1
|
Liu Z, Guo Y, Zhang Y, Gao Y, Ning B. Metabolic reprogramming of astrocytes: Emerging roles of lactate. Neural Regen Res 2026; 21:421-432. [PMID: 39688570 DOI: 10.4103/nrr.nrr-d-24-00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/25/2024] [Indexed: 12/18/2024] Open
Abstract
Lactate serves as a key energy metabolite in the central nervous system, facilitating essential brain functions, including energy supply, signaling, and epigenetic modulation. Moreover, it links epigenetic modifications with metabolic reprogramming. Nonetheless, the specific mechanisms and roles of this connection in astrocytes remain unclear. Therefore, this review aims to explore the role and specific mechanisms of lactate in the metabolic reprogramming of astrocytes in the central nervous system. The close relationship between epigenetic modifications and metabolic reprogramming was discussed. Therapeutic strategies for targeting metabolic reprogramming in astrocytes in the central nervous system were also outlined to guide future research in central nervous system diseases. In the nervous system, lactate plays an essential role. However, its mechanism of action as a bridge between metabolic reprogramming and epigenetic modifications in the nervous system requires future investigation. The involvement of lactate in epigenetic modifications is currently a hot research topic, especially in lactylation modification, a key determinant in this process. Lactate also indirectly regulates various epigenetic modifications, such as N6-methyladenosine, acetylation, ubiquitination, and phosphorylation modifications, which are closely linked to several neurological disorders. In addition, exploring the clinical applications and potential therapeutic strategies of lactic acid provides new insights for future neurological disease treatments.
Collapse
Affiliation(s)
- Zeyu Liu
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yijian Guo
- Department of Spinal Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yulei Gao
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
- Department of Spinal Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Yu H, Gu L, Ma H, Yu L. Identification and analysis of diagnostic markers related to lactate metabolism in myocardial infarction. Pathol Res Pract 2025; 271:156010. [PMID: 40367892 DOI: 10.1016/j.prp.2025.156010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 05/06/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
Lactate metabolism is implicated in myocardial infarction (MI), yet the underlying mechanisms are not fully understood. Identifying lactate metabolism-related genes (LMRGs) could uncover new diagnostic and therapeutic targets for MI. We conducted a bioinformatics analysis on GeneCards database to identify 498 LMRGs and intersected them with differentially expressed genes (DEGs) from MI samples, yielding 17 key genes. We utilized consensus clustering and weighted gene co-expression network analysis (WGCNA) to refine our gene list to 981 candidate genes. Machine learning algorithms identified three biomarkers: OLIG1, LIN52, and RLBP1, associated with 'ribosome' and 'carbon metabolism' pathways. Enrichment analyses and immune microenvironment assessments were performed, and networks including drug-gene interactions and kinase-transcription factor (TF)-mRNA-miRNA were constructed to explore the functions and potential therapeutic implications of these genes. The three biomarkers showed significant correlations with immune cell types, with OLIG1 having the highest positive correlation with monocytes and the highest negative correlation with neutrophils. The drug-gene network revealed potential interactions such as methapyrilene with LIN52 and 'bisphenol A' with RLBP1. The kinase-TF-mRNA-miRNA network comprised 209 nodes and 470 edges, indicating complex regulatory mechanisms. Our study identified three key biomarkers, OLIG1, LIN52, and RLBP1, in lactate metabolism associated with MI, providing insights into potential diagnostic markers and therapeutic targets. These findings warrant further investigation into the molecular mechanisms of these biomarkers in MI.
Collapse
Affiliation(s)
- Haozhen Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Institute of Analytical Chemistry and Instrument for Life Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lanxin Gu
- Yale School of Public Health, New Haven, CT 06510, United States
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an 710032, China.
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Cook AM, Michas M, Robbins B. Update on Neuroprotection after Traumatic Brain Injury. CNS Drugs 2025; 39:473-484. [PMID: 40087248 DOI: 10.1007/s40263-025-01173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/17/2025]
Abstract
Traumatic brain injury (TBI) is a prevalent cause of morbidity and mortality worldwide. A focus on neuroprotective agents to prevent the secondary injury cascade that follows moderate-to-severe TBI has informed the field greatly but has not yielded any viable therapeutic options to date. New strategies and pharmacotherapy options for neuroprotection continue to be evaluated, including tranexamic acid, progesterone, cerebrolysin, cyclosporin A, citicholine, memantine, and lactate. Biomarkers of injury that can aid in diagnosis and prognosis have also been elucidated and are incrementally being used in clinical practice. The spectrum of TBI severity has also gained increasing attention as it relates to mild TBI or concussion, blast injury, and subacute or chronic subdural hematomas. In this review, we review the pathophysiology, recent clinical trials, and future directions for acute TBI.
Collapse
Affiliation(s)
- Aaron M Cook
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY, USA.
| | | | | |
Collapse
|
4
|
Vespa P, Wolahan S, Buitrago-Blanco M, Real C, Ruiz-Tejeda J, McArthur DL, Chiang JN, Agoston D, Glenn TC. Exogenous lactate infusion (ELI) in traumatic brain injury: higher dose is better? Crit Care 2025; 29:153. [PMID: 40229764 PMCID: PMC11998250 DOI: 10.1186/s13054-025-05374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND/OBJECTIVE Traumatic brain injury (TBI) is a life-threatening critical neurological injury resulting in widespread metabolic dysfunction in need of novel metabolic therapy. Exogenous lactate appears to improve brain metabolism, but the dose of lactate required remains uncertain. However, the ideal dose of lactate remains unclear. We present a comparison of low vs high dose exogenous sodium lactate infusion in a small cohort and the previous existing literature. We propose a systematic protocol to better study the question of dose-effect n in a future larger study. METHODS We analyzed the metabolic and physiologic effects of various doses of exogenous sodium lactate infusion (ELI) in the existing published literature and our own, single center cohort of patients with coma from severe TBI. Low dose ELI targeting arterial lactate concentration of 2-3 mMol was compared with high dose ELI targeting 4-6 mM. Effects of ELI on brain metabolism and intracranial pressure (ICP) were reviewed. A precision high-dose protocol was piloted and results compared against the existing literature. RESULTS Across various studies, metabolic response to ELI was variable and not consistently beneficial. High-dose ELI targeting arterial concentration of 4-6 mM resulted in consistent metabolic improvement and in ICP reduction (p < 0.01). The precision high dose protocol reliably resulted in higher arterial concentration. CONCLUSIONS High dose ELI appears to have more consistent beneficial effects on brain metabolism and intracranial pressure. TRIAL REGISTRATION ClinicalTrials.gov ID NCT02776488. Date registered: 2016-05-17. Retrospectively Registered.
Collapse
Affiliation(s)
- Paul Vespa
- UCLA Department of Neurology, UCLA Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 757 Westwood Blvd., Room 6236 A, Los Angeles, CA, 90095, USA.
| | - Stephanie Wolahan
- UCLA Department of Neurology, UCLA Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 757 Westwood Blvd., Room 6236 A, Los Angeles, CA, 90095, USA
| | - Manuel Buitrago-Blanco
- UCLA Department of Neurology, UCLA Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 757 Westwood Blvd., Room 6236 A, Los Angeles, CA, 90095, USA
| | - Courtney Real
- UCLA Department of Neurology, UCLA Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 757 Westwood Blvd., Room 6236 A, Los Angeles, CA, 90095, USA
| | - Jesus Ruiz-Tejeda
- Department of Oncology, University of California, Irvine, Irvine, USA
| | - David L McArthur
- UCLA Department of Neurology, UCLA Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 757 Westwood Blvd., Room 6236 A, Los Angeles, CA, 90095, USA
| | - Jeffrey N Chiang
- UCLA Department of Neurology, UCLA Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 757 Westwood Blvd., Room 6236 A, Los Angeles, CA, 90095, USA
| | | | - Thomas C Glenn
- UCLA Department of Neurology, UCLA Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, 757 Westwood Blvd., Room 6236 A, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Chen Y, Xiao D, Li X. Lactylation and Central Nervous System Diseases. Brain Sci 2025; 15:294. [PMID: 40149815 PMCID: PMC11940311 DOI: 10.3390/brainsci15030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
As the final product of glycolysis, lactate serves as an energy substrate, metabolite, and signaling molecule in various diseases and mediates lactylation, an epigenetic modification that occurs under both physiological and pathological conditions. Lactylation is a crucial mechanism by which lactate exerts its functions, participating in vital biological activities such as glycolysis-related cellular functions, macrophage polarization, and nervous system regulation. Lactylation links metabolic regulation to central nervous system (CNS) diseases, such as traumatic brain injury, Alzheimer's disease, acute ischemic stroke, and schizophrenia, revealing the diverse functions of lactylation in the CNS. In the future, further exploration of lactylation-associated enzymes and proteins is needed to develop specific lactylation inhibitors or activators, which could provide new tools and strategies for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Ye Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| |
Collapse
|
6
|
Omar Ibrahim I, Perrot C, Roumes H, Beauvieux MC, Brissaud O, Cramaregeas S, Dumas-de-la-Roque E, Pellerin L, Chateil JF, Tandonnet O, Bouzier-Sore AK. Positive impact of sodium L-lactate supplementation on blood acid-base status in preterm newborns. Pediatr Res 2025:10.1038/s41390-025-03963-9. [PMID: 40050683 DOI: 10.1038/s41390-025-03963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/29/2025] [Accepted: 02/08/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Preclinical studies indicate that lactate is a crucial cerebral energy substrate, with Na-L-lactate administration significantly reducing brain lesion volumes and improving motor and cognitive functions following neonatal hypoxia-ischemia in rat pups. Its neuroprotective effects are linked to neuronal metabolic utilization, making it a promising candidate for treating newborns with hypoxia-ischemia encephalopathy, a condition where hypothermia remains the only established therapy. However, before initiating a clinical trial, it is necessary to assess the effects of Na-L-lactate infusion on blood parameters. METHODS We retrospectively analyzed blood parameters in 60 premature neonates during their first days of life. Among them, 30 received Na-L-lactate instead of Na-Cl to prevent hyperchloremic acidosis. Blood pH, lactatemia, bicarbonates, glycemia, natremia, chloremia, base excess, and hemoglobin were monitored before, during, and after Na-L-lactate infusion. RESULTS Our findings showed that Na-L-lactate infusion lowered blood lactate levels while increasing pH from 7.25 to 7.31. After stopping the infusion, lactatemia was 1.9 mM, and pH reached 7.32. Na-L-lactate supplementation effectively restored normal blood pH, maintained natremia, and prevented hyperchloremia. Notably, even in cases of high initial lactatemia, lactate levels decreased during the infusion. CONCLUSION Our data are promising and emphasize the need for further research to explore its potential applications in neonatal clinical care. IMPACT Sodium L-lactate infusion does not increase blood lactate levels and restores normal pH in premature neonates. The study demonstrates that sodium L-lactate infusion avoids hyperchloremia while maintaining sodium levels, offering a potential alternative to sodium chloride. These findings highlight the need for additional research studies to further evaluate the safety, efficacy, and potential applications of sodium L-lactate infusion in neonatal care.
Collapse
Affiliation(s)
| | - Chloé Perrot
- Neonatal Intensive Care Unit, Maternity, Bordeaux University Hospital, Bordeaux, France
| | - Hélène Roumes
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - Marie-Christine Beauvieux
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
- Biochemistry Department, Bordeaux University Hospital, Bordeaux, France
| | - Olivier Brissaud
- Neonatal Intensive Care Unit, Children's Hospital, Bordeaux University Hospital, Bordeaux, France
| | - Sophie Cramaregeas
- Neonatal Intensive Care Unit, Maternity, Bordeaux University Hospital, Bordeaux, France
| | | | - Luc Pellerin
- IRMETIST, U1313, University of Poitiers and CHU of Poitiers, Poitiers, France
| | | | - Olivier Tandonnet
- Neonatal Intensive Care Unit, Maternity, Bordeaux University Hospital, Bordeaux, France
| | | |
Collapse
|
7
|
Mouli K, Liopo AV, McHugh EA, Underwood E, Zhao J, Dash PK, Vo ATT, Malojirao VH, Hegde ML, Tour JM, Derry PJ, Kent TA. Oxidized Carbon Nanoparticles Enhance Cellular Energetics With Application to Injured Brain. Adv Healthc Mater 2025; 14:e2401629. [PMID: 39329414 PMCID: PMC11937864 DOI: 10.1002/adhm.202401629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Pro-energetic effects of functionalized, oxidized carbon nanozymes (OCNs) are reported. OCNs, derived from harsh acid oxidation of single-wall carbon nanotubes or activated charcoal are previously shown to possess multiple nanozymatic activities including mimicking superoxide dismutase and catalyzing the oxidation of reduced nicotinamide adenine dinucleotide (NADH) to NAD+. These actions are predicted to generate a glycolytic shift and enhance mitochondrial energetics under impaired conditions. Impaired mitochondrial energy metabolism is increasingly recognized as an important facet of traumatic brain injury (TBI) pathophysiology and decreases the efficiency of electron transport chain (ETC)-coupled adenosine triphosphate (ATP) and NAD+ regeneration. In vitro, OCNs promote a pro-aerobic shift in energy metabolism that persists through ETC inhibition and enhances glycolytic flux, glycolytic ATP production, and cellular generation of lactate, a crucial auxiliary substrate for energy metabolism. To address specific mechanisms of iron injury from hemorrhage, OCNs with the iron chelator, deferoxamine (DEF), covalently-linked were synthesized. DEF-linked OCNs induce a glycolytic shift in-vitro and in-vivo in tissue sections from a rat model of TBI complicated by hemorrhagic contusion. OCNs further reduced hemorrhage volumes 3 days following TBI. These results suggest OCNs are promising as pleiotropic mediators of cell and tissue resilience to injury.
Collapse
Affiliation(s)
- Karthik Mouli
- Center for Genomics and Precision MedicineDepartment of Translational MedicineInstitute of Biosciences and TechnologyTexas A&M Health Science CenterHoustonTX77030USA
| | - Anton V. Liopo
- Center for Genomics and Precision MedicineDepartment of Translational MedicineInstitute of Biosciences and TechnologyTexas A&M Health Science CenterHoustonTX77030USA
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Emily A. McHugh
- Department of ChemistryRice UniversityHoustonTX77005USA
- Smalley‐Curl InstituteRice UniversityHoustonTX77005USA
| | - Erica Underwood
- Department of Neurobiology and AnatomyThe University of TX McGovern Medical SchoolHoustonTX77030USA
| | - Jing Zhao
- Department of Neurobiology and AnatomyThe University of TX McGovern Medical SchoolHoustonTX77030USA
| | - Pramod K. Dash
- Department of Neurobiology and AnatomyThe University of TX McGovern Medical SchoolHoustonTX77030USA
| | - Anh T. T. Vo
- Center for Genomics and Precision MedicineDepartment of Translational MedicineInstitute of Biosciences and TechnologyTexas A&M Health Science CenterHoustonTX77030USA
| | - Vikas H. Malojirao
- Center for NeuroregenerationDepartment of NeurosurgeryDivision of DNA Repair ResearchHouston Methodist Research InstituteHoustonTX77030USA
| | - Muralidhar L. Hegde
- Center for NeuroregenerationDepartment of NeurosurgeryDivision of DNA Repair ResearchHouston Methodist Research InstituteHoustonTX77030USA
- Department of NeurosciencesWeill Cornell Medical CollegeNew YorkNYUSA
- EnMedSchool of Engineering MedicineTexas A&M UniversityHouston77030USA
| | - James M. Tour
- Department of ChemistryRice UniversityHoustonTX77005USA
- Smalley‐Curl InstituteRice UniversityHoustonTX77005USA
- Welch Institute for Advanced MaterialsRice UniversityHoustonTX77005USA
- The NanoCarbon CenterRice UniversityHoustonTX77005USA
| | - Paul J. Derry
- Center for Genomics and Precision MedicineDepartment of Translational MedicineInstitute of Biosciences and TechnologyTexas A&M Health Science CenterHoustonTX77030USA
- EnMedSchool of Engineering MedicineTexas A&M UniversityHouston77030USA
| | - Thomas A. Kent
- Center for Genomics and Precision MedicineDepartment of Translational MedicineInstitute of Biosciences and TechnologyTexas A&M Health Science CenterHoustonTX77030USA
- Department of ChemistryRice UniversityHoustonTX77005USA
- Stanley H. Appel Department of NeurologyHouston Methodist Hospital and Research InstituteHoustonTX77030USA
| |
Collapse
|
8
|
Faucher E, Demelos A, Boissady E, Abi Zeid Daou Y, Lidouren F, Vigué B, Rodrigues A, Ghaleh B, Tissier R, Kohlhauer M. Cerebral net uptake of lactate contributes to neurological injury after experimental cardiac arrest in rabbits. Sci Rep 2024; 14:24600. [PMID: 39426990 PMCID: PMC11490571 DOI: 10.1038/s41598-024-74660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
During focal ischemia, neurons can use lactate as an alternative source of energy through its oxidation into pyruvate by the lactate dehydrogenase (LDH). After cardiac arrest, the neurological consequences of this phenomenon are unknown. Experimental study. Experimental laboratory. Male New-Zealand rabbits. Animals were surgically instrumented and randomly divided into five groups receiving short infusion duration of either lactate or pyruvate or a pre-cardiac arrest infusion of oxamate (an inhibitor of the lactate dehydrogenase) or injection of fluorocitrate (an inhibitor of astrocytic tricarboxylic acid), or Saline (lactate, pyruvate, Oxa, FC and Control groups, respectively). After randomization, animals were submitted to 10 min of ventricular fibrillation and subsequent resuscitation. All animals were then either followed during 4 h, for the evaluation of the cerebral net uptake and concentrations of metabolites by microdialysis (n = 6 in each experimental group, n = 12 in control group), or during 48 h for the evaluation of their neurological outcome (n = 7 in each groups and n = 14 in control group). Cardiac arrest was associated with a dramatic increase in cerebral net uptake of lactate during 120 min after resuscitation, which was increased by lactate or pyruvate administration. This was associated with an increase in the mean neurological dysfunction score (66.7 ± 4.7, 79.0 ± 4.5 vs 57.7 ± 1.5 in Lactate, Pyruvate and Control group respectively) at 48 h after cardiac arrest. Oxamate and FC administration were associated with a lower lactate cerebral uptake after cardiac arrest and with an improvement of the neurological recovery (28.85 ± 9.4, 23.86 ± 6.2 vs 57.7 ± 1.5 in Oxa, FC and Control group respectively). After cardiac arrest, immediate isotonic lactate or pyruvate administration is deleterious. Pre-cardiac arrest LDH inhibition was potently neuroprotective in this setting.
Collapse
Affiliation(s)
- Estelle Faucher
- INSERM, IMRB, Univ Paris Est Créteil, 94010, Créteil, France
- IMRB, AfterROSC Network, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Alexandra Demelos
- INSERM, IMRB, Univ Paris Est Créteil, 94010, Créteil, France
- IMRB, AfterROSC Network, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Emilie Boissady
- INSERM, IMRB, Univ Paris Est Créteil, 94010, Créteil, France
- IMRB, AfterROSC Network, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Yara Abi Zeid Daou
- INSERM, IMRB, Univ Paris Est Créteil, 94010, Créteil, France
- IMRB, AfterROSC Network, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Fanny Lidouren
- INSERM, IMRB, Univ Paris Est Créteil, 94010, Créteil, France
- IMRB, AfterROSC Network, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Bernard Vigué
- Département d'Anesthésie Réanimation, Hôpital Universitaire de Bicêtre, AP-HP, 94275, Le Kremlin-Bicêtre, France
| | - Aurore Rodrigues
- Département d'Anesthésie Réanimation, Hôpital Universitaire de Bicêtre, AP-HP, 94275, Le Kremlin-Bicêtre, France
| | - Bijan Ghaleh
- INSERM, IMRB, Univ Paris Est Créteil, 94010, Créteil, France
- IMRB, AfterROSC Network, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Renaud Tissier
- INSERM, IMRB, Univ Paris Est Créteil, 94010, Créteil, France
- IMRB, AfterROSC Network, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Matthias Kohlhauer
- INSERM, IMRB, Univ Paris Est Créteil, 94010, Créteil, France.
- IMRB, AfterROSC Network, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France.
| |
Collapse
|
9
|
Ewell TR, Bomar MC, Brown DM, Brown RL, Kwarteng BS, Thomson DP, Bell C. The Influence of Acute Oral Lactate Supplementation on Responses to Cycle Ergometer Exercise: A Randomized, Crossover Pilot Clinical Trial. Nutrients 2024; 16:2624. [PMID: 39203761 PMCID: PMC11357576 DOI: 10.3390/nu16162624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The purpose of this study was to investigate the potential ergogenic effects of an oral lactate supplement. For this double-blind, randomized, placebo-controlled crossover design, fifteen recreational exercisers (nine males, six females) ingested a placebo or a commercially available lactate supplement prior to cycle ergometer exercise. Primary outcomes included peak oxygen uptake (VO2peak; via indirect calorimetry), VO2 at the ventilatory threshold, and work rate at the lactate threshold (arterialized venous blood from a heated hand) determined during incremental exercise to fatigue, and power output during a 20-min cycling time trial. Compared with placebo, the oral lactate supplement (19 ± 1 mg/kg body mass) did not influence VO2peak (placebo: 44.3 ± 7.8 vs. oral lactate: 44.3 ± 7.1 mL/kg/min (mean ± SD); p = 0.87), VO2 at the ventilatory threshold (placebo: 1.63 ± 0.25 vs. oral lactate: 1.65 ± 0.23 L/min; p = 0.82), or work rate at the lactate threshold (placebo: 179 ± 69 vs. oral lactate: 179 ± 59 W; p = 0.41). Throughout the 20-min time trial, the work rate was slightly greater (4%) with oral lactate (204 ± 41 W) compared with placebo (197 ± 41 W; main effect of treatment p = 0.02). Collectively, these data suggest that this commercially available lactate supplement did not acutely influence the physiological responses to incremental cycle ergometer exercise but elicited a modest ergogenic effect during the short-duration time trial.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christopher Bell
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA; (T.R.E.)
| |
Collapse
|
10
|
Zhang F, Zhou J, Lu P, Zhang X, Yang L, Wu J, Zhang L, Zhang L, Pang J, Xie H, Xie B, Jiang Y, Peng J. Lactylation of histone by BRD4 regulates astrocyte polarization after experimental subarachnoid hemorrhage. J Neuroinflammation 2024; 21:186. [PMID: 39080649 PMCID: PMC11290164 DOI: 10.1186/s12974-024-03185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Under subarachnoid hemorrhage (SAH) conditions, astrocytes undergo a marked intensification of glycolytic activity, resulting in the generation of substantial amounts of lactate to maintain the energy demand for neurons and other brain cells. Lactate has garnered increasing attention in recent years because of its emerging role in critical biological processes such as inflammation regulation and neuroprotection, particularly through its histone lactylation. Bromodomain-containing protein 4 (BRD4) plays a crucial role in maintaining neural development and promoting memory formation in the central nervous system. Nonetheless, the function and regulatory mechanism of BRD4 and histone lactylation in astrocytes following SAH remain elusive. Our findings indicate that BRD4, a crucial epigenetic regulator, plays a definitive role in histone lactylation. Both in vitro and in vivo, these results demonstrated that targeted silencing of BRD4 in astrocytes can significantly reduce H4K8la lactylation, thereby aggravating the A1 polarization of astrocytes and ultimately affecting the recovery of neural function and prognosis in mice after SAH. In summary, BRD4 plays a pivotal role in modulating astrocyte polarization following SAH via histone lactylation. Targeting this mechanism might offer an efficient therapeutic strategy for SAH.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jian Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Peng Lu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xianhui Zhang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lei Yang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lihan Zhang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Institute of Brain Science, Southwest Medical University, Luzhou, China.
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
11
|
Oft HC, Simon DW, Sun D. New insights into metabolism dysregulation after TBI. J Neuroinflammation 2024; 21:184. [PMID: 39075578 PMCID: PMC11288120 DOI: 10.1186/s12974-024-03177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Traumatic brain injury (TBI) remains a leading cause of death and disability that places a great physical, social, and financial burden on individuals and the health system. In this review, we summarize new research into the metabolic changes described in clinical TBI trials, some of which have already shown promise for informing injury classification and staging. We focus our discussion on derangements in glucose metabolism, cell respiration/mitochondrial function and changes to ketone and lipid metabolism/oxidation to emphasize potentially novel biomarkers for clinical outcome prediction and intervention and offer new insights into possible underlying mechanisms from preclinical research of TBI pathology. Finally, we discuss nutrition supplementation studies that aim to harness the gut/microbiome-brain connection and manipulate systemic/cellular metabolism to improve post-TBI recovery. Taken together, this narrative review summarizes published TBI-associated changes in glucose and lipid metabolism, highlighting potential metabolite biomarkers for clinical use, the cellular processes linking these markers to TBI pathology as well as the limitations and future considerations for TBI "omics" work.
Collapse
Affiliation(s)
- Helena C Oft
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dennis W Simon
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
12
|
Plourde G, Roumes H, Suissa L, Hirt L, Doche É, Pellerin L, Bouzier-Sore AK, Quintard H. Neuroprotective effects of lactate and ketone bodies in acute brain injury. J Cereb Blood Flow Metab 2024; 44:1078-1088. [PMID: 38603600 PMCID: PMC11179615 DOI: 10.1177/0271678x241245486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
The goal of neurocritical care is to prevent and reverse the pathologic cascades of secondary brain injury by optimizing cerebral blood flow, oxygen supply and substrate delivery. While glucose is an essential energetic substrate for the brain, we frequently observe a strong decrease in glucose delivery and/or a glucose metabolic dysregulation following acute brain injury. In parallel, during the last decades, lactate and ketone bodies have been identified as potential alternative fuels to provide energy to the brain, both under physiological conditions and in case of glucose shortage. They are now viewed as integral parts of brain metabolism. In addition to their energetic role, experimental evidence also supports their neuroprotective properties after acute brain injury, regulating in particular intracranial pressure control, decreasing ischemic volume, and leading to an improvement in cognitive functions as well as survival. In this review, we present preclinical and clinical evidence exploring the mechanisms underlying their neuroprotective effects and identify research priorities for promoting lactate and ketone bodies use in brain injury.
Collapse
Affiliation(s)
- Guillaume Plourde
- Division of Intensive Care Medicine, Department of Medicine, Centre hospitalier de l’Université de Montréal, Montréal, Canada
| | - Hélène Roumes
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Univ. Bordeaux, CNRS, CRMSB/UMR 5536, Bordeaux, France
| | | | - Lorenz Hirt
- Division of Neurology, Department of Clinical Neuroscience, Centre hospitalier universitaire vaudois, Lausanne, Suisse
| | - Émilie Doche
- Neurovascular Unit, CHU de Marseille, Marseille, France
| | - Luc Pellerin
- IRMETIST Inserm U1313, Université et CHU de Poitiers, Poitiers, France
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Univ. Bordeaux, CNRS, CRMSB/UMR 5536, Bordeaux, France
| | - Hervé Quintard
- Division of Intensive Care Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Hôpitaux universitaires de Genéve, Genéve, Suisse
| |
Collapse
|
13
|
Plourde G, Ichai C, Quintard H. Cerebral Lactate Uptake After Half-Molar Sodium Lactate Therapy in Traumatic Brain Injury: A Brief Report. J Neurotrauma 2024; 41:e1807-e1811. [PMID: 38420880 DOI: 10.1089/neu.2023.0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Exogenous sodium lactate has many advantages after traumatic brain injury, including intracranial pressure control and alternative energetic supply. It remains unclear, however, whether half-molar sodium lactate (HSL) is effectively incorporated in brain metabolism, which we can verify using the arteriovenous difference in lactate (AVDlac). Hence we compared the AVDlac in patients with severe traumatic brain injury receiving an equiosmolar bolus of sodium lactate or mannitol for intracranial hypertension (IH) treatment. We included 23 patients: 14 received HSL for 25 IH episodes, and nine received mannitol for 19 episodes (total of 44 IH episodes). We observed that the median variation in AVDlac was positive in the group that received HSL (Δ +0.1 [IQR -0.08-0.2] mmol/L), which suggests a net lactate uptake by the brain. On the other hand, it was negative in the group that received mannitol (Δ -0.0 [IQR -0.1 to 0.0] mmol/L), indicating a net lactate export. Finally, there were more positive AVDlac values in the group that received HSL and more negative AVDlac values in the group that received mannitol (Fisher exact p = 0.04). Our study reports the first evidence of a positive AVDlac, which corresponds to a net lactate uptake by the brain, in patients who received HSL for severe TBI. Our results constitute a bedside confirmation of the integration of lactate into the brain metabolism and pave the way for a wider dissemination of sodium lactate in the daily clinical care of patients with traumatic brain injury.
Collapse
Affiliation(s)
- Guillaume Plourde
- Division of Intensive Care Medicine, Department of Medicine, Centre hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Carole Ichai
- Department of Anesthesiology and Intensive Care Medicine, Université Côte d'Azur Hôpital Pasteur, Nice, France
| | - Hervé Quintard
- Division of Intensive Care Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
14
|
Baranovicova E, Kalenska D, Kaplan P, Kovalska M, Tatarkova Z, Lehotsky J. Blood and Brain Metabolites after Cerebral Ischemia. Int J Mol Sci 2023; 24:17302. [PMID: 38139131 PMCID: PMC10743907 DOI: 10.3390/ijms242417302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The study of an organism's response to cerebral ischemia at different levels is essential to understanding the mechanism of the injury and protection. A great interest is devoted to finding the links between quantitative metabolic changes and post-ischemic damage. This work aims to summarize the outcomes of the most studied metabolites in brain tissue-lactate, glutamine, GABA (4-aminobutyric acid), glutamate, and NAA (N-acetyl aspartate)-regarding their biological function in physiological conditions and their role after cerebral ischemia/reperfusion. We focused on ischemic damage and post-ischemic recovery in both experimental-including our results-as well as clinical studies. We discuss the role of blood glucose in view of the diverse impact of hyperglycemia, whether experimentally induced, caused by insulin resistance, or developed as a stress response to the cerebral ischemic event. Additionally, based on our and other studies, we analyze and critically discuss post-ischemic alterations in energy metabolites and the elevation of blood ketone bodies observed in the studies on rodents. To complete the schema, we discuss alterations in blood plasma circulating amino acids after cerebral ischemia. So far, no fundamental brain or blood metabolite(s) has been recognized as a relevant biological marker with the feasibility to determine the post-ischemic outcome or extent of ischemic damage. However, studies from our group on rats subjected to protective ischemic preconditioning showed that these animals did not develop post-ischemic hyperglycemia and manifested a decreased metabolic infringement and faster metabolomic recovery. The metabolomic approach is an additional tool for understanding damaging and/or restorative processes within the affected brain region reflected in the blood to uncover the response of the whole organism via interorgan metabolic communications to the stressful cerebral ischemic challenge.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| |
Collapse
|
15
|
Stovell MG, Howe DJ, Thelin EP, Jalloh I, Helmy A, Guilfoyle MR, Grice P, Mason A, Giorgi-Coll S, Gallagher CN, Murphy MP, Menon DK, Carpenter TA, Hutchinson PJ, Carpenter KLH. High-physiological and supra-physiological 1,2- 13C 2 glucose focal supplementation to the traumatised human brain. J Cereb Blood Flow Metab 2023; 43:1685-1701. [PMID: 37157814 PMCID: PMC10581237 DOI: 10.1177/0271678x231173584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/12/2023] [Accepted: 04/02/2023] [Indexed: 05/10/2023]
Abstract
How to optimise glucose metabolism in the traumatised human brain remains unclear, including whether injured brain can metabolise additional glucose when supplied. We studied the effect of microdialysis-delivered 1,2-13C2 glucose at 4 and 8 mmol/L on brain extracellular chemistry using bedside ISCUSflex, and the fate of the 13C label in the 8 mmol/L group using high-resolution NMR of recovered microdialysates, in 20 patients. Compared with unsupplemented perfusion, 4 mmol/L glucose increased extracellular concentrations of pyruvate (17%, p = 0.04) and lactate (19%, p = 0.01), with a small increase in lactate/pyruvate ratio (5%, p = 0.007). Perfusion with 8 mmol/L glucose did not significantly influence extracellular chemistry measured with ISCUSflex, compared to unsupplemented perfusion. These extracellular chemistry changes appeared influenced by the underlying metabolic states of patients' traumatised brains, and the presence of relative neuroglycopaenia. Despite abundant 13C glucose supplementation, NMR revealed only 16.7% 13C enrichment of recovered extracellular lactate; the majority being glycolytic in origin. Furthermore, no 13C enrichment of TCA cycle-derived extracellular glutamine was detected. These findings indicate that a large proportion of extracellular lactate does not originate from local glucose metabolism, and taken together with our earlier studies, suggest that extracellular lactate is an important transitional step in the brain's production of glutamine.
Collapse
Affiliation(s)
- Matthew G Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Neurosurgery, The Walton Centre, Liverpool, UK
| | - Duncan J Howe
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Eric P Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Grice
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andrew Mason
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Susan Giorgi-Coll
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Clare N Gallagher
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - T Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Lazaridis C, Foreman B. Management Strategies Based on Multi-Modality Neuromonitoring in Severe Traumatic Brain Injury. Neurotherapeutics 2023; 20:1457-1471. [PMID: 37491682 PMCID: PMC10684466 DOI: 10.1007/s13311-023-01411-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
Secondary brain injury after neurotrauma is comprised of a host of distinct, potentially concurrent and interacting mechanisms that may exacerbate primary brain insult. Multimodality neuromonitoring is a method of measuring multiple aspects of the brain in order to understand the signatures of these different pathomechanisms and to detect, treat, or prevent potentially reversible secondary brain injuries. The most studied invasive parameters include intracranial pressure (ICP), cerebral perfusion pressure (CPP), autoregulatory indices, brain tissue partial oxygen tension, and tissue energy and metabolism measures such as the lactate pyruvate ratio. Understanding the local metabolic state of brain tissue in order to infer pathology and develop appropriate management strategies is an area of active investigation. Several clinical trials are underway to define the role of brain tissue oxygenation monitoring and electrocorticography in conjunction with other multimodal neuromonitoring information, including ICP and CPP monitoring. Identifying an optimal CPP to guide individualized management of blood pressure and ICP has been shown to be feasible, but definitive clinical trial evidence is still needed. Future work is still needed to define and clinically correlate patterns that emerge from integrated measurements of metabolism, pressure, flow, oxygenation, and electrophysiology. Pathophysiologic targets and precise critical care management strategies to address their underlying causes promise to mitigate secondary injuries and hold the potential to improve patient outcome. Advancements in clinical trial design are poised to establish new standards for the use of multimodality neuromonitoring to guide individualized clinical care.
Collapse
Affiliation(s)
- Christos Lazaridis
- Division of Neurocritical Care, Departments of Neurology and Neurosurgery, University of Chicago Medical Center, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA.
| | - Brandon Foreman
- Division of Neurocritical Care, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
17
|
Gao Y, Liu N, Chen J, Zheng P, Niu J, Tang S, Peng X, Wu J, Yu J, Ma L. Neuropharmacological insight into preventive intervention in posttraumatic epilepsy based on regulating glutamate homeostasis. CNS Neurosci Ther 2023; 29:2430-2444. [PMID: 37309302 PMCID: PMC10401093 DOI: 10.1111/cns.14294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Posttraumatic epilepsy (PTE) is one of the most critical complications of traumatic brain injury (TBI), significantly increasing TBI patients' neuropsychiatric symptoms and mortality. The abnormal accumulation of glutamate caused by TBI and its secondary excitotoxicity are essential reasons for neural network reorganization and functional neural plasticity changes, contributing to the occurrence and development of PTE. Restoring glutamate balance in the early stage of TBI is expected to play a neuroprotective role and reduce the risk of PTE. AIMS To provide a neuropharmacological insight for drug development to prevent PTE based on regulating glutamate homeostasis. METHODS We discussed how TBI affects glutamate homeostasis and its relationship with PTE. Furthermore, we also summarized the research progress of molecular pathways for regulating glutamate homeostasis after TBI and pharmacological studies aim to prevent PTE by restoring glutamate balance. RESULTS TBI can lead to the accumulation of glutamate in the brain, which increases the risk of PTE. Targeting the molecular pathways affecting glutamate homeostasis helps restore normal glutamate levels and is neuroprotective. DISCUSSION Taking glutamate homeostasis regulation as a means for new drug development can avoid the side effects caused by direct inhibition of glutamate receptors, expecting to alleviate the diseases related to abnormal glutamate levels in the brain, such as PTE, Parkinson's disease, depression, and cognitive impairment. CONCLUSION It is a promising strategy to regulate glutamate homeostasis through pharmacological methods after TBI, thereby decreasing nerve injury and preventing PTE.
Collapse
Affiliation(s)
- Yuan Gao
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Ning Liu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Juan Chen
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Ping Zheng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Xiaodong Peng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jing Wu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianqiang Yu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Lin Ma
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| |
Collapse
|
18
|
Colucci ACM, Tassinari ID, Loss EDS, de Fraga LS. History and Function of the Lactate Receptor GPR81/HCAR1 in the Brain: A Putative Therapeutic Target for the Treatment of Cerebral Ischemia. Neuroscience 2023; 526:144-163. [PMID: 37391123 DOI: 10.1016/j.neuroscience.2023.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
GPR81 is a G-protein coupled receptor (GPCR) discovered in 2001, but deorphanized only 7 years later, when its affinity for lactate as an endogenous ligand was demonstrated. More recently, GPR81 expression and distribution in the brain were also confirmed and the function of lactate as a volume transmitter has been suggested since then. These findings shed light on a new function of lactate acting as a signaling molecule in the central nervous system, in addition to its well-known role as a metabolic fuel for neurons. GPR81 seems to act as a metabolic sensor, coupling energy metabolism, synaptic activity, and blood flow. Activation of this receptor leads to Gi-mediated downregulation of adenylyl cyclase and subsequent reduction in cAMP levels, regulating several downstream pathways. Recent studies have also suggested the potential role of lactate as a neuroprotective agent, mainly under brain ischemic conditions. This effect is usually attributed to the metabolic role of lactate, but the underlying mechanisms need further investigation and could be related to lactate signaling via GPR81. The activation of GPR81 showed promising results for neuroprotection: it modulates many processes involved in the pathophysiology of ischemia. In this review, we summarize the history of GPR81, starting with its deorphanization; then, we discuss GPR81 expression and distribution, signaling transduction cascades, and neuroprotective roles. Lastly, we propose GPR81 as a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Anna Clara Machado Colucci
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Isadora D'Ávila Tassinari
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Eloísa da Silveira Loss
- Laboratório de Endocrinologia Experimental (LABENEX), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil.
| |
Collapse
|
19
|
Yao Y, Bade R, Li G, Zhang A, Zhao H, Fan L, Zhu R, Yuan J. Global-Scale Profiling of Differential Expressed Lysine-Lactylated Proteins in the Cerebral Endothelium of Cerebral Ischemia-Reperfusion Injury Rats. Cell Mol Neurobiol 2023; 43:1989-2004. [PMID: 36030297 PMCID: PMC11412193 DOI: 10.1007/s10571-022-01277-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
Acute ischemic stroke (AIS) is a serious threat to human health. Following AIS, cerebral ischemia-reperfusion injury (CIRI) must be treated to improve prognosis. By combining 4D label-free quantitative proteomics with lactylation modification-specific proteomics analysis, we assessed lysine lactylation (Kla) in cortical proteins of a CIRI rat model. We identified a total of 1003 lactylation sites on 469 proteins in this study, gathering quantitative information (PXD034232) on 660 of 310 proteins, which were further classified by cell composition, molecular function, and biological processes. In addition, we analyzed the metabolic pathways, domains, and protein-protein interaction networks. Lastly, we evaluated differentially expressed lysine lactylation sites, determining 49 upregulated proteins and 99 downregulated proteins with 54 upregulated sites and 54 downregulated sites in the experimental group in comparison with the healthy control group. Moreover, we identified the Kla of Scl25a4 and Slc25a5 in the Ca2+ signaling pathway, but the Kla of Vdac1 was eliminated, as confirmed in vivo. Overall, these results provide new insights into lactylation involved in the underlying mechanism of CIRI because this post-translational modification affects the mitochondrial apoptosis pathway and mediates neuronal death. Therefore, this study may enable us to develop new molecules with therapeutic properties, which have both theoretical significance and broad clinical application prospects. A new model of cerebral ischemia-reperfusion injury (CIRI) induced by lactylation through the regulation of key proteins of the Ca2+ signaling pathway.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Neurology, Inner Mongolia People's Hospital, Hohhot, 010017, China.
- Inner Mongolia University People's Hospital, Hohhot, 010017, China.
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Rengui Bade
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China
- Medical College of Neuroscience Institute, School of Medical Technology and Anesthesiology, Baotou Medical College, Baotou, 014060, China
| | - Guotao Li
- Inner Mongolia University People's Hospital, Hohhot, 010017, China
| | - Aoqi Zhang
- Inner Mongolia University People's Hospital, Hohhot, 010017, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Haile Zhao
- Inner Mongolia University People's Hospital, Hohhot, 010017, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Runxiu Zhu
- Department of Neurology, Inner Mongolia People's Hospital, Hohhot, 010017, China.
- Inner Mongolia University People's Hospital, Hohhot, 010017, China.
| | - Jun Yuan
- Department of Neurology, Inner Mongolia People's Hospital, Hohhot, 010017, China.
- Inner Mongolia University People's Hospital, Hohhot, 010017, China.
| |
Collapse
|
20
|
Naumenko Y, Yuryshinetz I, Zabenko Y, Pivneva T. Mild traumatic brain injury as a pathological process. Heliyon 2023; 9:e18342. [PMID: 37519712 PMCID: PMC10372741 DOI: 10.1016/j.heliyon.2023.e18342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Traumatic brain injury (TBI) is defined as dysfunction or other evidence of brain pathology caused by external physical force. More than 69 million new cases of TBI are registered worldwide each year, 80% of them - mild TBI. Based on the physical mechanism of induced trauma, we can separate its pathophysiology into primary and secondary injuries. Many literature sources have confirmed that mechanically induced brain injury initiates ionic, metabolic, inflammatory, and neurovascular changes in the CNS, which can lead to acute, subacute, and chronic neurological consequences. Despite the global nature of the disease, its high heterogeneity, lack of a unified classification system, rapid fluctuation of epidemiological trends, and variability of long-term consequences significantly complicate research and the development of new therapeutic strategies. In this review paper, we systematize current knowledge of biomechanical and molecular mechanisms of mild TBI and provide general information on the classification and epidemiology of this complex disorder.
Collapse
Affiliation(s)
- Yana Naumenko
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Irada Yuryshinetz
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Yelyzaveta Zabenko
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Tetyana Pivneva
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
- Kyiv Academic University, Kyiv, Ukraine
| |
Collapse
|
21
|
Fang W, Chen S, Jin X, Liu S, Cao X, Liu B. Metabolomics in aging research: aging markers from organs. Front Cell Dev Biol 2023; 11:1198794. [PMID: 37397261 PMCID: PMC10313136 DOI: 10.3389/fcell.2023.1198794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolism plays an important role in regulating aging at several levels, and metabolic reprogramming is the main driving force of aging. Due to the different metabolic needs of different tissues, the change trend of metabolites during aging in different organs and the influence of different levels of metabolites on organ function are also different, which makes the relationship between the change of metabolite level and aging more complex. However, not all of these changes lead to aging. The development of metabonomics research has opened a door for people to understand the overall changes in the metabolic level in the aging process of organisms. The omics-based "aging clock" of organisms has been established at the level of gene, protein and epigenetic modifications, but there is still no systematic summary at the level of metabolism. Here, we reviewed the relevant research published in the last decade on aging and organ metabolomic changes, discussed several metabolites with high repetition rate, and explained their role in vivo, hoping to find a group of metabolites that can be used as metabolic markers of aging. This information should provide valuable information for future diagnosis or clinical intervention of aging and age-related diseases.
Collapse
Affiliation(s)
- Weicheng Fang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shuxin Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Kane DA, Foo ACY, Noftall EB, Brebner K, Marangoni DG. Lactate shuttling as an allostatic means of thermoregulation in the brain. Front Neurosci 2023; 17:1144639. [PMID: 37250407 PMCID: PMC10217782 DOI: 10.3389/fnins.2023.1144639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Lactate, the redox-balanced end product of glycolysis, travels within and between cells to fulfill an array of physiologic functions. While evidence for the centrality of this lactate shuttling in mammalian metabolism continues to mount, its application to physical bioenergetics remains underexplored. Lactate represents a metabolic "cul-de-sac," as it can only re-enter metabolism by first being converted back to pyruvate by lactate dehydrogenase (LDH). Given the differential distribution of lactate producing/consuming tissues during metabolic stresses (e.g., exercise), we hypothesize that lactate shuttling vis-à-vis the exchange of extracellular lactate between tissues serves a thermoregulatory function, i.e., an allostatic strategy to mitigate the consequences of elevated metabolic heat. To explore this idea, the rates of heat and respiratory oxygen consumption in saponin-permeabilized rat cortical brain samples fed lactate or pyruvate were measured. Heat and respiratory oxygen consumption rates, and calorespirometric ratios were lower during lactate vs. pyruvate-linked respiration. These results support the hypothesis of allostatic thermoregulation in the brain with lactate.
Collapse
Affiliation(s)
- Daniel A. Kane
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS, Canada
| | - Alexander C. Y. Foo
- Department of Chemistry, St. Francis Xavier University, Antigonish, NS, Canada
| | - Erin B. Noftall
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS, Canada
| | - Karen Brebner
- Department of Psychology, St. Francis Xavier University, Antigonish, NS, Canada
| | | |
Collapse
|
23
|
Brooks GA. What the Lactate Shuttle Means for Sports Nutrition. Nutrients 2023; 15:2178. [PMID: 37432330 DOI: 10.3390/nu15092178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 07/12/2023] Open
Abstract
The discovery of the lactate shuttle (LS) mechanism may have two opposite perceptions, It may mean very little, because the body normally and inexorably uses the LS mechanism. On the contrary, one may support the viewpoint that understanding the LS mechanism offers immense opportunities for understanding nutrition and metabolism in general, as well as in a sports nutrition supplementation setting. In fact, regardless of the specific form of the carbohydrate (CHO) nutrient taken, the bodily CHO energy flux is from a hexose sugar glucose or glucose polymer (glycogen and starches) to lactate with subsequent somatic tissue oxidation or storage as liver glycogen. In fact, because oxygen and lactate flow together through the circulation to sites of utilization, the bodily carbon energy flow is essentially the lactate disposal rate. Consequently, one can consume glucose or glucose polymers in various forms (glycogen, maltodextrin, potato, corn starch, and fructose or high-fructose corn syrup), and the intestinal wall, liver, integument, and active and inactive muscles make lactate which is the chief energy fuel for red skeletal muscle, heart, brain, erythrocytes, and kidneys. Therefore, if one wants to hasten the delivery of CHO energy delivery, instead of providing CHO foods, supplementation with lactate nutrient compounds can augment body energy flow.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
24
|
Annoni F, Su F, Peluso L, Lisi I, Caruso E, Pischiutta F, Gouvea Bogossian E, Garcia B, Njimi H, Vincent JL, Gaspard N, Ferlini L, Creteur J, Zanier ER, Taccone FS. Hypertonic sodium lactate infusion reduces vasopressor requirements and biomarkers of brain and cardiac injury after experimental cardiac arrest. Crit Care 2023; 27:161. [PMID: 37087454 PMCID: PMC10122448 DOI: 10.1186/s13054-023-04454-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023] Open
Abstract
INTRODUCTION Prognosis after resuscitation from cardiac arrest (CA) remains poor, with high morbidity and mortality as a result of extensive cardiac and brain injury and lack of effective treatments. Hypertonic sodium lactate (HSL) may be beneficial after CA by buffering severe metabolic acidosis, increasing brain perfusion and cardiac performance, reducing cerebral swelling, and serving as an alternative energetic cellular substrate. The aim of this study was to test the effects of HSL infusion on brain and cardiac injury in an experimental model of CA. METHODS After a 10-min electrically induced CA followed by 5 min of cardiopulmonary resuscitation maneuvers, adult swine (n = 35) were randomly assigned to receive either balanced crystalloid (controls, n = 11) or HSL infusion started during cardiopulmonary resuscitation (CPR, Intra-arrest, n = 12) or after return of spontaneous circulation (Post-ROSC, n = 11) for the subsequent 12 h. In all animals, extensive multimodal neurological and cardiovascular monitoring was implemented. All animals were treated with targeted temperature management at 34 °C. RESULTS Thirty-four of the 35 (97.1%) animals achieved ROSC; one animal in the Intra-arrest group died before completing the observation period. Arterial pH, lactate and sodium concentrations, and plasma osmolarity were higher in HSL-treated animals than in controls (p < 0.001), whereas potassium concentrations were lower (p = 0.004). Intra-arrest and Post-ROSC HSL infusion improved hemodynamic status compared to controls, as shown by reduced vasopressor requirements to maintain a mean arterial pressure target > 65 mmHg (p = 0.005 for interaction; p = 0.01 for groups). Moreover, plasma troponin I and glial fibrillary acid protein (GFAP) concentrations were lower in HSL-treated groups at several time-points than in controls. CONCLUSIONS In this experimental CA model, HSL infusion was associated with reduced vasopressor requirements and decreased plasma concentrations of measured biomarkers of cardiac and cerebral injury.
Collapse
Affiliation(s)
- Filippo Annoni
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium.
- Experimental Laboratory of Intensive Care, Free University of Brussels, Brussels, Belgium.
| | - Fuhong Su
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
- Experimental Laboratory of Intensive Care, Free University of Brussels, Brussels, Belgium
| | - Lorenzo Peluso
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Anesthesiology and Intensive Care, Humanitas Gavazzeni, Via M Gavazzeni 21, 24125, Bergamo, Italy
| | - Ilaria Lisi
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Enrico Caruso
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Francesca Pischiutta
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | | | - Bruno Garcia
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
- Experimental Laboratory of Intensive Care, Free University of Brussels, Brussels, Belgium
| | - Hassane Njimi
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
- Neurology Department, School of Medicine, Yale University, New Haven, CT, USA
| | - Lorenzo Ferlini
- Department of Neurology, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
| | - Elisa R Zanier
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
- Experimental Laboratory of Intensive Care, Free University of Brussels, Brussels, Belgium
| |
Collapse
|
25
|
Svedung Wettervik T, Lewén A, Enblad P. Fine tuning of neurointensive care in aneurysmal subarachnoid hemorrhage: From one-size-fits-all towards individualized care. World Neurosurg X 2023; 18:100160. [PMID: 36818739 PMCID: PMC9932216 DOI: 10.1016/j.wnsx.2023.100160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe type of acute brain injury with high mortality and burden of neurological sequelae. General management aims at early aneurysm occlusion to prevent re-bleeding, cerebrospinal fluid drainage in case of increased intracranial pressure and/or acute hydrocephalus, and cerebral blood flow augmentation in case of delayed ischemic neurological deficits. In addition, the brain is vulnerable to physiological insults in the acute phase and neurointensive care (NIC) is important to optimize the cerebral physiology to avoid secondary brain injury. NIC has led to significantly better neurological recovery following aSAH, but there is still great room for further improvements. First, current aSAH NIC management protocols are to some extent extrapolated from those in traumatic brain injury, notwithstanding important disease-specific differences. Second, the same NIC management protocols are applied to all aSAH patients, despite great patient heterogeneity. Third, the main variables of interest, intracranial pressure and cerebral perfusion pressure, may be too superficial to fully detect and treat several important pathomechanisms. Fourth, there is a lack of understanding not only regarding physiological, but also cellular and molecular pathomechanisms and there is a need to better monitor and treat these processes. This narrative review aims to discuss current state-of-the-art NIC of aSAH, knowledge gaps in the field, and future directions towards a more individualized care in the future.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| |
Collapse
|
26
|
Akter M, Ma H, Hasan M, Karim A, Zhu X, Zhang L, Li Y. Exogenous L-lactate administration in rat hippocampus increases expression of key regulators of mitochondrial biogenesis and antioxidant defense. Front Mol Neurosci 2023; 16:1117146. [PMID: 37008779 PMCID: PMC10062455 DOI: 10.3389/fnmol.2023.1117146] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
L-lactate plays a critical role in learning and memory. Studies in rats showed that administration of exogenous L-lactate into the anterior cingulate cortex and hippocampus (HPC) improved decision-making and enhanced long-term memory formation, respectively. Although the molecular mechanisms by which L-lactate confers its beneficial effect are an active area of investigations, one recent study found that L-lactate supplementation results in a mild reactive oxygen species burst and induction of pro-survival pathways. To further investigate the molecular changes induced by L-lactate, we injected rats with either L-lactate or artificial CSF bilaterally into the dorsal HPC and collected the HPC after 60 minutes for mass spectrometry. We identified increased levels of several proteins that include SIRT3, KIF5B, OXR1, PYGM, and ATG7 in the HPC of the L-lactate treated rats. SIRT3 (Sirtuin 3) is a key regulator of mitochondrial functions and homeostasis and protects cells against oxidative stress. Further experiments identified increased expression of the key regulator of mitochondrial biogenesis (PGC-1α) and mitochondrial proteins (ATPB, Cyt-c) as well as increased mitochondrial DNA (mtDNA) copy number in the HPC of L-lactate treated rats. OXR1 (Oxidation resistance protein 1) is known to maintain mitochondrial stability. It mitigates the deleterious effects of oxidative damage in neurons by inducing a resistance response against oxidative stress. Together, our study suggests that L-lactate can induce expression of key regulators of mitochondrial biogenesis and antioxidant defense. These findings create new research avenues to explore their contribution to the L-lactate’s beneficial effect in cognitive functions as these cellular responses might enable neurons to generate more ATP to meet energy demand of neuronal activity and synaptic plasticity as well as attenuate the associated oxidative stress.
Collapse
Affiliation(s)
- Mastura Akter
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Haiying Ma
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mahadi Hasan
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Anwarul Karim
- School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xiaowei Zhu
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong, Futian Research Institute, Shenzhen, Guangdong, China
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- *Correspondence: Ying Li,
| |
Collapse
|
27
|
EPO has multiple positive effects on astrocytes in an experimental model of ischemia. Brain Res 2023; 1802:148207. [PMID: 36549360 DOI: 10.1016/j.brainres.2022.148207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Erythropoietin (EPO) has neuroprotective effects in central nervous system injury models. In clinical trials EPO has shown beneficial effects in traumatic brain injury (TBI) as well as in ischemic stroke. We have previously shown that EPO has short-term effects on astrocyte glutamatergic signaling in vitro and that administration of EPO after experimental TBI decreases early cytotoxic brain edema and preserves structural and functional properties of the blood-brain barrier. These effects have been attributed to preserved or restored astrocyte function. Here we explored the effects of EPO on astrocytes undergoing oxygen-glucose-deprivation, an in vitro model of ischemia. Measurements of glutamate uptake, intracellular pH, intrinsic NADH fluorescence, Na,K-ATPase activity, and lactate release were performed. We found that EPO within minutes caused a Na,K-ATPase-dependent increase in glutamate uptake, restored intracellular acidification caused by glutamate and increased lactate release. The effects on intracellular pH were dependent on the sodium/hydrogen exchanger NHE. In neuron-astrocyte co-cultures, EPO increased NADH production both in astrocytes and neurons, however the increase was greater in astrocytes. We suggest that EPO preserves astrocyte function under ischemic conditions and thus may contribute to neuroprotection in ischemic stroke and brain ischemia secondary to TBI.
Collapse
|
28
|
Brooks GA, Osmond AD, Arevalo JA, Duong JJ, Curl CC, Moreno-Santillan DD, Leija RG. Lactate as a myokine and exerkine: drivers and signals of physiology and metabolism. J Appl Physiol (1985) 2023; 134:529-548. [PMID: 36633863 PMCID: PMC9970662 DOI: 10.1152/japplphysiol.00497.2022] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
No longer viewed as a metabolic waste product and cause of muscle fatigue, a contemporary view incorporates the roles of lactate in metabolism, sensing and signaling in normal as well as pathophysiological conditions. Lactate exists in millimolar concentrations in muscle, blood, and other tissues and can rise more than an order of magnitude as the result of increased production and clearance limitations. Lactate exerts its powerful driver-like influence by mass action, redox change, allosteric binding, and other mechanisms described in this article. Depending on the condition, such as during rest and exercise, following carbohydrate nutrition, injury, or pathology, lactate can serve as a myokine or exerkine with autocrine-, paracrine-, and endocrine-like functions that have important basic and translational implications. For instance, lactate signaling is: involved in reproductive biology, fueling the heart, muscle adaptation, and brain executive function, growth and development, and a treatment for inflammatory conditions. Lactate also works with many other mechanisms and factors in controlling cardiac output and pulmonary ventilation during exercise. Ironically, lactate can be disruptive of normal processes such as insulin secretion when insertion of lactate transporters into pancreatic β-cell membranes is not suppressed, and in carcinogenesis when factors that suppress carcinogenesis are inhibited, whereas factors that promote carcinogenesis are upregulated. Lactate signaling is important in areas of intermediary metabolism, redox biology, mitochondrial biogenesis, neurobiology, gut physiology, appetite regulation, nutrition, and overall health and vigor. The various roles of lactate as a myokine and exerkine are reviewed.NEW & NOTEWORTHY Lactate sensing and signaling is a relatively new and rapidly changing field. As a physiological signal lactate works both independently and in concert with other signals. Lactate operates via covalent binding and canonical signaling, redox change, and lactylation of DNA. Lactate can also serve as an element of feedback loops in cardiopulmonary regulation. From conception through aging lactate is not the only a myokine or exerkine, but it certainly deserves consideration as a physiological signal.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Justin J Duong
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Diana D Moreno-Santillan
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| |
Collapse
|
29
|
E G, Sun B, Liu B, Xu G, He S, Wang Y, Feng L, Wei H, Zhang J, Chen J, Gao Y, Zhang E. Enhanced BPGM/2,3-DPG pathway activity suppresses glycolysis in hypoxic astrocytes via FIH-1 and TET2. Brain Res Bull 2023; 192:36-46. [PMID: 36334804 DOI: 10.1016/j.brainresbull.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Bisphosphoglycerate mutase (BPGM) is expressed in human erythrocytes and responsible for the production of 2,3-bisphosphoglycerate (2,3-DPG). However, the expression and role of BPGM in other cells have not been reported. In this work, we found that BPGM was significantly upregulated in astrocytes upon acute hypoxia, and the role of this phenomenon will be clarified in the following report. METHODS The mRNA and protein expression levels of BPGM and the content of 2,3-DPG with hypoxia treatment were determined in vitro and in vivo. Furthermore, glycolysis was evaluated upon in hypoxic astrocytes with BPGM knockdown and in normoxic astrocytes with BPGM overexpression or 2,3-DPG treatment. To investigate the mechanism by which BPGM/2,3-DPG regulated glycolysis in hypoxic astrocytes, we detected the expression of HIF-1α, FIH-1 and TET2 with silencing or overexpression of BPGM and 2,3-DPG treatment. RESULTS The expression of glycolytic genes and the capacity of lactate markedly increased with 6 h, 12 h, 24 h, 36 h and 48 h 1 % O2 hypoxic treatment in astrocytes. The expression of BPGM was upregulated, and the production of 2,3-DPG was accelerated upon hypoxia. Moreover, when BPGM expression was knocked down, glycolysis was promoted in HEB cells. However, overexpression of BPGM and addition of 2,3-DPG to the cellular medium in normoxic cells could downregulate glycolytic genes. Furthermore, HIF-1α and TET2 exhibited higher expression levels and FIH-1 showed a lower expression level upon BPGM silencing, while these changes were reversed under BPGM overexpression and 2,3-DPG treatment. CONCLUSIONS Our study revealed that the BPGM/2,3-DPG pathway presented a suppressive effect on glycolysis in hypoxic astrocytes by negatively regulating HIF-1α and TET2.
Collapse
Affiliation(s)
- Guoji E
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Binda Sun
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Shu He
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Yu Wang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Lan Feng
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Hannan Wei
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Jianyang Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Jian Chen
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Erlong Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| |
Collapse
|
30
|
In FUS[1−359]‐tg mice O,S-dibenzoyl thiamine reduces muscle atrophy, decreases glycogen synthase kinase 3 beta, and normalizes the metabolome. Biomed Pharmacother 2022; 156:113986. [DOI: 10.1016/j.biopha.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
31
|
Wang YM, Zhu N, Zhou YM, Su R, Li HL, Zhou JX. The combination of arterial lactate level with GCS-pupils score to evaluate short term prognosis in traumatic brain injury: a retrospective study. BMC Neurol 2022; 22:430. [PMCID: PMC9664667 DOI: 10.1186/s12883-022-02970-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
The aim of the study was to determine whether the combination of Glasgow Coma Scale (GCS) and Pupil responses score (GCSP) with arterial lactate level would be an index to predict the short term prognosis in patients with traumatic brain injury (TBI).
Methods
A retrospective study was performed enrolling all TBI patients admitted to intensive care unit (ICU) from 2019 to 2020. The demographics, clinical characteristics, and arterial lactate concentration were recorded. The GCSP and arterial blood analysis (ABG) with lactate was tested as soon as the patient was admitted to ICU. The Glasgow Outcome Scale (GOS) after discharge was regarded as the clinical outcome. A new index named GCSP-L was the combination of GCSP and lactate concentration. GCSP-L was the GCSP score (range 1-15) plus the lactate score (range 0-2). The lactate score was defined based on different lactate concentrations. If lactate was below 2 mmol/L, lactate score was 0, which above 5 mmol/L was 2 and between 2 and 5 mmol/L, the score was 1. As the range of GCSP was 1-15, the range of the GCSP-L was 1 to 17. The area under receiver operating characteristic curve (AUC) was calculated to evaluate the predictive ability of GCSP, lactate and GCSP-L. Statistical significance was set when p value < 0.05.
Results
A total of 192 TBI patients were included in the study. Based on GCSP, mild, moderate, and severe TBI were 13.02, 14.06 and 72.92%, respectively. There were 103 (53.65%) patients with the lactate concentration below 2 mmol/L (1.23 ± 0.37 mmol/l), 63 (32.81%) of the range from 2 to 5 (3.04 ± 2.43 mmol/l) and 26 (13.54%) were above 5 mmol/l (7.70 ± 2.43 mmol/l). The AUC was 0.866 (95% CI 0.827-0.904) for GCSP-L, 0.812 (95% CI 0.765-0.858) for GCSP and 0.629 (95% CI 0.570—0.0.688) for lactate. The AUC of GCSP-L was higher than the other two, GCSP and lactate alone.
Conclusions
The combination of GCSP and lactate concentration can be used to predict the short term prognosis in TBI patients.
Collapse
|
32
|
Siwicka-Gieroba D, Robba C, Gołacki J, Badenes R, Dabrowski W. Cerebral Oxygen Delivery and Consumption in Brain-Injured Patients. J Pers Med 2022; 12:1763. [PMID: 36573716 PMCID: PMC9698645 DOI: 10.3390/jpm12111763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/30/2022] Open
Abstract
Organism survival depends on oxygen delivery and utilization to maintain the balance of energy and toxic oxidants production. This regulation is crucial to the brain, especially after acute injuries. Secondary insults after brain damage may include impaired cerebral metabolism, ischemia, intracranial hypertension and oxygen concentration disturbances such as hypoxia or hyperoxia. Recent data highlight the important role of clinical protocols in improving oxygen delivery and resulting in lower mortality in brain-injured patients. Clinical protocols guide the rules for oxygen supplementation based on physiological processes such as elevation of oxygen supply (by mean arterial pressure (MAP) and intracranial pressure (ICP) modulation, cerebral vasoreactivity, oxygen capacity) and reduction of oxygen demand (by pharmacological sedation and coma or hypothermia). The aim of this review is to discuss oxygen metabolism in the brain under different conditions.
Collapse
Affiliation(s)
- Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Chiara Robba
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Jakub Gołacki
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| |
Collapse
|
33
|
Besch G, Parmentier AL, Berthier F, Jaeg H, Villeneuve J, Hammoudi F, Scaringella N, Clairet AL, Vettoretti L, Chopard G, Thines L, Ferreira D, Samain E, Pili-Floury S. Clinical effectiveness of hypertonic sodium lactate infusion for intraoperative brain relaxation in patients undergoing scheduled craniotomy for supratentorial brain tumor resection: A study protocol of a single center double-blind randomized controlled phase II pilot trial. Medicine (Baltimore) 2022; 101:e31038. [PMID: 36221362 PMCID: PMC9542766 DOI: 10.1097/md.0000000000031038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Hyperosmolar solutions are prescribed in neurosurgery patients to provide satisfactory intraoperative brain relaxation and to lower cerebral injuries related to surgical retractors. Mannitol is traditionally considered as the first-choice solution for brain relaxation in neurosurgery patients. Hypertonic sodium lactate infusion was reported to provide a higher and longer osmotic effect compared to mannitol in severely brain-injured patients and to prevent impaired cerebral energetics related to brain injuries. To date, the clinical effectiveness of hypertonic sodium lactate infusion has never been studied in neurosurgery patients. The hypothesis of the study is that hyperosmolar sodium lactate infusion may provide satisfactory intraoperative brain relaxation in patients undergoing scheduled craniotomy for supratentorial brain tumor resection. METHODS AND ANALYSIS We designed a phase II randomized, controlled, double-blind, single-center pilot trial, and aim to include 50 adult patients scheduled for craniotomy for supratentorial brain tumor resection under general anesthesia. Patients will be randomized to receive either mannitol (conventional group) or hypertonic sodium lactate (intervention group) infusion at the time of skin incision. Brain relaxation (primary outcome) will be assessed immediately after opening the dura by the neurosurgeon blinded to the treatment allocated using a validated 4-point scale. The primary outcome is the proportion of satisfactory brain relaxation, defined as brain relaxation score of 3 or 4. ETHICS AND DISSEMINATION This study was approved by the Ethics Committee (Comité de Protection des Personnes Est III) and authorized by the French Health Authority (Agence Nationale de Sécurité des Médicaments, Saint-Denis, France). The University Hospital of Besancon is the trial sponsor and the holder of all data and publication rights. Results of the study will be submitted for publication in a peer-review international medical journal and for presentation in abstract (oral or poster) in international peer-reviewed congresses. REGISTRATION The trial is registered with ClinicalTrials.gov (Identifier: NCT04488874, principal investigator: Prof Guillaume Besch, date of registration: July 28, 2020).
Collapse
Affiliation(s)
- Guillaume Besch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besancon, and EA 3920, University of Franche-Comte, Besancon, France
- *Correspondence: Guillaume Besch, Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besancon, 3 bvd Alexandre Fleming, 25030 Besancon, France (e-mail: )
| | - Anne-Laure Parmentier
- Clinical Methodology Center, INSERM CIC 1431, University Hospital of Besancon, and UMR 6249 Chrono Environment, University of Franche-Comte, Besancon, France
| | - Francis Berthier
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besancon, Besancon, France
| | - Hélène Jaeg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besancon, Besancon, France
| | - Julien Villeneuve
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besancon, Besancon, France
| | - Fethi Hammoudi
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besancon, Besancon, France
| | - Nans Scaringella
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besancon, Besancon, France
| | - Anne-Laure Clairet
- Department of Pharmacy, University Hospital of Besancon, and Interaction Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comte (UBFC), INSERM, EFS BFC, Besancon, France
| | - Lucie Vettoretti
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besancon, Besancon, France
| | - Gilles Chopard
- Department of Neurology, University Hospital of Besancon, and EA 481 Neuroscience, IFR 133, University of Bourgogne Franche-Comte, Besancon, France
| | - Laurent Thines
- Department of Neurosurgery, University Hospital of Besancon, Besancon, France
| | - David Ferreira
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besancon, and EA 481 Neuroscience, University of Bourgogne Franche-Comte, Besancon, France
| | - Emmanuel Samain
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besancon, and EA 3920, University of Franche-Comte, Besancon, France
| | - Sebastien Pili-Floury
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besancon, and EA 3920, University of Franche-Comte, Besancon, France
| |
Collapse
|
34
|
Nordström CH, Forsse A, Jakobsen RP, Mölström S, Nielsen TH, Toft P, Ungerstedt U. Bedside interpretation of cerebral energy metabolism utilizing microdialysis in neurosurgical and general intensive care. Front Neurol 2022; 13:968288. [PMID: 36034291 PMCID: PMC9399721 DOI: 10.3389/fneur.2022.968288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
The microdialysis technique was initially developed for monitoring neurotransmitters in animals. In 1995 the technique was adopted to clinical use and bedside enzymatic analysis of glucose, pyruvate, lactate, glutamate and glycerol. Under clinical conditions microdialysis has also been used for studying cytokines, protein biomarkers, multiplex proteomic and metabolomic analyses as well as for pharmacokinetic studies and evaluation of blood-brain barrier function. This review focuses on the variables directly related to cerebral energy metabolism and the possibilities and limitations of microdialysis during routine neurosurgical and general intensive care. Our knowledge of cerebral energy metabolism is to a large extent based on animal experiments performed more than 40 years ago. However, the different biochemical information obtained from various techniques should be recognized. The basic animal studies analyzed brain tissue homogenates while the microdialysis technique reflects the variables in a narrow zone of interstitial fluid surrounding the probe. Besides the difference of the volume investigated, the levels of the biochemical variables differ in different compartments. During bedside microdialysis cerebral energy metabolism is primarily reflected in measured levels of glucose, lactate and pyruvate and the lactate to pyruvate (LP) ratio. The LP ratio reflects cytoplasmatic redox-state which increases instantaneously during insufficient aerobic energy metabolism. Cerebral ischemia is characterized by a marked increase in intracerebral LP ratio at simultaneous decreases in intracerebral levels of pyruvate and glucose. Mitochondrial dysfunction is characterized by a moderate increase in LP ratio at a very marked increase in cerebral lactate and normal or elevated levels of pyruvate and glucose. The patterns are of importance in particular for interpretations in transient cerebral ischemia. A new technique for evaluating global cerebral energy metabolism by microdialysis of the draining cerebral venous blood is discussed. In experimental studies it has been shown that pronounced global cerebral ischemia is reflected in venous cerebral blood. Jugular bulb microdialysis has been investigated in patients suffering from subarachnoid hemorrhage, during cardiopulmonary bypass and resuscitation after out of hospital cardiac arrest. Preliminary results indicate that the new technique may give valuable information of cerebral energy metabolism in clinical conditions when insertion of an intracerebral catheter is contraindicated.
Collapse
Affiliation(s)
- Carl-Henrik Nordström
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- *Correspondence: Carl-Henrik Nordström
| | - Axel Forsse
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus Peter Jakobsen
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Simon Mölström
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
| | | | - Palle Toft
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Urban Ungerstedt
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
35
|
van Gemert LA, de Galan BE, Wevers RA, ter Heine R, Willemsen MA. Lactate infusion as therapeutical intervention: a scoping review. Eur J Pediatr 2022; 181:2227-2235. [PMID: 35304646 PMCID: PMC9110504 DOI: 10.1007/s00431-022-04446-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 02/02/2023]
Abstract
Traditionally, clinicians consider lactate as a waste product of anaerobic glycolysis. Interestingly, research has shown that lactate may serve as an alternative fuel for the brain to protect it against harm. The increasing scientific awareness of the potential beneficial side of lactate, however, is entering the clinic rather slowly. Following this, and realizing that the application of potential novel therapeutic strategies in pediatric populations often lags behind the development in adults, this review summarizes the key data on therapeutic use of intravenous infusion of sodium lactate in humans. PubMed and clinicaltrial.gov were searched up until November 2021 focusing on interventional studies in humans. Thirty-four articles were included in this review, with protocols of lactate infusion in adults with diabetes mellitus, traumatic brain injury, Alzheimer's disease, and cardiac disease. One study on lactate infusion in children was also included. Results of our literature search show that sodium lactate can be safely administrated, without major side effects. Additionally, the present literature clearly shows the potential benefits of therapeutic lactate infusion under certain pathological circumstances, including rather common clinical conditions like traumatic brain injury. CONCLUSION This review shows that lactate is a save, alternative energy source for the adult brain warranting studies on the potential therapeutic effects of sodium lactate infusion in children. WHAT IS KNOWN • Lactate is generally considered a waste product of anaerobic glycolysis. However, lactate also is an alternative fuel for different organs, including the brain. • Lactate infusion is not incorporated in standard care for any patient population. WHAT IS NEW • Thirty-four studies investigated the therapeutic use of intravenous sodium lactate in different patient populations, all with different study protocols. • Literature shows that lactate infusion may have beneficial effects in case of hypoglycemia, traumatic brain injury, and cardiac failure without the risk of major side effects.
Collapse
Affiliation(s)
- Loes A. van Gemert
- Department of Pediatric Neurology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bastiaan E. de Galan
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine, Maastricht UMC+, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Ron A. Wevers
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rob ter Heine
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michèl A. Willemsen
- Department of Pediatric Neurology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
36
|
Lactate Neuroprotection against Transient Ischemic Brain Injury in Mice Appears Independent of HCAR1 Activation. Metabolites 2022; 12:metabo12050465. [PMID: 35629969 PMCID: PMC9145226 DOI: 10.3390/metabo12050465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
Lactate can protect against damage caused by acute brain injuries both in rodents and in human patients. Besides its role as a metabolic support and alleged preferred neuronal fuel in stressful situations, an additional signaling mechanism mediated by the hydroxycarboxylic acid receptor 1 (HCAR1) was proposed to account for lactate’s beneficial effects. However, the administration of HCAR1 agonists to mice subjected to middle cerebral artery occlusion (MCAO) at reperfusion did not appear to exert any relevant protective effect. To further evaluate the involvement of HCAR1 in the protection against ischemic damage, we looked at the effect of HCAR1 absence. We subjected wild-type and HCAR1 KO mice to transient MCAO followed by treatment with either vehicle or lactate. In the absence of HCAR1, the ischemic damage inflicted by MCAO was less pronounced, with smaller lesions and a better behavioral outcome than in wild-type mice. The lower susceptibility of HCAR1 KO mice to ischemic injury suggests that lactate-mediated protection is not achieved or enhanced by HCAR1 activation, but rather attributable to its metabolic effects or related to other signaling pathways. Additionally, in light of these results, we would disregard HCAR1 activation as an interesting therapeutic strategy for stroke patients.
Collapse
|
37
|
Cai M, Wang H, Song H, Yang R, Wang L, Xue X, Sun W, Hu J. Lactate Is Answerable for Brain Function and Treating Brain Diseases: Energy Substrates and Signal Molecule. Front Nutr 2022; 9:800901. [PMID: 35571940 PMCID: PMC9099001 DOI: 10.3389/fnut.2022.800901] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Research to date has provided novel insights into lactate's positive role in multiple brain functions and several brain diseases. Although notable controversies and discrepancies remain, the neurobiological role and the metabolic mechanisms of brain lactate have now been described. A theoretical framework on the relevance between lactate and brain function and brain diseases is presented. This review begins with the source and route of lactate formation in the brain and food; goes on to uncover the regulatory effect of lactate on brain function; and progresses to gathering the application and concentration variation of lactate in several brain diseases (diabetic encephalopathy, Alzheimer's disease, stroke, traumatic brain injury, and epilepsy) treatment. Finally, the dual role of lactate in the brain is discussed. This review highlights the biological effect of lactate, especially L-lactate, in brain function and disease studies and amplifies our understanding of past research.
Collapse
Affiliation(s)
- Ming Cai
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbiao Wang
- Department of Physical Education, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Haihan Song
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Ruoyu Yang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Liyan Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiangli Xue
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Wanju Sun
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
- *Correspondence: Wanju Sun
| | - Jingyun Hu
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
- Jingyun Hu
| |
Collapse
|
38
|
Omori NE, Woo GH, Mansor LS. Exogenous Ketones and Lactate as a Potential Therapeutic Intervention for Brain Injury and Neurodegenerative Conditions. Front Hum Neurosci 2022; 16:846183. [PMID: 36267349 PMCID: PMC9577611 DOI: 10.3389/fnhum.2022.846183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic dysfunction is a ubiquitous underlying feature of many neurological conditions including acute traumatic brain injuries and chronic neurodegenerative conditions. A central problem in neurological patients, in particular those with traumatic brain injuries, is an impairment in the utilization of glucose, which is the predominant metabolic substrate in a normally functioning brain. In such patients, alternative substrates including ketone bodies and lactate become important metabolic candidates for maintaining brain function. While the potential neuroprotective benefits of ketosis have been recognized for up to almost a century, the majority of work has focused on the use of ketogenic diets to induce such a state, which is inappropriate in cases of acute disease due to the prolonged periods of time (i.e., weeks to months) required for the effects of a ketogenic diet to be seen. The following review seeks to explore the neuroprotective effects of exogenous ketone and lactate preparations, which have more recently become commercially available and are able to induce a deep ketogenic response in a fraction of the time. The rapid response of exogenous preparations makes their use as a therapeutic adjunct more feasible from a clinical perspective in both acute and chronic neurological conditions. Potentially, their ability to globally moderate long-term, occult brain dysfunction may also be relevant in reducing lifetime risks of certain neurodegenerative conditions. In particular, this review explores the association between traumatic brain injury and contusion-related dementia, assessing metabolic parallels and highlighting the potential role of exogenous ketone and lactate therapies.
Collapse
|
39
|
Wang R, He M, Qu F, Zhang J, Xu J. Lactate Albumin Ratio Is Associated With Mortality in Patients With Moderate to Severe Traumatic Brain Injury. Front Neurol 2022; 13:662385. [PMID: 35432157 PMCID: PMC9011050 DOI: 10.3389/fneur.2022.662385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a serious public health issue all over the world. This study was designed to evaluate the prognostic value of lactate to albumin ratio (LAR) on patients with moderate to severe TBI. Methods Clinical data of 273 moderate to severe TBI patients hospitalized in West China Hospital between May 2015 and January 2018 were collected. Multivariate logistic regression analyses were used to explore risk factors and construct a prognostic model of in-hospital mortality in this cohort. A receiver operating characteristic (ROC) curve was drawn to evaluate the discriminative ability of this model. Results Non-survivors had higher LAR than survivors (1.09 vs. 0.53, p < 0.001). Results of multivariate logistic regression analysis showed that Glasgow Coma Scale (GCS; odds ratio [OR] = 0.743, p = 0.001), blood glucose (OR = 1.132, p = 0.005), LAR (OR = 1.698, p = 0.022), subdural hematoma (SDH; OR = 2.889, p = 0.006), intraparenchymal hemorrhage (IPH; OR = 2.395, p = 0.014), and diffuse axonal injury (DAI; OR = 2.183, p = 0.041) were independent risk factors of in-hospital mortality in included patients. These six factors were utilized to construct the prognostic model. The area under the ROC curve (AUC) values of single lactate, albumin, and LAR were 0.733 (95% Cl; 0.673–0.794), 0.740 (95% Cl; 0.683–0.797), and 0.780 (95% Cl; 0.725–0.835), respectively. The AUC value of the prognostic model was 0.857 (95%Cl; 0.812–0.901), which was higher than that of LAR (Z = 2.1250, p < 0.05). Conclusions Lactate to albumin ratio is a readily available prognostic marker of moderate to severe TBI patients. A prognostic model incorporating LAR is beneficial for clinicians to evaluate possible progression and make treatment decisions in TBI patients.
Collapse
Affiliation(s)
- Ruoran Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Min He
| | - Fengyi Qu
- Department of Radiation Oncolygy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Jianguo Xu
| |
Collapse
|
40
|
Hypertonic lactate for the treatment of intracranial hypertension in patients with acute brain injury. Sci Rep 2022; 12:3035. [PMID: 35194150 PMCID: PMC8864009 DOI: 10.1038/s41598-022-07129-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
Hypertonic lactate (HL) is emerging as alternative treatment of intracranial hypertension following acute brain injury (ABI), but comparative studies are limited. Here, we examined the effectiveness of HL on main cerebral and systemic physiologic variables, and further compared it to that of standard hypertonic saline (HS). Retrospective cohort analysis of ABI subjects who received sequential osmotherapy with 7.5% HS followed by HL-given at equi-osmolar (2400 mOsmol/L) and isovolumic (1.5 mL/kg) bolus doses-to reduce sustained elevations of ICP (> 20 mmHg). The effect of HL on brain (intracranial pressure [ICP], brain tissue PO2 [PbtO2], cerebral microdialysis [CMD] glucose and lactate/pyruvate ratio [LPR]) and blood (chloride, pH) variables was examined at different time-points (30, 60, 90, 120 min vs. baseline), and compared to that of HS. A total of 34 treatments among 17 consecutive subjects (13 traumatic brain injury [TBI], 4 non-TBI) were studied. Both agents significantly reduced ICP (p < 0.001, at all time-points tested): when comparing treatment effectiveness, absolute ICP decrease in mmHg and the duration of treatment effect (median time with ICP < 20 mmHg following osmotherapy 183 [108-257] vs. 150 [111-419] min) did not differ significantly between HL and HS (all p > 0.2). None of the treatment had statistically significant effects on PbtO2 and CMD biomarkers. Treatment with HL did not cause hyperchloremia and resulted in a more favourable systemic chloride balance than HS (Δ blood chloride - 1 ± 2.5 vs. + 4 ± 3 mmol/L; p < 0.001). This is the first clinical study showing that HL has comparative effectiveness than HS for the treatment of intracranial hypertension, while at the same time avoiding hyperchloremic acidosis. Both agents had no significant effect on cerebral oxygenation and metabolism.
Collapse
|
41
|
Svedung Wettervik T, Hånell A, Howells T, Ronne-Engström E, Enblad P, Lewén A. Association of Arterial Metabolic Content with Cerebral Blood Flow Regulation and Cerebral Energy Metabolism-A Multimodality Analysis in Aneurysmal Subarachnoid Hemorrhage. J Intensive Care Med 2022; 37:1442-1450. [PMID: 35171061 PMCID: PMC9548938 DOI: 10.1177/08850666221080054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background In this study, the association of the arterial content of oxygen, carbon
dioxide, glucose, and lactate with cerebral pressure reactivity, energy
metabolism and clinical outcome after aneurysmal subarachnoid hemorrhage
(aSAH) was investigated. Methods In this retrospective study, 60 patients with aSAH, treated at the
neurointensive care (NIC), Uppsala University Hospital, Sweden, between 2016
and 2021 with arterial blood gas (ABG), intracranial pressure, and cerebral
microdialysis (MD) monitoring were included. The first 10 days were divided
into an early phase (day 1 to 3) and a vasospasm phase (day 4 to 10). Results Higher arterial lactate was independently associated with higher/worse
pressure reactivity index (PRx) in the early phase (β = 0.32,
P = .02), whereas higher pO2 had the
opposite association in the vasospasm phase (β = −0.30,
P = .04). Arterial glucose and pCO2 were not
associated with PRx. Higher arterial lactate (β = 0.29,
P = .05) was independently associated with higher
MD-glucose in the vasospasm phase, whereas higher pO2 had the
opposite association in the vasospasm phase (β = −0.33,
P = .03). Arterial glucose and pCO2 were not
associated with MD-glucose. Higher pCO2 in the early phase, lower
arterial glucose in both phases, and lower arterial lactate in the vasospasm
phase were associated (P < .05) with better clinical
outcome. Conclusions Arterial variables associated with more vasoconstriction (higher
pO2 and lower arterial lactate) were associated with better
cerebral pressure reactivity, but worse energy metabolism. In severe aSAH,
when cerebral large-vessel vasospasm with exhausted distal vasodilation is
common, more vasoconstriction could increase distal vasodilatory reserve and
pressure reactivity, but also reduce cerebral blood flow and metabolic
supply. The MD may be useful to monitor the net effects on cerebral
metabolism in PRx-targeted NIC.
Collapse
|
42
|
How Important Are Arterial Blood Gas Parameters for Severe Head Trauma in Children? JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.1016696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
Hu Y, Tao W. Microenvironmental Variations After Blood-Brain Barrier Breakdown in Traumatic Brain Injury. Front Mol Neurosci 2021; 14:750810. [PMID: 34899180 PMCID: PMC8662751 DOI: 10.3389/fnmol.2021.750810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is linked to several pathologies. The blood-brain barrier (BBB) breakdown is considered to be one of the initial changes. Further, the microenvironmental alteration following TBI-induced BBB breakdown can be multi-scaled, constant, and dramatic. The microenvironmental variations after disruption of BBB includes several pathological changes, such as cerebral blood flow (CBF) alteration, brain edema, cerebral metabolism imbalances, and accumulation of inflammatory molecules. The modulation of the microenvironment presents attractive targets for TBI recovery, such as reducing toxic substances, inhibiting inflammation, and promoting neurogenesis. Herein, we briefly review the pathological alterations of the microenvironmental changes following BBB breakdown and outline potential interventions for TBI recovery based on microenvironmental modulation.
Collapse
Affiliation(s)
- Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
44
|
Liang YY, Zhang LD, Luo X, Wu LL, Chen ZW, Wei GH, Zhang KQ, Du ZA, Li RZ, So KF, Li A. All roads lead to Rome - a review of the potential mechanisms by which exerkines exhibit neuroprotective effects in Alzheimer's disease. Neural Regen Res 2021; 17:1210-1227. [PMID: 34782555 PMCID: PMC8643060 DOI: 10.4103/1673-5374.325012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age-related neurodegenerative disorders such as Alzheimer’s disease (AD) have become a critical public health issue due to the significantly extended human lifespan, leading to considerable economic and social burdens. Traditional therapies for AD such as medicine and surgery remain ineffective, impractical, and expensive. Many studies have shown that a variety of bioactive substances released by physical exercise (called “exerkines”) help to maintain and improve the normal functions of the brain in terms of cognition, emotion, and psychomotor coordination. Increasing evidence suggests that exerkines may exert beneficial effects in AD as well. This review summarizes the neuroprotective effects of exerkines in AD, focusing on the underlying molecular mechanism and the dynamic expression of exerkines after physical exercise. The findings described in this review will help direct research into novel targets for the treatment of AD and develop customized exercise therapy for individuals of different ages, genders, and health conditions.
Collapse
Affiliation(s)
- Yi-Yao Liang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Li-Dan Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Xi Luo
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Li-Li Wu
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University; Guangdong Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhao-Wei Chen
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Guang-Hao Wei
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Kai-Qing Zhang
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Ze-An Du
- Department of Clinical Medicine, International School, Jinan University, Guangzhou, Guangdong Province, China
| | - Ren-Zhi Li
- International Department of the Affiliated High School of South China Normal University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| |
Collapse
|
45
|
Bajamal AH, Apriawan T, Ranuh IAR, Servadei F, Faris M, Al Fauzi A. Comparison of half-molar sodium lactate and mannitol to treat brain edema in severe traumatic brain injury: A systematic review. Chin J Traumatol 2021; 24:344-349. [PMID: 34344615 PMCID: PMC8606601 DOI: 10.1016/j.cjtee.2021.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Hypertonic fluids such as mannitol and half-molar sodium lactate are given to treat intracranial hypertension in patients with severe traumatic brain injury (TBI). In this study, sodium lactate was compared to mannitol in patients with TBI to investigate the efficacy in reducing intracranial pressure (ICP). METHODS This study was a systematic review with literature research on articles published in any year in the databases of PubMed, ScienceDirect, Asian Journal of Neurosurgery, and Cochrane Central Register of Controlled Trials. The keywords were "half-molar sodium lactate", "mannitol", "cerebral edema or brain swelling", and "severe traumatic brain injury". The inclusion criteria were (1) studies published in English, (2) randomized control trials or retrospective/prospective studies on TBI patients, and (3) therapies including half-molar sodium lactate and mannitol and (4) sufficient data such as mean difference (MD) and risk ratio (RR). Data analysis was conducted using Review Manager 5.3. RESULTS From 1499 studies, a total of 8 studies were eligible. Mannitol group reduced ICP of 0.65 times (MD 0.65; p = 0.64) and improved cerebral perfusion pressure of 0.61 times (MD 0.61; p = 0.88), better than the half-molar group of sodium lactate. But the half-molar group of sodium lactate maintained the mean arterial pressure level of 0.86 times, better than the mannitol group (MD 0.86; p = 0.09). CONCLUSION Half-molar sodium lactate is as effective as mannitol in reducing ICP in the early phase of brain injury, superior over mannitol in an extended period. It is able to prevent intracranial hypertension and give better brain tissue perfusion as well as more stable hemodynamics. Blood osmolarity is a concern as it increases serum sodium.
Collapse
Affiliation(s)
- Abdul Hafid Bajamal
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Tedy Apriawan
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - I.G.M. Aswin R. Ranuh
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Franco Servadei
- Department of Neurosurgery, Humanitas Clinical and Research Hospital, Humanitas University, Milan, Italy
| | - Muhammad Faris
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Asra Al Fauzi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia,Corresponding author.
| |
Collapse
|
46
|
Pandya JD, Leung LY, Hwang HM, Yang X, Deng-Bryant Y, Shear DA. Time-Course Evaluation of Brain Regional Mitochondrial Bioenergetics in a Pre-Clinical Model of Severe Penetrating Traumatic Brain Injury. J Neurotrauma 2021; 38:2323-2334. [PMID: 33544034 DOI: 10.1089/neu.2020.7379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial dysfunction is a pivotal target for neuroprotection strategies for traumatic brain injury (TBI). However, comprehensive time-course evaluations of mitochondrial dysfunction are lacking in the pre-clinical penetrating TBI (PTBI) model. The current study was designed to characterize temporal responses of mitochondrial dysfunction from 30 min to 2 weeks post-injury after PTBI. Anesthetized adult male rats were subjected to either PTBI or sham craniectomy (n = 6 animals per group × 7 time points). Animals were euthanized at 30 min, 3 h, 6 h, 24 h, 3 days, 7 days, and 14 days post-PTBI, and mitochondria were isolated from the ipsilateral hemisphere of brain regions near the injury core (i.e., frontal cortex [FC] and striatum [ST]) and a more distant region from the injury core (i.e., hippocampus [HIP]). Mitochondrial bioenergetics parameters were measured in real time using the high-throughput procedures of the Seahorse Flux Analyzer (Agilent Technologies, Santa Clara, CA). The post-injury time course of FC + ST showed a biphasic mitochondrial bioenergetics dysfunction response, indicative of reduced adenosine triphosphate synthesis rate and maximal respiratory capacity after PTBI. An initial phase of energy crisis was detected at 30 min (-42%; p < 0.05 vs. sham), which resolved to baseline levels between 3 and 6 h (non-significant vs. sham). This was followed by a second and more robust phase of bioenergetics dysregulation detected at 24 h that remained unresolved out to 14 days post-injury (-55% to -90%; p < 0.05 vs. sham). In contrast, HIP mitochondria showed a delayed onset of mitochondrial dysfunction at 7 days (-74%; p < 0.05 vs. sham) that remained evident out to 14 days (-51%; p < 0.05 vs. sham) post-PTBI. Collectively, PTBI-induced mitochondrial dysfunction responses were time and region specific, evident differentially at the injury core and distant region of PTBI. The current results provide the basis that mitochondrial dysfunction may be targeted differentially based on region specificity post-PTBI. Even more important, these results suggest that therapeutic interventions targeting mitochondrial dysfunction may require extended dosing regimens to achieve clinical efficacy after TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Lai Yee Leung
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Science (USUHS), Bethesda, Maryland, USA
| | - Hye M Hwang
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Xiaofang Yang
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Ying Deng-Bryant
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| |
Collapse
|
47
|
Sun B, He S, Liu B, Xu G, Guoji E, Feng L, Xu L, Chen D, Zhao W, Chen J, Gao Y, Zhang E. Stanniocalcin-1 Protected Astrocytes from Hypoxic Damage Through the AMPK Pathway. Neurochem Res 2021; 46:2948-2957. [PMID: 34268656 DOI: 10.1007/s11064-021-03393-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/04/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
Our previous studies revealed that the expression of stanniocalcin-1 (STC1) in astrocytes increased under hypoxic conditions. However, the role of STC1 in hypoxic astrocytes is not well understood. In this work, we first showed the increased expression of STC1 in astrocyte cell line and astrocytes in the brain tissues of mice after exposure to hypoxia. Then, we found that knockdown of STC1 inhibited cell viability and increased apoptosis. These effects were mediated by decreasing the levels of SIRT3, UCP2, and glycolytic genes and increasing the levels of ROS. Further studies suggested that STC1 silencing promoted oxidative stress and suppressed glycolysis by downregulating AMPKα1. Moreover, HIF-1α knockdown in hypoxic astrocytes led to decreased expression of STC1 and AMPKα1, indicating that the expression of STC1 was regulated by HIF-1α. In conclusion, our study showed that HIF-1α-induced STC1 could protect astrocytes from hypoxic damage by regulating glycolysis and redox homeostasis in an AMPKα1-dependent manner.
Collapse
Affiliation(s)
- Binda Sun
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Shu He
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Guoji E
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Lan Feng
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Licong Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Dewei Chen
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.,Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Wenqi Zhao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Jian Chen
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China. .,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China. .,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China. .,, Number 30, Gaotanyan Street, District of Shapingba, Chongqing, 400038, China.
| | - Erlong Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China. .,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China. .,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China. .,, Number 30, Gaotanyan Street, District of Shapingba, Chongqing, 400038, China.
| |
Collapse
|
48
|
Brain Protection after Anoxic Brain Injury: Is Lactate Supplementation Helpful? Cells 2021; 10:cells10071714. [PMID: 34359883 PMCID: PMC8305209 DOI: 10.3390/cells10071714] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
While sudden loss of perfusion is responsible for ischemia, failure to supply the required amount of oxygen to the tissues is defined as hypoxia. Among several pathological conditions that can impair brain perfusion and oxygenation, cardiocirculatory arrest is characterized by a complete loss of perfusion to the brain, determining a whole brain ischemic-anoxic injury. Differently from other threatening situations of reduced cerebral perfusion, i.e., caused by increased intracranial pressure or circulatory shock, resuscitated patients after a cardiac arrest experience a sudden restoration of cerebral blood flow and are exposed to a massive reperfusion injury, which could significantly alter cellular metabolism. Current evidence suggests that cell populations in the central nervous system might use alternative metabolic pathways to glucose and that neurons may rely on a lactate-centered metabolism. Indeed, lactate does not require adenosine triphosphate (ATP) to be oxidated and it could therefore serve as an alternative substrate in condition of depleted energy reserves, i.e., reperfusion injury, even in presence of adequate tissue oxygen delivery. Lactate enriched solutions were studied in recent years in healthy subjects, acute heart failure, and severe traumatic brain injured patients, showing possible benefits that extend beyond the role as alternative energetic substrates. In this manuscript, we addressed some key aspects of the cellular metabolic derangements occurring after cerebral ischemia-reperfusion injury and examined the possible rationale for the administration of lactate enriched solutions in resuscitated patients after cardiac arrest.
Collapse
|
49
|
Huang Z, Zhang Y, Zhou R, Yang L, Pan H. Lactate as Potential Mediators for Exercise-Induced Positive Effects on Neuroplasticity and Cerebrovascular Plasticity. Front Physiol 2021; 12:656455. [PMID: 34290615 PMCID: PMC8287254 DOI: 10.3389/fphys.2021.656455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/09/2021] [Indexed: 01/22/2023] Open
Abstract
The accumulated evidence from animal and human studies supports that exercise is beneficial to physical health. Exercise can upregulate various neurotrophic factors, activate neuroplasticity, and play a positive role in improving and enhancing cerebrovascular function. Due to its economy, convenience, and ability to prevent or ameliorate various aging-related diseases, exercise, a healthy lifestyle, is increasingly popularized by people. However, the mechanism by which exercise performs this function and how it is transmitted from muscles to the brain remains incompletely understood. Here, we review the beneficial effects of exercise with different intensities on the brain with a focus on the positive effects of lactate on neuroplasticity and cerebrovascular plasticity. Based on these recent studies, we propose that lactate, a waste previously misunderstood as a by-product of glycolysis in the past, may be a key signal molecule that regulates the beneficial adaptation of the brain caused by exercise. Importantly, we speculate that a central protective mechanism may underlie the cognitive benefits induced by exercise.
Collapse
Affiliation(s)
| | | | | | - Luodan Yang
- Cognitive and Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Hongying Pan
- Cognitive and Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
50
|
Sodium Lactate Accelerates M2 Macrophage Polarization and Improves Cardiac Function after Myocardial Infarction in Mice. Cardiovasc Ther 2021; 2021:5530541. [PMID: 34194542 PMCID: PMC8203388 DOI: 10.1155/2021/5530541] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/15/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background After myocardial infarction, anti-inflammatory macrophages perform key homeostatic functions that facilitate cardiac recovery and remodeling. Several studies have shown that lactate may serve as a modifier that influences phenotype of macrophage. However, the therapeutic role of sodium lactate in myocardial infarction (MI) is unclear. Methods MI was established by permanent ligation of the left anterior descending coronary artery followed by injection of saline or sodium lactate. Cardiac function was assessed by echocardiography. The cardiac fibrosis area was assessed by Masson trichrome staining. Macrophage phenotype was detected via qPCR, flow cytometry, and immunofluorescence. Signaling proteins were measured by Western blotting. Results Sodium lactate treatment following MI improved cardiac performance, enhanced anti-inflammatory macrophage proportion, reduced cardiac myocytes apoptosis, and increased neovascularization. Flow-cytometric analysis results reported that sodium lactate repressed the number of the IL-6+, IL-12+, and TNF-α+ macrophages among LPS-stimulated bone marrow-derived macrophages (BMDMs) and increased the mRNA levels of Arg-1, YM1, TGF-β, and IL-10. Mechanistic studies revealed that sodium lactate enhanced the expression of P-STAT3. Furthermore, a STAT3 inhibitor eliminated sodium lactate-mediated promotion macrophage polarization. Conclusion Sodium lactate facilitates anti-inflammatory M2 macrophage polarization and protects against MI by regulating P-STAT3.
Collapse
|