1
|
Razzaq Meo S, Van de Wiele T, Defoirdt T. Indole signaling in Escherichia coli: a target for antivirulence therapy? Gut Microbes 2025; 17:2499573. [PMID: 40329925 PMCID: PMC12064070 DOI: 10.1080/19490976.2025.2499573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/14/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
Pathogenic Escherichia coli are a major cause of infections in both humans and animals, leading to conditions such as severe diarrheal diseases, urinary tract infections, enteritis, and septicemia. To combat bacterial infections, antibiotics are widely utilized. However, the extensive and inappropriate use of antibiotics has fueled the development and spread of antibiotic resistance, posing a significant challenge to the effective treatment of E. coli. There is consequently an urgent need to explore alternative therapies to control such infections. This review provides an overview of the recent findings concerning indole signaling in E. coli. E. coli uses indole as a quorum sensing molecule, and indole signaling has been reported to decrease various virulence factors in pathogenic E. coli, including motility, biofilm formation, adherence to host cells, expression of the LEE pathogenicity island, and formation of attaching and effacing lesions. This makes indole signaling an interesting target for the development of new therapeutics in the framework of antivirulence therapy. Both natural and synthetic indole analogues have been explored as potential virulence inhibitors. This alternative approach could be advantageous, as it will exert less selective pressure for resistance development than conventional antibiotics.
Collapse
Affiliation(s)
- Sofia Razzaq Meo
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Gent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Gent, Belgium
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Gent, Belgium
| |
Collapse
|
2
|
Zhao Y, Zou K, Meng X, Shen L, Qiu G, Wang Y, Zhao H. Study on bioleaching methods and microbial-mineral interaction of ion-adsorption type rare earth ore. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125422. [PMID: 40252422 DOI: 10.1016/j.jenvman.2025.125422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Rare earth elements (REEs) are non-renewable strategic resources that are highly important for national security and development. However, the efficient and environmentally friendly mining and utilization of REEs face major challenges. Bioleaching is a clean process with the potential to replace environmentally hazardous chemical extraction methods. The present study investigated the effects of three bioleaching methods by Aspergillus niger on the extraction of ion-adsorption rare earth ore. In addition, the interaction between strain and minerals was explored by combining various characterization methods (XRD, FT-IR, Raman and SEM-EDS) and untargeted metabolomics. These findings indicated that the three-step bioleaching method was the most effective. Aspergillus niger leaches REEs through both direct action of the strain and indirect action of metabolites without destroying the mineral structure. Direct leaching (one-step and two-step methods) has been demonstrated to affect the cell morphology and structure of Aspergillus niger. Furthermore, Aspergillus niger had a certain adsorption capacity for REEs. Metabolomics analysis revealed that Aspergillus niger exhibited a regulatory response to environmental stresses during direct bioleaching, modulating tryptophan metabolism (one-step method) and the biosynthesis of secondary metabolites (two-step method). Bioleaching enables the recovery of REEs through environmentally friendly (readily biodegradable and non-toxic) metabolites produced by microbial growth, providing a green pathway for the sustainable mining of ion-adsorption rare earth ores.
Collapse
Affiliation(s)
- Yu Zhao
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Kui Zou
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Xiaoyu Meng
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Li Shen
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Guanzhou Qiu
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Yunyan Wang
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Hongbo Zhao
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China.
| |
Collapse
|
3
|
Ganusova EE, Banerjee I, Seats T, Alexandre G. Indole-3-acetic acid (IAA) protects Azospirillum brasilense from indole-induced stress. Appl Environ Microbiol 2025; 91:e0238424. [PMID: 40130845 PMCID: PMC12016523 DOI: 10.1128/aem.02384-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Azospirillum brasilense is plant-growth promoting rhizobacteria that produces the phytohormone indole-3-acetic acid (IAA) to induce changes in plant root architecture. The major pathway for IAA biosynthesis in A. brasilense converts tryptophan into indole-3-pyruvic acid (I3P) and then, through the rate-limiting enzyme, indole-3-pyruvate decarboxylase (IpdC), into IAA. Here, we characterize the potential role for IAA biosynthesis in the physiology of these bacteria by characterizing the expression pattern of the ipdC promoter, analyzing an A. brasilense ipdC mutant using multiple physiological assays and characterizing the effect of I3P, which likely accumulates in the absence of ipdC and affects bacterial physiology. We found that the ipdC mutant derivative has a reduced growth rate and an altered physiology, including reduced translation activity as well as a more depolarized membrane potential compared to the parent strain. Similar effects could be recapitulated in the parent strain by exposing these cells to increasing concentrations of I3P, as well as other indole intermediates of IAA biosynthesis. Our results also indicate a protective role for IAA against the harmful effects of indole derivatives, with exogenous IAA restoring the membrane potential of cells exposed to indole derivatives for prolonged periods. These protective effects appeared to restore cell physiology, including in the wheat rhizosphere. Together, our data suggest that the IAA biosynthesis pathway plays a major role in A. brasilense physiology by maintaining membrane potential homeostasis and regulating translation, likely to mitigate the potential membrane-damaging effects of indoles that accumulate during growth under stressful conditions.IMPORTANCEIAA is widely synthesized in bacteria, particularly in soil and rhizosphere bacteria, where it functions as a phytohormone to modulate plant root architecture. IAA as a secondary metabolite has been shown to serve as a signaling molecule in several bacterial species, but the role of IAA biosynthesis in the physiology of the producing bacterium remains seldom explored. Results obtained here suggest that IAA serves to protect A. brasilense from the toxic effect of indoles, including metabolite biosynthetic precursors of IAA, on membrane potential homeostasis. Given the widespread production of IAA in soil bacteria, this protective effect of IAA may be conserved in diverse soil bacteria.
Collapse
Affiliation(s)
- Elena E. Ganusova
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, USA
| | - Ishita Banerjee
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, USA
| | - Trey Seats
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, USA
| | - Gladys Alexandre
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
4
|
Zhu Y, Zhang X, Zhou W, Qi L, Yang J, Chen F, Li Z, Guan C. Synergistic contributions of plant growth-promoting rhizobacteria and exogenous fulvic acid to enhance phytoremediation efficiency of perfluorooctanoic acid (PFOA)-contaminated soils: Boosting PFOA bioavailability and elevating pak choi tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176862. [PMID: 39414053 DOI: 10.1016/j.scitotenv.2024.176862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic perfluoroalkyl compound, has caused extensive soil contamination over several decades, posing serious health risks to humans through bioaccumulation in plants and subsequent transfer via the food chain. Due to the durability of PFOA in soil and its propensity to migrate and accumulate in plants, phytoremediation has been recognized as an effective remediation method. However, the phytotoxicity of PFOA and the adsorption of PFOA by soil hindered the efficiency of traditional phytoremediation. Therefore, this research employed plant growth-promoting rhizobacteria (PGPR)-assisted phytoremediation, augmented with the bio-stimulant fulvic acid (FA), to devise an effective soil remediation strategy tailored for PFOA contamination removal. The results indicated that Rhizobium sp. strain ZY2, endowed with PGP traits, significantly increased the root weight and shoot weight of pak choi by 194.67 % and 37.38 %, respectively, versus the non-inoculation treatment. Furthermore, inoculation with strain ZY2 enhanced soil alkaline phosphatase, protease, and cellulase activities, bolstering soil nutrient cycling and resource availability. On the other hand, compared to treatment with strain ZY2 alone, additional exogenous FA drastically reduced the residual fraction of PFOA in soil from 34.1 % to 1.9 %, likely mediated by complex electrostatic and hydrophobic interactions between FA and soil components. Ultimately, FA addition increased PFOA concentration in pak choi by 8.1-fold. Furthermore, FA could increase the relative abundance of beneficial rhizosphere bacteria (Actinobacterota and Methylotener, etc.), thereby creating a more favorable microenvironment for plant growth. In conclusion, the combined use of strain ZY2 and FA in phytoremediation notably strengthened plant resilience to PFOA, minimized soil sorption, and achieved high remediation efficacy, offering an effective system to mitigate PFOA-soil pollution's environmental and health risks.
Collapse
Affiliation(s)
- Yalan Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoge Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenqing Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lihua Qi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jingjing Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Fenyan Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhiman Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Xu Y, Feng J, Hu Y, Chen L, Qin W, Chen C, Yan M, Guo H. Hub Metabolites Promote the Bioflocculant Production in a Biomass-Degrading Bacterium Pseudomonas boreopolis GO2. Microb Physiol 2024; 35:1-12. [PMID: 39616990 DOI: 10.1159/000542892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION The low yield of bioflocculants has been a bottleneck problem that limits their industrial applications. Understanding the metabolic mechanism of bacteria that produce bioflocculants could provide valuable insights and strategies to directly regulate their yield in future. METHODS To investigate the change of metabolites in the process of bioflocculant production by a biomass-degrading bacterium, Pseudomonas boreopolis GO2, an untargeted metabolome analysis was performed. RESULTS The results showed that metabolites significantly differed during the fermentation process when corn stover was used as the sole carbon source. The differential metabolites were divided into four co-expression modules based on the weighted gene co-expression network analysis. Among them, a module (yellow module) was closely related to the flocculating efficiency, and the metabolites in this module were mainly involved in carbohydrate, lipid, and amino acid metabolism. The top 30 metabolites with the highest degree in the yellow module were identified as hub metabolites for bioflocculant production. Finally, 10 hub metabolites were selected to perform the additional experiments, and the addition of L-rhamnose, tyramine, tryptophan, and glutaric acid alone all could significantly improve the flocculating efficiency of GO2 strain. CONCLUSION These results indicated that the hub metabolites were key for bioflocculant production in GO2 strain, and could help guide the improvement of high-efficiency and low-cost bioflocculant production.
Collapse
Affiliation(s)
- Yijie Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiayin Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - YuXuan Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chen Chen
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, China
- Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Maocang Yan
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, China
- Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Zhang Z, Zhu N, Yang G, Leng F, Wang Y. Bioinformatics analysis of gene bhsA and its role in Ca 2+ -treated Escherichia coli. J Basic Microbiol 2024; 64:e2300222. [PMID: 37919047 DOI: 10.1002/jobm.202300222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 11/04/2023]
Abstract
One of the commonly employed methods in molecular biology is to utilize calcium chloride to treat Escherichia coli for the preparation of competent cells to facilitate foreign gene expression. However, the molecular mechanisms underlying Ca2+ mediation of competent cell formation and identification of the key genes involved in the process remain unclear. In previous studies, the combined analysis of transcriptomics and proteomics revealed bhsA as one of the crucial genes. The gene ontology functional annotation of bhsA identified it as a member of the YhcN family encoding an outer membrane protein that confers resistance to various stresses. The IPR0108542 domain found within the protein plays a significant role in stress response and biofilm formation in E. coli. Analysis of the STRING database showed that the proteins interacting with bhsA are primarily involved in biofilm formation and stress resistance. Using the RED homologous recombination method, a bhsA deletion strain was constructed to verify its role in E. coli genetic transformation. Although the mutant strain showed no significant differences in morphology or growth trend when compared to the wild-type strain, its transformation efficiency decreased by 1.14- and 1.64-fold with plasmids pUC19 and pET-32a. Furthermore, the 1-N-phenylnaphthylamine assay indicated a 1.71-fold reduction in cell membrane permeability in the mutant strain.
Collapse
Affiliation(s)
- Zefang Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Guangrui Yang
- Gansu Zhongshang Food Quality Test and Detection Co., Ltd., Lanzhou, China
- Gansu Business Science and Technology Institute Co., Ltd., Lanzhou, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
7
|
Kim K, Jinno C, Li X, Bravo D, Cox E, Ji P, Liu Y. Impact of an oligosaccharide-based polymer on the metabolic profiles and microbial ecology of weanling pigs experimentally infected with a pathogenic E. coli. J Anim Sci Biotechnol 2024; 15:1. [PMID: 38169416 PMCID: PMC10759389 DOI: 10.1186/s40104-023-00956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/29/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E. coli (ETEC) F18 in a manner similar to carbadox. The objective of this study was to investigate the impacts of oligosaccharide-based polymer or antibiotic on the host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18. RESULTS Multivariate analysis highlighted the differences in the metabolic profiles of serum and colon digesta which were predominantly found between pigs supplemented with oligosaccharide-based polymer and antibiotic. The relative abundance of metabolic markers of immune responses and nutrient metabolisms, such as amino acids and carbohydrates, were significantly differentiated between the oligosaccharide-based polymer and antibiotic groups (q < 0.2 and fold change > 2.0). In addition, pigs in antibiotic had a reduced (P < 0.05) relative abundance of Lachnospiraceae and Lactobacillaceae, whereas had greater (P < 0.05) Clostridiaceae and Streptococcaceae in the colon digesta on d 11 post-inoculation (PI) compared with d 5 PI. CONCLUSIONS The impact of oligosaccharide-based polymer on the metabolic and microbial profiles of pigs is not fully understood, and further exploration is needed. However, current research suggest that various mechanisms are involved in the enhanced disease resistance and performance in ETEC-challenged pigs by supplementing this polymer.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, CA, 95616, USA
- Present Affiliation: Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Cynthia Jinno
- Department of Animal Science, University of California, Davis, CA, 95616, USA
- Present Affiliation: Cedars-Sinai Medical Center, Los Angeles, CA, 90084, USA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - David Bravo
- Pancosma|ADM, 1180, Rolle, Switzerland
- Present Affiliation: Nutreco Exploration, Nutreco, The Netherlands
| | - Eric Cox
- Department of Virology, Parasitology and Immunology, Ghent University, 9000, Ghent, Belgium
| | - Peng Ji
- Department of Nutrition, University of California, Davis, CA, 95616, USA
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Gamit HA, Amaresan N. Methylobacterium spp. mitigation of UV stress in mung bean (Vigna radiata L.). Photochem Photobiol Sci 2023; 22:2839-2850. [PMID: 37838625 DOI: 10.1007/s43630-023-00490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Methylotrophs are a diverse group of bacteria that abundantly colonize the phyllosphere and have great potential to withstand UV irradiation because of their pigmented nature and ability to promote plant growth through various mechanisms. The present study investigated the effects of UVB radiation on plant growth-promoting (PGP) properties of methylotrophic bacteria and the growth of Vigna radiata L. A total of 55 methylotrophic bacteria were isolated from desert plants, and 15 methylotrophs were resistant to UVB radiation for 4 h. All UVB-resistant methylotrophs possess a methyldehydrogenase gene. Identification based on 16S rRNA gene sequencing revealed that all 15 UVB-resistant methylotrophs belonged to the genera Methylorubrum (07), Methylobacterium (07), and Rhodococcus (01). Screening of methylotrophs for PGP activity in the presence and absence of UVB radiation revealed that all isolates showed ACC deaminase activity and growth on a nitrogen-free medium. Furthermore, the production of IAA-like substances ranged from 8.62 to 85.76 µg/mL, siderophore production increased from 3.47 to 65.75% compared to the control. Seed germination assay with V. radiata L. (mung bean) exposed to UVB radiation revealed that methylotrophs improved seed germination, root length, and shoot length compared to the control. The present findings revealed that the isolates SD3, SD2, KD1, KD5, UK1, and UK3 reduced the deleterious effects of UVB radiation on mung bean plants and can be used to protect seedlings from UVB radiation for sustainable agriculture.
Collapse
Affiliation(s)
- Harshida A Gamit
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat, 394 350, Gujarat, India
| | - Natarajan Amaresan
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat, 394 350, Gujarat, India.
| |
Collapse
|
9
|
Algavi YM, Borenstein E. A data-driven approach for predicting the impact of drugs on the human microbiome. Nat Commun 2023; 14:3614. [PMID: 37330560 PMCID: PMC10276880 DOI: 10.1038/s41467-023-39264-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023] Open
Abstract
Many medications can negatively impact the bacteria residing in our gut, depleting beneficial species, and causing adverse effects. To guide personalized pharmaceutical treatment, a comprehensive understanding of the impact of various drugs on the gut microbiome is needed, yet, to date, experimentally challenging to obtain. Towards this end, we develop a data-driven approach, integrating information about the chemical properties of each drug and the genomic content of each microbe, to systematically predict drug-microbiome interactions. We show that this framework successfully predicts outcomes of in-vitro pairwise drug-microbe experiments, as well as drug-induced microbiome dysbiosis in both animal models and clinical trials. Applying this methodology, we systematically map a large array of interactions between pharmaceuticals and human gut bacteria and demonstrate that medications' anti-microbial properties are tightly linked to their adverse effects. This computational framework has the potential to unlock the development of personalized medicine and microbiome-based therapeutic approaches, improving outcomes and minimizing side effects.
Collapse
Affiliation(s)
- Yadid M Algavi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
10
|
Pallavi, Mishra RK, Sahu PK, Mishra V, Jamal H, Varma A, Tripathi S. Isolation and characterization of halotolerant plant growth promoting rhizobacteria from mangrove region of Sundarbans, India for enhanced crop productivity. FRONTIERS IN PLANT SCIENCE 2023; 14:1122347. [PMID: 37152133 PMCID: PMC10158646 DOI: 10.3389/fpls.2023.1122347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/24/2023] [Indexed: 12/07/2023]
Abstract
Halotolerant plant growth promoting rhizobacteria (PGPR) are beneficial microorganisms utilized to mitigate the biotic and abiotic stresses in plants. The areas of Sundarban mangroves of West Bengal, India have been reported to be rich in halotolerant microflora, yet major area remains unexplored. The present study, therefore, aims to map down the region-specific native microbial community potent of salt tolerance, plant growth promoting (PGP) activity and antagonistic activity against fungal pathogens. Bacterial samples were isolated from the saline soil of the Sundarban mangroves. A total of 156 bacterial samples were isolated and 20 were screened for their salt tolerance potential. These isolates were characterised using morphological, biochemical, and molecular approaches. Based on 16s rRNA sequencing, they were classified into 4 different genera, including Arthrobacter sp. (01 isolate), Pseudomonas plecoglossicida (01 isolate), Kocuria rosea (01 isolate), and Bacillus (17 isolates). The halotolerant isolates which possessed plant growth promoting traits including phosphate, and zinc solubilization, indole acetic acid production, siderophore, and ammonia generation were selected. Further, the effect of two halotolerant isolates GN-5 and JR-12 which showed most prominent PGP activities was evaluated in pea plant under high salinity conditions. The isolates improved survival by promoting germination (36 to 43%) and root-shoot growth and weight of pea plant in comparison to non-inoculated control plants. In a subsequent dual culture confrontation experiment, both these halo-tolerant isolates showed antagonistic activities against the aggressive root rot disease-causing Macrophomina phaseolina (Tassi) Goid NAIMCC-F-02902. The identified isolates could be used as potential bioagents for saline soils, with potential antagonistic effect on root rot disease. However, further studies at the physiological and molecular level would help to delineate a detail mechanistic understanding of broad-spectrum defence against salinity and potential biotic pathogen.
Collapse
Affiliation(s)
- Pallavi
- Amity Institute of Microbial Technology, Amity University, Noida, India
- Department of Microbiology, Indian Council of Agricultural Research – National Bureau of Agriculturally Important Microorganism, Kushmaur, Mau, Uttar Pradesh, India
| | - Rohit Kumar Mishra
- Centre of Science and Society, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Pramod Kumar Sahu
- Department of Microbiology, Indian Council of Agricultural Research – National Bureau of Agriculturally Important Microorganism, Kushmaur, Mau, Uttar Pradesh, India
| | - Vani Mishra
- Nanotechnology Application Centre, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Hafiza Jamal
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Swati Tripathi
- Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|
11
|
Carrillo‐Carrasco VP, Hernandez‐Garcia J, Mutte SK, Weijers D. The birth of a giant: evolutionary insights into the origin of auxin responses in plants. EMBO J 2023; 42:e113018. [PMID: 36786017 PMCID: PMC10015382 DOI: 10.15252/embj.2022113018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
The plant signaling molecule auxin is present in multiple kingdoms of life. Since its discovery, a century of research has been focused on its action as a phytohormone. In land plants, auxin regulates growth and development through transcriptional and non-transcriptional programs. Some of the molecular mechanisms underlying these responses are well understood, mainly in Arabidopsis. Recently, the availability of genomic and transcriptomic data of green lineages, together with phylogenetic inference, has provided the basis to reconstruct the evolutionary history of some components involved in auxin biology. In this review, we follow the evolutionary trajectory that allowed auxin to become the "giant" of plant biology by focusing on bryophytes and streptophyte algae. We consider auxin biosynthesis, transport, physiological, and molecular responses, as well as evidence supporting the role of auxin as a chemical messenger for communication within ecosystems. Finally, we emphasize that functional validation of predicted orthologs will shed light on the conserved properties of auxin biology among streptophytes.
Collapse
Affiliation(s)
| | | | - Sumanth K Mutte
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| | - Dolf Weijers
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| |
Collapse
|
12
|
Chebotar VK, Chizhevskaya EP, Baganova ME, Keleinikova OV, Yuzikhin OS, Zaplatkin AN, Khonina OV, Kostitsin RD, Lapenko NG. Endophytes from Halotolerant Plants Aimed to Overcome Salinity and Draught. PLANTS (BASEL, SWITZERLAND) 2022; 11:2992. [PMID: 36365445 PMCID: PMC9658857 DOI: 10.3390/plants11212992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The aim of our research was to study the endosphere of four halophytic plants: Salicornia europaea L., Salsola australis (R.Br.), Bassia sedoides (Pall.) and Kochia prostrata (L.) Schrad. from arid and saline areas of the Stavropol Territory, Russia. In total, 28 endophyte strains were isolated from the roots and stems of these halophytic plants. Most of the isolates (23 out of 28) were identified as Bacillus sp. while others belonged to the genera Oceanobacillus, Paenibacillus, Pantoea, Alcaligenes and Myroides. Three strains of Bacillus sp. (Se5R, Se1-1R, and Se1-3S), isolated from the S. europaea were capable of growth at 55 °C and in 10% of NaCl. Strains Se1-4S, Kp20-2S, and Bs11-2S Bacillus sp. (isolated from the S. australis, K. prostrata and B. sedoides, respectively) demonstrated strong plant growth promoting activity: 85-265% over control lettuce plants and a high degree of growth suppression (59.1-81.2%) of pathogenic fungi Fusarium oxysporum, Bipolaris sorokiniana and Rhizoctonia solani. Selected strains can be promising candidates for the development of bioinoculants to facilitate salt soil phytoremediation and be beneficial for mitigating the salt stress to the plants growing in salt-affected habitats.
Collapse
Affiliation(s)
- Vladimir K. Chebotar
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy, 3, Pushkin, St. Petersburg 196608, Russia
| | - Elena P. Chizhevskaya
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy, 3, Pushkin, St. Petersburg 196608, Russia
| | - Maria E. Baganova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy, 3, Pushkin, St. Petersburg 196608, Russia
| | - Oksana V. Keleinikova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy, 3, Pushkin, St. Petersburg 196608, Russia
| | - Oleg S. Yuzikhin
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy, 3, Pushkin, St. Petersburg 196608, Russia
| | - Alexander N. Zaplatkin
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy, 3, Pushkin, St. Petersburg 196608, Russia
| | - Olesya V. Khonina
- North Caucasus Federal Scientific Agrarian Center, Federal State Budgetary Scientific Institution, Stavropol Territory, Nikonova str., 49, Shpakovsky District, Mikhailovsk 356241, Russia
| | - Roman D. Kostitsin
- North Caucasus Federal Scientific Agrarian Center, Federal State Budgetary Scientific Institution, Stavropol Territory, Nikonova str., 49, Shpakovsky District, Mikhailovsk 356241, Russia
| | - Nina G. Lapenko
- North Caucasus Federal Scientific Agrarian Center, Federal State Budgetary Scientific Institution, Stavropol Territory, Nikonova str., 49, Shpakovsky District, Mikhailovsk 356241, Russia
| |
Collapse
|
13
|
Yakimovich KM, Quarmby LM. A metagenomic study of the bacteria in snow algae microbiomes. Can J Microbiol 2022; 68:507-520. [PMID: 35512372 DOI: 10.1139/cjm-2021-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacterial communities found in snow algae blooms have been described in terms of their 16S rRNA gene community profiles, but little information exists on their metabolic potential. Previously, we reported that several bacterial taxa are common across snow algae blooms in the southwestern mountains of the Coast Range in British Columbia, Canada. Here, we further this work by reporting a partial bacterial metagenome from the same snow algal microbiomes. Using shotgun metagenomic data, we constructed metagenomically assembled bacterial genomes (MAGs). Of the total 54 binned MAGs, 28 were bacterial and estimated to be at least 50% complete based on single copy core genes. The 28 MAGs fell into five Classes: Actinomycetia, Alphaproteobacteria, Bacteroidia, Betaproteobacteria and Gammaproteobacteria. All MAGs were assigned to a class, 27 to an order, 25 to family, 18 to genus, and none to species. MAGs showed the potential to support algal growth by synthesizing B-vitamins and growth hormones. There was also widespread adaptation to the low oxygen environment of biofilms, including synthesis of high-affinity terminal oxidases and anaerobic pathways for cobalamin synthesis. Also notable, was the absence of N2 fixation, and the presence of incomplete denitrification pathways suggestive of NO signalling within the microbiome.
Collapse
Affiliation(s)
- Kurt Michael Yakimovich
- Simon Fraser University, 1763, Molecular Biology and Biochemistry, Burnaby, British Columbia, Canada;
| | - Lynne M Quarmby
- Simon Fraser University, 1763, Department of Molecular Biology and Biochemistry, Burnaby, Canada;
| |
Collapse
|
14
|
Wang J, Tang X, Mo Z, Mao Y. Metagenome-Assembled Genomes From Pyropia haitanensis Microbiome Provide Insights Into the Potential Metabolic Functions to the Seaweed. Front Microbiol 2022; 13:857901. [PMID: 35401438 PMCID: PMC8984609 DOI: 10.3389/fmicb.2022.857901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Pyropia is an economically important edible red alga worldwide. The aquaculture industry and Pyropia production have grown considerably in recent decades. Microbial communities inhabit the algal surface and produce a variety of compounds that can influence host adaptation. Previous studies on the Pyropia microbiome were focused on the microbial components or the function of specific microbial lineages, which frequently exclude metabolic information and contained only a small fraction of the overall community. Here, we performed a genome-centric analysis to study the metabolic potential of the Pyropia haitanensis phycosphere bacteria. We reconstructed 202 unique metagenome-assembled genomes (MAGs) comprising all major taxa present within the P. haitanensis microbiome. The addition of MAGs to the genome tree containing all publicly available Pyropia-associated microorganisms increased the phylogenetic diversity by 50% within the bacteria. Metabolic reconstruction of the MAGs showed functional redundancy across taxa for pathways including nitrate reduction, taurine metabolism, organophosphorus, and 1-aminocyclopropane-1-carboxylate degradation, auxin, and vitamin B12 synthesis. Some microbial functions, such as auxin and vitamin B12 synthesis, that were previously assigned to a few Pyropia-associated microorganisms were distributed across the diverse epiphytic taxa. Other metabolic pathways, such as ammonia oxidation, denitrification, and sulfide oxidation, were confined to specific keystone taxa.
Collapse
Affiliation(s)
- Junhao Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
- Yazhou Bay Innovation Research Institute, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources of Hainan Province, Hainan Tropical Ocean University, Sanya, China
| |
Collapse
|
15
|
Lombardino J, Bijlani S, Singh NK, Wood JM, Barker R, Gilroy S, Wang CCC, Venkateswaran K. Genomic Characterization of Potential Plant Growth-Promoting Features of Sphingomonas Strains Isolated from the International Space Station. Microbiol Spectr 2022; 10:e0199421. [PMID: 35019675 PMCID: PMC8754149 DOI: 10.1128/spectrum.01994-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
In an ongoing microbial tracking investigation of the International Space Station (ISS), several Sphingomonas strains were isolated. Based on the 16S rRNA gene sequence, phylogenetic analysis identified the ISS strains as Sphingomonas sanguinis (n = 2) and one strain isolated from the Kennedy Space Center cleanroom (used to assemble various Mars mission spacecraft components) as Sphingomonas paucimobilis. Metagenomic sequence analyses of different ISS locations identified 23 Sphingomonas species. An abundance of shotgun metagenomic reads were detected for S. sanguinis in the location from where the ISS strains were isolated. A complete metagenome-assembled genome was generated from the shotgun reads metagenome, and its comparison with the whole-genome sequences (WGS) of the ISS S. sanguinis isolates revealed that they were highly similar. In addition to the phylogeny, the WGS of these Sphingomonas strains were compared with the WGS of the type strains to elucidate genes that can potentially aid in plant growth promotion. Furthermore, the WGS comparison of these strains with the well-characterized Sphingomonas sp. LK11, an arid desert strain, identified several genes responsible for the production of phytohormones and for stress tolerance. Production of one of the phytohormones, indole-3-acetic acid, was further confirmed in the ISS strains using liquid chromatography-mass spectrometry. Pathways associated with phosphate uptake, metabolism, and solubilization in soil were conserved across all the S. sanguinis and S. paucimobilis strains tested. Furthermore, genes thought to promote plant resistance to abiotic stress, including heat/cold shock response, heavy metal resistance, and oxidative and osmotic stress resistance, appear to be present in these space-related S. sanguinis and S. paucimobilis strains. Characterizing these biotechnologically important microorganisms found on the ISS and harnessing their key features will aid in the development of self-sustainable long-term space missions in the future. IMPORTANCESphingomonas is ubiquitous in nature, including the anthropogenically contaminated extreme environments. Members of the Sphingomonas genus have been identified as potential candidates for space biomining beyond earth. This study describes the isolation and identification of Sphingomonas members from the ISS, which are capable of producing the phytohormone indole-3-acetic acid. Microbial production of phytohormones will help future in situ studies, grow plants beyond low earth orbit, and establish self-sustainable life support systems. Beyond phytohormone production, stable genomic elements of abiotic stress resistance, heavy metal resistance, and oxidative and osmotic stress resistance were identified, rendering the ISS Sphingomonas isolate a strong candidate for biotechnology-related applications.
Collapse
Affiliation(s)
| | - Swati Bijlani
- University of Southern California, Los Angeles, California, USA
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jason M. Wood
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Richard Barker
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Simon Gilroy
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Clay C. C. Wang
- University of Southern California, Los Angeles, California, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
16
|
Hsiung RT, Chiu MC, Chou JY. Exogenous Indole-3-Acetic Acid Induced Ethanol Tolerance in Phylogenetically Diverse Saccharomycetales Yeasts. Microbes Environ 2022; 37. [PMID: 35082178 PMCID: PMC8958292 DOI: 10.1264/jsme2.me21053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Indole-3-acetic acid (IAA) is an exogenous growth regulatory signal that is produced by plants and various microorganisms. Microorganisms have been suggested to cross-communicate with each other through IAA-mediated signaling mechanisms. The IAA-induced tolerance response has been reported in several microorganisms, but has not yet been described in Saccharomycetales yeasts. In the present study, three common stressors (heat, osmotic pressure, and ethanol) were examined in relation to the influence of a pretreatment with IAA on stress tolerance in 12 different lineages of Saccharomyces cerevisiae. The pretreatment with IAA had a significant effect on the induction of ethanol tolerance by reducing the doubling time of S. cerevisiae growth without the pretreatment. However, the pretreatment did not significantly affect the induction of thermo- or osmotolerance. The IAA pretreatment decreased the lethal effects of ethanol on S. cerevisiae cells. Although yeasts produce ethanol to outcompete sympatric microorganisms, IAA is not a byproduct of this process. Nevertheless, the accumulation of IAA indicates an increasing number of microorganisms, and, thus, greater competition for resources. Since the “wine trait” is shared by both phylogenetically related and distinct lineages in Saccharomycetales, we conclude that IAA-induced ethanol tolerance is not specific to S. cerevisiae; it may be widely detected in both pre-whole genome duplication (WGD) and post-WGD yeasts belonging to several genera of Saccharomycetales.
Collapse
Affiliation(s)
- Ruo-Ting Hsiung
- Department of Biology, National Changhua University of Education
| | - Ming-Chung Chiu
- Department of Biology, National Changhua University of Education
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education
| |
Collapse
|
17
|
Tzipilevich E, Russ D, Dangl JL, Benfey PN. Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host Microbe 2021; 29:1507-1520.e4. [PMID: 34610294 DOI: 10.1016/j.chom.2021.09.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Although plant roots encounter a plethora of microorganisms in the surrounding soil, at the rhizosphere, plants exert selective forces on their bacterial colonizers. Unlike immune recognition of pathogenic bacteria, the mechanisms by which beneficial bacteria are selected and how they interact with the plant immune system are not well understood. To better understand this process, we studied the interaction of auxin-producing Bacillus velezensis FZB42 with Arabidopsis roots and found that activation of the plant immune system is necessary for efficient bacterial colonization and auxin secretion. A feedback loop is established in which bacterial colonization triggers an immune reaction and production of reactive oxygen species, which, in turn, stimulate auxin production by the bacteria. Auxin promotes bacterial survival and efficient root colonization, allowing the bacteria to inhibit fungal infection and promote plant health. Thus, a feedback loop between bacteria and the plant immune system promotes the fitness of both partners.
Collapse
Affiliation(s)
- Elhanan Tzipilevich
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute Duke University, Durham, NC 27708, USA
| | - Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute Duke University, Durham, NC 27708, USA.
| |
Collapse
|
18
|
Baggio G, Groves RA, Chignola R, Piacenza E, Presentato A, Lewis IA, Lampis S, Vallini G, Turner RJ. Untargeted Metabolomics Investigation on Selenite Reduction to Elemental Selenium by Bacillus mycoides SeITE01. Front Microbiol 2021; 12:711000. [PMID: 34603239 PMCID: PMC8481872 DOI: 10.3389/fmicb.2021.711000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Bacillus mycoides SeITE01 is an environmental isolate that transforms the oxyanion selenite (SeO 3 2 - ) into the less bioavailable elemental selenium (Se0) forming biogenic selenium nanoparticles (Bio-SeNPs). In the present study, the reduction of sodium selenite (Na2SeO3) by SeITE01 strain and the effect ofSeO 3 2 - exposure on the bacterial cells was examined through untargeted metabolomics. A time-course approach was used to monitor both cell pellet and cell free spent medium (referred as intracellular and extracellular, respectively) metabolites in SeITE01 cells treated or not withSeO 3 2 - . The results show substantial biochemical changes in SeITE01 cells when exposed toSeO 3 2 - . The initial uptake ofSeO 3 2 - by SeITE01 cells (3h after inoculation) shows both an increase in intracellular levels of 4-hydroxybenzoate and indole-3-acetic acid, and an extracellular accumulation of guanosine, which are metabolites involved in general stress response adapting strategies. Proactive and defensive mechanisms againstSeO 3 2 - are observed between the end of lag (12h) and beginning of exponential (18h) phases. Glutathione and N-acetyl-L-cysteine are thiol compounds that would be mainly involved in Painter-type reaction for the reduction and detoxification ofSeO 3 2 - to Se0. In these growth stages, thiol metabolites perform a dual role, both acting against the toxic and harmful presence of the oxyanion and as substrate or reducing sources to scavenge ROS production. Moreover, detection of the amino acids L-threonine and ornithine suggests changes in membrane lipids. Starting from stationary phase (24 and 48h), metabolites related to the formation and release of SeNPs in the extracellular environment begin to be observed. 5-hydroxyindole acetate, D-[+]-glucosamine, 4-methyl-2-oxo pentanoic acid, and ethanolamine phosphate may represent signaling strategies following SeNPs release from the cytoplasmic compartment, with consequent damage to SeITE01 cell membranes. This is also accompanied by intracellular accumulation of trans-4-hydroxyproline and L-proline, which likely represent osmoprotectant activity. The identification of these metabolites suggests the activation of signaling strategies that would protect the bacterial cells fromSeO 3 2 - toxicity while it is converting into SeNPs.
Collapse
Affiliation(s)
- Greta Baggio
- Department of Biotechnology, University of Verona, Verona, Italy
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ryan A. Groves
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Ian A. Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Kunkel BN, Johnson JMB. Auxin Plays Multiple Roles during Plant-Pathogen Interactions. Cold Spring Harb Perspect Biol 2021; 13:a040022. [PMID: 33782029 PMCID: PMC8411954 DOI: 10.1101/cshperspect.a040022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The plant hormone auxin governs many aspects of normal plant growth and development. Auxin also plays an important role in plant-microbe interactions, including interactions between plant hosts and pathogenic microorganisms that cause disease. It is now well established that indole-3-acetic acid (IAA), the most well-studied form of auxin, promotes disease in many plant-pathogen interactions. Recent studies have shown that IAA can act both as a plant hormone that modulates host signaling and physiology to increase host susceptibility and as a microbial signal that directly impacts the pathogen to promote virulence, but large gaps in our understanding remain. In this article, we review recent studies on the roles that auxin plays during plant-pathogen interactions and discuss the virulence mechanisms that many plant pathogens have evolved to manipulate host auxin signaling and promote pathogenesis.
Collapse
Affiliation(s)
- Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Joshua M B Johnson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
20
|
Alemneh AA, Cawthray GR, Zhou Y, Ryder MH, Denton MD. Ability to produce indole acetic acid is associated with improved phosphate solubilising activity of rhizobacteria. Arch Microbiol 2021; 203:3825-3837. [PMID: 33997908 DOI: 10.1007/s00203-021-02364-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Indole acetic acid (IAA) can upregulate genes encoding enzymes responsible for the synthesis of carboxylates involved in phosphorus (P) solubilisation. Here, we investigated whether IAA and its precursor affect the P-solubilising activity of rhizobacteria. A total of 841 rhizobacteria were obtained using taxonomically selective and enrichment isolation methods. Phylogenetic analysis revealed 15 genera of phosphate solubilising bacteria (PSB) capable of producing a wide range of IAA concentrations between 4.1 and 67.2 µg mL-1 in vitro. Addition of L-tryptophan to growth media improved the P-solubilising activity of PSB that were able to produce IAA greater than 20 µg mL-1. This effect was connected to the drop of pH and release of a high concentration of carboxylates, comprising α-ketoglutarate, cis-aconitate, citrate, malate and succinate. An increase in production of organic acids rather than IAA production per se appears to result in the improved P solubilisation in PSB.
Collapse
Affiliation(s)
- Anteneh Argaw Alemneh
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, 5064, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Gregory R Cawthray
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA, 6009, Australia
| | - Yi Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, 5064, Australia. .,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, 5064, Australia.
| | - Maarten H Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, 5064, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew D Denton
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, 5064, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
21
|
Li M, Li T, Zhou M, Li M, Zhao Y, Xu J, Hu F, Li H. Caenorhabditis elegans Extracts Stimulate IAA Biosynthesis in Arthrobacter pascens ZZ21 via the Indole-3-pyruvic Acid Pathway. Microorganisms 2021; 9:microorganisms9050970. [PMID: 33946196 PMCID: PMC8146544 DOI: 10.3390/microorganisms9050970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Inter-organismal metabolites play important roles in regulating organism behavior and the communication between organisms. Nematodes, the most abundant animals on earth, are crucial participants in soil ecosystems through their interactions with microbes. For example, bacterial-feeding nematodes increase the activity of indole-3-acetic acid (IAA)-producing bacteria and the IAA content in soil. However, the way in which these nematodes interact with bacteria and affect IAA biosynthesis is not well understood. Here, using the model nematode Caenorhabditis elegans and the plant-beneficial bacterium Arthrobacter pascens ZZ21, we examined the effects of nematode excretions or extracts on bacterial IAA biosynthesis. To explore the underlying regulatory mechanism in more detail, we performed transcriptome sequencing and metabolomic analysis. Our findings suggest that C. elegans extracts promote IAA biosynthesis in A. pascens ZZ21 by increasing the expression of genes and the abundance of intermediates involved in the indole-3-pyruvic acid (IPyA) pathway. C. elegans extracts also significantly influenced biosynthetic and metabolic activity in A. pascens ZZ21. Treatment with C. elegans extracts promoted pyruvate metabolism, the citrate cycle (TCA) cycle and the production of some TCA-cycle-related amino acids and inhibited oxidative phosphorylation, which induced the accumulation of reduced nicotinamide adenine dinucleotide (NADH). We propose that the extracts altered the metabolism of A. pascens ZZ21 to help the bacteria resist stress caused by their predator. Our findings indicate that bacterial-feeding nematodes mediate the interaction between nematodes and bacteria via their extracts, providing insights into the ecological function of C. elegans in soil.
Collapse
Affiliation(s)
- Mengsha Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
- College of Science & Technology, Ningbo University, Cixi 315300, China
| | - Teng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
| | - Ming Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
| | - Mengdi Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
| | - Yexin Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
| | - Jingjing Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, China
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, China
- Correspondence: ; Tel.: +86-025-84395374
| |
Collapse
|
22
|
Neelakandan P, Young CC, Hameed A, Wang YN, Chen KN, Shen FT. Volatile 1-octanol of tea (Camellia sinensis L.) fuels cell division and indole-3-acetic acid production in phylloplane isolate Pseudomonas sp. NEEL19. Sci Rep 2021; 11:2788. [PMID: 33531600 PMCID: PMC7854675 DOI: 10.1038/s41598-021-82442-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023] Open
Abstract
Tea leaves possess numerous volatile organic compounds (VOC) that contribute to tea's characteristic aroma. Some components of tea VOC were known to exhibit antimicrobial activity; however, their impact on bacteria remains elusive. Here, we showed that the VOC of fresh aqueous tea leaf extract, recovered through hydrodistillation, promoted cell division and tryptophan-dependent indole-3-acetic acid (IAA) production in Pseudomonas sp. NEEL19, a solvent-tolerant isolate of the tea phylloplane. 1-octanol was identified as one of the responsible volatiles stimulating cell division, metabolic change, swimming motility, putative pili/nanowire formation and IAA production, through gas chromatography-mass spectrometry, microscopy and partition petri dish culture analyses. The bacterial metabolic responses including IAA production increased under 1-octanol vapor in a dose-dependent manner, whereas direct-contact in liquid culture failed to elicit such response. Thus, volatile 1-octanol emitting from tea leaves is a potential modulator of cell division, colonization and phytohormone production in NEEL19, possibly influencing the tea aroma.
Collapse
Affiliation(s)
- Poovarasan Neelakandan
- grid.260542.70000 0004 0532 3749Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227 Taiwan, ROC
| | - Chiu-Chung Young
- grid.260542.70000 0004 0532 3749Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227 Taiwan, ROC ,grid.260542.70000 0004 0532 3749Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 40227 Taiwan, ROC
| | - Asif Hameed
- grid.260542.70000 0004 0532 3749Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227 Taiwan, ROC ,Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, 575018 India
| | - Yu-Ning Wang
- grid.260542.70000 0004 0532 3749Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227 Taiwan, ROC
| | - Kui-Nuo Chen
- grid.260542.70000 0004 0532 3749Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227 Taiwan, ROC
| | - Fo-Ting Shen
- grid.260542.70000 0004 0532 3749Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227 Taiwan, ROC ,grid.260542.70000 0004 0532 3749Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 40227 Taiwan, ROC
| |
Collapse
|
23
|
New Provisional Function of OmpA from Acinetobacter sp. Strain SA01 Based on Environmental Challenges. mSystems 2021; 6:6/1/e01175-20. [PMID: 33436517 PMCID: PMC7901484 DOI: 10.1128/msystems.01175-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acinetobacter OmpA is known as a multifaceted protein with multiple functions, including emulsifying properties. Bioemulsifiers are surface-active compounds that can disperse hydrophobic compounds in water and help increase the bioavailability of hydrophobic hydrocarbons to be used by degrading microorganisms. An outer membrane protein A (OmpA) from Acinetobacter sp. strain SA01 was identified and characterized in-depth based on the structural and functional characteristics already known of its homologues. In silico structural studies showed that this protein can be a slow porin, binds to peptidoglycan, and exhibits emulsifying properties. Characterization of the recombinant SA01-OmpA, based on its emulsifying properties, represented its promising potentials in biotechnology. Also, the presence of SA01-OmpA in outer membrane vesicles (OMV) and biofilm showed that this protein, like its homologues in Acinetobacter baumannii, can be secreted into the extracellular environment through OMVs and play a role in the formation of biofilm. After ensuring the correct selection of the protein of interest, the role of oxidative stress induced by cell nutritional parameters (utilization of specific carbon sources) on the expression level of OmpA was carefully studied. For this purpose, the oxidative stress level of SA01 cell cultures in the presence of three nonrelevant carbon sources (sodium acetate, ethanol, and phenol) was examined under each condition. High expression of SA01-OmpA in ethanol- and phenol-fed cells with higher levels of oxidative stress than acetate suggested that oxidative stress could be a substantial factor in the regulation of SA01-OmpA expression. The significant association of SA01-OmpA expression with the levels of oxidative stress induced by cadmium and H2O2, with oxidative stress-inducing properties and lack of nutritional value, confirmed that the cells tend to harness their capacities with a possible increase in OmpA production. Collectively, this study suggests a homeostasis role for OmpA in Acinetobacter sp. SA01 under oxidative stress besides assuming many other roles hitherto attributed to this protein. IMPORTANCEAcinetobacter OmpA is known as a multifaceted protein with multiple functions, including emulsifying properties. Bioemulsifiers are surface-active compounds that can disperse hydrophobic compounds in water and help increase the bioavailability of hydrophobic hydrocarbons to be used by degrading microorganisms. In this study, an OmpA from Acinetobacter sp. SA01 was identified and introduced as an emulsifier with a higher emulsifying capacity than Pseudomonas aeruginosa rhamnolipid. We also showed that the expression of this protein is not dependent on the nutritional requirements but is more influenced by the oxidative stress caused by stressors. This finding, along with the structural role of this protein as a slow porin or its role in OMV biogenesis and biofilm formation, suggests that this protein can play an important role in maintaining cellular homeostasis under oxidative stress conditions. Altogether, the present study provides a new perspective on the functional performance of Acinetobacter OmpA, which can be used both to optimize its production as an emulsifier and a target in the treatment of multidrug-resistant strains.
Collapse
|
24
|
Laird TS, Flores N, Leveau JHJ. Bacterial catabolism of indole-3-acetic acid. Appl Microbiol Biotechnol 2020; 104:9535-9550. [PMID: 33037916 DOI: 10.1007/s00253-020-10938-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022]
Abstract
Indole-3-acetic acid (IAA) is a molecule with the chemical formula C10H9NO2, with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganisms with the ability to catabolize or assimilate IAA has long been recognized. To date, two sets of gene clusters underlying this property in bacteria have been identified and characterized: one (iac) is responsible for the aerobic degradation of IAA into catechol, and another (iaa) for the anaerobic conversion of IAA to 2-aminobenzoyl-CoA. Here, we summarize the literature on the products, reactions, and pathways that these gene clusters encode. We explore two hypotheses about the benefit that iac/iaa gene clusters confer upon their bacterial hosts: (1) exploitation of IAA as a source of carbon, nitrogen, and energy; and (2) interference with IAA-dependent processes and functions in other organisms, including plants. The evidence for both hypotheses will be reviewed for iac/iaa-carrying model strains of Pseudomonas putida, Enterobacter soli, Acinetobacter baumannii, Paraburkholderia phytofirmans, Caballeronia glathei, Aromatoleum evansii, and Aromatoleum aromaticum, more specifically in the context of access to IAA in the environments from which these bacteria were originally isolated, which include not only plants, but also soils and sediment, as well as patients in hospital environments. We end the mini-review with an outlook for iac/iaa-inspired research that addresses current gaps in knowledge, biotechnological applications of iac/iaa-encoded enzymology, and the use of IAA-destroying bacteria to treat pathologies related to IAA excess in plants and humans. KEY POINTS: • The iac/iaa gene clusters encode bacterial catabolism of the plant growth hormone IAA. • Plants are not the only environment where IAA or IAA-degrading bacteria can be found. • The iac/iaa genes allow growth at the expense of IAA; other benefits remain unknown.
Collapse
Affiliation(s)
- Tyler S Laird
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616, USA
| | - Neptali Flores
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616, USA
| | - Johan H J Leveau
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
25
|
Yang L, Yang K. Biological function of Klebsiella variicola and its effect on the rhizosphere soil of maize seedlings. PeerJ 2020; 8:e9894. [PMID: 32995084 PMCID: PMC7501803 DOI: 10.7717/peerj.9894] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Deterioration of the ecological environment in recent years has led to increasing soil salinization, which severely affects the cultivation of agricultural crops. While research has focused on improving soil environment through the application of pollution-free microbial fertilizers, there are relatively few plant growth-promoting bacteria suitable for saline-alkali environments. Although Klebsiella variicola can adapt to saline-alkali environments to successfully colonize rhizosphere microenvironments, only a few studies have investigated its role in promoting crop growth. Its effect on the crop rhizosphere soil microenvironment is especially unclear. METHODS In this study, the biological function of K. variicola and its colonization in maize seedling rhizosphere soil were studied in detail through selective media and ultraviolet spectrophotometry. The effects of K. variicola on the rhizosphere soil microenvironment and the growth of maize seedlings in saline-alkali and neutral soils were systematically analysed using the colorimetric method, the potassium dichromate volumetric method, and the diffusion absorption method. RESULTS Our results showed that K. variicola played a role in indole acetic acid, acetoin, ammonia, phosphorus, and potassium production, as well as in nitrogen fixation. A high level of colonization was observed in the rhizosphere soil of maize seedlings. Following the application of K. variicola in neutral and saline-alkali soils, the nutrient composition of rhizosphere soil of maize seedlings increased in varying degrees, more notably in saline-alkali soil. The content of organic matter, alkali-hydrolysable nitrogen, available phosphorus, available potassium, alkaline phosphatase, sucrase, urease, and catalase increased by 64.22%, 117.39%, 175.64%, 28.63%, 146.08%, 76.77%, 86.60%, and 45.29%, respectively, insaline-alkalisoil. CONCLUSION K.variicola, therefore, performed a variety of biological functions to promote the growth of maize seedlings and effectively improve the level of soil nutrients and enzymes in the rhizosphere of maize seedlings, undersaline-alkali stress conditions. It played an important role in enhancing the rhizosphere microenvironment of maize seedlings under saline-alkali stress.
Collapse
Affiliation(s)
- Lijuan Yang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, People’s Republic of China
- Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions of Education Department, Daqing, Heilongjiang, People’s Republic of China
| | - Kejun Yang
- Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions of Education Department, Daqing, Heilongjiang, People’s Republic of China
- College of Graduate, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, People’s Republic of China
| |
Collapse
|
26
|
Duca DR, Glick BR. Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Appl Microbiol Biotechnol 2020; 104:8607-8619. [PMID: 32875364 DOI: 10.1007/s00253-020-10869-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 11/28/2022]
Abstract
Numerous studies have reported the stimulation of plant growth following inoculation with an IAA-producing PGPB. However, the specific mode of IAA production by the PGPB is rarely elucidated. In part, this is due to the overwhelming complexity of IAA biosynthesis and regulation. The promiscuity of the enzymes implicated in IAA biosynthesis adds another element of complexity when attempting to decipher their role in IAA biosynthesis. To date, the majority of research on IAA biosynthesis describes three separate pathways classified in terms of their intermediates-indole acetonitrile (IAN), indole acetamide (IAM), and indole pyruvic acid (IPA). Each of these pathways is mediated by a set of enzymes, many of which are traditionally assumed to exist for that specific catalytic role. This lends the possibility of missing other, novel, enzymes that may also incidentally serve that function. Some of these pathways are constitutively expressed, while others are inducible. Some enzymes involved in IAA biosynthesis are known to be regulated by IAA or by IAA precursors, as well as by a multitude of environmental cues. This review aims to provide an update to our current understanding of the biosynthesis and regulation of IAA in bacteria. KEY POINTS: • IAA produced by PGPB improves bacterial stress tolerance and promotes plant growth. • Bacterial IAA biosynthesis is convoluted; multiple interdependent pathways. • Biosynthesis of IAA is regulated by IAA, IAA-precursors, and environmental factors.
Collapse
Affiliation(s)
- Daiana R Duca
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
27
|
Alemneh AA, Zhou Y, Ryder MH, Denton MD. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. J Appl Microbiol 2020; 129:1133-1156. [PMID: 32592603 DOI: 10.1111/jam.14754] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/07/2020] [Accepted: 06/20/2020] [Indexed: 12/21/2022]
Abstract
Nitrogen fixation is an important biological process in terrestrial ecosystems and for global crop production. Legume nodulation and N2 fixation have been improved using nodule-enhancing rhizobacteria (NER) under both regular and stressed conditions. The positive effect of NER on legume-rhizobia symbiosis can be facilitated by plant growth-promoting (PGP) mechanisms, some of which remain to be identified. NER that produce aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid enhance the legume-rhizobia symbiosis through (i) enhancing the nodule induction, (ii) improving the competitiveness of rhizobia for nodulation, (iii) prolonging functional nodules by suppressing nodule senescence and (iv) upregulating genes associated with legume-rhizobia symbiosis. The means by which these processes enhance the legume-rhizobia symbiosis is the focus of this review. A better understanding of the mechanisms by which PGP rhizobacteria operate, and how they can be altered, will provide opportunities to enhance legume-rhizobial interactions, to provide new advances in plant growth promotion and N2 fixation.
Collapse
Affiliation(s)
- A A Alemneh
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - Y Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M H Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M D Denton
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
28
|
Kim CS, Li JH, Barco B, Park HB, Gatsios A, Damania A, Wang R, Wyche TP, Piizzi G, Clay NK, Crawford JM. Cellular Stress Upregulates Indole Signaling Metabolites in Escherichia coli. Cell Chem Biol 2020; 27:698-707.e7. [PMID: 32243812 PMCID: PMC7306003 DOI: 10.1016/j.chembiol.2020.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Escherichia coli broadly colonize the intestinal tract of humans and produce a variety of small molecule signals. However, many of these small molecules remain unknown. Here, we describe a family of widely distributed bacterial metabolites termed the "indolokines." In E. coli, the indolokines are upregulated in response to a redox stressor via aspC and tyrB transaminases. Although indolokine 1 represents a previously unreported metabolite, four of the indolokines (2-5) were previously shown to be derived from indole-3-carbonyl nitrile (ICN) in the plant pathogen defense response. We show that the indolokines are produced in a convergent evolutionary manner relative to plants, enhance E. coli persister cell formation, outperform ICN protection in an Arabidopsis thaliana-Pseudomonas syringae infection model, trigger a hallmark plant innate immune response, and activate distinct immunological responses in primary human tissues. Our molecular studies link a family of cellular stress-induced metabolites to defensive responses across bacteria, plants, and humans.
Collapse
Affiliation(s)
- Chung Sub Kim
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jhe-Hao Li
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Brenden Barco
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Alexandra Gatsios
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Ashiti Damania
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Rurun Wang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Thomas P Wyche
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Grazia Piizzi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Nicole K Clay
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
29
|
Wang S, Ma L, Xu Y, Wang Y, Zhu N, Liu J, Dolfing J, Kerr P, Wu Y. The unexpected concentration-dependent response of periphytic biofilm during indole acetic acid removal. BIORESOURCE TECHNOLOGY 2020; 303:122922. [PMID: 32044647 DOI: 10.1016/j.biortech.2020.122922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Due to its extensive application in agriculture as a germinating agent and growth promoter, indole acetic acid (IAA) is present in a variety of aquatic ecosystems. To explore the response of microbial aggregates to exogenous IAA in aquatic ecosystems, periphytic biofilm, a typical microbial aggregate, was exposed to IAA at different concentrations. Results reveal an unexpected concentration-dependent effect of IAA on periphytic biofilm. Concentrations of IAA less than 10 mg/L inhibit periphytic growth, but stimulate growth when the IAA concentration exceeds 50 mg/L. Periphytic biofilm adapts to different IAA concentrations by antioxidant enzyme activation, community structure optimization and carbon-metabolism pattern change, and promotes bioremediation of IAA contaminated water in the process. The removal rates of IAA reached up to 95%-100%. This study reveals the capacity of periphytic biofilm for IAA removal in practice.
Collapse
Affiliation(s)
- Sichu Wang
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan Ma
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Agricultural Service Center of Qiandeng Town, 442 North Jingtang Road, Qiandeng Town, Kunshan 215300, China
| | - Ying Xu
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China
| | - Ningyuan Zhu
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Junzhuo Liu
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Jan Dolfing
- School of Engineering, Newcastle University, Newcastle NE1 7RU, United Kingdom
| | - Philip Kerr
- School of Biomedical Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Yonghong Wu
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; School of Engineering, Newcastle University, Newcastle NE1 7RU, United Kingdom.
| |
Collapse
|
30
|
Lin WJ, Ho HC, Chu SC, Chou JY. Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga Desmodesmus (Chlorophyceae, Chlorophyta). PeerJ 2020; 8:e8623. [PMID: 32195045 PMCID: PMC7067201 DOI: 10.7717/peerj.8623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/22/2020] [Indexed: 01/03/2023] Open
Abstract
Green microalgae of the genus Desmodesmus are characterized by a high degree of phenotypic plasticity (i.e. colony morphology), allowing them to be truly cosmopolitan and withstand environmental fluctuations. This flexibility enables Desmodesmus to produce a phenotype–environment match across a range of environments broader compared to algae with more fixed phenotypes. Indoles and their derivatives are a well-known crucial class of heterocyclic compounds and are widespread in different species of plants, animals, and microorganisms. Indole-3-acetic acid (IAA) is the most common, naturally occurring plant hormone of the auxin class. IAA may behave as a signaling molecule in microorganisms, and the physiological cues of IAA may also trigger phenotypic plasticity responses in Desmodesmus. In this study, we demonstrated that the changes in colonial morphs (cells per coenobium) of five species of the green alga Desmodesmus were specific to IAA but not to the chemically more stable synthetic auxins, naphthalene-1-acetic acid and 2,4-dichlorophenoxyacetic acid. Moreover, inhibitors of auxin biosynthesis and polar auxin transport inhibited cell division. Notably, different algal species (even different intraspecific strains) exhibited phenotypic plasticity different to that correlated to IAA. Thus, the plasticity involving individual-level heterogeneity in morphological characteristics may be crucial for microalgae to adapt to changing or novel conditions, and IAA treatment potentially increases the tolerance of Desmodesmus algae to several stress conditions. In summary, our results provide circumstantial evidence for the hypothesized role of IAA as a diffusible signal in the communication between the microalga and microorganisms. This information is crucial for elucidation of the role of plant hormones in plankton ecology.
Collapse
Affiliation(s)
- Wei-Jiun Lin
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Chang Chu
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
31
|
Mediterranean Native Leguminous Plants: A Reservoir of Endophytic Bacteria with Potential to Enhance Chickpea Growth under Stress Conditions. Microorganisms 2019; 7:microorganisms7100392. [PMID: 31557944 PMCID: PMC6843138 DOI: 10.3390/microorganisms7100392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 01/22/2023] Open
Abstract
Bacterial endophytes, a subset of a plant’s microbiota, can facilitate plant growth by a number of different mechanisms. The aims of this study were to assess the diversity and functionality of endophytic bacterial strains from internal root tissues of native legume species grown in two distinct sites in South of Portugal and to evaluate their ability to promote plant growth. Here, 122 endophytic bacterial isolates were obtained from 12 different native legume species. Most of these bacteria possess at least one of the plant growth-promoting features tested in vitro, with indole acetic acid production being the most common feature among the isolates followed by the production of siderophores and inorganic phosphate solubilization. The results of in planta experiments revealed that co-inoculation of chickpea plants with specific endophytic bacteria along with N2-fixing symbionts significantly improved the total biomass of chickpea plants, in particular when these plants were grown under saline conditions. Altogether, this study revealed that Mediterranean native legume species are a reservoir of plant growth-promoting bacteria, that are also tolerant to salinity and to toxic levels of Mn. Thus, these bacterial endophytes are well adapted to common constraints present in soils of this region which constitutes important factors to consider in the development of bacterial inoculants for stressful conditions in the Mediterranean region.
Collapse
|
32
|
Defez R, Valenti A, Andreozzi A, Romano S, Ciaramella M, Pesaresi P, Forlani S, Bianco C. New Insights into Structural and Functional Roles of Indole-3-acetic acid (IAA): Changes in DNA Topology and Gene Expression in Bacteria. Biomolecules 2019; 9:biom9100522. [PMID: 31547634 PMCID: PMC6843775 DOI: 10.3390/biom9100522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
: Indole-3-acetic acid (IAA) is a major plant hormone that affects many cellular processes in plants, bacteria, yeast, and human cells through still unknown mechanisms. In this study, we demonstrated that the IAA-treatment of two unrelated bacteria, the Ensifer meliloti 1021 and Escherichia coli, harboring two different host range plasmids, influences the supercoiled state of the two plasmid DNAs in vivo. Results obtained from in vitro assays show that IAA interacts with DNA, leading to DNA conformational changes commonly induced by intercalating agents. We provide evidence that IAA inhibits the activity of the type IA topoisomerase, which regulates the DNA topological state in bacteria, through the relaxation of the negative supercoiled DNA. In addition, we demonstrate that the treatment of E. meliloti cells with IAA induces the expression of some genes, including the ones related to nitrogen fixation. In contrast, these genes were significantly repressed by the treatment with novobiocin, which reduces the DNA supercoiling in bacterial cells. Taking into account the overall results reported, we hypothesize that the IAA action and the DNA structure/function might be correlated and involved in the regulation of gene expression. This work points out that checking whether IAA influences the DNA topology under physiological conditions could be a useful strategy to clarify the mechanism of action of this hormone, not only in plants but also in other unrelated organisms.
Collapse
Affiliation(s)
- Roberto Defez
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Anna Valenti
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Anna Andreozzi
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Silvia Romano
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Maria Ciaramella
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy.
| | - Sara Forlani
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy.
| | - Carmen Bianco
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
33
|
Andreozzi A, Prieto P, Mercado-Blanco J, Monaco S, Zampieri E, Romano S, Valè G, Defez R, Bianco C. Efficient colonization of the endophytes Herbaspirillum huttiense RCA24 and Enterobacter cloacae RCA25 influences the physiological parameters of Oryza sativa L. cv. Baldo rice. Environ Microbiol 2019; 21:3489-3504. [PMID: 31106946 DOI: 10.1111/1462-2920.14688] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/26/2022]
Abstract
Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, 1-aminocyclopropane-1-carboxylate deaminase activity and production of siderophores and phytohormones, can be assessed as plant growth promotion traits. Our aim was to evaluate the effects of nitrogen fixing and indole-3-acetic acid (IAA) producing endophytes in two Oryza sativa cultivars (Baldo and Vialone Nano). Three bacteria, Herbaspirillum huttiense RCA24, Enterobacter asburiae RCA23 and Staphylococcus sp. 377, producing different IAA levels, were tested for their ability to enhance nifH gene expression and nitrogenase activity in Enterobacter cloacae RCA25. Results showed that H. huttiense RCA24 performed best. Improvement in nitrogen fixation and changes in physiological parameters such as chlorophyll, nitrogen content and shoot dry weight were observed for plants co-inoculated with strains RCA25 and RCA24 in a 10:1 ratio. Based on confocal laser scanning microscopy analysis, strain RCA24 was the best colonizer of the root interior and the only IAA producer located in the same root niche occupied by RCA25 cells. This work shows that the choice of a bio-inoculum having the right composition is one of the key aspects to be considered for the inoculation of a specific host plant cultivar with microbial consortia.
Collapse
Affiliation(s)
- Anna Andreozzi
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Pilar Prieto
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus 'Alameda del Obispo', Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus 'Alameda del Obispo', Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Stefano Monaco
- CREA - CI, Research Centre for Cereal and Industrial Crops, 13100, Vercelli, Italy
| | - Elisa Zampieri
- CREA - CI, Research Centre for Cereal and Industrial Crops, 13100, Vercelli, Italy
| | - Silvia Romano
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Gianpiero Valè
- DiSIT, Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Piazza San Eusebio 5, I-13100 Vercelli, Italy
| | - Roberto Defez
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Carmen Bianco
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
34
|
Matilla MA, Daddaoua A, Chini A, Morel B, Krell T. An auxin controls bacterial antibiotics production. Nucleic Acids Res 2019; 46:11229-11238. [PMID: 30500953 PMCID: PMC6265452 DOI: 10.1093/nar/gky766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
The majority of clinically used antibiotics originate from bacteria. As the need for new antibiotics grows, large-scale genome sequencing and mining approaches are being used to identify novel antibiotics. However, this task is hampered by the fact that many antibiotic biosynthetic clusters are not expressed under laboratory conditions. One strategy to overcome this limitation is the identification of signals that activate the expression of silent biosynthetic pathways. Here, we report the use of high-throughput screening to identify signals that control the biosynthesis of the acetyl-CoA carboxylase inhibitor antibiotic andrimid in the broad-range antibiotic-producing rhizobacterium Serratia plymuthica A153. We reveal that the pathway-specific transcriptional activator AdmX recognizes the auxin indole-3-acetic acid (IAA). IAA binding causes conformational changes in AdmX that result in the inhibition of the expression of the andrimid cluster and the suppression of antibiotic production. We also show that IAA synthesis by pathogenic and beneficial plant-associated bacteria inhibits andrimid production in A153. Because IAA is a signalling molecule that is present across all domains of life, this study highlights the importance of intra- and inter-kingdom signalling in the regulation of antibiotic synthesis. Our discovery unravels, for the first time, an IAA-dependent molecular mechanism for the regulation of antibiotic synthesis.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | | | - Andrea Chini
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Bertrand Morel
- Departament of Physical Chemistry and Institute for Biotechnology, Science Faculty, Granada University, 18071 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| |
Collapse
|
35
|
Armendariz AL, Talano MA, Olmos Nicotra MF, Escudero L, Breser ML, Porporatto C, Agostini E. Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 138:26-35. [PMID: 30831360 DOI: 10.1016/j.plaphy.2019.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Inoculation practice with plant growth-promoting bacteria (PGPB) has been proposed as a good biotechnological tool to enhance plant performance and alleviate heavy metal/metalloid stress. Soybean is often cultivated in soil with high arsenic (As) content or irrigated with As-contaminated groundwater, which causes deleterious effects on its growth and yield, even when it was inoculated with rhizobium. Thus, the effect of double inoculation with known PGPB strains, Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 was evaluated in plants grown in pots under controlled conditions and treated with As. First, the viability of these co-cultivated bacteria was assayed using a flow cytometry analysis using SYTO9 and propidium iodide (PI) dyes. This was performed in vitro to evaluate the bacterial population dynamic under 25 μM AsV and AsIII treatment. A synergistic effect was observed when bacteria were co-cultured, since mortality diminished, compared to each growing alone. Indole acetic acid (IAA) produced by A. brasilense Az39 would be one of the main components involved in B. japonicum E109 mortality reduction, mainly under AsIII treatment. Regarding in vivo assays, under As stress, plant growth improvement, nodule number and N content increase were observed in double inoculated plants. Furthermore, double inoculation strategy reduced As translocation to aerial parts thus improving As phytostabilization potential of soybean plants. These results suggest that double inoculation with B. japonicum E109 and A. brasilense Az39 could be a safe and advantageous practice to improve growth and yield of soybean exposed to As, accompanied by an important metalloid phytostabilization.
Collapse
Affiliation(s)
- Ana L Armendariz
- Molecular Biology Department, Faculty of Exact, Physical, Chemical and Natural Sciences, National University of Río Cuarto, Ruta Nacional 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina.
| | - Melina A Talano
- Molecular Biology Department, Faculty of Exact, Physical, Chemical and Natural Sciences, National University of Río Cuarto, Ruta Nacional 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina.
| | - María Florencia Olmos Nicotra
- Molecular Biology Department, Faculty of Exact, Physical, Chemical and Natural Sciences, National University of Río Cuarto, Ruta Nacional 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina.
| | - Leticia Escudero
- Laboratory of Analytical Chemistry for Research and Development (QUIANID), Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO-CONICET, Faculty of Natural and Exact Sciences, National University of Cuyo, Padre J. Contreras 1300, CP 5500, Mendoza, Argentina.
| | - María Laura Breser
- Research and Transference Center of Villa María (CITVM-CONICET), National University of Villa María, Arturo Jauretche 1555, CP 5900, Villa María, Córdoba, Argentina.
| | - Carina Porporatto
- Research and Transference Center of Villa María (CITVM-CONICET), National University of Villa María, Arturo Jauretche 1555, CP 5900, Villa María, Córdoba, Argentina.
| | - Elizabeth Agostini
- Molecular Biology Department, Faculty of Exact, Physical, Chemical and Natural Sciences, National University of Río Cuarto, Ruta Nacional 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
36
|
Zhang P, Jin T, Kumar Sahu S, Xu J, Shi Q, Liu H, Wang Y. The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis. Molecules 2019; 24:E1411. [PMID: 30974826 PMCID: PMC6479905 DOI: 10.3390/molecules24071411] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/08/2023] Open
Abstract
Bacterial indole-3-acetic acid (IAA), an effector molecule in microbial physiology, plays an important role in plant growth-promotion. Here, we comprehensively analyzed about 7282 prokaryotic genomes representing diverse bacterial phyla, combined with root-associated metagenomic data to unravel the distribution of tryptophan-dependent IAA synthesis pathways and to quantify the IAA synthesis-related genes in the plant root environments. We found that 82.2% of the analyzed bacterial genomes were potentially capable of synthesizing IAA from tryptophan (Trp) or intermediates. Interestingly, several phylogenetically diverse bacteria showed a preferential tendency to utilize different pathways and tryptamine and indole-3-pyruvate pathways are most prevalent in bacteria. About 45.3% of the studied genomes displayed multiple coexisting pathways, constituting complex IAA synthesis systems. Furthermore, root-associated metagenomic analyses revealed that rhizobacteria mainly synthesize IAA via indole-3-acetamide (IAM) and tryptamine (TMP) pathways and might possess stronger IAA synthesis abilities than bacteria colonizing other environments. The obtained results refurbished our understanding of bacterial IAA synthesis pathways and provided a faster and less labor-intensive alternative to physiological screening based on genome collections. The better understanding of IAA synthesis among bacterial communities could maximize the utilization of bacterial IAA to augment the crop growth and physiological function.
Collapse
Affiliation(s)
- Pengfan Zhang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- BGI-Shenzhen, Shenzhen 518083, China.
| | - Tao Jin
- BGI-Shenzhen, Shenzhen 518083, China.
| | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen 518083, China.
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL 33885, USA.
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- BGI-Shenzhen, Shenzhen 518083, China.
| | - Huan Liu
- BGI-Shenzhen, Shenzhen 518083, China.
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Yayu Wang
- BGI-Shenzhen, Shenzhen 518083, China.
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China.
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 2800 Kgs., 2800 Lyngby, Denmark.
| |
Collapse
|
37
|
Noori F, Etesami H, Najafi Zarini H, Khoshkholgh-Sima NA, Hosseini Salekdeh G, Alishahi F. Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:129-138. [PMID: 29990724 DOI: 10.1016/j.ecoenv.2018.06.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 05/25/2023]
Abstract
There are fewer reports on plant growth promoting (PGP) bacteria living in nodules as helper to tolerance to abiotic stress such as salinity and drought. The study was conducted to isolate rhizobial and non-rhizobial drought and salinity tolerant bacteria from the surface sterilized root nodules of alfalfa, grown in saline soils, and evaluate the effects of effective isolates on plant growth under salt stress. Based on drought and salinity tolerance of bacterial isolates and having multiple PGP traits, two non-rhizobial endophytic isolates and one rhizobial endophytic isolate were selected for further identification and characterization. Based on partial sequences of 16 S rRNA genes, non-rhizobial isolates and rhizobial isolate were closely related to Klebsiella sp., Kosakonia cowanii, and Sinorhizobium meliloti, respectively. None of the two non-rhizobial strains were able to form nodules on alfalfa roots under greenhouse and in vitro conditions. Co-inoculation of alfalfa plant with Klebsiella sp. A36, K. cowanii A37, and rhizobial strain S. meliloti ARh29 had a positive effect on plant growth indices under salinity stress. In addition, the single inoculation of non-rhizobial strains without rhizobial strain resulted in an increase in alfalfa growth indices compared to the plants non-inoculated and the ones inoculated with S. meliloti ARh29 alone under salinity stress, indicating that nodule non-rhizobial strains have PGP potentials and may be a promising way for improving effectiveness of Rhizobium bio-fertilizers in salt-affected soils.
Collapse
Affiliation(s)
- Fatemeh Noori
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Hassan Etesami
- Agriculture & Natural resources Campus, Faculty of Agricultural Engineering & Technology, Department of Soil Science, University of Tehran, Tehran 31587-77871, Iran.
| | - Hamid Najafi Zarini
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Nayer Azam Khoshkholgh-Sima
- Agriculture Biotechnology Research Institute of Iran (ABRII), Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Agriculture Biotechnology Research Institute of Iran (ABRII), Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Farshad Alishahi
- Agriculture & Natural resources Campus, Faculty of Agricultural Engineering & Technology, Department of Soil Science, University of Tehran, Tehran 31587-77871, Iran
| |
Collapse
|
38
|
Kim YC, Anderson AJ. Rhizosphere pseudomonads as probiotics improving plant health. MOLECULAR PLANT PATHOLOGY 2018; 19:2349-2359. [PMID: 29676842 PMCID: PMC6638116 DOI: 10.1111/mpp.12693] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 05/25/2023]
Abstract
Many root-colonizing microbes are multifaceted in traits that improve plant health. Although isolates designated as biological control agents directly reduce pathogen growth, many exert additional beneficial features that parallel changes induced in animal and other hosts by health-promoting microbes termed probiotics. Both animal and plant probiotics cause direct antagonism of pathogens and induce systemic immunity in the host to pathogens and other stresses. They also alter host development and improve host nutrition. The probiotic root-colonizing pseudomonads are generalists in terms of plant hosts, soil habitats and the array of stress responses that are ameliorated in the plant. This article illustrates how the probiotic pseudomonads, nurtured by the carbon (C) and nitrogen (N) sources released by the plant in root exudates, form protective biofilms on the root surface and produce the metabolites or enzymes to boost plant health. The findings reveal the multifunctional nature of many of the microbial metabolites in the plant-probiotic interplay. The beneficial effects of probiotics on plant function can contribute to sustainable yield and quality in agricultural production.
Collapse
Affiliation(s)
- Young Cheol Kim
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangju 61186South Korea
| | - Anne J. Anderson
- Department of Biological EngineeringUtah State UniversityLoganUT 84322‐4105USA
| |
Collapse
|
39
|
iac Gene Expression in the Indole-3-Acetic Acid-Degrading Soil Bacterium Enterobacter soli LF7. Appl Environ Microbiol 2018; 84:AEM.01057-18. [PMID: 30054366 DOI: 10.1128/aem.01057-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/21/2018] [Indexed: 12/14/2022] Open
Abstract
We show for soil bacterium Enterobacter soli LF7 that the possession of an indole-3-acetic acid catabolic (iac) gene cluster is causatively linked to the ability to utilize the plant hormone indole-3-acetic acid (IAA) as a carbon and energy source. Genome-wide transcriptional profiling by mRNA sequencing revealed that these iac genes, chromosomally arranged as iacHABICDEFG and coding for the transformation of IAA to catechol, were the most highly induced (>29-fold) among the relatively few (<1%) differentially expressed genes in response to IAA. Also highly induced and immediately downstream of the iac cluster were genes for a major facilitator superfamily protein (mfs) and enzymes of the β-ketoadipate pathway (pcaIJD-catBCA), which channels catechol into central metabolism. This entire iacHABICDEFG-mfs-pcaIJD-catBCA gene set was constitutively expressed in an iacR deletion mutant, confirming the role of iacR, annotated as coding for a MarR-type regulator and located upstream of iacH, as a repressor of iac gene expression. In E. soli LF7 carrying the DNA region upstream of iacH fused to a promoterless gfp gene, green fluorescence accumulated in response to IAA at concentrations as low as 1.6 μM. The iacH promoter region also responded to chlorinated IAA, but not other aromatics tested, indicating a narrow substrate specificity. In an iacR deletion mutant, gfp expression from the iacH promoter region was constitutive, consistent with the predicted role of iacR as a repressor. A deletion analysis revealed putative -35/-10 promoter sequences upstream of iacH, as well as a possible binding site for the IacR repressor.IMPORTANCE Bacterial iac genes code for the enzymatic conversion of the plant hormone indole-3-acetic acid (IAA) to catechol. Here, we demonstrate that the iac genes of soil bacterium Enterobacter soli LF7 enable growth on IAA by coarrangement and coexpression with a set of pca and cat genes that code for complete conversion of catechol to central metabolites. This work contributes in a number of novel and significant ways to our understanding of iac gene biology in bacteria from (non-)plant environments. More specifically, we show that LF7's response to IAA involves derepression of the MarR-type transcriptional regulator IacR, which is quite fast (less than 25 min upon IAA exposure), highly specific (only in response to IAA and chlorinated IAA, and with few genes other than iac, cat, and pca induced), relatively sensitive (low micromolar range), and seemingly tailored to exploit IAA as a source of carbon and energy.
Collapse
|
40
|
Gao X, Yang X, Li J, Zhang Y, Chen P, Lin Z. Engineered global regulator H-NS improves the acid tolerance of E. coli. Microb Cell Fact 2018; 17:118. [PMID: 30053876 PMCID: PMC6064147 DOI: 10.1186/s12934-018-0966-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/19/2018] [Indexed: 11/25/2022] Open
Abstract
Background Acid stress is often encountered during industrial fermentation as a result of the accumulation of acidic metabolites. Acid stress increases the intracellular acidity and can cause DNA damage and denaturation of essential enzymes, thus leading to a decrease of growth and fermentation yields. Although acid stress can be relieved by addition of a base to the medium, fermentations with acid-tolerant strains are generally considered much more efficient and cost-effective. Results In this study, the global regulator H-NS was found to have significant influence on the acid tolerance of E. coli. The final OD600 of strains overexpressing H-NS increased by 24% compared to control, when cultured for 24 h at pH 4.5 using HCl as an acid agent. To further improve the acid tolerance, a library of H-NS was constructed by error-prone PCR and subjected to selection. Five mutants that conferred a significant growth advantage compared to the control strain were obtained. The final OD600 of strains harboring the five H-NS mutants was enhanced by 26–53%, and their survival rate was increased by 10- to 100-fold at pH 2.5. Further investigation showed that the improved acid tolerance of H-NS mutants coincides with the activation of multiple acid resistance mechanisms, in particular the glutamate- and glutamine-dependent acid resistance system (AR2). The improved acid tolerance of H-NS mutants was also demonstrated in media acidified by acetic acid and succinic acid, which are common acidic fermentation by-products or products. Conclusions The results obtained in this work demonstrate that the engineering of H-NS can enhance the acid tolerance of E. coli. More in general, this study shows the potential of the engineering of global regulators acting as repressors, such as H-NS, as a promising method to obtain phenotypes of interest. This approach could expand the spectrum of application of global transcription machinery engineering. Electronic supplementary material The online version of this article (10.1186/s12934-018-0966-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianxing Gao
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China
| | - Jiahui Li
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China
| | - Yan Zhang
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.,Shenzhen Agricultural Genomics Institute, China Academy of Agricultural Sciences, 7 Pengfei Road, Dapeng District, Shenzhen, 518120, Guangdong, China
| | - Ping Chen
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China.
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China. .,School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
41
|
Gilbert S, Xu J, Acosta K, Poulev A, Lebeis S, Lam E. Bacterial Production of Indole Related Compounds Reveals Their Role in Association Between Duckweeds and Endophytes. Front Chem 2018; 6:265. [PMID: 30050896 PMCID: PMC6052042 DOI: 10.3389/fchem.2018.00265] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
Duckweed farming can be a sustainable practice for biofuel production, animal feed supplement, and wastewater treatment, although large scale production remains a challenge. Plant growth promoting bacteria (PGPB) have been shown to improve plant health by producing phytohormones such as auxin. While some of the mechanisms for plant growth promotion have been characterized in soil epiphytes, more work is necessary to understand how plants may select for bacterial endophytes that have the ability to provide an exogenous source of phytohormones such as auxin. We have isolated and characterized forty-seven potentially endophytic bacteria from surface-sterilized duckweed tissues and screened these bacterial strains for production of indole related compounds using the Salkowski colorimetric assay. Indole-3-acetic acid (IAA), indole-3-lactic acid (ILA), and indole produced by various bacterial isolates were verified by mass spectrometry. Using the Salkowski reagent, we found that 79% of the isolated bacterial strains from our collection may be capable of producing indole related compounds to various extents during in vitro growth. Of these bacteria that are producing indole related compounds, 19% are additionally producing indole. There is an apparent correlation between the type of indole related compound produced by a particular bacteria and the duckweed genus from which the bacterial strain is derived. These results suggest the possible association between different duckweed genera and endophytes that are producing distinct types of secondary metabolites. Understanding the role of indole related compounds during interaction between endophytes and the plant host may be useful to help design synthetic bacterial communities that could target specific or multiple species of duckweed in the future to sustainably enhance plant growth.
Collapse
Affiliation(s)
- Sarah Gilbert
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Jenny Xu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Kenneth Acosta
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Alexander Poulev
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Sarah Lebeis
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Eric Lam
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
42
|
Etesami H, Beattie GA. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops. Front Microbiol 2018; 9:148. [PMID: 29472908 PMCID: PMC5809494 DOI: 10.3389/fmicb.2018.00148] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/23/2018] [Indexed: 11/20/2022] Open
Abstract
Salinity stress is one of the major abiotic stresses limiting crop production in arid and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth promoting rhizobacteria) to ameliorate stresses such as salinity stress in crop production. The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote saline soil-based agriculture. Halophytes are a useful reservoir of halotolerant bacteria with plant growth-promoting capabilities. Here, we review recent studies on the use of halophilic PGPRs to stimulate plant growth and increase the tolerance of non-halophytic crops to salinity. These studies illustrate that halophilic PGPRs from the rhizosphere of halophytic species can be effective bio-inoculants for promoting the production of non-halophytic species in saline soils. These studies support the viability of bioinoculation with halophilic PGPRs as a strategy for the sustainable enhancement of non-halophytic crop growth. The potential of this strategy is discussed within the context of ensuring sustainable food production for a world with an increasing population and continuing climate change. We also explore future research needs for using halotolerant PGPRs under salinity stress.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, Faculty of Agricultural Engineering & Technology, University of Tehran, Tehran, Iran
| | - Gwyn A. Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| |
Collapse
|
43
|
Kunkel BN, Harper CP. The roles of auxin during interactions between bacterial plant pathogens and their hosts. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:245-254. [PMID: 29272462 DOI: 10.1093/jxb/erx447] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant pathogens have evolved several strategies to manipulate the biology of their hosts to facilitate colonization, growth to high levels in plant tissue, and production of disease. One of the less well known of these strategies is the synthesis of plant hormones and hormone analogs, and there is growing evidence that modulation of host hormone signaling is important during pathogenesis. Several plant pathogens produce the auxin indole-3-acetic acid (IAA) and/or virulence factors that modulate host auxin signaling. Auxin is well known for being involved in many aspects of plant growth and development, but recent findings have revealed that elevated IAA levels or enhanced auxin signaling can also promote disease development in some plant-pathogen interactions. In addition to stimulating plant cell growth during infection by gall-forming bacteria, auxin and auxin signaling can antagonize plant defense responses. Auxin can also act as a microbial signaling molecule to impact the biology of some pathogens directly. In this review, we summarize recent progress towards elucidating the roles that auxin production, modification of host auxin signaling, and direct effects of auxin on pathogens play during pathogenesis, with emphasis on the impacts of auxin on interactions with bacterial pathogens.
Collapse
Affiliation(s)
- Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
44
|
Dong R, Zhang J, Huan H, Bai C, Chen Z, Liu G. High Salt Tolerance of a Bradyrhizobium Strain and Its Promotion of the Growth of Stylosanthes guianensis. Int J Mol Sci 2017; 18:ijms18081625. [PMID: 28788047 PMCID: PMC5578016 DOI: 10.3390/ijms18081625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022] Open
Abstract
Salinity is a serious limiting factor for the growth of rhizobia. Some rhizobia are tolerant to salt stress and promote plant growth, but the mechanisms underlying these effects are poorly characterized. The growth responses and osmoprotectants in four Bradyrhizobium strains were examined under salt stress in this study. Two-dimensional electrophoresis (2-DE) and mass spectrometry were conducted to investigate protein profiles in rhizobia exposed to salt stress. Subsequently, salt tolerance in stylo (Stylosanthesguianensis) inoculated with rhizobia was further detected in hydroponics. Results showed that the Bradyrhizobium strain RJS9-2 exhibited higher salt tolerance than the other three Bradyrhizobium strains. RJS9-2 was able to grow at 0.35 M NaCl treatment, while the other three Bradyrhizobium strains did not grow at 0.1 M NaCl treatment. Salt stress induced IAA production, and accumulation of proline, betaine, ectoine, and trehalose was observed in RJS9-2 but not in PN13-1. Proteomics analysis identified 14 proteins regulated by salt stress in RJS9-2 that were mainly related to the ABC transporter, stress response, and protein metabolism. Furthermore, under saline conditions, the nodule number, plant dry weight, and N concentration in stylo plants inoculated with RJS9-2 were higher than those in plants inoculated with PN13-1. These results suggest that the tolerance of RJS9-2 to salt stress may be achieved by the coordination of indole-3-acetic acid (IAA) production, osmoprotectant accumulation, and protein expression, thus promoting stylo growth.
Collapse
Affiliation(s)
- Rongshu Dong
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China.
| | - Jie Zhang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China.
| | - Hengfu Huan
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China.
| | - Changjun Bai
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China.
| | - Zhijian Chen
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China.
| | - Guodao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China.
| |
Collapse
|
45
|
Ji Y, Rao J, Rong X, Lou S, Zheng Z, Lu Y. Metabolic characterization of human aqueous humor in relation to high myopia. Exp Eye Res 2017; 159:147-155. [PMID: 28322828 DOI: 10.1016/j.exer.2017.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 01/02/2017] [Accepted: 03/16/2017] [Indexed: 01/05/2023]
Abstract
High myopia is the common eye disorder worldwide, which may contribute to increase the risk of serious disorders including glaucoma and cataract. Although various studies including genomics, transcriptomics, and proteomics have been implicated to identify potential biomarkers (genes or proteins) for predicting high myopia and to reveal the underlying mechanism, the comprehensive metabolomics in relation to high myopia is very limited. In this study, we identified 242 metabolites in aqueous humor (AH) from a set of 40 cataract patients (including 20 with high myopia and 20 for controls), using a non-targeted metabolomic technology, gas chromatography coupled to time-of-flight mass spectrometer (GC/TOF MS). Further statistical analysis showed that 29 metabolites were significantly changed (Variable important for the projection, VIP ≥ 1 and p ≤ 0.05), between those two groups, while only 2 decreased metabolites were included. Moreover, for the first time, metabolite-metabolite correlations for AH were analyzed, which may dissect key regulatory elements or pathways involved in metabolism of amino acids, carbohydrates, and lipids. Accordingly, metabolic network was constructed based on those 29 changed metabolites in patients with high myopia. More than half of the changed metabolites were highly and positively associated, suggesting important roles of pathways involved in the metabolism of these metabolites in relation to high myopia. Altogether, this work not only provided potential biomarkers for the diagnosis and monitoring of high myopia formation, but also provided new insights into the underlying mechanisms.
Collapse
Affiliation(s)
- Yinghong Ji
- Department of Ophthalmology & Eye Institute, Eye & ENT Hospital of Fudan University, Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, No. 83 Fenyang Road, Shanghai, 200031, China
| | - Jun Rao
- Jiangxi Cancer Hospital, No. 519 East Beijing Road, Nanchang 330029, China
| | - Xianfang Rong
- Department of Ophthalmology & Eye Institute, Eye & ENT Hospital of Fudan University, Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, No. 83 Fenyang Road, Shanghai, 200031, China
| | - Shang Lou
- Jiangxi Cancer Hospital, No. 519 East Beijing Road, Nanchang 330029, China
| | - Zhi Zheng
- Jiangxi Cancer Hospital, No. 519 East Beijing Road, Nanchang 330029, China
| | - Yi Lu
- Department of Ophthalmology & Eye Institute, Eye & ENT Hospital of Fudan University, Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, No. 83 Fenyang Road, Shanghai, 200031, China.
| |
Collapse
|
46
|
Foster ZSL, Sharpton TJ, Grünwald NJ. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput Biol 2017; 100:1738-50. [PMID: 28222096 DOI: 10.3732/ajb.1200572] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/07/2017] [Accepted: 02/10/2017] [Indexed: 05/20/2023] Open
Abstract
Community-level data, the type generated by an increasing number of metabarcoding studies, is often graphed as stacked bar charts or pie graphs that use color to represent taxa. These graph types do not convey the hierarchical structure of taxonomic classifications and are limited by the use of color for categories. As an alternative, we developed metacoder, an R package for easily parsing, manipulating, and graphing publication-ready plots of hierarchical data. Metacoder includes a dynamic and flexible function that can parse most text-based formats that contain taxonomic classifications, taxon names, taxon identifiers, or sequence identifiers. Metacoder can then subset, sample, and order this parsed data using a set of intuitive functions that take into account the hierarchical nature of the data. Finally, an extremely flexible plotting function enables quantitative representation of up to 4 arbitrary statistics simultaneously in a tree format by mapping statistics to the color and size of tree nodes and edges. Metacoder also allows exploration of barcode primer bias by integrating functions to run digital PCR. Although it has been designed for data from metabarcoding research, metacoder can easily be applied to any data that has a hierarchical component such as gene ontology or geographic location data. Our package complements currently available tools for community analysis and is provided open source with an extensive online user manual.
Collapse
Affiliation(s)
- Zachary S L Foster
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, Oregon, United States of America
| |
Collapse
|
47
|
Indole-3-acetic acid in plant-pathogen interactions: a key molecule for in planta bacterial virulence and fitness. Res Microbiol 2016; 167:774-787. [PMID: 27637152 DOI: 10.1016/j.resmic.2016.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/06/2016] [Accepted: 09/01/2016] [Indexed: 11/22/2022]
Abstract
The plant pathogenic bacterium Pseudomonas savastanoi, the causal agent of olive and oleander knot disease, uses the so-called "indole-3-acetamide pathway" to convert tryptophan to indole-3-acetic acid (IAA) via a two-step pathway catalyzed by enzymes encoded by the genes in the iaaM/iaaH operon. Moreover, pathovar nerii of P. savastanoi is able to conjugate IAA to lysine to generate the less biologically active compound IAA-Lys via the enzyme IAA-lysine synthase encoded by the iaaL gene. Interestingly, iaaL is now known to be widespread in many Pseudomonas syringae pathovars, even in the absence of the iaaM and iaaH genes for IAA biosynthesis. Here, two knockout mutants, ΔiaaL and ΔiaaM, of strain Psn23 of P. savastanoi pv. nerii were produced. Pathogenicity tests using the host plant Nerium oleander showed that ΔiaaL and ΔiaaM were hypervirulent and hypovirulent, respectively and these features appeared to be related to their differential production of free IAA. Using the Phenotype Microarray approach, the chemical sensitivity of these mutants was shown to be comparable to that of wild-type Psn23. The main exception was 8 hydroxyquinoline, a toxic compound that is naturally present in plant exudates and is used as a biocide, which severely impaired the growth of ΔiaaL and ΔiaaM, as well as growth of the non-pathogenic mutant ΔhrpA, which lacks a functional Type Three Secretion System (TTSS). According to bioinformatics analysis of the Psn23 genome, a gene encoding a putative Multidrug and Toxic compound Extrusion (MATE) transporter, was found upstream of iaaL. Similarly to iaaL and iaaM, its expression appeared to be TTSS-dependent. Moreover, auxin-responsive elements were identified for the first time in the modular promoters of both the iaaL gene and the iaaM/iaaH operon of P. savastanoi, suggesting their IAA-inducible transcription. Gene expression analysis of several genes related to TTSS, IAA metabolism and drug resistance confirmed the presence of a concerted regulatory network in this phytopathogen among virulence, fitness and drug efflux.
Collapse
|
48
|
Segal LN, Clemente JC, Wu BG, Wikoff WR, Gao Z, Li Y, Ko JP, Rom WN, Blaser MJ, Weiden MD. Randomised, double-blind, placebo-controlled trial with azithromycin selects for anti-inflammatory microbial metabolites in the emphysematous lung. Thorax 2016; 72:13-22. [PMID: 27486204 PMCID: PMC5329050 DOI: 10.1136/thoraxjnl-2016-208599] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/22/2016] [Accepted: 07/06/2016] [Indexed: 12/16/2022]
Abstract
Introduction Azithromycin (AZM) reduces pulmonary inflammation and exacerbations in patients with COPD having emphysema. The antimicrobial effects of AZM on the lower airway microbiome are not known and may contribute to its beneficial effects. Here we tested whether AZM treatment affects the lung microbiome and bacterial metabolites that might contribute to changes in levels of inflammatory cytokines in the airways. Methods 20 smokers (current or ex-smokers) with emphysema were randomised to receive AZM 250 mg or placebo daily for 8 weeks. Bronchoalveolar lavage (BAL) was performed at baseline and after treatment. Measurements performed in acellular BAL fluid included 16S rRNA gene sequences and quantity; 39 cytokines, chemokines and growth factors and 119 identified metabolites. The response to lipopolysaccharide (LPS) by alveolar macrophages after ex-vivo treatment with AZM or bacterial metabolites was assessed. Results Compared with placebo, AZM did not alter bacterial burden but reduced α-diversity, decreasing 11 low abundance taxa, none of which are classical pulmonary pathogens. Compared with placebo, AZM treatment led to reduced in-vivo levels of chemokine (C-X-C) ligand 1 (CXCL1), tumour necrosis factor (TNF)-α, interleukin (IL)-13 and IL-12p40 in BAL, but increased bacterial metabolites including glycolic acid, indol-3-acetate and linoleic acid. Glycolic acid and indol-3-acetate, but not AZM, blunted ex-vivo LPS-induced alveolar macrophage generation of CXCL1, TNF-α, IL-13 and IL-12p40. Conclusion AZM treatment altered both lung microbiota and metabolome, affecting anti-inflammatory bacterial metabolites that may contribute to its therapeutic effects. Trial registration number NCT02557958.
Collapse
Affiliation(s)
- Leopoldo N Segal
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, New York, USA.,Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Jose C Clemente
- Department of Genetics and Genomic Sciences and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin G Wu
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, New York, USA
| | - William R Wikoff
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, California, USA
| | - Zhan Gao
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Yonghua Li
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, New York, USA
| | - Jane P Ko
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - William N Rom
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, New York, USA.,Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Martin J Blaser
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Michael D Weiden
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, New York, USA.,Department of Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
49
|
Defez R, Esposito R, Angelini C, Bianco C. Overproduction of Indole-3-Acetic Acid in Free-Living Rhizobia Induces Transcriptional Changes Resembling Those Occurring in Nodule Bacteroids. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:484-95. [PMID: 27003799 DOI: 10.1094/mpmi-01-16-0010-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Free-living bacteria grown under aerobic conditions were used to investigate, by next-generation RNA sequencing analysis, the transcriptional profiles of Sinorhizobium meliloti wild-type 1021 and its derivative, RD64, overproducing the main auxin indole-3-acetic acid (IAA). Among the upregulated genes in RD64 cells, we detected the main nitrogen-fixation regulator fixJ, the two intermediate regulators fixK and nifA, and several other genes known to be FixJ targets. The gene coding for the sigma factor RpoH1 and other genes involved in stress response, regulated in a RpoH1-dependent manner in S. meliloti, were also induced in RD64 cells. Under microaerobic condition, quantitative real-time polymerase chain reaction analysis revealed that the genes fixJL and nifA were up-regulated in RD64 cells as compared with 1021 cells. This work provided evidence that the overexpression of IAA in S. meliloti free-living cells induced many of the transcriptional changes that normally occur in nitrogen-fixing root nodule.
Collapse
Affiliation(s)
- Roberto Defez
- 1 Institute of Biosciences and BioResources, CNR, via P. Castellino 111, 80131 Naples, Italy
| | | | | | - Carmen Bianco
- 1 Institute of Biosciences and BioResources, CNR, via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
50
|
Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Appl Environ Microbiol 2015; 80:4640-9. [PMID: 24837382 DOI: 10.1128/aem.00649-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Indole-3-acetic acid (IAA) is a fundamental phytohormone with the ability to control many aspects of plant growth and development. Pseudomonas sp. strain UW4 is a rhizospheric plant growth-promoting bacterium that produces and secretes IAA. While several putative IAA biosynthetic genes have been reported in this bacterium, the pathways leading to the production of IAA in strain UW4 are unclear. Here, the presence of the indole-3-acetamide (IAM) and indole-3-acetaldoxime/indole-3-acetonitrile (IAOx/IAN) pathways of IAA biosynthesis is described, and the specific role of two of the enzymes (nitrilase and nitrile hydratase) that mediate these pathways is assessed. The genes encoding these two enzymes were expressed in Escherichia coli, and the enzymes were isolated and characterized. Substrate-feeding assays indicate that the nitrilase produces both IAM and IAA from the IAN substrate, while the nitrile hydratase only produces IAM. The two nitrile-hydrolyzing enzymes have very different temperature and pH optimums. Nitrilase prefers a temperature of 50°C and a pH of 6, while nitrile hydratase prefers 4°C and a pH of 7.5. Based on multiple sequence alignments and motif analyses, physicochemical properties and enzyme assays, it is concluded that the UW4 nitrilase has an aromatic substrate specificity. The nitrile hydratase is identified as an iron-type metalloenzyme that does not require the help of a P47K activator protein to be active. These data are interpreted in terms of a preliminary model for the biosynthesis of IAA in this bacterium.
Collapse
|