol Metab 2022; 107:e1455-e1466. [PMID: 34850019 PMCID: PMC8947231 DOI: 10.1210/clinem/dgab864] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 11/26/2022]
Abstract
CONTEXT Maturity onset diabetes of the young, type 8 (MODY8) is associated with mutations in the CEL gene, which encodes the digestive enzyme carboxyl ester lipase. Several diabetes cases and families have in recent years been attributed to mutations in CEL without any functional or clinical evidence provided. OBJECTIVE To facilitate correct MODY8 diagnostics, we screened 2 cohorts of diabetes patients and delineated the phenotype. METHODS Young, lean Swedish and Finnish patients with a diagnosis of type 2 diabetes (352 cases, 406 controls) were screened for mutations in the CEL gene. We also screened 58 Czech MODY cases who had tested negative for common MODY genes. For CEL mutation-positive subjects, family history was recorded, and clinical investigations and pancreatic imaging performed. RESULTS Two cases (1 Swedish and 1 Czech) with germline mutation in CEL were identified. Clinical and radiological investigations of these 2 probands and their families revealed dominantly inherited insulin-dependent diabetes, pancreatic exocrine dysfunction, and atrophic pancreas with lipomatosis and cysts. Notably, hereditary pancreatitis was the predominant phenotype in 1 pedigree. Both families carried single-base pair deletions in the proximal part of the CEL variable number of tandem repeat (VNTR) region in exon 11. The mutations are predicted to lead to aberrant protein tails that make the CEL protein susceptible to aggregation. CONCLUSION The diagnosis of MODY8 requires a pancreatic exocrine phenotype and a deletion in the CEL VNTR in addition to dominantly inherited diabetes. CEL screening may be warranted also in families with hereditary pancreatitis of unknown genetic etiology.
Collapse
Affiliation(s)
- Khadija El Jellas
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Petra Dušátková
- Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine and University Hospital Motol, CZ-15006 Prague, Czech Republic
| | - Ingfrid S Haldorsen
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, N-5021 Bergen, Norway
- Section for Radiology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Janne Molnes
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Erling Tjora
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Bente B Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Karianne Fjeld
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Stefan Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Štěpánka Průhová
- Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine and University Hospital Motol, CZ-15006 Prague, Czech Republic
| | - Leif Groop
- Institute for Molecular Medicine Finland, Helsinki University, FI-00014 Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, SE-214 28 Malmö, Sweden
| | - J Matthias Löhr
- Department for Digestive Diseases, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Pål R Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
- Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
27
|
Pang L, Colclough KC, Shepherd MH, McLean J, Pearson ER, Ellard S, Hattersley AT, Shields BM. Improvements in Awareness and Testing Have Led to a Threefold Increase Over 10 Years in the Identification of Monogenic Diabetes in the U.K. Diabetes Care 2022; 45:642-649. [PMID: 35061023 PMCID: PMC7612472 DOI: 10.2337/dc21-2056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Maturity-onset diabetes of the young (MODY) is a rare monogenic form of diabetes. In 2009, >80% of U.K. cases were estimated to be misdiagnosed. Since then, there have been a number of initiatives to improve the awareness and detection of MODY, including education initiatives (Genetic Diabetes Nurse [GDN] project), the MODY probability calculator, and targeted next-generation sequencing (tNGS). We examined how the estimated prevalence of MODY and other forms of monogenic diabetes diagnosed outside the neonatal period has changed over time and how the initiatives have impacted case finding. RESEARCH DESIGN AND METHODS U.K. referrals for genetic testing for monogenic diabetes diagnosed >1 year of age from 1 January 1996 to 31 December 2019 were examined. Positive test rates were compared for referrals reporting GDN involvement/MODY calculator use with those that did not. RESULTS A diagnosis of monogenic diabetes was confirmed in 3,860 individuals, more than threefold higher than 2009 (1 January 1996 to 28 February 2009, n = 1,177). Median age at diagnosis in probands was 21 years. GDN involvement was reported in 21% of referrals; these referrals had a higher positive test rate than those without GDN involvement (32% vs. 23%, P < 0.001). MODY calculator usage was indicated in 74% of eligible referrals since 2014; these referrals had a higher positive test rate than those not using the calculator (33% vs. 25%, P = 0.001). Four hundred ten (10.6%) cases were identified through tNGS. Monogenic diabetes prevalence was estimated to be 248 cases/million (double that estimated in 2009 because of increased case finding). CONCLUSIONS Since 2009, referral rates and case diagnosis have increased threefold. This is likely to be the consequence of tNGS, GDN education, and use of the MODY calculator.
Collapse
Affiliation(s)
- Lewis Pang
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Kevin C Colclough
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Maggie H Shepherd
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust/University of Exeter Medical School, Exeter, U.K
| | - Joanne McLean
- Population Health and Genomics, School of Medicine, University of Dundee, Dundee, U.K
| | - Ewan R Pearson
- Population Health and Genomics, School of Medicine, University of Dundee, Dundee, U.K
| | - Sian Ellard
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust/University of Exeter Medical School, Exeter, U.K
| | - Beverley M Shields
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust/University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
28
|
Colclough K, Ellard S, Hattersley A, Patel K. Syndromic Monogenic Diabetes Genes Should Be Tested in Patients With a Clinical Suspicion of Maturity-Onset Diabetes of the Young. Diabetes 2022; 71:530-537. [PMID: 34789499 PMCID: PMC7612420 DOI: 10.2337/db21-0517] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022]
Abstract
At present, outside of infancy, genetic testing for monogenic diabetes is typically for mutations in maturity-onset diabetes of the young (MODY) genes that predominantly result in isolated diabetes. Monogenic diabetes syndromes are usually only tested for when supported by specific syndromic clinical features. How frequently patients with suspected MODY have a mutation in a monogenic syndromic diabetes gene is unknown and thus missed by present testing regimes. We performed genetic testing of 27 monogenic diabetes genes (including 18 associated with syndromic diabetes) for 1,280 patients with a clinical suspicion of MODY who were not suspected of having monogenic syndromic diabetes. We confirmed monogenic diabetes in 297 (23%) patients. Mutations in seven different syndromic diabetes genes accounted for 19% (95% CI 15-24%) of all monogenic diabetes. The mitochondrial m.3243A>G and mutations in HNF1B were responsible for the majority of mutations in syndromic diabetes genes. They were also the 4th and 5th most common causes of monogenic diabetes overall. These patients lacked typical features, and their diabetes phenotypes overlapped with patients with nonsyndromic monogenic diabetes. Syndromic monogenic diabetes genes (particularly m.3243A>G and HNF1B) should be routinely tested in patients with suspected MODY who do not have typical features of a genetic syndrome.
Collapse
Affiliation(s)
- Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Andrew Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Kashyap Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
29
|
Xu Q, Kan CX, Hou NN, Sun XD. Novel HNF1A gene mutation in maturity-onset diabetes of the young: A case report. World J Clin Cases 2022; 10:1909-1913. [PMID: 35317157 PMCID: PMC8891774 DOI: 10.12998/wjcc.v10.i6.1909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young 3 (MODY3), caused by mutations in the HNF1A gene, is the most common subtype of MODY. The diagnosis of MODY3 is critical because a low dose of sulfonylurea agents can achieve glucose control. CASE SUMMARY We describe a patient with MODY3 involving a novel splicing mutation, in whom low-dose gliclazide was sufficient to control clinically significant hyperglycemia. Sanger sequencing identified a splicing HNF1A mutation in 12q24 NM_000545.5 Intron5 c.1108-1G>A. Glycemic control has been maintained without insulin therapy for 28 mo after the diagnosis of diabetes. CONCLUSION This case report highlights a novel HNF1A gene mutation in MODY3 that is responsive to sulfonylurea therapy.
Collapse
Affiliation(s)
- Qian Xu
- Department of Endocrinology and Metabolism, Clinical Research Center, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Cheng-Xia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Ning-Ning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xiao-Dong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
30
|
Li J, Wang X, Mao H, Wen L, Deng A, Li Y, Zhang H, Liu C. Precision therapy for three Chinese families with maturity-onset diabetes of the young (MODY12). Front Endocrinol (Lausanne) 2022; 13:858096. [PMID: 35992135 PMCID: PMC9381955 DOI: 10.3389/fendo.2022.858096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is rare monogenic diabetes. However, MODY is often undiagnosed or misdiagnosed. In this study, we aimed to investigate the pathogenic gene for diabetes and provide precise treatment for diabetes patients in three families. Three families with suspected MODY were enrolled and screened for germline mutations using Whole exome sequencing (WES). Candidate pathogenic variants were validated in other family members and non-related healthy controls. Three heterozygous missense mutations in the ABCC8 gene (NM_001287174), c.1555 C>T (p.R519C), c.3706 A>G (p.I1236V), and c.2885 C>T (p.S962L) were found in families A, B, and C, respectively. All mutation sites cosegregated with diabetes, were predicted to be harmful by bioinformatics and were not found in non-related healthy controls. Two probands (onset ages, 8 and 12 years) were sensitive to glimepiride. However, an insufficient dose (2 mg/day) led to ketoacidosis. When the dosage of glimepiride was increased to 4 mg/day, blood sugar remained under control. A dose of 4 mg glimepiride daily also effectively controlled blood sugar in an adult patient 25-year-old. In addition, all patients were sensitive to liraglutide, which could control blood sugar better. These data suggest that ABCC8 was the pathogenic gene in three families with diabetes. Glimepiride (2 mg/day) was not effective in controlling blood sugar in children with ABCC8 mutations, however, 4 mg/daily glimepiride was effective in both adults and children. Moreover, liraglutide was effective in controlling blood sugar in both adults and children with ABCC8 mutations.
Collapse
Affiliation(s)
- Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Juyi Li, ; Yarong Li, ; Hongmei Zhang, ; Chao Liu,
| | - Xiufang Wang
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Mao
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wen
- Department of Traditional Chinese Medicine and Ethnic Medicine, Guangxi Institute for Food and Drug Control, Nanning, China
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yarong Li
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Juyi Li, ; Yarong Li, ; Hongmei Zhang, ; Chao Liu,
| | - Hongmei Zhang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Juyi Li, ; Yarong Li, ; Hongmei Zhang, ; Chao Liu,
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Juyi Li, ; Yarong Li, ; Hongmei Zhang, ; Chao Liu,
| |
Collapse
|
31
|
Zmysłowska A, Jakiel P, Gadzalska K, Majos A, Płoszaj T, Ben-Skowronek I, Deja G, Glowinska-Olszewska B, Jarosz-Chobot P, Klonowska B, Kowalska I, Mlynarski W, Mysliwiec M, Nazim J, Noczynska A, Robak-Kontna K, Skala-Zamorowska E, Skowronska B, Szadkowska A, Szypowska A, Walczak M, Borowiec M. Next- generation sequencing is an effective method for diagnosing patients with different forms of monogenic diabetes. Diabetes Res Clin Pract 2022; 183:109154. [PMID: 34826540 DOI: 10.1016/j.diabres.2021.109154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/13/2021] [Accepted: 11/20/2021] [Indexed: 11/03/2022]
Abstract
AIM Monogenic diabetes (MD) represents 5-7% of antibody-negative diabetes cases and is a heterogeneous group of disorders. METHODS We used targeted next-generation sequencing (NGS) on Illumina NextSeq 550 platform involving the SureSelect assay to perform genetic and clinical characteristics of a study group of 684 individuals, including 542 patients referred from 12 Polish Diabetes Centers with suspected MD diagnosed between December 2016 and December 2019 and their 142 family members (FM). RESULTS In 198 probands (36.5%) and 66 FM (46.5%) heterozygous causative variants were confirmed in 11 different MD-related genes, including 31 novel mutations, with the highest number in the GCK gene (206/264), 22/264 in the HNF1A gene and 8/264 in the KCNJ11 gene. Of the 183 probands with MODY1-5 diabetes, 48.6% of them were diagnosed at the pre-diabetes stage and most of them (68.7%) were on diet only at the time of genetic diagnosis, while 31.3% were additionally treated with oral hypoglycaemic drugs and/or insulin. CONCLUSIONS In summary, the results obtained confirm the efficacy of targeted NGS method in the molecular diagnosis of patients with suspected MD and broaden the spectrum of new causal variants, while updating our knowledge of the clinical features of patients defined as having MD.
Collapse
Affiliation(s)
- A Zmysłowska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland.
| | - P Jakiel
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - K Gadzalska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - A Majos
- Department of General and Transplant Surgery, Medical University of Lodz, Lodz, Poland
| | - T Płoszaj
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - I Ben-Skowronek
- Department of Pediatric Endocrinology and Diabetology, Medical University of Lublin, Lublin, Poland
| | - G Deja
- Department of Children's Diabetology, Medical University of Silesia in Katowice, Poland
| | - B Glowinska-Olszewska
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Bialystok, Poland
| | - P Jarosz-Chobot
- Department of Children's Diabetology, Medical University of Silesia in Katowice, Poland
| | - B Klonowska
- Department of Clinical Pediatrics, University of Warmia and Mazury in Olsztyn, Provincial Specialist Children's Hospital, Olsztyn, Poland
| | - I Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| | - W Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - M Mysliwiec
- Department of Pediatrics, Diabetology and Endocrinology, Medical University of Gdansk, Gdansk, Poland
| | - J Nazim
- Department of Pediatric Endocrinology, Jagiellonian University Medical College, Cracow, Poland
| | - A Noczynska
- Department of Pediatric Endocrinology and Diabetology, Wroclaw Medical University, Wroclaw, Poland
| | - K Robak-Kontna
- Outpatient Clinic for Pediatric Diabetology, Regional Children's Hospital in Bydgoszcz, Bydgoszcz, Poland
| | - E Skala-Zamorowska
- Department of Children's Diabetology, Medical University of Silesia in Katowice, Poland
| | - B Skowronska
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - A Szadkowska
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Lodz, Poland
| | - A Szypowska
- Department of Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | - M Walczak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - M Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
32
|
Lezzi M, Aloi C, Salina A, Fragola M, Bassi M, Strati MF, d’Annunzio G, Minuto N, Maghnie M. Diabetes Mellitus Diagnosed in Childhood and Adolescence With Negative Autoimmunity: Results of Genetic Investigation. Front Endocrinol (Lausanne) 2022; 13:894878. [PMID: 35769090 PMCID: PMC9235348 DOI: 10.3389/fendo.2022.894878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
Monogenic diabetes is a rare form of diabetes, accounting for approximately 1% to 6% of pediatric diabetes patients. Some types of monogenic diabetes can be misdiagnosed as type 1 diabetes in children or adolescents because of similar clinical features. Identification of the correct etiology of diabetes is crucial for clinical, therapeutic, and prognostic issues. Our main objective was to determine the prevalence of monogenic diabetes in patients with diabetes mellitus, diagnosed in childhood or in adolescence, and negative autoimmunity. We retrospectively analyzed clinical data of 275 patients diagnosed with insulin-dependent diabetes at age <18yr in the last 10 years. 8.4% of subjects has negative autoimmunity. Their DNA was sequenced by NGS custom panel composed by 45 candidate genes involved in glucose metabolism disorder. Two novel heterozygous pathogenic or likely pathogenic variants (10,5% of autoantibody negative subjects) were detected: the frameshift variant c.617_618insA in NEUROD1 exon 2 and the missense change c.116T>C in INS exon 2. Our study corroborates previous results of other reports in literature. NGS assays are useful methods for a correct diagnosis of monogenic diabetes, even of rarest forms, highlighting mechanisms of pediatric diabetes pathogenesis.
Collapse
Affiliation(s)
- Marilea Lezzi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Concetta Aloi
- LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Salina
- LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Martina Fragola
- Department of Hematology and Oncology, Epidemiology and Biostatistics Section, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Bassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marina Francesca Strati
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Nicola Minuto
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- *Correspondence: Nicola Minuto,
| | - Mohamad Maghnie
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
33
|
Zhao Q, Ding L, Yang Y, Sun J, Wang M, Li X, Liu M. Clinical Characteristics of Patients With HNF1-alpha MODY: A Literature Review and Retrospective Chart Review. Front Endocrinol (Lausanne) 2022; 13:900489. [PMID: 35795147 PMCID: PMC9252268 DOI: 10.3389/fendo.2022.900489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical manifestation of hepatocyte nuclear factor-1-alpha (HNF1-alpha) maturity-onset diabetes of the young (MODY) is highly variable. This study aims to investigate the clinical characteristics of patients with HNF1-alpha MODY in general, by geographical regions (Asian or non-Asian), HNF1-alpha mutations, and islet autoantibody status. A literature review and a chart review of patients with HNF1-alpha MODY were performed. The means and proportions from studies were pooled using the inverse variance method for pooling, and subgroup analyses were performed. A total of 109 studies involving 1,325 patients [41.5%, 95% confidence interval (CI): 35.2, 48.1; male] were identified. The mean age of diagnosis was 20.3 years (95% CI: 18.3-22.2), and the mean glycated hemoglobin was 7.3% (95% CI: 7.2-7.5). In comparison, Asian patients exhibited significantly higher HbA1c (p = 0.007) and 2-h post-load C-peptide (p = 0.012) levels and lower levels of triglyceride (TG) (p < 0.001), total cholesterol (TC) (p < 0.001), and high-density lipoprotein cholesterol (HDL-c) (p < 0.001) and less often had macrovascular complications (p = 0.014). The age of diagnosis was oldest in patients with mutations in the transactivation domain (p < 0.001). The levels of 2-h post-load C-peptide (p < 0.001), TG (p = 0.007), TC (p = 0.017), and HDL-c (p = 0.001) were highest and the prevalence of diabetic neuropathy was lowest (p = 0.024) in patients with DNA-binding domain mutations. The fasting (p = 0.004) and 2-h post-load glucose (p = 0.003) levels and the prevalence of diabetic neuropathy (p = 0.010) were higher among patients with positive islet autoantibodies. The study demonstrated that the clinical manifestations of HNF1-alpha MODY differed by geographical regions, HNF1-alpha mutations, and islet autoantibody status.
Collapse
Affiliation(s)
- Qinying Zhao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinhong Sun
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Xin Li, ; Ming Liu,
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Endocrinology, Tianjin, China
- *Correspondence: Xin Li, ; Ming Liu,
| |
Collapse
|
34
|
Rafique I, Mir A, Siddiqui S, Saqib MAN, Fawwad A, Marchand L, Adnan M, Naeem M, Basit A, Polychronakos C. Comprehensive genetic screening reveals wide spectrum of genetic variants in monogenic forms of diabetes among Pakistani population. World J Diabetes 2021; 12:1957-1966. [PMID: 34888019 PMCID: PMC8613659 DOI: 10.4239/wjd.v12.i11.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Monogenic forms of diabetes (MFD) are single gene disorders. Their diagnosis is challenging, and symptoms overlap with type 1 and type 2 diabetes.
AIM To identify the genetic variants responsible for MFD in the Pakistani population and their frequencies.
METHODS A total of 184 patients suspected of having MFD were enrolled. The inclusion criterion was diabetes with onset below 25 years of age. Brief demographic and clinical information were taken from the participants. The maturity-onset diabetes of the young (MODY) probability score was calculated, and glutamate decarboxylase ELISA was performed. Antibody negative patients and features resembling MODY were selected (n = 28) for exome sequencing to identify the pathogenic variants.
RESULTS A total of eight missense novel or very low-frequency variants were identified in 7 patients. Three variants were found in genes for MODY, i.e. HNF1A (c.169C>A, p.Leu57Met), KLF11 (c.401G>C, p.Gly134Ala), and HNF1B (c.1058C>T, p.Ser353Leu). Five variants were found in genes other than the 14 known MODY genes, i.e. RFX6 (c.919G>A, p.Glu307Lys), WFS1 (c.478G>A, p.Glu160Lys) and WFS1 (c.517G>A, p.Glu173Lys), RFX6 (c.1212T>A, p.His404Gln) and ZBTB20 (c.1049G>A, p.Arg350His).
CONCLUSION The study showed wide spectrum of genetic variants potentially causing MFD in the Pakistani population. The MODY genes prevalent in European population (GCK, HNF1A, and HNF4a) were not found to be common in our population. Identification of novel variants will further help to understand the role of different genes causing the pathogenicity in MODY patient and their proper management and diagnosis.
Collapse
Affiliation(s)
- Ibrar Rafique
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
- Research Development and Coordination, Pakistan Health Research Council, Islamabad 44000, Pakistan
| | - Asif Mir
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Shajee Siddiqui
- Department of Medicine, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan, Pakistan
| | | | - Asher Fawwad
- Department of Biochemistry, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi 74600, Sindh, Pakistan
| | - Luc Marchand
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
| | - Muhammad Adnan
- PHRC Research Centre, FJMU, Pakistan Health Research Council, Lahore 54000, Pakistan
| | - Muhammad Naeem
- Department of Biotechnology, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Abdul Basit
- Department of Medicine, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi 74600, Sindh, Pakistan
| | - Constantin Polychronakos
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
| |
Collapse
|
35
|
Passanisi S, Salzano G, Bombaci B, Lombardo F. Clinical and genetic features of maturity-onset diabetes of the young in pediatric patients: a 12-year monocentric experience. Diabetol Metab Syndr 2021; 13:96. [PMID: 34496959 PMCID: PMC8424812 DOI: 10.1186/s13098-021-00716-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A retrospective observational study was conducted to assess the prevalence of maturity onset diabetes of the young (MODY) in a large paediatric population of Southern Italy newly diagnosed with diabetes. Clinical and genetic features of the identified MODY patients were also described. METHODS Genetic testing was performed in children and adolescents newly diagnosed with diabetes who presented autoantibody negativity and fasting C-peptide levels ≥ 0.8 ng/mL. Patients with a low insulin daily dose and optimal glycaemic control after two years from diabetes onset were also investigated for monogenic diabetes, regardless of their autoimmunity status and/or C-peptide levels. RESULTS A prevalence of 6.5% of MODY was found. In particular, glucokinase-MODY was the most common type of MODY. The mean age at diagnosis was 9.1 years. Clinical presentation and biochemical data were heterogeneous also among patients belonging to the same MODY group. CONCLUSIONS We found a relatively high prevalence of MODY among paediatric patients with a new diagnosis of diabetes in comparison to literature data. Our findings highlight that a more detailed clinical evaluation along with easier and less expensive approachability to genetic testing may allow diagnosing an increasing number of MODY cases. A correct, prompt diagnosis is crucial to choose the most appropriate treatment and offer adequate genetic counselling.
Collapse
Affiliation(s)
- Stefano Passanisi
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98124, Messina, Italy.
| | - Giuseppina Salzano
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98124, Messina, Italy
| | - Bruno Bombaci
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98124, Messina, Italy
| | - Fortunato Lombardo
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98124, Messina, Italy
| |
Collapse
|
36
|
Identification of Maturity-Onset-Diabetes of the Young (MODY) mutations in a country where diabetes is endemic. Sci Rep 2021; 11:16060. [PMID: 34373539 PMCID: PMC8352960 DOI: 10.1038/s41598-021-95552-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023] Open
Abstract
Genetic variants responsible for Maturity-Onset-Diabetes of the Young (MODY) in Kuwait were investigated. A newly established a National Referral Clinic, the Dasman Diabetes Institute (DDI-NRC), assessed forty-five members from 31 suspected MODY families by whole exome sequencing. Thirty-three of the 45 samples were independently sequenced at the DDI-NRI, Exeter University, UK (https://www.diabetesgenes.org/) using targeted 21-gene panel approach. Pathogenic mutations in GCK, HNF1A, HNF1B, HNF4A, and PDX1 confirmed MODY in 7 families, giving an overall positivity rate of 22.6% in this cohort. Novel variants were identified in three families in PDX1, HNF1B, and HNF1B. In this cohort, Multiplex Ligation-dependent Probe Amplification assay did not add any value to MODY variant detection rate in sequencing negative cases. In highly selected familial autoantibody negative diabetes, known MODY genes represent a minority and 77.3% of the familial cases have yet to have a causal variant described.
Collapse
|
37
|
Adler A, Bennett P, Colagiuri Chair S, Gregg E, Narayan KMV, Inês Schmidt M, Sobngwi E, Tajima N, Tandon N, Unwin N, Wild S, Yudkin J, Levitt N, Mohan V, Montgomery S, Nyirenda MJ, Tuomilehto J, Den Boon S, Hocking S. REPRINT OF: CLASSIFICATION OF DIABETES MELLITUS. Diabetes Res Clin Pract 2021:108972. [PMID: 34343595 DOI: 10.1016/j.diabres.2021.108972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Executive Summary This document updates the 1999 World Health Organization (WHO) classification of diabetes. It prioritizes clinical care and guides health professionals in choosing appropriate treatments at the time of diabetes diagnosis, and provides practical guidance to clinicians in assigning a type of diabetes to individuals at the time of diagnosis. It is a compromise between clinical and aetiological classification because there remain gaps in knowledge of the aetiology and pathophysiology of diabetes. While acknowledging the progress that is being made towards a more precise categorization of diabetes subtypes, the aim of this document is to recommend a classification that is feasible to implement in different settings throughout the world. The revised classification is presented in Table 1. Unlike the previous classification, this classification does not recognize subtypes of type 1 diabetes and type 2 diabetes and includes new types of diabetes ("hybrid types of diabetes" and "unclassified diabetes").
Collapse
Affiliation(s)
| | - Peter Bennett
- Phoenix Epidemiology & Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, USA
| | | | - Edward Gregg
- Centers for Disease Control and Prevention, Atlanta, USA
| | | | | | - Eugene Sobngwi
- Faculté de Medecine et des Sciences Biomedicales et Centre de Biotechnologie, Université de Yaounde 1, Cameroon
| | - Naoko Tajima
- Jikei University School of Medicine, Tokyo, Japan
| | - Nikhil Tandon
- All India Institute of Medical Sciences, New Delhi, India
| | - Nigel Unwin
- Chronic Disease Research Centre, The University of the West Indies, Bridgetown, Barbados, and MRC Epidemiology Unit, University of Cambridge, UK
| | | | | | - Naomi Levitt
- Diabetic Medicine and Endocrinology, Department of Medicine at Groote Schuur Hospital and University of Cape Town, South Africa
| | | | | | - Moffat J Nyirenda
- Medical Research Council/Uganda Virus Research Institute/London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | | | | | | |
Collapse
|
38
|
A Comprehensive Analysis of Hungarian MODY Patients-Part II: Glucokinase MODY Is the Most Prevalent Subtype Responsible for about 70% of Confirmed Cases. Life (Basel) 2021; 11:life11080771. [PMID: 34440516 PMCID: PMC8400228 DOI: 10.3390/life11080771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 01/22/2023] Open
Abstract
MODY2 is caused by heterozygous inactivating mutations in the glucokinase (GCK) gene that result in persistent, stable and mild fasting hyperglycaemia (5.6–8.0 mmol/L, glycosylated haemoglobin range of 5.6–7.3%). Patients with GCK mutations usually do not require any drug treatment, except during pregnancy. The GCK gene is considered to be responsible for about 20% of all MODY cases, transcription factors for 67% and other genes for 13% of the cases. Based on our findings, GCK and HNF1A mutations together are responsible for about 90% of the cases in Hungary, this ratio being higher than the 70% reported in the literature. More than 70% of these patients have a mutation in the GCK gene, this means that GCK-MODY is the most prevalent form of MODY in Hungary. In the 91 index patients and their 72 family members examined, we have identified a total of 65 different pathogenic (18) and likely pathogenic (47) GCK mutations of which 28 were novel. In two families, de novo GCK mutations were detected. About 30% of the GCK-MODY patients examined were receiving unnecessary OAD or insulin therapy at the time of requesting their genetic testing, therefore the importance of having a molecular genetic diagnosis can lead to a major improvement in their quality of life.
Collapse
|
39
|
Maturity Onset Diabetes of the Young-New Approaches for Disease Modelling. Int J Mol Sci 2021; 22:ijms22147553. [PMID: 34299172 PMCID: PMC8303136 DOI: 10.3390/ijms22147553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous group of monogenic endocrine disorders that is characterised by autosomal dominant inheritance and pancreatic β-cell dysfunction. These patients are commonly misdiagnosed with type 1 or type 2 diabetes, as the clinical symptoms largely overlap. Even though several biomarkers have been tested none of which could be used as single clinical discriminator. The correct diagnosis for individuals with MODY is of utmost importance, as the applied treatment depends on the gene mutation or is subtype-specific. Moreover, in patients with HNF1A-MODY, additional clinical monitoring can be included due to the high incidence of vascular complications observed in these patients. Finally, stratification of MODY patients will enable better and newer treatment options for MODY patients, once the disease pathology for each patient group is better understood. In the current review the clinical characteristics and the known disease-related abnormalities of the most common MODY subtypes are discussed, together with the up-to-date applied diagnostic criteria and treatment options. Additionally, the usage of pluripotent stem cells together with CRISPR/Cas9 gene editing for disease modelling with the possibility to reveal new pathophysiological mechanisms in MODY is discussed.
Collapse
|
40
|
Støy J, De Franco E, Ye H, Park SY, Bell GI, Hattersley AT. In celebration of a century with insulin - Update of insulin gene mutations in diabetes. Mol Metab 2021; 52:101280. [PMID: 34174481 PMCID: PMC8513141 DOI: 10.1016/j.molmet.2021.101280] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background While insulin has been central to the pathophysiology and treatment of patients with diabetes for the last 100 years, it has only been since 2007 that genetic variation in the INS gene has been recognised as a major cause of monogenic diabetes. Both dominant and recessive mutations in the INS gene are now recognised as important causes of neonatal diabetes and offer important insights into both the structure and function of insulin. It is also recognised that in rare cases, mutations in the INS gene can be found in patients with diabetes diagnosed outside the first year of life. Scope of Review This review examines the genetics and clinical features of monogenic diabetes resulting from INS gene mutations from the first description in 2007 and includes information from 389 patients from 292 families diagnosed in Exeter with INS gene mutations. We discuss the implications for diagnosing and treating this subtype of monogenic diabetes. Major Conclusions The dominant mutations in the INS gene typically affect the secondary structure of the insulin protein, usually by disrupting the 3 disulfide bonds in mature insulin. The resulting misfolded protein results in ER stress and beta-cell destruction. In contrast, recessive INS gene mutations typically result in no functional protein being produced due to reduced insulin biosynthesis or loss-of-function mutations in the insulin protein. There are clinical differences between the two genetic aetiologies, between the specific mutations, and within patients with identical mutations. Dominant and recessive mutations in the insulin (INS) gene are important causes of neonatal diabetes. Associated phenotypes are variable in terms of age at diabetes onset, birth weight and treatment requirements. Dominant mutations affect the secondary structure of the insulin protein, resulting in beta-cell ER stress and destruction. Recessive mutations result in reduced insulin biosynthesis or loss-of-function mutations of the insulin protein. The studies of these forms of diabetes offer important insights into the structure, biosynthesis and secretion of insulin.
Collapse
Affiliation(s)
- Julie Støy
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom.
| | - Honggang Ye
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Soo-Young Park
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Graeme I Bell
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
41
|
Katashima R, Matsumoto M, Watanabe Y, Moritani M, Yokota I. Identification of Novel GCK and HNF4α Gene Variants in Japanese Pediatric Patients with Onset of Diabetes before 17 Years of Age. J Diabetes Res 2021; 2021:7216339. [PMID: 34746319 PMCID: PMC8570896 DOI: 10.1155/2021/7216339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is commonly misdiagnosed as type 1 or type 2 diabetes. Common reasons for misdiagnosis are related to limitations in genetic testing. A precise molecular diagnosis is essential for the optimal treatment of patients and allows for early diagnosis of their asymptomatic family members. OBJECTIVE The aim of this study was to identify rare monogenic variants of common MODY genes in Japanese pediatric patients. METHODS We investigated 45 Japanese pediatric patients based on the following clinical criteria: development of diabetes before 17 years of age, a family history of diabetes, testing negative for glutamate decarboxylase-65 (GAD 65) antibodies and insulinoma-2-associated autoantibodies (IA-2A), no significant obesity, and evidence of endogenous insulin production. Genetic screening for MODY1 (HNF4α), MODY2 (GCK), MODY3 (HNF1α), and MODY5 (HNF1β) was performed by direct sequencing followed by multiplex ligation amplification assays. RESULTS We identified 22 missense variants (3 novel variants) in 27 patients (60.0%) in the GCK, HNF4α, and HNF1α genes. We also detected a whole exon deletion in the HNF1β gene and an exon 5-6 aberration in the GCK gene, each in one proband (4.4%). There were a total of 29 variations (64.4%), giving a relative frequency of 53.3% (24/45) for GCK, 2.2% (1/45) for HNF4α, 6.7% (3/45) for HNF1α, and 2.2% (1/45) for HNF1β genes. CONCLUSIONS Clinicians should consider collecting and assessing detailed clinical information, especially regarding GCK gene variants, in young antibody-negative patients with diabetes. Correct molecular diagnosis of MODY better predicts the clinical course of diabetes and facilitates individualized management.
Collapse
Affiliation(s)
- Rumi Katashima
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
| | - Mari Matsumoto
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yuka Watanabe
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
| | - Maki Moritani
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
| | - Ichiro Yokota
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
- Department of Pediatric Endocrinology and Metabolism, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1, Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
| |
Collapse
|
42
|
Vaxillaire M, Bonnefond A, Liatis S, Ben Salem Hachmi L, Jotic A, Boissel M, Gaget S, Durand E, Vaillant E, Derhourhi M, Canouil M, Larcher N, Allegaert F, Medlej R, Chadli A, Belhadj A, Chaieb M, Raposo JF, Ilkova H, Loizou D, Lalic N, Vassallo J, Marre M, Froguel P. Monogenic diabetes characteristics in a transnational multicenter study from Mediterranean countries. Diabetes Res Clin Pract 2021; 171:108553. [PMID: 33242514 DOI: 10.1016/j.diabres.2020.108553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diagnosis of monogenic diabetes has important clinical implications for treatment and health expenditure. However, its prevalence remains to be specified in many countries, particularly from South Europe, North Africa and Middle-East, where non-autoimmune diabetes in young adults is increasing dramatically. AIMS To identify cases of monogenic diabetes in young adults from Mediterranean countries and assess the specificities between countries. METHODS We conducted a transnational multicenter study based on exome sequencing in 204 unrelated patients with diabetes (age-at-diagnosis: 26.1 ± 9.1 years). Rare coding variants in 35 targeted genes were evaluated for pathogenicity. Data were analyzed using one-way ANOVA, chi-squared test and factor analysis of mixed data. RESULTS Forty pathogenic or likely pathogenic variants, 14 of which novel, were identified in 36 patients yielding a genetic diagnosis rate of 17.6%. The majority of cases were due to GCK, HNF1A, ABCC8 and HNF4A variants. We observed highly variable diagnosis rates according to countries, with association to genetic ancestry. Lower body mass index and HbA1c at study inclusion, and less frequent insulin treatment were hallmarks of pathogenic variant carriers. Treatment changes following genetic diagnosis have been made in several patients. CONCLUSIONS Our data from patients in several Mediterranean countries highlight a broad clinical and genetic spectrum of diabetes, showing the relevance of wide genetic testing for personalized care of early-onset diabetes.
Collapse
Affiliation(s)
- Martine Vaxillaire
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France.
| | - Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France; Department of Metabolism, Section of Genomics of Common Disease, Imperial College London, London, United Kingdom.
| | - Stavros Liatis
- First Department of Propaedeutic Medicine, National and Kapodistrian University of Athens Medical School, Diabetes Center, Laiko General Hospital, Athens, Greece
| | - Leila Ben Salem Hachmi
- Department of Endocrinology and Metabolic Diseases, National Institut of Nutrition, Tunis, Tunisia
| | - Aleksandra Jotic
- Department of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mathilde Boissel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Stefan Gaget
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Emmanuelle Durand
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Mehdi Derhourhi
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Mickaël Canouil
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Nicolas Larcher
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Frédéric Allegaert
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | | | - Asma Chadli
- Department of Endocrinology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Azzedine Belhadj
- Department of Internal Medicine, CHU Dr Ben Badis University Hospital, Constantine, Algeria
| | - Molka Chaieb
- Department of Endocrinology, Farhat Hached Hospital, Sousse, Tunisia
| | | | - Hasan Ilkova
- Department of Endocrinology, School of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Nebojsa Lalic
- Department of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Josanne Vassallo
- Division of Endocrinology and University of Malta Medical School, Mater Dei Hospital; Centre of Molecular Medicine and Biobanking, University of Malta, Malta
| | - Michel Marre
- Department of Diabetology-Endocrinology-Nutrition, Hôpital Bichat, DHU FIRE, Assistance Publique Hôpitaux de Paris, Paris, France; Inserm U1138, Centre de Recherche des Cordeliers, Paris, France; UFR de Médecine, University Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France; Department of Metabolism, Section of Genomics of Common Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
43
|
Riddle MC, Philipson LH, Rich SS, Carlsson A, Franks PW, Greeley SAW, Nolan JJ, Pearson ER, Zeitler PS, Hattersley AT. Monogenic Diabetes: From Genetic Insights to Population-Based Precision in Care. Reflections From a Diabetes Care Editors' Expert Forum. Diabetes Care 2020; 43:3117-3128. [PMID: 33560999 PMCID: PMC8162450 DOI: 10.2337/dci20-0065] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Individualization of therapy based on a person's specific type of diabetes is one key element of a "precision medicine" approach to diabetes care. However, applying such an approach remains difficult because of barriers such as disease heterogeneity, difficulties in accurately diagnosing different types of diabetes, multiple genetic influences, incomplete understanding of pathophysiology, limitations of current therapies, and environmental, social, and psychological factors. Monogenic diabetes, for which single gene mutations are causal, is the category most suited to a precision approach. The pathophysiological mechanisms of monogenic diabetes are understood better than those of any other form of diabetes. Thus, this category offers the advantage of accurate diagnosis of nonoverlapping etiological subgroups for which specific interventions can be applied. Although representing a small proportion of all diabetes cases, monogenic forms present an opportunity to demonstrate the feasibility of precision medicine strategies. In June 2019, the editors of Diabetes Care convened a panel of experts to discuss this opportunity. This article summarizes the major themes that arose at that forum. It presents an overview of the common causes of monogenic diabetes, describes some challenges in identifying and treating these disorders, and reports experience with various approaches to screening, diagnosis, and management. This article complements a larger American Diabetes Association effort supporting implementation of precision medicine for monogenic diabetes, which could serve as a platform for a broader initiative to apply more precise tactics to treating the more common forms of diabetes.
Collapse
Affiliation(s)
- Matthew C Riddle
- Division of Endocrinology, Diabetes, & Clinical Nutrition, Oregon Health & Science University, Portland, OR
| | - Louis H Philipson
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Annelie Carlsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Lund, Sweden
| | - Paul W Franks
- Harvard T.H. Chan School of Public Health, Boston, MA.,Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - John J Nolan
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, Scotland, U.K
| | - Philip S Zeitler
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
44
|
Abstract
Although type 1 diabetes mellitus and, to a lesser extent, type 2 diabetes mellitus, are the prevailing forms of diabetes in youth, atypical forms of diabetes are not uncommon and may require etiology-specific therapies. By some estimates, up to 6.5% of children with diabetes have monogenic forms. Mitochondrial diabetes and cystic fibrosis related diabetes are less common but often noted in the underlying disease. Atypical diabetes should be considered in patients with a known disorder associated with diabetes, aged less than 25 years with nonautoimmune diabetes and without typical characteristics of type 2 diabetes mellitus, and/or with comorbidities associated with atypical diabetes.
Collapse
Affiliation(s)
- Jaclyn Tamaroff
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, 12th Floor, Philadelphia, PA 19104, USA.
| | - Marissa Kilberg
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, 12th Floor, Philadelphia, PA 19104, USA
| | - Sara E Pinney
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, 12th Floor, Philadelphia, PA 19104, USA
| | - Shana McCormack
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, 12th Floor, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
AlMutair A, AlSabty N, AlNuaim H, Al Hamdan R, Moukaddem A. Prevalence and special clinical and biochemical characteristics of familial type 1 (insulin dependent) diabetes mellitus in pediatric patients in a tertiary care setting. Int J Pediatr Adolesc Med 2020; 8:107-111. [PMID: 34084882 PMCID: PMC8144856 DOI: 10.1016/j.ijpam.2020.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022]
Abstract
Background and Objectives The hereditable nature of type 1 diabetes mellitus (T1DM) makes it a condition that is in some cases shared among siblings. Studies that focus on the epidemiology of T1DM among siblings are scarce. The primary focus of the study is to estimate the prevalence of familial T1DM among siblings and the secondary focus is to identify the presence of any special clinical or biochemical characteristics specific to this entity. Methods In a retrospective cross-sectional study, the charts of 308 children (>1 year) diagnosed with type 1 diabetes mellitus in a Saudi tertiary care setting were reviewed. The patients who have one sibling or more with T1DM were included. The prevalence of familial T1DM among siblings was calculated, and specific clinical and biochemical characteristics were investigated. Data were analyzed using Statistical Package for the Social Sciences software version 22 (IBM SPSS Statistics for Windows). The control group includes all patients with type I DM who were excluded for sibling with DM. Results The prevalence of familial T1DM among siblings was estimated at 15.9%. Seventy-four percent of the patients with a positive family history of diabetes mellitus had one affected sibling only. The clinical presentation showed no significant differences relative to the age of presentation, gender, parental consanguinity, diabetic ketoacidosis at presentation, and its number of episodes. For the biochemical characteristics, autoantibody tests revealed no statistically significant difference, but the mean initial HbA1c levels were lower in patients who had diabetic siblings. Conclusion The prevalence of familial T1DM was found to be higher than that reported in other studies. No specific clinical or biochemical features were found to characterize familial T1DM among siblings.
Collapse
Affiliation(s)
- Angham AlMutair
- Pediatric Endocrine Division, Department of Pediatrics, King Abdullah Specialist Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia.,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs Riyadh, Saudi Arabia
| | - Norah AlSabty
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Hala AlNuaim
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Rawan Al Hamdan
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Afaf Moukaddem
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| |
Collapse
|
46
|
The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin Diabetes Endocrinol 2020; 6:20. [PMID: 33292863 PMCID: PMC7640483 DOI: 10.1186/s40842-020-00112-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background The most common type of monogenic diabetes is maturity-onset diabetes of the young (MODY), a clinically and genetically heterogeneous group of endocrine disorders that affect 1–5% of all patients with diabetes mellitus. MODY is characterized by autosomal dominant inheritance but de novo mutations have been reported. Clinical features of MODY include young-onset hyperglycemia, evidence of residual pancreatic function, and lack of beta cell autoimmunity or insulin resistance. Glucose-lowering medications are the main treatment options for MODY. The growing recognition of the clinical and public health significance of MODY by clinicians, researchers, and governments may lead to improved screening and diagnostic practices. Consequently, this review article aims to discuss the epidemiology, pathogenesis, diagnosis, and treatment of MODY based on relevant literature published from 1975 to 2020. Main body The estimated prevalence of MODY from European cohorts is 1 per 10,000 in adults and 1 per 23,000 in children. Since little is known about the prevalence of MODY in African, Asian, South American, and Middle Eastern populations, further research in non-European cohorts is needed to help elucidate MODY’s exact prevalence. Currently, 14 distinct subtypes of MODY can be diagnosed through clinical assessment and genetic analysis. Various genetic mutations and disease mechanisms contribute to the pathogenesis of MODY. Management of MODY is subtype-specific and includes diet, oral antidiabetic drugs, or insulin. Conclusions Incidence and prevalence estimates for MODY are derived from epidemiologic studies of young people with diabetes who live in Europe, Australia, and North America. Mechanisms involved in the pathogenesis of MODY include defective transcriptional regulation, abnormal metabolic enzymes, protein misfolding, dysfunctional ion channels, or impaired signal transduction. Clinicians should understand the epidemiology and pathogenesis of MODY because such knowledge is crucial for accurate diagnosis, individualized patient management, and screening of family members.
Collapse
|
47
|
Abstract
Neonatal diabetes (ND) appears during the first months of life and is caused by a single gene mutation. It is heterogenous and very different compared to other forms of multi-factorial or polygenic diabetes. Clinically, this form is extremely severe, however, early genetic diagnosis is pivotal for successful therapy. A large palette of genes is demonstrated to be a cause of ND, however, the mechanisms of permanent hyperglycemia are different. This review will give an overview of more frequent genetic mutations causing ND, including the function of the mutated genes and the specific therapy for certain sub-forms.
Collapse
Affiliation(s)
- M Kocova
- Medical Faculty, University Cyril and Methodius, Skopje, Republic of Macedonia
| |
Collapse
|
48
|
Abstract
Monogenic diabetes, including maturity-onset diabetes of the young, neonatal diabetes, and other rare forms of diabetes, results from a single gene mutation. It has been estimated to represent around 1% to 6% of all diabetes. With the advances in genome sequencing technology, it is possible to diagnose more monogenic diabetes cases than ever before. In Korea, 11 studies have identified several monogenic diabetes cases, using Sanger sequencing and whole exome sequencing since 2001. The recent largest study, using targeted exome panel sequencing, found a molecular diagnosis rate of 21.1% for monogenic diabetes in clinically suspected patients. Mutations in glucokinase (GCK), hepatocyte nuclear factor 1α (HNF1A), and HNF4A were most commonly found. Genetic diagnosis of monogenic diabetes is important as it determines the therapeutic approach required for patients and helps to identify affected family members. However, there are still many challenges, which include a lack of simple clinical criterion for selecting patients for genetic testing, difficulties in interpreting the genetic test results, and high costs for genetic testing. In this review, we will discuss the latest updates on monogenic diabetes in Korea, and suggest an algorithm to screen patients for genetic testing. The genetic tests and non-genetic markers for accurate diagnosis of monogenic diabetes will be also reviewed.
Collapse
Affiliation(s)
- Ye Seul Yang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Korea
- Corresponding author: Kyong Soo Park Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea E-mail:
| |
Collapse
|
49
|
Althari S, Najmi LA, Bennett AJ, Aukrust I, Rundle JK, Colclough K, Molnes J, Kaci A, Nawaz S, van der Lugt T, Hassanali N, Mahajan A, Molven A, Ellard S, McCarthy MI, Bjørkhaug L, Njølstad PR, Gloyn AL. Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation. Am J Hum Genet 2020; 107:670-682. [PMID: 32910913 PMCID: PMC7536579 DOI: 10.1016/j.ajhg.2020.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
Exome sequencing in diabetes presents a diagnostic challenge because depending on frequency, functional impact, and genomic and environmental contexts, HNF1A variants can cause maturity-onset diabetes of the young (MODY), increase type 2 diabetes risk, or be benign. A correct diagnosis matters as it informs on treatment, progression, and family risk. We describe a multi-dimensional functional dataset of 73 HNF1A missense variants identified in exomes of 12,940 individuals. Our aim was to develop an analytical framework for stratifying variants along the HNF1A phenotypic continuum to facilitate diagnostic interpretation. HNF1A variant function was determined by four different molecular assays. Structure of the multi-dimensional dataset was explored using principal component analysis, k-means, and hierarchical clustering. Weights for tissue-specific isoform expression and functional domain were integrated. Functionally annotated variant subgroups were used to re-evaluate genetic diagnoses in national MODY diagnostic registries. HNF1A variants demonstrated a range of behaviors across the assays. The structure of the multi-parametric data was shaped primarily by transactivation. Using unsupervised learning methods, we obtained high-resolution functional clusters of the variants that separated known causal MODY variants from benign and type 2 diabetes risk variants and led to reclassification of 4% and 9% of HNF1A variants identified in the UK and Norway MODY diagnostic registries, respectively. Our proof-of-principle analyses facilitated informative stratification of HNF1A variants along the continuum, allowing improved evaluation of clinical significance, management, and precision medicine in diabetes clinics. Transcriptional activity appears a superior readout supporting pursuit of transactivation-centric experimental designs for high-throughput functional screens.
Collapse
Affiliation(s)
- Sara Althari
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Laeya A. Najmi
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway,Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Amanda J. Bennett
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Ingvild Aukrust
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway,Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jana K. Rundle
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Kevin Colclough
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK,Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Janne Molnes
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway,Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway
| | - Alba Kaci
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway,Department of Pediatrics and Adolescents, Haukeland University Hospital, 5021 Bergen, Norway
| | - Sameena Nawaz
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | | | - Neelam Hassanali
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Anubha Mahajan
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Anders Molven
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway,Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway,Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK,Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK,Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK
| | - Lise Bjørkhaug
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway
| | - Pål Rasmus Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway,Department of Pediatrics and Adolescents, Haukeland University Hospital, 5021 Bergen, Norway,Corresponding:
| | - Anna L. Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK,Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK,Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA 94305-5101, USA
| |
Collapse
|
50
|
Ang SF, Tan CSH, Chan LWT, Goh LX, Kon WYC, Lian JX, Subramanium T, Sum CF, Lim SC. Clinical experience from a regional monogenic diabetes referral centre in Singapore. Diabetes Res Clin Pract 2020; 168:108390. [PMID: 32858097 DOI: 10.1016/j.diabres.2020.108390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/06/2020] [Accepted: 08/19/2020] [Indexed: 11/30/2022]
Abstract
AIMS Monogenic diabetes (also known as maturity-onset diabetes of the young or MODY) affects a subset of individuals with young-onset diabetes. We report our diagnostic work-up experience for such individuals. METHODS Serving as a regional secondary-care diabetes centre in a multi-ethnic population, we receive referrals to evaluate MODY from endocrinologists in both public and private practice. Key criteria for consideration of genetic-testing are onset age ≤ 35, negative GAD antibody, no history of diabetic ketoacidosis, strong family history of diabetes and BMI < 32.5 kg/m2. A monogenic diabetes registry was set up since 2017 to study their disease trajectories. RESULTS We identified 30 out of 175 (17.1%) individuals with likely pathogenic/pathogenic variants. Importantly, 29 out of 30 (96.7%) occurred in clinically actionable genes. A continuous scale combining BMI, hs-CRP and HDL provided 80% (P < 0.001) diagnostic accuracy for MODY in our cohort, achieving a negative predictive value of 0.93 and sensitivity at 0.76. Subtyping MODY prior to genetic testing (if desired) will require specialist domain knowledge and additional biomarkers due to its genetic heterogeneity. CONCLUSIONS Through systematic and structured evaluation, the prevalence of MODY is non-trivial (17.1%) in a referral centre. Diagnostic algorithm combining clinical criteria and readily available biomarkers can support clinical decision for MODY genetic testing.
Collapse
Affiliation(s)
- Su Fen Ang
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Clara S H Tan
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Lovynn W T Chan
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Li Xian Goh
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Winston Y C Kon
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Joyce X Lian
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | | | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre (AdMC), Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore; Diabetes Centre, Admiralty Medical Centre (AdMC), Singapore; Saw Swee Hock School of Public Health, National University of Singapore (NUS), Singapore.
| |
Collapse
|