1
|
Anastasiou IΑ, Argyrakopoulou G, Dalamaga M, Kokkinos A. Dual and Triple Gut Peptide Agonists on the Horizon for the Treatment of Type 2 Diabetes and Obesity. An Overview of Preclinical and Clinical Data. Curr Obes Rep 2025; 14:34. [PMID: 40210807 PMCID: PMC11985575 DOI: 10.1007/s13679-025-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
PURPOSE OF REVIEW The development of long-acting incretin receptor agonists represents a significant advance in the fight against the concurrent epidemics of type 2 diabetes mellitus (T2DM) and obesity. The aim of the present review is to examine the cellular processes underlying the actions of these new, highly significant classes of peptide receptor agonists. We further explore the potential actions of multi-agonist drugs as well as the mechanisms through which gut-brain communication can be used to achieve long-term weight loss without negative side effects. RECENT FINDINGS Several unimolecular dual-receptor agonists have shown promising clinical efficacy studies when used alone or in conjunction with approved glucose-lowering medications. We also describe the development of incretin-based pharmacotherapy, starting with exendin- 4 and ending with the identification of multi-incretin hormone receptor agonists, which appear to be the next major step in the fight against T2DM and obesity. We discuss the multi-agonists currently in clinical trials and how each new generation of these drugs improves their effectiveness. Since most glucose-dependent insulinotropic polypeptide (GIP) receptor: glucagon-like peptide- 1 receptor (GLP- 1) receptor: glucagon receptor triagonists compete in efficacy with bariatric surgery, the success of these agents in preclinical models and clinical trials suggests a bright future for multi-agonists in the treatment of metabolic diseases. To fully understand how these treatments affect body weight, further research is needed.
Collapse
Affiliation(s)
- Ioanna Α Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | | | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Alexander Kokkinos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
2
|
Milani I, Chinucci M, Leonetti F, Capoccia D. MASLD: Prevalence, Mechanisms, and Sex-Based Therapies in Postmenopausal Women. Biomedicines 2025; 13:855. [PMID: 40299427 PMCID: PMC12024897 DOI: 10.3390/biomedicines13040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease influenced by genetic, lifestyle, and environmental factors. While MASLD is more prevalent in men, women are at increased risk after menopause, highlighting the critical pathogenetic role of sex hormones. The complex interplay between estrogen deficiency, visceral fat accumulation, metabolic syndrome (MetS), and inflammation accelerates disease progression, increases cardiovascular (CV) risk, and triggers a cycle of worsening adiposity, metabolic dysfunction, and psychological problems, including eating disorders. Weight loss in postmenopausal women can significantly improve both metabolic and psychological outcomes, helping to prevent MASLD and related conditions. This review examines the prevalence of MASLD, its comorbidities (type 2 diabetes T2D, CV, mental disorders), pathogenetic mechanisms, and pharmacological treatment with GLP-1 receptor agonists (GLP1-RAs), with a focus on postmenopausal women. Given the use of GLP1-RAs in the treatment of obesity and T2D in MASLD patients, and the increase in MetS and MASLD after menopause, this review analyzes the potential of a stable GLP-1-estrogen conjugate as a therapeutic approach in this subgroup. By combining the synergistic effects of both hormones, this dual agonist has been shown to increase food intake and food reward suppression, resulting in greater weight loss and improved insulin sensitivity, glucose, and lipid metabolism. Therefore, we hypothesize that this pharmacotherapy may provide more targeted therapeutic benefits than either hormone alone by protecting the liver, β-cells, and overall metabolic health. As these effects are only supported by preclinical data, this review highlights the critical need for future research to evaluate and confirm the mechanisms and efficacy in clinical settings, particularly in postmenopausal women.
Collapse
Affiliation(s)
- Ilaria Milani
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (M.C.); (F.L.); (D.C.)
| | | | | | | |
Collapse
|
3
|
Wen Z, Sun W, Wang H, Chang R, Wang J, Song C, Zhang S, Ni Q, An X. Comparison of the effectiveness and safety of GLP-1 receptor agonists for type 2 diabetes mellitus patients with overweight/obesity: A systematic review and network meta-analysis. Diabetes Res Clin Pract 2025; 222:111999. [PMID: 39828025 DOI: 10.1016/j.diabres.2025.111999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE To evaluate the effectiveness and safety of different Glucagon-like peptide-1 receptor agonists (GLP-1RAs) in treating type 2 diabetes mellitus (T2DM) with overweight/obesity using a systematic review and network meta-analysis. METHODS We searched PubMed, Embase, Cochrane Library, and Web of Science up to December 20, 2024, for randomized controlled trials (RCTs) involving T2DM patients with overweight/obesity treated with GLP-1RAs, with the control group receiving either a placebo or another GLP-1RA. We conducted a network meta-analysis assessed evidence using CINeMA. RESULTS A total of 4548 articles were retrieved, and 41 RCTs were included, comprising 15,126 patients and 13 different GLP-1RAs. Tirzepatide showed superior effects in lowering blood glucose (Compared with placebo, increased glycated hemoglobin: -1.64 (-1.94, -1.35), increased fasting blood glucose: -2.10 (-2.95, -1.25)) and weight loss (Compared with placebo, increased weight: -9.89 (-11.29, -8.49), rincreased BMI: -3.85 (-4.71, -2.99)). However, clinical efficacy of GLP-1RAs in lipid levels, blood pressure, and pancreatic function was not widely observed. Adverse reactions were significant with GLP-1RAs, but overall acceptable. CONCLUSION GLP-1RAs demonstrate efficacy and safety in T2DM patients with overweight/obesity, with certain advantages over other drugs. However, due to limitations in the number and quality of included studies, conclusions should be interpreted with caution.
Collapse
Affiliation(s)
- Zhige Wen
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, China
| | - Wenjie Sun
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, China
| | - Haoshuo Wang
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, China
| | - Ruiting Chang
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, China
| | - Jialing Wang
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, China
| | - Changheng Song
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, China
| | - Shan Zhang
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, China.
| | - Qing Ni
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, China.
| | - Xuedong An
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, China.
| |
Collapse
|
4
|
Salvador R, Moutinho CG, Sousa C, Vinha AF, Carvalho M, Matos C. Semaglutide as a GLP-1 Agonist: A Breakthrough in Obesity Treatment. Pharmaceuticals (Basel) 2025; 18:399. [PMID: 40143174 PMCID: PMC11944337 DOI: 10.3390/ph18030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
This review addresses the role of semaglutide (SMG), a GLP-1 receptor agonist, in the treatment of obesity and its related comorbidities. Originally developed for type 2 diabetes (DM2), SMG has shown significant efficacy in weight reduction, with superior results compared to other treatments in the same class. Its effects include appetite suppression, increased satiety, and improvements in cardiovascular, renal, and metabolic parameters. Studies such as SUSTAIN, PIONEER, and STEP highlight its superiority compared to other GLP-1 receptor agonists and anti-obesity drugs. The oral formulation showed promising initial results, with higher doses (50 mg) showing weight losses comparable to those of subcutaneous administration. Despite its benefits, there are challenges, such as weight regain after cessation of treatment, gastrointestinal adverse effects, and variability of response. Future studies should explore strategies to mitigate these effects, identify predictive factors of efficacy, and expand therapeutic indications to other conditions related to obesity and insulin resistance. The constant innovation in this class of drugs reinforces the potential of SMG to transform treatment protocols for chronic weight-related diseases.
Collapse
Affiliation(s)
- Rui Salvador
- Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia 296, 4200-150 Porto, Portugal; (R.S.); (C.G.M.); (C.S.); (A.F.V.)
| | - Carla Guimarães Moutinho
- Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia 296, 4200-150 Porto, Portugal; (R.S.); (C.G.M.); (C.S.); (A.F.V.)
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- RISE-Health, Faculty of Health Sciences, Fernando Pessoa University, Fernando Pessoa Teaching and Culture Foundation, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| | - Carla Sousa
- Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia 296, 4200-150 Porto, Portugal; (R.S.); (C.G.M.); (C.S.); (A.F.V.)
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Ferreira Vinha
- Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia 296, 4200-150 Porto, Portugal; (R.S.); (C.G.M.); (C.S.); (A.F.V.)
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia 296, 4200-150 Porto, Portugal; (R.S.); (C.G.M.); (C.S.); (A.F.V.)
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- RISE-Health, Faculty of Health Sciences, Fernando Pessoa University, Fernando Pessoa Teaching and Culture Foundation, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| | - Carla Matos
- Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia 296, 4200-150 Porto, Portugal; (R.S.); (C.G.M.); (C.S.); (A.F.V.)
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- RISE-Health, Faculty of Health Sciences, Fernando Pessoa University, Fernando Pessoa Teaching and Culture Foundation, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| |
Collapse
|
5
|
Madsbad S, Holst JJ. The promise of glucagon-like peptide 1 receptor agonists (GLP-1RA) for the treatment of obesity: a look at phase 2 and 3 pipelines. Expert Opin Investig Drugs 2025; 34:197-215. [PMID: 40022548 DOI: 10.1080/13543784.2025.2472408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION GLP-1-based therapies have changed the treatment of overweight/obesity. Liraglutide 3.0 mg daily, the first GLP-1 RA approved for treatment of overweight, induced a weight loss of 6-8%, Semaglutide 2.4 mg once weekly improved weight loss to about 12-15%, while the dual GIP/GLP-1 receptor agonist tirzepatide once weekly has induced a weight loss of about 20% in obese people without diabetes. AREAS COVERED This review describes results obtained with GLP-1 mono-agonists, GLP-1/GIP dual agonists, GLP-1/glucagon co-agonists, and the triple agonist retatrutide (GIP/GLP-1/glucagon), which have shown beneficial effect both on body weight and steatotic liver disease. A combination of semaglutide (a GLP-1 agonist) and cagrilintide (a long-acting amylin analogue) for weekly administration is currently in phase III development, and so is oral semaglutide and several non-peptide small molecule GLP-1 agonists for oral administration. The adverse events with the GLP-1-based therapies are primarily gastrointestinal and include nausea, vomiting, obstipation, or diarrhea, which often can be mitigated by slow up titration. EXPERT OPINION The GLP-1-based therapies will change the treatment of obesity and its comorbidities including steatotic liver disease in the future. Outstanding question is maintenance of the weight loss, possibly pharmacological treatment needs to be life-long.
Collapse
Affiliation(s)
- Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- The NovoNordisk Foundation Centre for Basic Metabolic Research and the Department of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Movahednasab M, Dianat-Moghadam H, Khodadad S, Nedaeinia R, Safabakhsh S, Ferns G, Salehi R. GLP-1-based therapies for type 2 diabetes: from single, dual and triple agonists to endogenous GLP-1 production and L-cell differentiation. Diabetol Metab Syndr 2025; 17:60. [PMID: 39962520 PMCID: PMC11834518 DOI: 10.1186/s13098-025-01623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin peptide hormone mainly secreted by enteroendocrine intestinal L-cells. GLP-1 is also secreted by α-cells of the pancreas and the central nervous system (CNS). GLP-1 secretion is stimulated by nutrient intake and exerts its effects on glucose homeostasis by stimulating insulin secretion, gastric emptying confiding the food intake, and β-cell proliferation. The insulinotropic effects of GLP-1, and the reduction of its effects in type 2 diabetes mellitus (T2DM), have made GLP-1 an attractive option for the treatment of T2DM. Furthermore, GLP-1-based medications such as GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors, have been shown to improve diabetes control in preclinical and clinical trials with human subjects. Importantly, increasing the endogenous production of GLP-1 by different mechanisms or by increasing the number of intestinal L-cells that tend to produce this hormone may be another effective therapeutic approach to managing T2DM. Herein, we briefly describe therapeutic agents/compounds that enhance GLP-1 function. Then, we will discuss the approaches that can increase the endogenous production of GLP-1 through various stimuli. Finally, we introduce the potential of L-cell differentiation as an attractive future therapeutic approach to increase GLP-1 production as an attractive therapeutic alternative for T2DM.
Collapse
Affiliation(s)
- Maedeh Movahednasab
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sana Khodadad
- Department of Genetics and Molecular Biology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU, 96910, USA
| | - Gordon Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Cazac-Panaite GD, Lăcătușu CM, Grigorescu ED, Foșălău AB, Onofriescu A, Mihai BM. Innovative Drugs First Implemented in Type 2 Diabetes Mellitus and Obesity and Their Effects on Metabolic Dysfunction-Associated Steatohepatitis (MASH)-Related Fibrosis and Cirrhosis. J Clin Med 2025; 14:1042. [PMID: 40004572 PMCID: PMC11857078 DOI: 10.3390/jcm14041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a progressive liver disease frequently associated with metabolic disorders such as type 2 diabetes mellitus (T2DM) and obesity, has the potential to progress symptomatically to liver cirrhosis and, in some cases, hepatocellular carcinoma. Hence, an urgent need arises to identify and approve new therapeutic options to improve patient outcomes. Research efforts have focused on either developing dedicated molecules or repurposing drugs already approved for other conditions, such as metabolic diseases. Among the latter, antidiabetic and anti-obesity agents have received the most extensive attention, with pivotal trial results anticipated shortly. However, the primary focus underlying successful regulatory approvals is demonstrating a substantial efficacy in improving liver fibrosis and preventing or ameliorating cirrhosis, the key advanced outcomes within MASLD progression. Besides liver steatosis, the ideal therapeutic candidate should reduce inflammation and fibrosis effectively. Although some agents have shown promise in lowering MASLD-related parameters, evidence of their impact on fibrosis and cirrhosis remains limited. This review aims to evaluate whether antidiabetic and anti-obesity drugs can be safely and effectively used in MASLD-related advanced fibrosis or cirrhosis in patients with T2DM. Our paper discusses the molecules closest to regulatory approval and the expectation that they can address the unmet needs of this increasingly prevalent disease.
Collapse
Affiliation(s)
- Georgiana-Diana Cazac-Panaite
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Cristina-Mihaela Lăcătușu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Elena-Daniela Grigorescu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Adina-Bianca Foșălău
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Alina Onofriescu
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan-Mircea Mihai
- Unit of Diabetes, Nutrition, and Metabolic Diseases, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-D.C.-P.); (E.-D.G.); (A.-B.F.); (A.O.); (B.-M.M.)
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
8
|
Gorgojo-Martínez JJ. Adipocentric Strategy for the Treatment of Type 2 Diabetes Mellitus. J Clin Med 2025; 14:678. [PMID: 39941348 PMCID: PMC11818433 DOI: 10.3390/jcm14030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
The global prevalence of obesity and type 2 diabetes mellitus (T2D) has risen in parallel over recent decades. Most individuals diagnosed with T2D exhibit adiposopathy-related diabetes (ARD), a condition characterized by hyperglycemia accompanied by three core features: increased ectopic and visceral fat deposition, dysregulated adipokine secretion favoring a pro-inflammatory state, and insulin resistance. Despite advancements in precision medicine, international guidelines for T2D continue to prioritize individualized therapeutic approaches focused on glycemic control and complications, and many healthcare providers predominantly maintain a glucocentric strategy. This review advocates for an adipocentric treatment paradigm for most individuals with T2D, emphasizing the importance of prioritizing weight loss and visceral fat reduction as key drivers of therapeutic intensification. By combining lifestyle modifications with pharmacological agents that promote weight loss-including SGLT-2 inhibitors, GLP-1 receptor agonists, or dual GLP-1/GIP receptor agonists-and, when appropriate, metabolic surgery, this approach offers the potential for disease remission in patients with shorter disease duration. For others, it enables superior metabolic control compared to traditional glucose-centered strategies while simultaneously delivering cardiovascular and renal benefits. In conclusion, an adipocentric treatment framework for ARD, which represents the majority of T2D cases, effectively integrates glucocentric and cardio-nephrocentric goals. This approach constitutes the optimal strategy for ARD due to its efficacy in achieving disease remission, improving metabolic control, addressing obesity-related comorbidities, and reducing cardiovascular and renal morbidity and mortality.
Collapse
Affiliation(s)
- Juan J Gorgojo-Martínez
- Department of Endocrinology and Nutrition, Hospital Universitario Fundación Alcorcón, C/Budapest 1, 28922 Alcorcón, Spain
| |
Collapse
|
9
|
Wharton S, le Roux CW, Kosiborod MN, Platz E, Brueckmann M, Jastreboff AM, Ajaz Hussain S, Pedersen SD, Borowska L, Unseld A, Kloer IM, Kaplan LM. Survodutide for treatment of obesity: rationale and design of two randomized phase 3 clinical trials (SYNCHRONIZE™-1 and -2). Obesity (Silver Spring) 2025; 33:67-77. [PMID: 39495965 PMCID: PMC11664303 DOI: 10.1002/oby.24184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 11/06/2024]
Abstract
OBJECTIVE The objective of this study was to describe the rationale and design of two multinational phase 3 clinical trials of survodutide, an investigational glucagon and glucagon-like peptide-1 receptor dual agonist for the treatment of obesity with or without type 2 diabetes (T2D; SYNCHRONIZE-1 and -2). METHODS In these ongoing double-blind trials, participants were randomized to once-weekly subcutaneous injections of survodutide or placebo added to lifestyle modification. Survodutide doses are uptitrated to 3.6 or 6.0 mg, and dose flexibility is permitted. Participants (n = 726) in SYNCHRONIZE-1 (NCT06066515) have a baseline BMI ≥ 30 kg/m2 or ≥27 kg/m2 with at least one obesity-related complication but without T2D; participants (n = 755) in SYNCHRONIZE-2 (NCT06066528) have a baseline BMI ≥ 27 kg/m2 and T2D. The primary endpoints are percentage change in body weight and proportion of participants achieving ≥5% body weight reduction from baseline to week 76. Secondary endpoints include change in systolic blood pressure and measures of glycemia. A SYNCHRONIZE-1 substudy is evaluating changes in body composition and liver fat content using magnetic resonance imaging. CONCLUSIONS These trials are designed to provide robust evaluation of the efficacy, safety, and tolerability of survodutide for the treatment of obesity in the presence or absence of T2D.
Collapse
Affiliation(s)
- Sean Wharton
- McMaster University, HamiltonOntario and University of TorontoTorontoOntarioCanada
| | - Carel W. le Roux
- St. Vincent's University Hospital and University College Dublin School of MedicineDublinIreland
| | - Mikhail N. Kosiborod
- Saint Luke's Mid America Heart Institute and University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Elke Platz
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Martina Brueckmann
- Boehringer Ingelheim International GmbHIngelheimGermany
- First Department of Medicine, Faculty of Medicine MannheimUniversity of HeidelbergMannheimGermany
| | - Ania M. Jastreboff
- Section of Endocrinology (Internal Medicine & Pediatrics) and Yale Obesity Research Center (Y‐Weight), Yale School of MedicineNew HavenConnecticutUSA
| | | | - Sue D. Pedersen
- C‐ENDO Diabetes and Endocrinology Clinic and University of CalgaryCalgaryAlbertaCanada
| | | | - Anna Unseld
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberach/RissGermany
| | | | - Lee M. Kaplan
- Section of Obesity Medicine and Center for Digestive Health, Geisel School of Medicine at DartmouthHanoverNew HampshireUSA
| | | |
Collapse
|
10
|
Beetz N, Kalsch B, Forst T, Schmid B, Schultz A, Hennige AM. A randomized phase I study of BI 1820237, a novel neuropeptide Y receptor type 2 agonist, alone or in combination with low-dose liraglutide in otherwise healthy men with overweight or obesity. Diabetes Obes Metab 2025; 27:71-80. [PMID: 39373311 DOI: 10.1111/dom.15984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
AIMS Pharmacotherapeutic options for obesity treatment include glucagon-like peptide-1 receptor (GLP-1R) agonists, for example, liraglutide. However, an unmet need remains, particularly in patients with a high body mass index (BMI), as GLP-1R agonists are associated with gastrointestinal adverse events (AEs) and some patients do not respond to treatment. Neuropeptide Y (NPY) and peptide YY bind G-protein-coupled Y receptors and represent attractive targets for modulating bodyweight. MATERIALS AND METHODS This first-in-human, three-part, partially blinded phase I study (NCT04903509) investigated the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of single ascending doses of the peptidic NPY2R agonist BI 1820237, with/without low-dose liraglutide: part 1 (participants randomized to receive BI 1820237: 0.075-2.4 mg or placebo), part 2 (BI 1820237: 1.2 mg or placebo) and part 3 (BI 1820237: 0.025-1.2 mg + liraglutide 0.6 mg or placebo + liraglutide 0.6 mg). Primary endpoint is the proportion of participants with drug-related AEs. Secondary endpoints are tolerability, PK and PD. RESULTS In total, 95 otherwise healthy men with increased BMI (25.0-34.9 kg/m2) were randomized. Drug-related AEs, mainly gastrointestinal events, were reported by 39.0% of participants (n = 23) in parts 1 + 2 and 30.6% of participants (n = 11) in part 3; one drug-related AE (11.1%, part 3) was reported in a participant receiving placebo with liraglutide. Post-dose paracetamol PK suggested that BI 1820237 and low-dose liraglutide exhibited additive effects on gastric emptying. CONCLUSIONS BI 1820237 treatment was associated with transient nausea and vomiting at higher doses. No differences in tolerability were observed when combined with liraglutide; effects on gastric emptying appeared additive.
Collapse
Affiliation(s)
- Nadine Beetz
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Brigitte Kalsch
- CRS Clinical Research Services Mannheim GmbH, Mannheim, Germany
| | - Thomas Forst
- CRS Clinical Research Services Mannheim GmbH, Mannheim, Germany
| | - Bernhard Schmid
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Armin Schultz
- CRS Clinical Research Services Mannheim GmbH, Mannheim, Germany
| | - Anita M Hennige
- Boehringer Ingelheim International GmbH, Biberach an der Riß, Germany
| |
Collapse
|
11
|
Koullias E, Papavdi M, Koskinas J, Deutsch M, Thanopoulou A. Targeting Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Available and Future Pharmaceutical Options. Cureus 2025; 17:e76716. [PMID: 39897209 PMCID: PMC11783198 DOI: 10.7759/cureus.76716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects an ever-increasing part of the global population, affecting millions of individuals worldwide. Despite the progress in the treatment of other liver diseases, there is a scarcity of liver-specific drugs targeting MASLD. In light of that, research has focused both on pipeline drugs targeting multiple different receptors implicated in the pathogenesis of the disease, as well as medications already approved for other indications, that might exert beneficial effects on MASLD. The fact that MASLD is associated with an increased prevalence of obesity and type 2 diabetes mellitus (T2DM) establishes a possible pathway with respect to already available pharmaceutical interventions for this group of patients, such as glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose co-transporter-2 inhibitors (SGLT2-is). Thus, the hitherto at hand, along with the upcoming members of these families, provide much-needed options for our arsenal. This review attempts to explore old and novel dimensions of the pharmaceutical treatment of MASLD in the continuous effort of the medical society to improve patient outcomes.
Collapse
Affiliation(s)
- Emmanouil Koullias
- Second Department of Internal Medicine, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Maria Papavdi
- Second Department of Internal Medicine, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - John Koskinas
- Second Department of Internal Medicine, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Melanie Deutsch
- Second Department of Internal Medicine, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Anastasia Thanopoulou
- Second Department of Internal Medicine, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| |
Collapse
|
12
|
Psaltis JP, Marathe JA, Nguyen MT, Le R, Bursill CA, Marathe CS, Nelson AJ, Psaltis PJ. Incretin-based therapies for the management of cardiometabolic disease in the clinic: Past, present, and future. Med Res Rev 2025; 45:29-65. [PMID: 39139038 PMCID: PMC11638809 DOI: 10.1002/med.22070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Among newer classes of drugs for type 2 diabetes mellitus (T2DM), glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are incretin-based agents that lower both blood sugar levels and promote weight loss. They do so by activating pancreatic GLP-1 receptors (GLP-1R) to promote glucose-dependent insulin release and inhibit glucagon secretion. They also act on receptors in the brain and gastrointestinal tract to suppress appetite, slow gastric emptying, and delay glucose absorption. Phase 3 clinical trials have shown that GLP-1 RAs improve cardiovascular outcomes in the setting of T2DM or overweight/obesity in people who have, or are at high risk of having atherosclerotic cardiovascular disease. This is largely driven by reductions in ischemic events, although emerging evidence also supports benefits in other cardiovascular conditions, such as heart failure with preserved ejection fraction. The success of GLP-1 RAs has also seen the evolution of other incretin therapies. Tirzepatide has emerged as a dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RA, with more striking effects on glycemic control and weight reduction than those achieved by isolated GLP-1R agonism alone. This consists of lowering glycated hemoglobin levels by more than 2% and weight loss exceeding 15% from baseline. Here, we review the pharmacological properties of GLP-1 RAs and tirzepatide and discuss their clinical effectiveness for T2DM and overweight/obesity, including their ability to reduce adverse cardiovascular outcomes. We also delve into the mechanistic basis for these cardioprotective effects and consider the next steps in implementing existing and future incretin-based therapies for the broader management of cardiometabolic disease.
Collapse
Affiliation(s)
- James P. Psaltis
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
| | - Jessica A. Marathe
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Mau T. Nguyen
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Richard Le
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Christina A. Bursill
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Chinmay S. Marathe
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Department of EndocrinologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Adam J. Nelson
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Peter J. Psaltis
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| |
Collapse
|
13
|
Kanbay M, Copur S, Guldan M, Ozbek L, Mallamaci F, Zoccali C. Glucagon and glucagon-like peptide-1 dual agonist therapy: A possible future towards fatty kidney disease. Eur J Clin Invest 2025; 55:e14330. [PMID: 39400355 DOI: 10.1111/eci.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Obesity is a growing epidemic affecting approximately 40% of the adult population in developed countries with major health consequences and comorbidities, including diabetes mellitus and insulin resistance, metabolically associated fatty liver disease, atherosclerotic cardiovascular and cerebrovascular diseases and chronic kidney disease. Pharmacotherapies targeting significant weight reduction may have beneficial effects on such comorbidities, though such therapeutic options are highly limited. In this narrative review, we aim to evaluate current knowledge regarding dual agonist therapies and potential implications for managing fatty kidney and chronic kidney disease. RESULTS AND CONCLUSION Glucagon-like peptide-1 agonists and sodium-glucose cotransporter-2 inhibitors are two novel classes of glucose-lowering medications with potential implications and beneficiary effects on renal outcomes, including estimated glomerular filtration rate, albuminuria and chronic kidney disease progression. Recently, dual agonist therapies targeting glucagon-like peptide-1 and glucagon receptors, namely survodutide and cotadutide, have been evaluated in managing metabolically associated fatty liver disease, a well-established example of visceral obesity. Fatty kidney is another novel concept implicated in the pathophysiology of chronic kidney disease among patients with visceral obesity.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Internal Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Mustafa Guldan
- Department of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Lasin Ozbek
- Department of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit, Grande Ospedale Metropolitano, Reggio Calabria, Italy
- CNR-IFC, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Institute of Clinical Physiology, Reggio Calabria, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), Grande Ospedale Metropolitano, Reggio Calabria, Italy
| |
Collapse
|
14
|
Zhou Q, Li G, Hang K, Li J, Yang D, Wang MW. Weight Loss Blockbuster Development: A Role for Unimolecular Polypharmacology. Annu Rev Pharmacol Toxicol 2025; 65:191-213. [PMID: 39259982 DOI: 10.1146/annurev-pharmtox-061324-011832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) impact more than 2.5 billion adults worldwide, necessitating innovative therapeutic approaches. Unimolecular polypharmacology, which involves designing single molecules to target multiple receptors or pathways simultaneously, has revolutionized treatment strategies. Blockbuster drugs such as tirzepatide and retatrutide have shown unprecedented success in managing obesity and T2DM, demonstrating superior efficacy compared to conventional single agonists. Tirzepatide, in particular, has garnered tremendous attention for its remarkable effectiveness in promoting weight loss and improving glycemic control, while offering additional cardiovascular and renal benefits. Despite their promises, such therapeutic agents also face challenges that include gastrointestinal side effects, patient compliance issues, and body weight rebound after cessation of the treatment. Nonetheless, the development of these therapies marks a significant leap forward, underscoring the transformative potential of unimolecular polypharmacology in addressing metabolic diseases and paving the way for future innovations in personalized medicine.
Collapse
Affiliation(s)
- Qingtong Zhou
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guanyi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Kaini Hang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dehua Yang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Chemical Biology and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China;
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Ming-Wei Wang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
- State Key Laboratory of Chemical Biology and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China;
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
- Translational Research Center for Structural Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Kosiborod MN, Platz E, Wharton S, le Roux CW, Brueckmann M, Ajaz Hussain S, Unseld A, Startseva E, Kaplan LM. Survodutide for the Treatment of Obesity: Rationale and Design of the SYNCHRONIZE Cardiovascular Outcomes Trial. JACC. HEART FAILURE 2024; 12:2101-2109. [PMID: 39453356 DOI: 10.1016/j.jchf.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 10/26/2024]
Abstract
Dual agonism of glucagon and glucagon-like peptide-1 (GLP-1) receptors may be more effective than GLP-1 receptor agonism alone in reducing body weight, but the cardiovascular (CV) effects are unknown. The authors describe the rationale and design of SYNCHRONIZE-CVOT, a phase 3, randomized, double-blind, parallel-group, event-driven, CV safety study of survodutide, a dual glucagon and GLP-1 receptor agonist, administered subcutaneously once weekly compared with placebo in adults with a body mass index ≥27 kg/m2 and established CV disease or chronic kidney disease, and/or at least 2 weight-related complications or risk factors for CV disease. The primary endpoint of SYNCHRONIZE-CVOT is time to first occurrence of the composite adjudicated endpoint of 5-point major adverse CV events. This global CV outcomes trial is currently enrolling, with a target recruitment of 4,935 participants. SYNCHRONIZE-CVOT is the first trial that will determine the CV safety and efficacy of survodutide in people with obesity and increased CV risk. (A Study to Test the Effect of Survodutide [BI 456906] on Cardiovascular Safety in People With Overweight or Obesity [SYNCHRONIZE-CVOT]; NCT06077864).
Collapse
Affiliation(s)
- Mikhail N Kosiborod
- Department of Cardiovascular Disease, Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA.
| | - Elke Platz
- Cardiovascular Division, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Sean Wharton
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Carel W le Roux
- St. Vincent's University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - Martina Brueckmann
- Boehringer Ingelheim International GmbH, Ingelheim, Germany; 1st Department of Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Anna Unseld
- Boehringer Ingelheim Pharma GmbH and Co KG, Biberach/Riss, Germany
| | | | - Lee M Kaplan
- Section of Obesity Medicine and Center for Digestive Health, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
16
|
Grandl G, Novikoff A, Liu X, Müller TD. Recent achievements and future directions of anti-obesity medications. THE LANCET REGIONAL HEALTH. EUROPE 2024; 47:101100. [PMID: 39582489 PMCID: PMC11585837 DOI: 10.1016/j.lanepe.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 11/26/2024]
Abstract
Pharmacological management of obesity long suffered from a reputation of a 'Mission Impossible,' with inefficient weight loss and/or unacceptable tolerability. However, the tide has turned with recent progress in biochemical engineering and the development of long-acting agonists at the receptor for glucagon-like peptide-1 (GLP-1), and with unimolecular peptides that simultaneously possess activity at the receptors for GLP-1, the glucose-dependent insulinotropic polypeptide (GIP) and glucagon. Some of these novel therapeutics not only improve body weight and glycemic control in individuals with obesity and type 2 diabetes with hitherto unmet efficacy and tolerable safety, but also exhibit potential therapeutic value in diverse areas such as neurodegenerative diseases, fatty liver disease, dyslipidemia, atherosclerosis, and cardiovascular diseases. In this review, we highlight recent advances in incretin-based therapies and discuss their pharmacological potential within and beyond the treatment of obesity and diabetes, as well as their limitations in use, side effects, and underlying molecular mechanisms.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Xue Liu
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
17
|
Kaya E, Yilmaz Y, Alkhouri N. Survodutide in MASH: bridging the gap between hepatic and systemic metabolic dysfunction. Expert Opin Investig Drugs 2024; 33:1167-1176. [PMID: 39663847 DOI: 10.1080/13543784.2024.2441865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Glucagon-like peptide-1 receptor (GLP-1 R) agonists have demonstrated remarkable effectiveness in the treatment of obesity and type 2 diabetes. Although these agents provide beneficial effects for metabolic dysfunction-associated steatohepatitis (MASH) through their glucose-lowering and weight-reducing properties, their efficacy in promoting fibrosis regression remains unproven. Survodutide, an investigational dual agonist that simultaneously targets both the glucagon receptor (GCGR) and GLP-1 R, has emerged as a promising therapeutic candidate for the comprehensive management of obesity and MASH. By engaging these two critical receptors, this drug has the potential to offer a broad spectrum of metabolic benefits, addressing multiple pathogenic mechanisms underlying these interrelated disorders. AREAS COVERED This review examines the pharmacological profile, clinical efficacy, and safety data of survodutide derived from phase 1 and 2 clinical trials. EXPERT OPINION Survodutide's dual agonism of the GCGR and GLP-1 R may surpass the efficacy of selective GLP-1 R agonists, demonstrating significant potential in resolving MASH and promoting fibrosis regression. The drug is generally well tolerated, with primarily manageable gastrointestinal adverse effects. As survodutide progresses through phase 3 clinical development, its potential to provide a more effective and holistic approach to treating MASH and its comorbidities may significantly improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Eda Kaya
- Department of Medicine, Knappschaftskrankenhaus Bochum, Ruhr University, Bochum, Germany
- Department of Hepatology, The Global NASH Council, Washington, DC, USA
| | - Yusuf Yilmaz
- Department of Hepatology, The Global NASH Council, Washington, DC, USA
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Naim Alkhouri
- Department of Hepatology, The Global NASH Council, Washington, DC, USA
- Department of Hepatology, Arizona Liver Health, Chandler, Arizona, USA
| |
Collapse
|
18
|
Tran DT, Yeung ESH, Hong LYQ, Kaur H, Advani SL, Liu Y, Syeda MZ, Batchu SN, Advani A. Finerenone attenuates downregulation of the kidney GLP-1 receptor and glucagon receptor and cardiac GIP receptor in mice with comorbid diabetes. Diabetol Metab Syndr 2024; 16:283. [PMID: 39582036 PMCID: PMC11587750 DOI: 10.1186/s13098-024-01525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Several new treatments have recently been shown to have heart and kidney protective benefits in people with diabetes. Because these treatments were developed in parallel, it is unclear how the different molecular pathways affected by the therapies may overlap. Here, we examined the effects of the mineralocorticoid receptor antagonist finerenone in mice with comorbid diabetes, focusing on the regulation of expression of the glucagon-like peptide-1 receptor (GLP-1R), gastric inhibitory polypeptide receptor (GIPR) and glucagon receptor (GCGR), which are targets of approved or investigational therapies in diabetes. METHODS Male C57BL/6J mice were fed a high fat diet for 26 weeks. Twelve weeks into the high fat diet feeding period, mice received an intraperitoneal injection of streptozotocin before being followed for the remaining 14 weeks (DMHFD mice). After 26 weeks, mice were fed a high fat diet containing finerenone (100 mg/kg diet) or high fat diet alone for a further 2 weeks. Cell culture experiments were performed in primary vascular smooth muscle cells (VSMCs), NRK-49 F fibroblasts, HK-2 cells, and MDCK cells. RESULTS DMHFD mice developed albuminuria, glomerular mesangial expansion, and diastolic dysfunction (decreased E/A ratio). Glp1r and Gcgr were predominantly expressed in arteriolar VSMCs and distal nephron structures of mouse kidneys respectively, whereas Gipr was the predominant of the three transcripts in mouse hearts. Kidney Glp1r and Gcgr and cardiac Gipr mRNA levels were reduced in DMHFD mice and this reduction was negated or attenuated with finerenone. Mechanistically, finerenone attenuated upregulation of the profibrotic growth factor Ccn2 in DMHFD kidneys, whereas recombinant CCN2 downregulated Glp1r and Gcgr in VSMCs and MDCK cells respectively. CONCLUSIONS Through its anti-fibrotic actions, finerenone reverses Glp1r and Gcgr downregulation in the diabetic kidney. Both finerenone and GLP-1R agonists have proven cardiorenal benefits, whereas receptor co-agonists are approved or under development. The current findings provide preclinical rationale for the combined use of finerenone with the GLP-1R agonist family. They also provide mechanism of action insights into the potential benefit of finerenone in people with diabetes for whom GLP-1R agonists or co-agonists may not be indicated.
Collapse
Affiliation(s)
- Duc Tin Tran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Emily S H Yeung
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Lisa Y Q Hong
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Harmandeep Kaur
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Youan Liu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Madiha Zahra Syeda
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Sri Nagarjun Batchu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada.
| |
Collapse
|
19
|
Alcaino C, Reimann F, Gribble FM. Incretin hormones and obesity. J Physiol 2024:10.1113/JP286293. [PMID: 39576749 PMCID: PMC7617301 DOI: 10.1113/jp286293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play critical roles in co-ordinating postprandial metabolism, including modulation of insulin secretion and food intake. They are secreted from enteroendocrine cells in the intestinal epithelium following food ingestion, and act at multiple target sites including pancreatic islets and the brain. With the recent development of agonists targeting GLP-1 and GIP receptors for the treatment of type 2 diabetes and obesity, and the ongoing development of new incretin-based drugs with improved efficacy, there is great interest in understanding the physiology and pharmacology of these hormones.
Collapse
Affiliation(s)
- Constanza Alcaino
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Frank Reimann
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Fiona M Gribble
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| |
Collapse
|
20
|
Wan H, Xu N, Wang L, Liu Y, Fatahi S, Sohouli MH, Guimarães NS. Effect of survodutide, a glucagon and GLP-1 receptor dual agonist, on weight loss: a meta-analysis of randomized controlled trials. Diabetol Metab Syndr 2024; 16:264. [PMID: 39508238 PMCID: PMC11542446 DOI: 10.1186/s13098-024-01501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Considering the increasing prevalence of obesity/overweight, its treatment or prevention with new interventions can greatly help health and reduce its adverse effects in people. One of these new interventions is investigating the effect of Survodutide as a dual agonist of glucagon and GLP-1 receptors, which seems to be able to influence weight loss processes in different ways. In this study, we investigated the effect of injectable Survodutide on weight loss. METHODS In order to identify all randomized controlled trials that investigated the effects of Survodutide on factores related to obesity, a systematic search was conducted in the original databases using predefined keywords until August 2024. The pooled weighted mean difference and 95% confidence intervals were computed using the random-effects model. RESULTS The Findings from 18 treatment arms with 1029 participants indicated significant reductions in weight (WMD: -8.33 kg; 95% CI: -10.80, -5.86; I2 = 99.6%), body mass index (BMI) (WMD:-4.03 kg/m2; 95% CI: -4.86, -3.20; I2 = 72.7%), and waist circumferences (WC) (WMD: -6.33 cm; 95% CI: -8.85 to -3.81; I2 = 99.5%) following the Survodutide injection compared to the control group. Subgroup analysis reveals that longer interventions (more than 16 weeks) and higher doses (more than 2 mg/week) of Survodutide are associated with more significant reductions in weight and WC. These results were also observed in the meta-regression analysis. CONCLUSIONS The results of this meta-analysis show that Survodutide is effective in reducing weight, BMI and waist circumference, especially with longer interventions and higher doses.
Collapse
Affiliation(s)
- Haijun Wan
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Nuo Xu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lijuan Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yaping Liu
- Day Operation Management Center, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Somaye Fatahi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nathalia Sernizon Guimarães
- Department of Nutrition, School of Nursing, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
21
|
Petersen KF, Dufour S, Mehal WZ, Shulman GI. Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease. Cell Metab 2024; 36:2359-2366.e3. [PMID: 39197461 PMCID: PMC11612994 DOI: 10.1016/j.cmet.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/23/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
We assessed in vivo rates of hepatic mitochondrial oxidation, gluconeogenesis, and β-hydroxybutyrate (β-OHB) turnover by positional isotopomer NMR tracer analysis (PINTA) in individuals with metabolic-dysfunction-associated steatotic liver (MASL) (fatty liver) and MASL disease (MASLD) (steatohepatitis) compared with BMI-matched control participants with no hepatic steatosis. Hepatic fat content was quantified by localized 1H magnetic resonance spectroscopy (MRS). We found that in vivo rates of hepatic mitochondrial oxidation were unaltered in the MASL and MASLD groups compared with the control group. A physiological increase in plasma glucagon concentrations increased in vivo rates of hepatic mitochondrial oxidation by 50%-75% in individuals with and without MASL and increased rates of glucose production by ∼50% in the MASL group, which could be attributed in part to an ∼30% increase in rates of mitochondrial pyruvate carboxylase flux. These results demonstrate that (1) rates of hepatic mitochondrial oxidation are not substantially altered in individuals with MASL and MASLD and (2) glucagon increases rates of hepatic mitochondrial oxidation.
Collapse
Affiliation(s)
- Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - Sylvie Dufour
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wajahat Z Mehal
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; West Haven Medical Center, West Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
22
|
Kueh MTW, Chong MC, Miras AD, le Roux CW. Oxyntomodulin physiology and its therapeutic development in obesity and associated complications. J Physiol 2024. [PMID: 39495024 DOI: 10.1113/jp287407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Incretins, such as glucagon-like peptide-1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP), have advanced the treatment landscape of obesity to a new pinnacle. As opposed to singular incretin effects, oxyntomodulin (OXM) activates glucagon receptors (GCGR) and glucagon-like peptide-1 receptors (GLP1R), demonstrating a more dynamic range of effects that are more likely to align with evolving 'health gains' goals in obesity care. Here, we will review the molecular insights from their inception to recent developments and challenges. This review will discuss the physiological actions of OXM, primarily appetite regulation, energy expenditure, and glucose homeostasis. Finally, we will shed light on the development of OXM-based therapies for obesity and associated complications, and outline important considerations for more translational efforts.
Collapse
Affiliation(s)
- Martin T W Kueh
- UCD School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Royal College of Surgeons in Ireland and University College Dublin Malaysia Campus, Malaysia
| | | | | | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Ireland
| |
Collapse
|
23
|
Lawitz EJ, Fraessdorf M, Neff GW, Schattenberg JM, Noureddin M, Alkhouri N, Schmid B, Andrews CP, Takács I, Hussain SA, Fenske WK, Gane EJ, Hosseini-Tabatabaei A, Sanyal AJ, Mazo DF, Younes R. Efficacy, tolerability and pharmacokinetics of survodutide, a glucagon/glucagon-like peptide-1 receptor dual agonist, in cirrhosis. J Hepatol 2024; 81:837-846. [PMID: 38857788 DOI: 10.1016/j.jhep.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND & AIMS Survodutide is a glucagon/glucagon-like peptide-1 receptor dual agonist in development for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). We investigated the pharmacokinetic and safety profile of survodutide in people with cirrhosis. METHODS This multinational, non-randomized, open-label, phase I clinical trial initially evaluated a single subcutaneous dose of survodutide 0.3 mg in people with Child-Pugh class A, B or C cirrhosis and healthy individuals with or without overweight/obesity matched for age, sex, and weight; the primary endpoints were the area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) and maximal plasma concentration (Cmax). Subsequently, people with overweight/obesity with or without cirrhosis (Child-Pugh class A or B) received once-weekly subcutaneous doses escalated from 0.3 mg to 6.0 mg over 24 weeks then maintained for 4 weeks; the primary endpoint was drug-related treatment-emergent adverse events, with MASH/cirrhosis-related endpoints explored. RESULTS In the single-dose cohorts (n = 41), mean AUC0-∞ and Cmax were similar in those with cirrhosis compared with healthy individuals (90% CIs for adjusted geometric mean ratios spanned 1). Drug-related adverse events occurred in 25.0% of healthy individuals and ≤25.0% of those with cirrhosis after single doses, and 82.4% and 87.5%, respectively, of the multiple-dose cohorts (n = 41) over 28 weeks. Liver fat content, liver stiffness, liver volume, body weight, and other hepatic and metabolic disease markers were generally reduced after 28 weeks of survodutide treatment. CONCLUSIONS Survodutide is generally tolerable in people with compensated or decompensated cirrhosis, does not require pharmacokinetic-related dose adjustment, and may improve liver-related non-invasive tests, supporting its investigation for MASH-related cirrhosis. IMPACT AND IMPLICATIONS Survodutide is a glucagon receptor/glucagon-like peptide-1 receptor dual agonist in development for treatment of metabolic dysfunction-associated steatohepatitis (MASH), which causes cirrhosis in ∼20% of cases. This trial delineates the pharmacokinetic and safety profile of survodutide in people with compensated or decompensated cirrhosis, and revealed associated reductions in liver fat content, markers of liver fibrosis and body weight. These findings have potential relevance for people with MASH-including those with decompensated cirrhosis, who are usually excluded from clinical trials of investigational drugs. Based on this study, further investigation of survodutide for MASH-related cirrhosis is warranted. CLINICALTRIALS GOV IDENTIFIER NCT05296733.
Collapse
Affiliation(s)
- Eric J Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX, USA.
| | | | - Guy W Neff
- Covenant Metabolic Specialists, Sarasota and Fort Myers, FL, USA
| | - Jörn M Schattenberg
- Department of Internal Medicine II, University Medical Center Homburg, Homburg and Saarland University, Saarbrücken, Germany
| | - Mazen Noureddin
- Houston Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Naim Alkhouri
- Hepatology Division, Arizona Liver Health, Phoenix, AZ, USA
| | | | | | - István Takács
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | - Wiebke K Fenske
- Department of Internal Medicine I, Endocrinology, Diabetes and Metabolism, Bergmannsheil University Hospital Bochum, Bochum, Germany
| | - Edward J Gane
- New Zealand Liver Transplant Unit, Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | | | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
24
|
Enyew Belay K, Jemal RH, Tuyizere A. Innovative Glucagon-based Therapies for Obesity. J Endocr Soc 2024; 8:bvae197. [PMID: 39574787 PMCID: PMC11579655 DOI: 10.1210/jendso/bvae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/24/2024] Open
Abstract
Obesity poses a significant global health challenge, with an alarming rise in prevalence rates. Traditional interventions, including lifestyle modifications, often fall short of achieving sustainable weight loss, ultimately leading to surgical interventions, which carry a significant burden and side effects. This necessitates the exploration of effective and relatively tolerable pharmacological alternatives. Among emerging therapeutic avenues, glucagon-based treatments have garnered attention for their potential to modulate metabolic pathways and regulate appetite. This paper discusses current research on the physiological mechanisms underlying obesity and the role of glucagon in energy homeostasis. Glucagon, traditionally recognized for its glycemic control functions, has emerged as a promising target for obesity management due to its multifaceted effects on metabolism, appetite regulation, and energy expenditure. This review focuses on the pharmacological landscape, encompassing single and dual agonist therapies targeting glucagon receptors (GcgRs), glucagon-like peptide-1 receptors (GLP-1Rs), glucose-dependent insulinotropic polypeptide receptors (GIPRs), amylin, triiodothyronine, fibroblast growth factor 21, and peptide tyrosine tyrosine. Moreover, novel triple-agonist therapies that simultaneously target GLP-1R, GIPR, and GcgR show promise in augmenting further metabolic benefits. This review paper tries to summarize key findings from preclinical and clinical studies, elucidating the mechanisms of action, safety profiles, and therapeutic potential of glucagon-based therapies in combating obesity and its comorbidities. Additionally, it explores ongoing research endeavors, including phase III trials, aimed at further validating the efficacy and safety of these innovative treatment modalities.
Collapse
Affiliation(s)
- Kibret Enyew Belay
- Department of Internal Medicine, Endocrinology and Metabolism Unit, Bahir Dar University, Bahir Dar 6000, Ethiopia
| | - Rebil Heiru Jemal
- Department of Internal Medicine, Adama Hospital Medical College, Adama 1000, Ethiopia
| | - Aloys Tuyizere
- Department of Internal Medicine, Endocrinology, Diabetes and Metabolism Unit, University of Rwanda, Kigali 00200, Rwanda
| |
Collapse
|
25
|
Kukova L, Munir KM, Sayeed A, Davis SN. Assessing the therapeutic and toxicological profile of novel GLP-1 receptor agonists for type 2 diabetes. Expert Opin Drug Metab Toxicol 2024; 20:939-952. [PMID: 39268978 DOI: 10.1080/17425255.2024.2401589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION GLP-1 receptor agonists provide multiple benefits for patients with type 2 diabetes. Nonetheless, there are also several significant adverse effects associated with these agents. A thorough understanding of both therapeutic and toxicological profiles of GLP-1 receptor agonists is crucial for appropriate utilization of this medication class. A literature search of PubMed and ClinicalTrials.gov was carried out to inform discussion on the topic. AREAS COVERED This review article discusses the key advantages and disadvantages derived from the use of GLP-1 receptor agonists in the treatment of type 2 diabetes. Landmark trials which helped characterize the cardiovascular and renal benefits of GLP-1 receptor agonists are highlighted. We also discuss key studies still in progress and new formulations under investigation. EXPERT OPINION GLP-1 receptor agonists provide glycemic and complication-risk reduction benefits for individuals with type 2 diabetes. Current data suggests there is a lot of potential for further applications, even outside of type 2 diabetes management. It would be of particular interest to see the range of benefits conferred from GLP-1 receptor agonists in individuals without type 2 diabetes. Broader application of these medications could be expected given the ongoing development of new oral formulations and combination agents.
Collapse
Affiliation(s)
- Lidiya Kukova
- Internal Medicine Resident, Department of Internal Medicine, University of Maryland Medical Center, Baltimore, MD, USA
| | - Kashif M Munir
- Professor of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland Medical Center, Baltimore, MD, USA
| | - Ahmed Sayeed
- Medical Student, American University of Antigua College of Medicine, Coolidge, Anitgua and Barbuda
| | - Stephen N Davis
- Chair, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Holst JJ. GLP-1 physiology in obesity and development of incretin-based drugs for chronic weight management. Nat Metab 2024; 6:1866-1885. [PMID: 39160334 DOI: 10.1038/s42255-024-01113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
The introduction of the highly potent incretin receptor agonists semaglutide and tirzepatide has marked a new era in the treatment of type 2 diabetes and obesity. With normalisation of glycated haemoglobin levels and weight losses around 15-25%, therapeutic goals that were previously unrealistic are now within reach, and clinical trials have documented that these effects are associated with reduced risk of cardiovascular events and premature mortality. Here, I review this remarkable development from the earliest observations of glucose lowering and modest weight losses with native glucagon-like peptide (GLP)-1 and short acting compounds, to the recent development of highly active formulations and new molecules. I will classify these agents as GLP-1-based therapies in the understanding that these compounds or combinations may have actions on other receptors as well. The physiology of GLP-1 is discussed as well as its mechanisms of actions in obesity, in particular, the role of sensory afferents and GLP-1 receptors in the brain. I provide details regarding the development of GLP-1 receptor agonists for anti-obesity therapy and discuss the possible mechanism behind their beneficial effects on adverse cardiovascular events. Finally, I highlight new pharmacological developments, including oral agents, and discuss important questions regarding maintenance therapy.
Collapse
Affiliation(s)
- Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences. Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Alfaris N, Waldrop S, Johnson V, Boaventura B, Kendrick K, Stanford FC. GLP-1 single, dual, and triple receptor agonists for treating type 2 diabetes and obesity: a narrative review. EClinicalMedicine 2024; 75:102782. [PMID: 39281096 PMCID: PMC11402415 DOI: 10.1016/j.eclinm.2024.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/18/2024] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) present major global health challenges, with an increasing prevalence worldwide. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as a pivotal treatment option for both conditions, demonstrating efficacy in blood glucose management, weight reduction, cardiovascular disease prevention, and kidney health improvement. GLP-1, an incretin hormone, plays a crucial role in glucose metabolism and appetite regulation, influencing insulin secretion, insulin sensitivity, and gastric emptying. The therapeutic use of GLP-1RAs has evolved significantly, offering various formulations that provide different efficacy, routes of administration, and flexibility in dosing. These agents reduce HbA1c levels, facilitate weight loss, and exhibit cardiovascular protective effects, making them an integral component of T2DM and obesity management. This review will discuss the currently approved medication for T2DM and obesity, and will also highlight the advent of novel agents which are dual and triple hormonal agonists which represent the future direction of incretin-based therapy. Funding National Institutes of HealthNIDDKU24 DK132733 (FCS), UE5 DK137285 (FCS), and P30 DK040561 (FCS).
Collapse
Affiliation(s)
- Nasreen Alfaris
- Obesity, Endocrine, and Metabolism Center, King Fahad Medical City, Riyadh, KSA, Saudi Arabia
| | - Stephanie Waldrop
- University of Colorado School of Medicine-Anschutz Medical Campus, Department of Pediatrics, Section on Nutrition and Lifestyle Medicine, Nutrition Obesity Research Center at the University of Colorado (CUNORC), Aurora, CO, USA
| | - Veronica Johnson
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of General Internal Medicine, Chicago, IL, USA
| | - Brunna Boaventura
- Department of Nutrition, Health Sciences Center, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Karla Kendrick
- Beth Israel Lahey Health, Winchester Hospital Weight Management Center, Boston, MA, USA
| | - Fatima Cody Stanford
- Massachusetts General Hospital, MGH Weight Center, Department of Medicine-Division of Endocrinology-Neuroendocrine, Department of Pediatrics-Division of Endocrinology, Nutrition Obesity Research Center at Harvard (NORCH), Boston, MA, USA
| |
Collapse
|
28
|
Winther JB, Holst JJ. Glucagon agonism in the treatment of metabolic diseases including type 2 diabetes mellitus and obesity. Diabetes Obes Metab 2024; 26:3501-3512. [PMID: 38853300 DOI: 10.1111/dom.15693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with obesity and, therefore, it is important to target both overweight and hyperglycaemia. Glucagon plays important roles in glucose, amino acid and fat metabolism and may also regulate appetite and energy expenditure. These physiological properties are currently being exploited therapeutically in several compounds, most often in combination with glucagon-like peptide-1 (GLP-1) agonism in the form of dual agonists. With this combination, increases in hepatic glucose production and hyperglycaemia, which would be counterproductive, are largely avoided. In multiple randomized trials, the co-agonists have been demonstrated to lead to significant weight loss and, in participants with T2DM, even improved glycated haemoglobin (HbA1c) levels. In addition, significant reductions in hepatic fat content have been observed. Here, we review and discuss the studies so far available. Twenty-six randomized trials of seven different GLP-1 receptor (GLP-1R)/glucagon receptor (GCGR) co-agonists were identified and reviewed. GLP-1R/GCGR co-agonists generally provided significant weight loss, reductions in hepatic fat content, improved lipid profiles, insulin secretion and sensitivity, and in some cases, improved HbA1c levels. A higher incidence of adverse effects was present with GLP-1R/GCGR co-agonist treatment than with GLP-1 agonist monotherapy or placebo. Possible additional risks associated with glucagon agonism are also discussed. A delicate balance between GLP-1 and glucagon agonism seems to be of particular importance. Further studies exploring the optimal ratio of GLP-1 and glucagon receptor activation and dosage and titration regimens are needed to ensure a sufficient safety profile while providing clinical benefits.
Collapse
Affiliation(s)
- Jonathan Brix Winther
- Department of Biomedical Sciences and the NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences and the NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Tacke F, Horn P, Wai-Sun Wong V, Ratziu V, Bugianesi E, Francque S, Zelber-Sagi S, Valenti L, Roden M, Schick F, Yki-Järvinen H, Gastaldelli A, Vettor R, Frühbeck G, Dicker D. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol 2024; 81:492-542. [PMID: 38851997 DOI: 10.1016/j.jhep.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/10/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed non-alcoholic fatty liver disease (NAFLD), is defined as steatotic liver disease (SLD) in the presence of one or more cardiometabolic risk factor(s) and the absence of harmful alcohol intake. The spectrum of MASLD includes steatosis, metabolic dysfunction-associated steatohepatitis (MASH, previously NASH), fibrosis, cirrhosis and MASH-related hepatocellular carcinoma (HCC). This joint EASL-EASD-EASO guideline provides an update on definitions, prevention, screening, diagnosis and treatment for MASLD. Case-finding strategies for MASLD with liver fibrosis, using non-invasive tests, should be applied in individuals with cardiometabolic risk factors, abnormal liver enzymes, and/or radiological signs of hepatic steatosis, particularly in the presence of type 2 diabetes (T2D) or obesity with additional metabolic risk factor(s). A stepwise approach using blood-based scores (such as FIB-4) and, sequentially, imaging techniques (such as transient elastography) is suitable to rule-out/in advanced fibrosis, which is predictive of liver-related outcomes. In adults with MASLD, lifestyle modification - including weight loss, dietary changes, physical exercise and discouraging alcohol consumption - as well as optimal management of comorbidities - including use of incretin-based therapies (e.g. semaglutide, tirzepatide) for T2D or obesity, if indicated - is advised. Bariatric surgery is also an option in individuals with MASLD and obesity. If locally approved and dependent on the label, adults with non-cirrhotic MASH and significant liver fibrosis (stage ≥2) should be considered for a MASH-targeted treatment with resmetirom, which demonstrated histological effectiveness on steatohepatitis and fibrosis with an acceptable safety and tolerability profile. No MASH-targeted pharmacotherapy can currently be recommended for the cirrhotic stage. Management of MASH-related cirrhosis includes adaptations of metabolic drugs, nutritional counselling, surveillance for portal hypertension and HCC, as well as liver transplantation in decompensated cirrhosis.
Collapse
|
30
|
Huttasch M, Roden M, Kahl S. Obesity and MASLD: Is weight loss the (only) key to treat metabolic liver disease? Metabolism 2024; 157:155937. [PMID: 38782182 DOI: 10.1016/j.metabol.2024.155937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) closely associates with obesity and type 2 diabetes. Lifestyle intervention and bariatric surgery aiming at substantial weight loss are cornerstones of MASLD treatment by improving histological outcomes and reducing risks of comorbidities. Originally developed as antihyperglycemic drugs, incretin (co-)agonists and SGLT2 inhibitors also reduce steatosis and cardiorenovascular events. Certain incretin agonists effectively improve histological features of MASLD, but not fibrosis. Of note, beneficial effects on MASLD may not necessarily require weight loss. Despite moderate weight gain, one PPARγ agonist improved adipose tissue and MASLD with certain benefit on fibrosis in post-hoc analyses. Likewise, the first THRβ-agonist was recently provisionally approved because of significant improvements of MASLD and fibrosis. We here discuss liver-related and metabolic effects induced by different MASLD treatments and their association with weight loss. Therefore, we compare results from clinical trials on drugs acting via weight loss (incretin (co)agonists, SGLT2 inhibitors) with those exerting no weight loss (pioglitazone; resmetirom). Furthermore, other drugs in development directly targeting hepatic lipid metabolism (lipogenesis inhibitors, FGF21 analogs) are addressed. Although THRβ-agonism may effectively improve hepatic outcomes, MASLD treatment concepts should consider all cardiometabolic risk factors for effective reduction of morbidity and mortality in the affected people.
Collapse
Affiliation(s)
- Maximilian Huttasch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
31
|
Alshahrani O, Almalki MS. The Efficacy of Pharmacotherapy in the Treatment of Obesity in Patients With Type 2 Diabetes: A Systematic Review. Cureus 2024; 16:e65242. [PMID: 39184671 PMCID: PMC11342142 DOI: 10.7759/cureus.65242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Obesity is a global public health challenge that poses a significant threat to the effective control and management of type 2 diabetes mellitus (T2DM). Being overweight/obese with T2DM is associated with a wide range of comorbidities, including cardiovascular, cerebrovascular, and renal diseases. This systematic review aimed to investigate the drug therapy used globally among this type of patients in the period between 2014 and 2024. Four databases (PubMed, Web of Science, Scopus, and Cochrane) were searched using the keywords "(Drug Therapy OR Pharmaceutical Preparations OR Pharmacotherapy) AND (Diabetes Mellitus, Type 2) AND (Obesity OR Overweight OR Weight Loss OR Weight reduction) in the title and abstract. All papers assessing the efficacy of any drug class on blood sugar and body weight (BW) were included in the systematic review. Out of 5,206 papers extracted through the database search, 25 randomized clinical trials (RCTs) were considered suitable for the systematic review. The articles included 8,208 participants who tested different drug classes, e.g., glucagon-like peptide-1 (GLP-1) and sodium-glucose co-transporter-2 (SGLT2), with or without metformin. All the reviewed drugs showed significant weight loss over 12-52 weeks. However, the magnitude of weight loss was modest, and the long-term health benefits and safety remain unclear. Interventions that combine pharmacologic therapy with lifestyle modifications may be more effective but need additional research. Continued development of new treatment options for obesity in T2DM is crucial to reduce morbidity and mortality among these patients.
Collapse
Affiliation(s)
- Omar Alshahrani
- Family Medicine, Prince Sultan Military Medical City, Riyadh, SAU
| | | |
Collapse
|
32
|
Chee YJ, Dalan R. Novel Therapeutics for Type 2 Diabetes Mellitus-A Look at the Past Decade and a Glimpse into the Future. Biomedicines 2024; 12:1386. [PMID: 39061960 PMCID: PMC11274090 DOI: 10.3390/biomedicines12071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular disease (CVD) and kidney disease are the main causes of morbidity and mortality in type 2 diabetes mellitus (T2DM). Globally, the incidence of T2DM continues to rise. A substantial increase in the burden of CVD and renal disease, alongside the socioeconomic implications, would be anticipated. Adopting a purely glucose-centric approach focusing only on glycemic targets is no longer adequate to mitigate the cardiovascular risks in T2DM. In the past decade, significant advancement has been achieved in expanding the pharmaceutical options for T2DM, with novel agents such as the sodium-glucose cotransporter type 2 (SGLT2) inhibitors and glucagon-like peptide receptor agonists (GLP-1 RAs) demonstrating robust evidence in cardiorenal protection. Combinatorial approaches comprising multiple pharmacotherapies combined in a single agent are an emerging and promising way to not only enhance patient adherence and improve glycemic control but also to achieve the potential synergistic effects for greater cardiorenal protection. In this review, we provide an update on the novel antidiabetic agents in the past decade, with an appraisal of the mechanisms contributing to cardiorenal protection. Additionally, we offer a glimpse into the landscape of T2DM management in the near future by providing a comprehensive summary of upcoming agents in early-phase trials.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
33
|
EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Obes Facts 2024; 17:374-444. [PMID: 38852583 PMCID: PMC11299976 DOI: 10.1159/000539371] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed non-alcoholic fatty liver disease (NAFLD), is defined as steatotic liver disease (SLD) in the presence of one or more cardiometabolic risk factor(s) and the absence of harmful alcohol intake. The spectrum of MASLD includes steatosis, metabolic dysfunction-associated steatohepatitis (MASH, previously NASH), fibrosis, cirrhosis and MASH-related hepatocellular carcinoma (HCC). This joint EASL-EASD-EASO guideline provides an update on definitions, prevention, screening, diagnosis and treatment for MASLD. Case-finding strategies for MASLD with liver fibrosis, using non-invasive tests, should be applied in individuals with cardiometabolic risk factors, abnormal liver enzymes, and/or radiological signs of hepatic steatosis, particularly in the presence of type 2 diabetes (T2D) or obesity with additional metabolic risk factor(s). A stepwise approach using blood-based scores (such as FIB-4) and, sequentially, imaging techniques (such as transient elastography) is suitable to rule-out/in advanced fibrosis, which is predictive of liver-related outcomes. In adults with MASLD, lifestyle modification - including weight loss, dietary changes, physical exercise and discouraging alcohol consumption - as well as optimal management of comorbidities - including use of incretin-based therapies (e.g. semaglutide, tirzepatide) for T2D or obesity, if indicated - is advised. Bariatric surgery is also an option in individuals with MASLD and obesity. If locally approved and dependent on the label, adults with non-cirrhotic MASH and significant liver fibrosis (stage ≥2) should be considered for a MASH-targeted treatment with resmetirom, which demonstrated histological effectiveness on steatohepatitis and fibrosis with an acceptable safety and tolerability profile. No MASH-targeted pharmacotherapy can currently be recommended for the cirrhotic stage. Management of MASH-related cirrhosis includes adaptations of metabolic drugs, nutritional counselling, surveillance for portal hypertension and HCC, as well as liver transplantation in decompensated cirrhosis.
Collapse
|
34
|
Puengel T, Tacke F. Pharmacotherapeutic options for metabolic dysfunction-associated steatotic liver disease: where are we today? Expert Opin Pharmacother 2024; 25:1249-1263. [PMID: 38954663 DOI: 10.1080/14656566.2024.2374463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined by hepatic steatosis and cardiometabolic risk factors like obesity, type 2 diabetes, and dyslipidemia. Persistent metabolic injury may promote inflammatory processes resulting in metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. Mechanistic insights helped to identify potential drug targets, thereby supporting the development of novel compounds modulating disease drivers. AREAS COVERED The U.S. Food and Drug Administration has recently approved the thyroid hormone receptor β-selective thyromimetic resmetirom as the first compound to treat MASH and liver fibrosis. This review provides a comprehensive overview of current and potential future pharmacotherapeutic options and their modes of action. Lessons learned from terminated clinical trials are discussed together with the first results of trials investigating novel combinational therapeutic approaches. EXPERT OPINION Approval of resmetirom as the first anti-MASH agent may revolutionize the therapeutic landscape. However, long-term efficacy and safety data for resmetirom are currently lacking. In addition, heterogeneity of MASLD reflects a major challenge to define effective agents. Several lead compounds demonstrated efficacy in reducing obesity and hepatic steatosis, while anti-inflammatory and antifibrotic effects of monotherapy appear less robust. Better mechanistic understanding, exploration of combination therapies, and patient stratification hold great promise for MASLD therapy.
Collapse
Affiliation(s)
- Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
Xie C, Alkhouri N, Elfeki MA. Role of incretins and glucagon receptor agonists in metabolic dysfunction-associated steatotic liver disease: Opportunities and challenges. World J Hepatol 2024; 16:731-750. [PMID: 38818288 PMCID: PMC11135259 DOI: 10.4254/wjh.v16.i5.731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most common chronic liver disease worldwide, paralleling the rising pandemic of obesity and type 2 diabetes. Due to the growing global health burden and complex pathogenesis of MASLD, a multifaceted and innovative therapeutic approach is needed. Incretin receptor agonists, which were initially developed for diabetes management, have emerged as promising candidates for MASLD treatment. This review describes the pathophysiological mechanisms and action sites of three major classes of incretin/glucagon receptor agonists: glucagon-like peptide-1 receptor agonists, glucose-dependent insulinotropic polypeptide receptor agonists, and glucagon receptor agonists. Incretins and glucagon directly or indirectly impact various organs, including the liver, brain, pancreas, gastrointestinal tract, and adipose tissue. Thus, these agents significantly improve glycemic control and weight management and mitigate MASLD pathogenesis. Importantly, this study provides a summary of clinical trials analyzing the effectiveness and safety of incretin receptor agonists in MASLD management and provides an in-depth analysis highlighting their beneficial effects on improving liver function, hepatic steatosis, and intrahepatic inflammation. There are emerging challenges associated with the use of these medications in the real world, particularly adverse events, drug-drug interactions, and barriers to access, which are discussed in detail. Additionally, this review highlights the evolving role of incretin receptor agonists in MASLD management and suggests future research directions.
Collapse
Affiliation(s)
- Chencheng Xie
- Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, United States
- Department of Hepatology, Avera Mckennan University Hospital and Transplant Institute, Sioux Falls, SD 57105, United States
| | - Naim Alkhouri
- Department of Hepatology, Arizona Liver Health, Chandler, AZ 85712, United States
| | - Mohamed A Elfeki
- Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, United States
- Department of Hepatology, Avera McKennan University Hospital and Transplant Institute, Sioux Falls, SD 57105, United States.
| |
Collapse
|
36
|
Zomer HD, Cooke PS. Advances in Drug Treatments for Companion Animal Obesity. BIOLOGY 2024; 13:335. [PMID: 38785817 PMCID: PMC11117622 DOI: 10.3390/biology13050335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Companion animal obesity has emerged as a significant veterinary health concern globally, with escalating rates posing challenges for preventive and therapeutic interventions. Obesity not only leads to immediate health problems but also contributes to various comorbidities affecting animal well-being and longevity, with consequent emotional and financial burdens on owners. While past treatment strategies have shown limited success, recent breakthroughs in human medicine present new opportunities for addressing this complex issue in companion animals. Here, we discuss the potential of GLP-1 receptor agonists, specifically semaglutide and tirzepatide, already approved for human use, for addressing companion animal obesity. These drugs, originally developed to treat type 2 diabetes in humans and subsequently repurposed to treat obesity, have demonstrated remarkable weight loss effects in rodents, non-human primates and people. Additionally, newer drug combinations have shown even more promising results in clinical trials. Despite current cost and supply challenges, advancements in oral and/or extended-release formulations and increased production may make these drugs more accessible for veterinary use. Thus, these drugs may have utility in companion animal weight management, and future feasibility studies exploring their efficacy and safety in treating companion animal obesity are warranted.
Collapse
Affiliation(s)
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
37
|
Gogineni P, Melson E, Papamargaritis D, Davies M. Oral glucagon-like peptide-1 receptor agonists and combinations of entero-pancreatic hormones as treatments for adults with type 2 diabetes: where are we now? Expert Opin Pharmacother 2024; 25:801-818. [PMID: 38753454 PMCID: PMC11195668 DOI: 10.1080/14656566.2024.2356254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) have changed the landscape of type 2 diabetes (T2D) management due to their cardio-renal benefits, their glucose-lowering efficacy and weight loss (WL) maintenance. However, the response to GLP-1 RA monotherapy is heterogeneous. Additionally, the majority of GLP-1 RAs are injectable treatments. Oral GLP-1 RAs and injectable combinations of GLP-1 with other entero-pancreatic hormones (glucose-dependent insulinotropic polypeptide (GIP), glucagon and amylin) are under development for T2D and obesity management. AREAS COVERED Herein, we review the data on (i) oral GLP-1 RAs (oral semaglutide 25/50 mg and orforglipron) and (ii) dual/triple agonists (tirzepatide, cagrilintide 2.4 mg/semaglutide 2.4 mg, survodutide, mazdutide, retatrutide) that have recently completed phase 3 trials for T2D or are currently in phase 3 clinical trials. Tirzepatide is the first approved dual agonist (GLP-1/GIP) for T2D and obesity management. EXPERT OPINION We are in a new era in T2D management where entero-pancreatic hormone-based treatments can result in ≥15% WL and euglycemia for many people with T2D. Multiple molecules with different mechanisms of action are under development for T2D, obesity and other metabolic complications. Data on their cardio-renal benefits, long-term efficacy and safety as well as their cost-effectiveness will better inform their position in treatment algorithms.
Collapse
Affiliation(s)
- Prathima Gogineni
- Diabetes Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Eka Melson
- Diabetes Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | | | - Melanie Davies
- Diabetes Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| |
Collapse
|
38
|
Jiang P, Zeng Y, Yang W, Li L, Zhou L, Xiao L, Li Y, Gu B, Li X, Li J, Li W, Guo L. The effects of Fc fusion protein glucagon-like peptide-1 and glucagon dual receptor agonist with different receptor selectivity in vivo studies. Biomed Pharmacother 2024; 174:116485. [PMID: 38518602 DOI: 10.1016/j.biopha.2024.116485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1)/glucagon (GCG) dual receptor agonists with different receptor selectivity are under investigation and have shown significant improvement in both weight loss and glycemic control, but the optimal potency ratio between the two receptors to balance efficacy and safety remains unclear. EXPERIMENTAL APPROACH We designed and constructed several dual receptor agonists with different receptor potency ratios using Fc fusion protein technology. The long-term effects of the candidates on body weight and metabolic dysfunction-associated steatotic liver disease (MASLD) were evaluated in diet-induced obese (DIO) model mice, high-fat diet (HFD)-ob/ob mice and AMLN diet-induced MASLD mice. Repeat dose toxicity assays were performed to investigate the safety profile of the candidate (HEC-C070) in Sprague Dawley (SD) rats. KEY RESULTS The high GCG receptor (GCGR) selectivity of HEC-C046 makes it more prominent than other compounds for weight loss and most MASLD parameters but may lead to safety concerns. The weight change of HEC-C052 with the lowest GCG agonism was inferior to that of selective GLP-1 receptor agonist (GLP-1RA) semaglutide in DIO model mice. The GLP-1R selectivity of HEC-C070 with moderate GCG agonism has a significant effect on weight loss and liver function in obese mice, and its lowest observed adverse effect level (LOAEL) was 30 nmol/kg in the repeat dose toxicity study. CONCLUSION We compared the potential of the Fc fusion protein GLP-1/GCG dual receptor agonists with different receptor selectivity to provide the setting for future GLP-1/GCG dual receptor agonists to treat obesity and MASLD.
Collapse
Affiliation(s)
- Peng Jiang
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Ying Zeng
- Sunshine Lake Pharma Co., Ltd, China
| | - Wen Yang
- Sunshine Lake Pharma Co., Ltd, China
| | - Lijia Li
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Linjun Zhou
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Lin Xiao
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Yong Li
- Sunshine Lake Pharma Co., Ltd, China
| | - Baohua Gu
- Sunshine Lake Pharma Co., Ltd, China
| | - Xiaoping Li
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Jing Li
- Sunshine Lake Pharma Co., Ltd, China
| | - Wenjia Li
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Linfeng Guo
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China.
| |
Collapse
|
39
|
Sarzani R, Landolfo M, Di Pentima C, Ortensi B, Falcioni P, Sabbatini L, Massacesi A, Rampino I, Spannella F, Giulietti F. Adipocentric origin of the common cardiometabolic complications of obesity in the young up to the very old: pathophysiology and new therapeutic opportunities. Front Med (Lausanne) 2024; 11:1365183. [PMID: 38654832 PMCID: PMC11037084 DOI: 10.3389/fmed.2024.1365183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Obesity is a multifactorial chronic disease characterized by an excess of adipose tissue, affecting people of all ages. In the last 40 years, the incidence of overweight and obesity almost tripled worldwide. The accumulation of "visceral" adipose tissue increases with aging, leading to several cardio-metabolic consequences: from increased blood pressure to overt arterial hypertension, from insulin-resistance to overt type 2 diabetes mellitus (T2DM), dyslipidemia, chronic kidney disease (CKD), and obstructive sleep apnea. The increasing use of innovative drugs, namely glucagon-like peptide-1 receptor agonists (GLP1-RA) and sodium-glucose cotransporter-2 inhibitors (SGLT2-i), is changing the management of obesity and its related cardiovascular complications significantly. These drugs, first considered only for T2DM treatment, are now used in overweight patients with visceral adiposity or obese patients, as obesity is no longer just a risk factor but a critical condition at the basis of common metabolic, cardiovascular, and renal diseases. An adipocentric vision and approach should become the cornerstone of visceral overweight and obesity integrated management and treatment, reducing and avoiding the onset of obesity-related multiple risk factors and their clinical complications. According to recent progress in basic and clinical research on adiposity, this narrative review aims to contribute to a novel clinical approach focusing on pathophysiological and therapeutic insights.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, European Society of Hypertension (ESH) “Hypertension Excellence Centre”, Società Italiana per lo Studio dell'Aterosclerosi (SISA) LIPIGEN Centre, IRCCS INRCA, Ancona, Italy
- Centre for Obesity, Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, Ancona, Italy
| | - Matteo Landolfo
- Internal Medicine and Geriatrics, European Society of Hypertension (ESH) “Hypertension Excellence Centre”, Società Italiana per lo Studio dell'Aterosclerosi (SISA) LIPIGEN Centre, IRCCS INRCA, Ancona, Italy
- Centre for Obesity, Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, Ancona, Italy
| | - Chiara Di Pentima
- Internal Medicine and Geriatrics, European Society of Hypertension (ESH) “Hypertension Excellence Centre”, Società Italiana per lo Studio dell'Aterosclerosi (SISA) LIPIGEN Centre, IRCCS INRCA, Ancona, Italy
| | - Beatrice Ortensi
- Internal Medicine and Geriatrics, European Society of Hypertension (ESH) “Hypertension Excellence Centre”, Società Italiana per lo Studio dell'Aterosclerosi (SISA) LIPIGEN Centre, IRCCS INRCA, Ancona, Italy
- Centre for Obesity, Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, Ancona, Italy
| | - Paolo Falcioni
- Internal Medicine and Geriatrics, European Society of Hypertension (ESH) “Hypertension Excellence Centre”, Società Italiana per lo Studio dell'Aterosclerosi (SISA) LIPIGEN Centre, IRCCS INRCA, Ancona, Italy
- Centre for Obesity, Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, Ancona, Italy
| | - Lucia Sabbatini
- Internal Medicine and Geriatrics, European Society of Hypertension (ESH) “Hypertension Excellence Centre”, Società Italiana per lo Studio dell'Aterosclerosi (SISA) LIPIGEN Centre, IRCCS INRCA, Ancona, Italy
- Centre for Obesity, Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, Ancona, Italy
| | - Adriano Massacesi
- Internal Medicine and Geriatrics, European Society of Hypertension (ESH) “Hypertension Excellence Centre”, Società Italiana per lo Studio dell'Aterosclerosi (SISA) LIPIGEN Centre, IRCCS INRCA, Ancona, Italy
- Centre for Obesity, Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, Ancona, Italy
| | - Ilaria Rampino
- Internal Medicine and Geriatrics, European Society of Hypertension (ESH) “Hypertension Excellence Centre”, Società Italiana per lo Studio dell'Aterosclerosi (SISA) LIPIGEN Centre, IRCCS INRCA, Ancona, Italy
- Centre for Obesity, Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, Ancona, Italy
| | - Francesco Spannella
- Internal Medicine and Geriatrics, European Society of Hypertension (ESH) “Hypertension Excellence Centre”, Società Italiana per lo Studio dell'Aterosclerosi (SISA) LIPIGEN Centre, IRCCS INRCA, Ancona, Italy
- Centre for Obesity, Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, European Society of Hypertension (ESH) “Hypertension Excellence Centre”, Società Italiana per lo Studio dell'Aterosclerosi (SISA) LIPIGEN Centre, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
40
|
Bloomgarden ZT. The 2023 WCIRDC: Obesity. J Diabetes 2024; 16:e13568. [PMID: 38654482 PMCID: PMC11040094 DOI: 10.1111/1753-0407.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
- Zachary T. Bloomgarden
- Department of Medicine, Division of Endocrinology Diabetes and Bone DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
41
|
Son JW, Lim S. Glucagon-Like Peptide-1 Based Therapies: A New Horizon in Obesity Management. Endocrinol Metab (Seoul) 2024; 39:206-221. [PMID: 38626909 PMCID: PMC11066441 DOI: 10.3803/enm.2024.1940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 05/03/2024] Open
Abstract
Obesity is a significant risk factor for health issues like type 2 diabetes and cardiovascular disease. It often proves resistant to traditional lifestyle interventions, prompting a need for more precise therapeutic strategies. This has led to a focus on signaling pathways and neuroendocrine mechanisms to develop targeted obesity treatments. Recent developments in obesity management have been revolutionized by introducing novel glucagon-like peptide-1 (GLP-1) based drugs, such as semaglutide and tirzepatide. These drugs are part of an emerging class of nutrient-stimulated hormone-based therapeutics, acting as incretin mimetics to target G-protein-coupled receptors like GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and glucagon. These receptors are vital in regulating body fat and energy balance. The development of multiagonists, including GLP-1-glucagon and GIP-GLP-1-glucagon receptor agonists, especially with the potential for glucagon receptor activation, marks a significant advancement in the field. This review covers the development and clinical efficacy of various GLP-1-based therapeutics, exploring the challenges and future directions in obesity management.
Collapse
Affiliation(s)
- Jang Won Son
- Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
42
|
Jakubowska A, le Roux CW, Viljoen A. The Road towards Triple Agonists: Glucagon-Like Peptide 1, Glucose-Dependent Insulinotropic Polypeptide and Glucagon Receptor - An Update. Endocrinol Metab (Seoul) 2024; 39:12-22. [PMID: 38356208 PMCID: PMC10901658 DOI: 10.3803/enm.2024.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Obesity is the fifth leading risk factor for global deaths with numbers continuing to increase worldwide. In the last 20 years, the emergence of pharmacological treatments for obesity based on gastrointestinal hormones has transformed the therapeutic landscape. The successful development of glucagon-like peptide-1 (GLP-1) receptor agonists, followed by the synergistic combined effect of glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptor agonists achieved remarkable weight loss and glycemic control in those with the diseases of obesity and type 2 diabetes. The multiple cardiometabolic benefits include improving glycemic control, lipid profiles, blood pressure, inflammation, and hepatic steatosis. The 2023 phase 2 double-blind, randomized controlled trial evaluating a GLP-1/GIP/glucagon receptor triagonist (retatrutide) in patients with the disease of obesity reported 24.2% weight loss at 48 weeks with 12 mg retatrutide. This review evaluates the current available evidence for GLP-1 receptor agonists, dual GLP-1/GIP receptor co-agonists with a focus on GLP-1/GIP/glucagon receptor triagonists and discusses the potential future benefits and research directions.
Collapse
Affiliation(s)
| | - Carel W. le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Adie Viljoen
- Borthwick Diabetes Research Centre, Lister Hospital, Stevenage, UK
| |
Collapse
|