1
|
Liu N, Du J, Ge J, Liu SB. DNA damage-inducing endogenous and exogenous factors and research progress. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-33. [PMID: 39540885 DOI: 10.1080/15257770.2024.2428436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The substances that cause abnormal DNA structures are known as DNA damage-inducing factors, and their resulting DNA damage has been extensively studied and proven to be closely related to cancer, neurodegenerative diseases, and aging. Prolonged exposure to DNA damage-inducing factors can lead to a variety of difficult-to-treat diseases, yet these factors have not been well summarized. It is crucial to use a combination of environmental science and life science to gain a deep understanding of the environmental sources and biological consequences of DNA damage-inducing factors for mechanistic research and prevention of diseases such as cancer. This article selected 14 representative carcinogenic exogenous DNA damage-inducing factors and summarized them through a literature search, including both exogenous and endogenous DNA damage factors, and explored the types of DNA damage caused by the relevant damage factors.
Collapse
Affiliation(s)
- Nian Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Jiahui Du
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Jiani Ge
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
2
|
Tsai MH, Lin YT. Density Functional Theory Calculation May Confirm Arsenic-Thiol Adhesion as the Primary Mechanism of Arsenical Toxicity. ACS OMEGA 2024; 9:13975-13981. [PMID: 38559941 PMCID: PMC10976359 DOI: 10.1021/acsomega.3c09269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Previously, it was believed that methylation was the body's primary method to detoxify inorganic arsenic. However, recent research has shown that the metabolized intermediate known as MMAIII is more toxic than arsenite and arsenate, contradicting a previous understanding. Another important question arises: is arsenical toxicity truly caused by arsenic binding to proteins through arsenic thiol adhesion? Based on the toxicity order of the experiment, with MMAIII being the most toxic, followed by arsenite, arsenate, DMAV, and MMAV, density functional theory (DFT) calculations can provide a straightforward assessment of this issue. Our practice captures all the transition states associated with a specific imaginary-frequency vibration mode, including proton transfer and simultaneous departure of leaving group. We have obtained the energy barriers for five arsenicals reacting with thiol, alcohol, and amine separately. In addition to energetic favorability, the following are the energy barriers for arsenic's reaction with thiol ranked from low to high: MMAIII (25.4 kcal/mol), arsenite (27.7 kcal/mol), arsenate (32.8 kcal/mol), DMAV (36.2 kcal/mol), and MMAV (38.3 kcal/mol). Results show that the toxicity of arsenicals is mainly caused by their reaction with thiol rather than with alcohol or amine, as supported by the trend of decreasing toxicity and increasing energy barriers. Thus, this DFT calculation may confirm the paradigm that arsenic-thiol adhesion is the primary cause of arsenic toxicity in the body.
Collapse
Affiliation(s)
- Meng-Han Tsai
- Department
of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ying-Ting Lin
- Department
of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug
Development & Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Fleifel M, Fleifel B, El Alam A. Diabetes Mellitus across the Arabo-Islamic World: A Revolution. Int J Endocrinol 2023; 2023:5541808. [PMID: 38021083 PMCID: PMC10656201 DOI: 10.1155/2023/5541808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background Mankind continues to suffer from the ever-growing diabetes epidemic and the rapid rise of type 2 diabetes mellitus (T2DM). This metabolic disease has been studied since ancient civilizations. The Arabo-Islamic civilization excelled in establishing some of the most notable discoveries and teachings that remained the blueprint for years to come in the field of diabetology. Aim This article aimed to review the ancient history of diabetes mellitus, with its main focus on the Arabo-Islamic civilization, and to report our subjective views and analysis of some of the past recommendations based on modern-day findings. Discussion. It is natural to have the teachings of medicine dynamically inspired by one civilization to another, as various fields continue to expand and evolve. This also applies to diabetology as the Arabo-Islamic world used the outlines of prior civilizations to revolutionize the understanding of the disease. Al-Razi and Ibn Sina are probably two of the most renowned polymaths in history, and their contributions to diabetology are well documented. Ibn Maymun's postulation about the higher prevalence of diabetes in Egypt as compared to Andalusia is something to be carefully studied. It could be that diabetes mellitus' underdiagnosis and late-stage detection are some of the major reasons for the disparity between the two mentioned regions. Modern-day Arabo-Islamic scholars continue to excel in revolutionizing diabetology. Conclusion The Arabo-Islamic world houses an impressive bout of scholars who have contributed since the ancient times to diabetology. This scientific locomotion shows no signs of stopping, as it continues to shine during the present day, and likely in the future.
Collapse
Affiliation(s)
- Mohamad Fleifel
- Endocrinology and Metabolism Division, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Andrew El Alam
- Endocrinology Division, Centre Hospitalier de Chartres, Louis Pasteur Hospital, Chartres, France
| |
Collapse
|
4
|
Szczerba M, Johnson B, Acciai F, Gogerty C, McCaughan M, Williams J, Kibler KV, Jacobs BL. Canonical cellular stress granules are required for arsenite-induced necroptosis mediated by Z-DNA-binding protein 1. Sci Signal 2023; 16:eabq0837. [PMID: 36917643 PMCID: PMC10561663 DOI: 10.1126/scisignal.abq0837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 02/22/2023] [Indexed: 03/15/2023]
Abstract
Cellular stress granules arise in cells subjected to stress and promote cell survival. A cellular protein that localizes to stress granules is Z-DNA-binding protein 1 (ZBP1), which plays a major role in necroptosis, a programmed cell death pathway mediated by the kinase RIPK3. Here, we showed that the stress granule inducer arsenite activated RIPK3-dependent necroptosis. This pathway required ZBP1, which localized to arsenite-induced stress granules. RIPK3 localized to stress granules in the presence of ZBP1, leading to the formation of ZBP1-RIPK3 necrosomes, phosphorylation of the RIPK3 effector MLKL, and execution of necroptosis. Cells that did not form stress granules did not induce necroptosis in response to arsenite. Together, these results show that arsenite induces ZBP1-mediated necroptosis in a manner dependent on stress granule formation.
Collapse
Affiliation(s)
- Mateusz Szczerba
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA
| | - Brian Johnson
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA
| | - Francesco Acciai
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Carolina Gogerty
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Megan McCaughan
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jacqueline Williams
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Karen V. Kibler
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA
| | - Bertram L. Jacobs
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
5
|
Shiek SS, Sajai ST, Dsouza HS. Arsenic-induced toxicity and the ameliorative role of antioxidants and natural compounds. J Biochem Mol Toxicol 2023; 37:e23281. [PMID: 36550698 DOI: 10.1002/jbt.23281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/04/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Arsenic (As) poisoning has proven to be a major threat worldwide because of its toxic effects on the human body. As toxicity through drinking water is a global health concern. The toxicity of As is known to affect the liver, kidney, lungs, muscles, cardiovascular system, and nervous system and can even induce diabetes. Further As can cause skin lesions leading to notable diseases in the skin like Bowen's disease. Chronic exposure to As has caused many tragedies in Eastern, and several Southeast Asian and Latin American countries. Long-term exposure to As makes it an immediate threat that should be dealt with as a priority, and one of the ways to handle it may be with the use of antioxidants. In this review, we have discussed the natural and anthropogenic sources of As, its metabolism, pathophysiology, and mechanism of toxicity. Besides, we have also discussed some of the synthetic chelators and the ameliorative role of antioxidants and natural compounds in reducing As toxicity.
Collapse
Affiliation(s)
- Sadiya S Shiek
- Department of Biology, College of Science, United Arab Emirates University, United Arab Emirates
| | - Sanai T Sajai
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Herman S Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
6
|
Singh RD, Tiwari R, Sharma V, Khan H, Gangopadhyay S, Singh S, Koshta K, Shukla S, Arjaria N, Mandrah K, Jagdale PR, Patnaik S, Roy SK, Singh D, Giri AK, Srivastava V. Prenatal arsenic exposure induces immunometabolic alteration and renal injury in rats. Front Med (Lausanne) 2023; 9:1045692. [PMID: 36714129 PMCID: PMC9874122 DOI: 10.3389/fmed.2022.1045692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Arsenic (As) exposure is progressively associated with chronic kidney disease (CKD), a leading public health concern present worldwide. The adverse effect of As exposure on the kidneys of people living in As endemic areas have not been extensively studied. Furthermore, the impact of only prenatal exposure to As on the progression of CKD also has not been fully characterized. In the present study, we examined the effect of prenatal exposure to low doses of As 0.04 and 0.4 mg/kg body weight (0.04 and 0.4 ppm, respectively) on the progression of CKD in male offspring using a Wistar rat model. Interestingly, only prenatal As exposure was sufficient to elevate the expression of profibrotic (TGF-β1) and proinflammatory (IL-1α, MIP-2α, RANTES, and TNF-α) cytokines at 2-day, 12- and 38-week time points in the exposed progeny. Further, alteration in adipogenic factors (ghrelin, leptin, and glucagon) was also observed in 12- and 38-week old male offspring prenatally exposed to As. An altered level of these factors coincides with impaired glucose metabolism and homeostasis accompanied by progressive kidney damage. We observed a significant increase in the deposition of extracellular matrix components and glomerular and tubular damage in the kidneys of 38-week-old male offspring prenatally exposed to As. Furthermore, the overexpression of TGF-β1 in kidneys corresponds with hypermethylation of the TGF-β1 gene-body, indicating a possible involvement of prenatal As exposure-driven epigenetic modulations of TGF-β1 expression. Our study provides evidence that prenatal As exposure to males can adversely affect the immunometabolism of offspring which can promote kidney damage later in life.
Collapse
Affiliation(s)
- Radha Dutt Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India,Radha Dutt Singh, ,
| | - Ratnakar Tiwari
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Vineeta Sharma
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Hafizurrahman Khan
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Siddhartha Gangopadhyay
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sukhveer Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Kavita Koshta
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Shagun Shukla
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Pankaj Ramji Jagdale
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Somendu Kumar Roy
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Dhirendra Singh
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Ashok Kumar Giri
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Vikas Srivastava
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India,*Correspondence: Vikas Srivastava, ,
| |
Collapse
|
7
|
Qiu F, Zhang H, He Y, Liu H, Zheng T, Xia W, Xu S, Zhou J, Li Y. Associations of arsenic exposure with blood pressure and platelet indices in pregnant women: A cross-sectional study in Wuhan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114378. [PMID: 36525950 DOI: 10.1016/j.ecoenv.2022.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Environmental inorganic arsenic (iAs) exposure is potentially related to abnormal blood pressure (BP) changes and abnormal platelet activation. However, limited epidemiological studies have explored the impacts of iAs exposure on platelet change mediated by BP, especially for pregnant women. OBJECTIVES Our purpose was to investigate the associations of arsenic exposure with blood pressure and platelet indices among pregnant women. METHODS The present study population included 765 pregnant women drawn from a prospective birth cohort study in Wuhan, China, recruited between October 2013 and April 2016. Urine sampled in the second trimester were used to assess arsenic species concentrations. The relative distribution of urinary arsenic species was used to measure human methylation capacity. BP parameters and platelet indices originated from the medical record. We applied multivariable linear regression models to explore the cross-sectional relationships between urinary arsenic metabolites, BP parameters, and platelet indices. We utilized mediation analysis to investigate the impacts of arsenic exposure on platelet indices through BP as mediator variables. RESULTS We observed significant positive correlations between iAs and systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure (MAP). Pregnant women with higher methylation capacity to metabolize iAs characterized by higher secondary methylation index (SMI) and total methylation index (TMI) had a more significant reduction in SBP, DBP, and MAP. Pregnant women with higher DBP and MAP had higher platelet counts (PLC). A decreased PLC was found in subjects wither higher SMI. Additionally, SMI was negatively linked to PLC mediated through MAP. CONCLUSIONS Obtained results suggested that higher methylation capacity to metabolize iAs might contribute to decreased PLC among pregnant women, and MAP might mediate the influence of SMI on PLC.
Collapse
Affiliation(s)
- Feng Qiu
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Yujie He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jieqiong Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Department of Gynaecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanyuan Li
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Mangu JCK, Rai N, Mandal A, Olsson PE, Jass J. Lysinibacillus sphaericus mediates stress responses and attenuates arsenic toxicity in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155377. [PMID: 35460794 DOI: 10.1016/j.scitotenv.2022.155377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Exposure to toxic metals alters host response and that leads to disease development. Studies have revealed the effects of metals on microbial physiology, however, the role of metal resistant bacteria on host response to metals is unclear. The hypothesis that xenobiotic interactions between gut microbes and arsenic influence the host physiology and toxicity was assessed in a Caenorhabditis elegans model. The arsenic-resistant Lysinibacillus sphaericus B1CDA was fed to C. elegans to determine the host responses to arsenic in comparison to Escherichia coli OP50 food. L. sphaericus diet extended C. elegans lifespan compared to E. coli diet, with an increased expression of genes involved in lifespan, stress response and immunity (hif-1, hsp-16.2, mtl-2, abf-2, clec-60), as well as reduced fat accumulation. Arsenic-exposed worms fed L. sphaericus also had a longer lifespan than those fed E. coli and had an increased expression of genes involved in cytoprotection, stress resistance (mtl-1, mtl-2) and oxidative stress response (cyp-35A2, isp-1, ctl-2, sod-1), together with a decreased accumulation of reactive oxygen species (ROS). In comparison with E. coli, L. sphaericus B1CDA diet increased C. elegans fitness while detoxifying arsenic induced ROS and extending lifespan.
Collapse
Affiliation(s)
| | - Neha Rai
- The Life Science Centre-Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Abul Mandal
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Per-Erik Olsson
- The Life Science Centre-Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Jana Jass
- The Life Science Centre-Biology, School of Science and Technology, Örebro University, Örebro, Sweden.
| |
Collapse
|
9
|
Smith RJ, Kollus KM, Propper CR. Environmentally relevant arsenic exposure affects morphological and molecular endpoints associated with reproduction in the Western mosquitofish, Gambusia affinis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154448. [PMID: 35307416 DOI: 10.1016/j.scitotenv.2022.154448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/20/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) exposure, even at low environmentally relevant levels, may cause detrimental health outcomes through developmental toxicity and by acting as an endocrine disrupting compound (EDC). Although several studies indicate that wildlife bioaccumulate As, few evaluate the health impact on fish species in their natural environment. In the U.S., As has a drinking water regulatory limit of 10 μg/L. In many parts of Arizona, surface water and groundwater have naturally elevated levels of As from geologic deposits and contamination is exacerbated by anthropogenic activity. In aquatic environments, the Western mosquitofish, Gambusia affinis, is a good bioindicator for EDC exposure because of the distinct androgen-related development of an intromittent organ, the gonapodium, in males. We evaluated morphological and reproductive outcomes in mosquitofish exposed to As. In a laboratory experiment, juvenile male mosquitofish were exposed to sodium arsenite (0 μg/L, 0.75 μg/L, 7.50 μg/L, and 75 μg/L) for 30 days, and in a field study, populations of adult male mosquitofish were collected in Arizona waterways with As levels above and below the World Health Organization's regulatory limit. In both studies, higher As exposure was significantly associated with altered hepatosomatic indices, altered fish morphology, shortened gonopodia, and lower gonopodia-somatic indices. In the field experiment, populations from surface water with higher As concentrations exhibited lower condition factors, lower gonadal-somatic indices, distinct gonopodia shapes, and altered estrogen receptor alpha and vitellogenin gene expression; androgen receptor expression was unchanged. Together, laboratory and field results suggest that As exposure at environmentally-relevant levels affects general growth and reproductive development in mosquitofish. Observed effects may further influence individual health, mobility, or reproductive function, and because G. affinis is a species known to tolerate and adapt to a wide range of environments, it serves as a local bioindicator species as well as a model organism for parallel field and laboratory studies.
Collapse
Affiliation(s)
- Riley J Smith
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Kalai M Kollus
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.
| |
Collapse
|
10
|
Patel UN, Patel UD, Khadayata AV, Vaja RK, Modi CM, Patel HB. Long-term exposure of the binary mixture of cadmium and mercury damages the developed ovary of adult zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44928-44938. [PMID: 35138535 DOI: 10.1007/s11356-022-18988-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The toxicity of the binary mixture of cadmium (Cd) and mercury (Hg) on the ovary of adult zebrafish was evaluated in the present study. Adult female zebrafish were exposed to cadmium chloride (1 mg/L), mercury chloride (30 µg/L), and a binary mixture of both metals for 21 days. The toxic effects of both metals on the ovary were investigated by evaluating the oxidative stress markers and related gene expression in ovarian tissue along with the histopathological examination. The significantly decreased level of GSH and increased level of MDA in ovarian tissue of adult female zebrafish exposed to Cd + Hg indicated that the exposure of binary mixture of Cd and Hg caused more lipid peroxidation in the ovary. The significant changes in expression of mRNA of catalase (CAT) and nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) were not observed in the ovary of zebrafish exposed to the binary mixture. Upon histological evaluation, a decreased number of full-growth (mature) oocytes along with degenerative changes due to Cd exposure were noticed, while ovary of zebrafish of the Hg-exposed group had shown a decreased number of pre-and early vitellogenic oocytes along with atretic previtellogenic oocytes compared to the control group. The ovary of zebrafish of the Cd + Hg-exposed group had shown a decreased number of previtellogenic oocytes with marked pathological changes in mature oocytes. Present findings elucidate that simultaneous long-term exposure of Cd and Hg compared to individual exposure significantly damaged the various stages of oocytes of an ovary of adult zebrafish.
Collapse
Affiliation(s)
- Utsav N Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Junagadh, India
- Kamdhenu University, Gandhinagar, Gujarat, India
| | - Urvesh D Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Junagadh, India.
- Kamdhenu University, Gandhinagar, Gujarat, India.
| | - Aniket V Khadayata
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Junagadh, India
- Kamdhenu University, Gandhinagar, Gujarat, India
| | - Rahul K Vaja
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Junagadh, India
- Kamdhenu University, Gandhinagar, Gujarat, India
| | - Chirag M Modi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Junagadh, India
- Kamdhenu University, Gandhinagar, Gujarat, India
| | - Harshad B Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Junagadh, India
- Kamdhenu University, Gandhinagar, Gujarat, India
| |
Collapse
|
11
|
Verma PK, Singh P, Sharma P, Sood S, Raina R. Dose-Dependent Oxidative Damage in Erythrocytes and Hepatic Tissue of Wistar Rats Concurrently Exposed with Arsenic and Quinalphos: a Subacute Study. Biol Trace Elem Res 2022; 200:2160-2173. [PMID: 34189676 DOI: 10.1007/s12011-021-02807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Concurrent exposure to a multitude of environmental toxicants pose serious health hazard to humans and animals. The present investigation was conceptualized to determine deleterious effects of concomitant subacute arsenic and quinalphos exposure on antioxidant responses of liver and erythrocytes of Wistar rats. Fifty-four Wistar rats were divided into nine groups with six animals in each. Animals were exposed to either quinalphos (1/100th and 1/10th of LD50) through oral gavage daily or arsenic (50 and 100 ppb) in drinking water alone and in combination for 28 days. While treatment with different toxicants alone also significantly reduced hemoglobin concentration, hepatic biomarkers and levels of antioxidant parameters as compared with control values, concomitant exposure significantly (P < 0.05) elevated levels of hepatic transaminases and alkaline phosphatase. Moreover, along with significant depletion in activities of SOD, CAT, TTH, AChE, and enzymes of glutathione complex, a significant enhancement of lipid peroxidation was also recorded in liver and erythrocytes in co-exposed animals in a dose-dependent manner when compared with exposure to individual toxicant. More severe alterations occurred in hepatic histo-architecture of rats receiving combined treatment as compared with those treated with either toxicant. Results indicated that oxidative damage in erythrocytes was more than that of the liver of rats on concomitant exposure of arsenic and quinalphos in a dose-dependent manner. In nutshell, our results revealed that combined treatment of quinalphos with arsenic potentiated toxic effects of either toxicant on antioxidant machinery of liver and erythrocytes and hepatic histomorphology of exposed Wistar rats.
Collapse
Affiliation(s)
- Pawan Kumar Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India.
| | - Parvinder Singh
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India
| | - Priyanka Sharma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India
| | - Shilpa Sood
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India
| | - Rajinder Raina
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India
| |
Collapse
|
12
|
Mitochondrial Toxicity of Organic Arsenicals. Methods Mol Biol 2022; 2497:173-184. [PMID: 35771442 DOI: 10.1007/978-1-0716-2309-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Arsenic is either notorious toxicant or miracle cure for acute promyelocytic leukemia and several other diseases. It interacts with mitochondria directly or indirectly, by interacting with mitochondrial enzymes, such as respiratory chain complexes and tricarboxylic acid cycle proteins, or affecting mitochondrial homeostasis via ROS or mitochondrial outer membrane permeabilization. Given the ubiquitous presence of mitochondria and indispensable role in cellular metabolism, arsenical-mitochondrial interactions may manifest clinical importance by revealing mechanism of disease curation, preventing severe side effects, and foreseeing potential health issues. Here, we described the interaction between isolated mitochondria and arsenicals.
Collapse
|
13
|
Choudhury BP, Roychoudhury S, Sengupta P, Toman R, Dutta S, Kesari KK. Arsenic-Induced Sex Hormone Disruption: An Insight into Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:83-95. [PMID: 36472818 DOI: 10.1007/978-3-031-12966-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arsenic (As) is one of the most potent natural as well as anthropogenic metalloid toxicants that have various implications in the everyday life of humans. It is found in several chemical forms such as inorganic salt, organic salt, and arsine (gaseous form). Although it is mostly released via natural causes, there are many ways through which humans come in contact with As. Drinking water contamination by As is one of the major health concerns in various parts of the world. Arsenic exposure has the ability to induce adverse health effects including reproductive problems. Globally, around 15% of the couples are affected with infertility, of which about 20-30% are attributed to the male factor. Arsenic affects the normal development and function of sperm cells, tissue organization of the gonads, and also the sex hormone parameters. Stress induction is one of the implications of As exposure. Excessive stress leads to the release of glucocorticoids, which impact the oxidative balance in the body leading to overproduction of reactive oxygen species (ROS). This may in turn result in oxidative stress (OS) ultimately interfering with normal sperm and hormonal parameters. This study deals with As-induced OS and its association with sex hormone disruption as well as its effect on sperm and semen quality.
Collapse
Affiliation(s)
| | | | - Pallav Sengupta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Chennai, India.,Physiology Unit, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Robert Toman
- Department of Veterinary Disciplines, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Kavindra Kumar Kesari
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
14
|
Vergara-Gerónimo CA, León Del Río A, Rodríguez-Dorantes M, Ostrosky-Wegman P, Salazar AM. Arsenic-protein interactions as a mechanism of arsenic toxicity. Toxicol Appl Pharmacol 2021; 431:115738. [PMID: 34619159 DOI: 10.1016/j.taap.2021.115738] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Millions of people worldwide are exposed to arsenic, a metalloid listed as one of the top chemical pollutants of concern to human health. Epidemiological and experimental studies link arsenic exposure to the development of cancer and other diseases. Several mechanisms have been proposed to explain the effects induced by arsenic. Notably, arsenic and its metabolites interact with proteins by direct binding to individual cysteine residues, cysteine clusters, zinc finger motifs, and RING finger domains. Consequently, arsenic interactions with proteins disrupt the functions of proteins and may lead to the development and progression of diseases. In this review, we focus on current evidence in the literature that implicates the interaction of arsenic with proteins as a mechanism of arsenic toxicity. Data show that arsenic-protein interactions affect multiple cellular processes and alter epigenetic regulation, cause endocrine disruption, inhibit DNA damage repair mechanisms, and deregulate gene expression, among other adverse effects.
Collapse
Affiliation(s)
- Cristian A Vergara-Gerónimo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Alfonso León Del Río
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | | | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Ana María Salazar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Martínez-Castillo M, García-Montalvo EA, Arellano-Mendoza MG, Sánchez-Peña LDC, Soria Jasso LE, Izquierdo-Vega JA, Valenzuela OL, Hernández-Zavala A. Arsenic exposure and non-carcinogenic health effects. Hum Exp Toxicol 2021; 40:S826-S850. [PMID: 34610256 DOI: 10.1177/09603271211045955] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inorganic arsenic (iAs) exposure is a serious health problem that affects more than 140 million individuals worldwide, mainly, through contaminated drinking water. Acute iAs poisoning produces several symptoms such as nausea, vomiting, abdominal pain, and severe diarrhea, whereas prolonged iAs exposure increased the risk of several malignant disorders such as lung, urinary tract, and skin tumors. Another sensitive endpoint less described of chronic iAs exposure are the non-malignant health effects in hepatic, endocrine, renal, neurological, hematological, immune, and cardiovascular systems. The present review outlines epidemiology evidence and possible molecular mechanisms associated with iAs-toxicity in several non-carcinogenic disorders.
Collapse
Affiliation(s)
- Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Mónica G Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico-Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | - Luz Del C Sánchez-Peña
- Departamento de Toxicología, 540716Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Luis E Soria Jasso
- Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina del Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Jeannett A Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Olga L Valenzuela
- Facultad de Ciencias Químicas, 428055Universidad Veracruzana, Orizaba, México
| | - Araceli Hernández-Zavala
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
16
|
Barguilla I, Bach J, Peremartí J, Marcos R, Hernández A. FRA1 is essential for the maintenance of the oncogenic phenotype induced by in vitro long-term arsenic exposure. Metallomics 2020; 12:2161-2173. [PMID: 33313624 DOI: 10.1039/d0mt00209g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arsenic induces oncogenic effects activating stress-related signalling pathways. This can result in the over-activation of the AP-1 protein, specifically its FRA1 component. FRA1 is a transcription factor frequently overexpressed in epithelial tumors, where it can regulate the expression of different target genes. Accordingly, FRA1 could play an essential role in the in vitro cell transformation induced by arsenic. FRA1 levels were monitored in MEF cells throughout their transformation stages during 40 weeks of long-term 2 μM arsenic exposure. Interestingly, the results show a progressive FRA1 overexpression with time (60-fold and 11-fold for mRNA and pFRA/non-pFRA1, respectively, at week 40), which may be responsible for the observed altered expression in the FRA1 downstream target genes Pten, Pdcd4, Tpm1, Tgfb1, Tgfb2, Zeb1, Zeb2, and Twist. The levels of MAPKs (ERK, p38, and JNK) and other known players upstream from FRA1 were assessed at equivalent time-points, and ERK, p38 and RAS were pinpointed as potential candidates involved in arsenic-induced FRA1 activation. Furthermore, FRA1 stable knockdown under chronic arsenic exposure settings elicits a remarkable impact on the features relative to the cells' oncogenic phenotype. Notably, FRA1 knockdown cells present a 30% diminished proliferation rate, a 50% lowered migration and invasion potential, a 50% reduction in senescence, and a 30-60% reduced tumorsphere-forming ability. This work is the first to demonstrate the important role of FRA1 in the development and aggressiveness of the in vitro transformed phenotype induced by long-term arsenic exposure.
Collapse
Affiliation(s)
- Irene Barguilla
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Edifici Cn, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | | | | | | | | |
Collapse
|
17
|
Sarkar N, Das B, Bishayee A, Sinha D. Arsenal of Phytochemicals to Combat Against Arsenic-Induced Mitochondrial Stress and Cancer. Antioxid Redox Signal 2020; 33:1230-1256. [PMID: 31813247 DOI: 10.1089/ars.2019.7950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Phytochemicals are important dietary constituents with antioxidant properties. They affect various signaling pathways involved in the overall maintenance of interior milieu of the cell. Arsenic, an environmental toxicant, is well known for its deleterious consequences, such as various diseases, including cancers in humans. Mitochondria are the cell's powerhouse that fuel all metabolic energy requirements. Dysfunctional mitochondria due to stressors may lead to abnormal functioning of the organelle, hampering the crucial cellular cross talks and ultimately leading to cancer. Application of phytochemicals against arsenic-induced mitochondrial disorders may be a preventive measure to counteract the ruinous impacts of the metalloid. Recent Advances: In recent years, extensive research on the role of mitochondria in cancer gives a better understanding of the areas the organelle covers in maintaining a healthy cell or in inducing carcinogenicity. Detailed knowledge of the mitochondrial governances would enable researchers to administer numerous phytochemicals to ameliorate altered oxidative phosphorylation, mitochondrial membrane potential (MMP), mitochondrial oxidative stress, unfolded protein response, glycolysis, or even apoptosis. Critical Issues: In this review, we have addressed how various phytochemicals belonging to diverse classes combat against arsenic-induced mitochondrial oxidative stress, depletion of MMP, cell cycle abrogation, apoptosis, glycolytic damages, oncogenic regulations, chaperones, mitochondrial complexes, and mitochondrial membrane pore formation in both in vitro and in vivo models. Future Directions: Insightful application of mitoprotective phytochemicals against arsenic-induced mitochondrial oxidative stress and carcinogenesis may guide researchers to develop preclinical chemopreventive agents to fight arsenic toxicity in humans.
Collapse
Affiliation(s)
- Nivedita Sarkar
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Bornita Das
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
18
|
Dai L, Lv X, Chen Z, Huang Z, Li B, Xie Y, Duan Y, Zhao H, Wang Y, Yu Q, Li S, Zhou Y, Shen X. Elevated whole blood arsenic level is associated with type 2 diabetes in coal-burning areas in Guizhou. Toxicol Appl Pharmacol 2020; 403:115135. [DOI: 10.1016/j.taap.2020.115135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/28/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022]
|
19
|
Concessao P, Bairy LK, Raghavendra AP. Protective effect of Mucuna pruriens against arsenic-induced liver and kidney dysfunction and neurobehavioral alterations in rats. Vet World 2020; 13:1555-1566. [PMID: 33061227 PMCID: PMC7522945 DOI: 10.14202/vetworld.2020.1555-1566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Intoxication of arsenic in rats is known to result in neurological effects as well as liver and kidney dysfunction. Mucuna pruriens has been identified for its medicinal properties. The aim of the study was to investigate the protective effect of aqueous seed extract of M. pruriens on sodium arsenite-induced memory impairment, liver, and kidney functions in rats. MATERIALS AND METHODS The experiment was divided into short-term treatment (45 days) and long-term treatment (90 days), with each group divided into nine sub-groups consisting of six animals each. Sub-groups 1 and 2 served as normal, and N-acetylcysteine (NAC) controls, respectively. Sub-groups 3-9 received sodium arsenite in drinking water (50 mg/L). In addition, sub-group 4 received NAC (210 mg/kg b.wt) orally once daily, sub-groups 5-7 received aqueous seed extract of M. pruriens (350 mg/kg b.wt, 530 mg/kg b.wt, and 700 mg/kg b.wt) orally once daily and sub-groups 8 and 9 received a combination of NAC and aqueous seed extract of M. pruriens (350 mg/kg b.wt and 530 mg/kg b.wt) orally once daily. Following the treatment, the blood was drawn retro-orbitally to assess the liver (serum alanine transaminase [ALT], serum aspartate transaminase, and serum alkaline phosphatase) and kidney (serum urea and serum creatinine) functions. Learning and memory were assessed by passive avoidance test. Animals were sacrificed by an overdose of ketamine, and their Nissl stained hippocampal sections were analyzed for alterations in neural cell numbers in CA1 and CA3 regions. RESULTS In the short-term treatment, groups administered with M. pruriens 530 mg/kg b.wt alone and combination of NAC + M. pruriens 350 mg/kg b.wt exhibited a significant improvement in memory retention, less severe neurodegeneration, and decrease in serum ALT levels. In long-term treatment, groups administered with M. pruriens 700 mg/kg b.wt alone and combination of NAC+M. pruriens 350 mg/kg b.wt, respectively, showed better memory retention, decreased neural deficits, and reduced levels of kidney and liver enzymes. CONCLUSION The seed extract of M. pruriens showed significant enhancement in memory and learning. The number of surviving neurons in the CA1 and CA3 regions also increased on treatment with M. pruriens. Serum ALT, serum urea, and serum creatinine levels showed significant improvement on long-term treatment with M. pruriens.
Collapse
Affiliation(s)
- Preethi Concessao
- Department of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Laxminarayana Kurady Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Archana Parampalli Raghavendra
- Department of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
20
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
21
|
Sinha D, Prasad P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol 2019; 40:87-131. [PMID: 31273810 DOI: 10.1002/jat.3823] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Groundwater arsenic (As) contamination is a global public health concern. The high level of As exposure (100-1000 μg/L or even higher) through groundwater has been frequently associated with serious public health hazards, e.g., skin disorders, cardiovascular diseases, respiratory problems, complications of gastrointestinal tract, liver and splenic ailments, kidney and bladder disorders, reproductive failure, neurotoxicity and cancer. However, reviews on low-level As exposure and the imperative health effects are far less documented. The World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA) has set the permissible standard of As in drinking water at 10 μg/L. Considering the WHO and USEPA guidelines, most of the developed countries have established standards at or below this guideline. Worldwide many countries including India have millions of aquifers with low-level As contamination (≤50 μg/L). The exposed population of these areas might not show any As-related skin lesions (hallmark of As toxicity particularly in a population consuming As contaminated groundwater >300 μg/L) but might be subclinically affected. This review has attempted to encompass the wide range of health effects associated with chronic low-level As exposure ≤50 μg/L and the probable mechanisms that might provide a better insight regarding the underlying cause of these clinical manifestations. Therefore, there is an urgent need to create mass awareness about the health effects of chronic low-level As exposure and planning of proper mitigation strategies.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Priyanka Prasad
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
22
|
Grandjean JM, Plate L, Morimoto RI, Bollong MJ, Powers ET, Wiseman RL. Deconvoluting Stress-Responsive Proteostasis Signaling Pathways for Pharmacologic Activation Using Targeted RNA Sequencing. ACS Chem Biol 2019; 14:784-795. [PMID: 30821953 PMCID: PMC6474822 DOI: 10.1021/acschembio.9b00134] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cellular proteostasis is maintained by stress-responsive signaling pathways such as the heat shock response (HSR), the oxidative stress response (OSR), and the unfolded protein response (UPR). Activation of these pathways results in the transcriptional upregulation of select subsets of stress-responsive genes that restore proteostasis and adapt cellular physiology to promote recovery following various types of acute insult. The capacity for these pathways to regulate cellular proteostasis makes them attractive therapeutic targets for correcting proteostasis defects associated with diverse diseases. High-throughput screening (HTS) using cell-based reporter assays is highly effective for identifying putative activators of stress-responsive signaling pathways. However, the development of these compounds is hampered by the lack of medium-throughput assays to define compound potency and selectivity for a given pathway. Here, we describe a targeted RNA sequencing (RNAseq) assay that allows cost-effective, medium-throughput screening of stress-responsive signaling pathway activation. We demonstrate that this assay allows deconvolution of stress-responsive signaling activated by chemical genetic or pharmacologic agents. Furthermore, we use this assay to define the selectivity of putative OSR and HSR activating compounds previously identified by HTS. Our results demonstrate the potential for integrating this adaptable targeted RNAseq assay into screening programs focused on developing pharmacologic activators of stress-responsive signaling pathways.
Collapse
Affiliation(s)
- Julia M.D. Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Lars Plate
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA
| | - Michael J. Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Evan T. Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
23
|
Mukhopadhyay P, Seelan RS, Greene RM, Pisano MM. Impact of prenatal arsenate exposure on gene expression in a pure population of migratory cranial neural crest cells. Reprod Toxicol 2019; 86:76-85. [PMID: 30953684 DOI: 10.1016/j.reprotox.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 11/27/2022]
Abstract
Prenatal exposure to arsenic, a naturally occurring toxic element, causes neural tube defects (NTDs) and, in animal models, orofacial anomalies. Since aberrant development or migration of cranial neural crest cells (CNCCs) can also cause similar anomalies within developing embryos, we examined the effects of in utero exposure to sodium arsenate on gene expression patterns in pure populations of CNCCs, isolated by fluorescence activated cell sorting (FACS), from Cre/LoxP reporter mice. Changes in gene expression were analyzed using Affymetrix GeneChip® microarrays and expression of selected genes was verified by TaqMan quantitative real-time PCR. We report, for the first time, arsenate-induced alterations in the expression of a number of novel candidate genes and canonical cascades that may contribute to the pathogenesis of orofacial defects. Ingenuity Pathway and NIH-DAVID analyses revealed cellular response pathways, biological themes, and potential upstream regulators, that may underlie altered fetal programming of arsenate exposed CNCCs.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States
| | - Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States.
| | - M Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
24
|
Barai M, Ahsan N, Paul N, Hossain K, Abdur Rashid M, Kato M, Ohgami N, Azim Akhand A. Amelioration of arsenic-induced toxic effects in mice by dietary supplementation of Syzygium cumini leaf extract. NAGOYA JOURNAL OF MEDICAL SCIENCE 2018. [PMID: 28626252 PMCID: PMC5472542 DOI: 10.18999/nagjms.79.2.167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arsenic created a serious public health problem in Bangladesh due to its presence in groundwater and dissemination of the toxic effects to millions of people. The scarcity of the treatment options to manage this affected population has made the situation much worse. To find a promising treatment option, this study was undertaken to examine the ameliorating roles of Syzygium cumini leaf extract (SLE) against arsenic-induced toxic effects in mice. Swiss albino mice were divided into four groups where ‘control’ group received pure water + normal feed, ‘arsenic (As)’ group received sodium arsenite (NaAsO2)-containing water (10 μg/g body weight/day) + normal feed, ‘As+SLE’ group received NaAsO2-containing water + feed supplemented with SLE (50 µg/g body weight/day) and finally the ‘SLE’ group received pure water + feed supplemented with SLE. A gradual increase in body weight gain was observed in control mice; however, the body weight gain in As-exposed mice was decreased. This decrease in body weight gain was prevented in As+SLE group mice that received SLE supplemented feed. Arsenic showed a secondary effect by causing enlargement of spleen, kidney and liver of ‘As’ group mice and this enlargement of the organs was minimized with SLE supplementation. In addition, SLE abrogated arsenic-mediated elevation of serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), uric acid and glucose. These results, therefore, suggest that SLE might have future therapeutic value for preventing or reducing arsenic-induced toxic effects.
Collapse
Affiliation(s)
- Milan Barai
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Nazmul Ahsan
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Nilanjana Paul
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205, Bangladesh
| | | | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Anwarul Azim Akhand
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
25
|
Dhar P, Kaushal P, Kumar P. Antioxidant supplementation upregulates calbindin expression in cerebellar Purkinje cells of rat pups subjected to post natal exposure to sodium arsenite. Brain Res 2018; 1690:23-30. [PMID: 29630858 DOI: 10.1016/j.brainres.2018.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 12/01/2022]
Abstract
Optimal cytoplasmic calcium (Ca2+) levels have been associated with adequate cell functioning and neuronal survival. Altered intracellular Ca2+ levels following impaired Ca2+ homeostasis could induce neuronal degeneration or even cell death. There are reports of arsenite induced oxidative stress and the associated disturbances in intracellular calcium homeostasis. The present study focused on determining the strategies that would modulate tissue redox status and calcium binding protein (CaBP) (Calbindin D28k-CB) expression affected adversely by sodium arsenite (NaAsO2) exposure (postnatal) of rat pups. NaAsO2 alone or along with antioxidants (AOXs) (alpha lipoic acid or curcumin) was administered by intraperitoneal (i.p.) route from postnatal day (PND) 1-21 (covering rapid brain growth period - RBGP) to experimental groups and animals receiving sterile water by the same route served as the controls. At the end of the experimental period, the animals were subjected to euthanasia and the cerebellar tissue obtained therefrom was processed for immunohistochemical localization and western blot analysis of CB protein. CB was diffusely expressed in cell body as well as dendritic processes of Purkinje cells (PCs) along the PC Layer (PCL) in all cerebellar folia of the control and the experimental animals. The multilayered pattern of CB +ve cells along with their downregulated expression and low packing density was significantly evident in the arsenic (iAs) alone exposed group as against the controls and AOX supplemented groups. The observations are suggestive of AOX induced restoration of CaBP expression in rat cerebellum following early postnatal exposure to NaAsO2.
Collapse
Affiliation(s)
- Pushpa Dhar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Parul Kaushal
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pavan Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
26
|
Xiao L, Zhou Y, Ma J, Sun W, Cao L, Wang B, Zhu C, Yang S, Wang D, Yuan J, Chen W. Oxidative DNA damage mediates the association between urinary metals and prevalence of type 2 diabetes mellitus in Chinese adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1327-1333. [PMID: 30857096 DOI: 10.1016/j.scitotenv.2018.01.317] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 06/09/2023]
Abstract
Previous publications have indicated that some metals are associated with an increased prevalence of type 2 diabetes mellitus (T2DM); however, the mechanisms remain largely unknown. This study aimed to quantify the associations of oxidative DNA damage with urinary metals and prevalence of T2DM among the general population, and further to assess the role of oxidative DNA damage in mediating the association of urinary metals with prevalence of T2DM. Diagnoses of T2DM were performed clinically or by measuring fasting levels of plasma glucose ≥7.0mmol/L. Concentrations of urinary metals and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in 2127 participants were measured using inductively coupled plasma-mass spectrometry and high-performance liquid chromatography. Relationships among urinary metals, 8-OHdG (a biomarker for oxidative DNA damage), and prevalence of T2DM were analyzed using mediation analysis. After adjusting for covariates, we found that the log-transformed levels of urinary copper, arsenic, selenium, molybdenum, and antimony were positively associated with prevalence of T2DM. Urinary 8-OHdG was not only positively correlated with copper, arsenic, selenium, and antimony in an upwardly trending, dose-responsive manner but was also positively associated with prevalence of T2DM (odds ratio (OR): 1.95; 95% CI: 1.17-3.24). Mediation analysis estimated that urinary 8-OHdG mediated 13.22% and 8.84% of associations between prevalence of T2DM and concentrations of urinary arsenic and antimony, respectively (all P value<0.05). Our findings suggested that urinary arsenic and antimony concentrations were associated with an increased prevalence of T2DM by a mechanism partly involving oxidative DNA damage.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weiwei Sun
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chunmei Zhu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Yuan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
27
|
Ponomarenko O, La Porte PF, Singh SP, Langan G, Fleming DEB, Spallholz JE, Alauddin M, Ahsan H, Ahmed S, Gailer J, George GN, Pickering IJ. Selenium-mediated arsenic excretion in mammals: a synchrotron-based study of whole-body distribution and tissue-specific chemistry. Metallomics 2017; 9:1585-1595. [PMID: 29058732 DOI: 10.1039/c7mt00201g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Arsenicosis, a syndrome caused by ingestion of arsenic contaminated drinking water, currently affects millions of people in South-East Asia and elsewhere. Previous animal studies revealed that the toxicity of arsenite essentially can be abolished if selenium is co-administered as selenite. Although subsequent studies have provided some insight into the biomolecular basis of this striking antagonism, many details of the biochemical pathways that ultimately result in the detoxification and excretion of arsenic using selenium supplements have yet to be thoroughly studied. To this end and in conjunction with the recent Phase III clinical trial "Selenium in the Treatment of Arsenic Toxicity and Cancers", we have applied synchrotron X-ray techniques to elucidate the mechanisms of this arsenic-selenium antagonism at the tissue and organ levels using an animal model. X-ray fluorescence imaging (XFI) of cryo-dried whole-body sections of laboratory hamsters that had been injected with arsenite, selenite, or both chemical species, provided insight into the distribution of both metalloids 30 minutes after treatment. Co-treated animals showed strong co-localization of arsenic and selenium in the liver, gall bladder and small intestine. X-ray absorption spectroscopy (XAS) of freshly frozen organs of co-treated animals revealed the presence in liver tissues of the seleno bis-(S-glutathionyl) arsinium ion, which was rapidly excreted via bile into the intestinal tract. These results firmly support the previously postulated hepatobiliary excretion of the seleno bis-(S-glutathionyl) arsinium ion by providing the first data pertaining to organs of whole animals.
Collapse
Affiliation(s)
- Olena Ponomarenko
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang A, Liu S, Cheng Z, Pu H, Cheng N, Ding J, Li J, Li H, Hu X, Ren X, Yang K, Zheng T, Bai Y. Dose-response analysis of environmental exposure to multiple metals and their joint effects with fasting plasma glucose among occupational workers. CHEMOSPHERE 2017; 186:314-321. [PMID: 28787687 DOI: 10.1016/j.chemosphere.2017.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES Environmental exposure to metals may adversely affect cardiometabolic health. However, little data are available directly evaluating the roles of metal exposure in blood glucose of which dysfunction has been linked to diabetes. We aimed to evaluate the dose-response associations between fasting plasma glucose (FPG) and multiple urinary metals including nickel, cobalt, copper, zinc, and arsenic, as well as to examine their joint effects among occupational workers. METHODS We performed a population-based study of 464 workers in an ongoing occupational cohort study in China. Both spline and categorical analyses were used to evaluate the dose-response relationship between urinary metals levels and FPG. RESULTS We observed the J-shaped non-linear relationships between urinary nickel (P non-linearity = 0.03) and zinc (P non-linearity < 0.01) with FPG by spline analyses. A negative linear relationship between urinary cobalt and FPG (P for nonlinearity = 0.06) was found, but no statistically significant associations between urinary copper and arsenic with FPG. In linear regression analyses, the regression coefficient for log-transferred FPG was 0.017 (95% confidence intervals [CI]: -0.003, 0.038) in the 4th quartile concentration of urinary nickel, compared with 1st quartile. The joint effects between urinary nickel and cobalt with FPG were also detected (P for interaction = 0.04). CONCLUSIONS Multiple urinary metals, particularly nickel, zinc and cobalt, were associated with blood glucose among Chinese metal exposed workers, supporting the notion that metal exposure may play a critical role in diabetes development.
Collapse
Affiliation(s)
- Aimin Yang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China; Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02912, USA
| | - Simin Liu
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02912, USA; Department of Medicine (Endocrinology), Rhode Island Hospital and the Alpert Medical School, Brown University, Providence, RI, 02908, USA
| | - Zhiyuan Cheng
- Evidence-Based Medicine Center and Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, College of Basic Medicine, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Hongquan Pu
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang, Gansu, 737103, China
| | - Ning Cheng
- Center of Medical Laboratory, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jiao Ding
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang, Gansu, 737103, China
| | - Juansheng Li
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Haiyan Li
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang, Gansu, 737103, China
| | - Xiaobin Hu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaowei Ren
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Kehu Yang
- Evidence-Based Medicine Center and Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, College of Basic Medicine, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02912, USA.
| | - Yana Bai
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
29
|
Greani S, Lourkisti R, Berti L, Marchand B, Giannettini J, Santini J, Quilichini Y. Effect of chronic arsenic exposure under environmental conditions on bioaccumulation, oxidative stress, and antioxidant enzymatic defenses in wild trout Salmo trutta (Pisces, Teleostei). ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:930-941. [PMID: 28623431 DOI: 10.1007/s10646-017-1822-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2017] [Indexed: 05/25/2023]
Abstract
The present study evaluates the relation between chronic arsenic (As) exposure in the natural distribution area of wild brown trout (Salmo trutta), oxidative stress and antioxidant enzymatic defenses. Two rivers of the same watershed were evaluated to highlight the correlation between As accumulation and the resulting stress: (i) the Presa River, which has high chronic As levels (2281.66 µg/L) due to past mining activity, and (ii) the Bravona River (control river). This metalloid was measured in main fish tissues (gills, kidney, liver, muscle, gonads and fins) and water. As organotropism in S. trutta was kidney > liver > gill > fin > gonad > muscle. The HepatoSomatic Index (HSI) and somatic condition (CF) were used to compare fish population conditions from both sites. Arsenic can be absorbed by the gills and can induce oxidative stress and disturb antioxidant defenses. The aim of this study was to evaluate oxidative stress response by measuring malondialdehyde (MDA) content, as a marker of lipid peroxidation, and antioxidant enzymatic defenses (Superoxide dismutase (SOD), catalase CAT, glutathione peroxidase (GPx) and glutathione S-transferase (GST)), in the main tissues of control and exposed trout. The highest MDA content was found in the kidney and liver of exposed trout. SOD and CAT activities in exposed livers and kidneys were considerably increased while a significant rise of GPx activity was observed only in the liver. GST activity was found to be significantly induced in the liver of exposed trout. The results demonstrate that arsenic bioaccumulation can induce lipid peroxidation and substantial modifications in antioxidant enzymatic defenses in main wild trout tissues.
Collapse
Affiliation(s)
- Samuel Greani
- Laboratoire Parasites et Ecosystèmes méditerranéens, UMR CNRS 6134 SPE, Università di Corsica, F-20250, Corti, Corsica, France
| | - Radia Lourkisti
- Laboratoire de Biochimie et Biologie moléculaire du végétal, UMR CNRS 6134 SPE, Università di Corsica, F-20250, Corti, Corsica, France
| | - Liliane Berti
- Laboratoire de Biochimie et Biologie moléculaire du végétal, UMR CNRS 6134 SPE, Università di Corsica, F-20250, Corti, Corsica, France
| | - Bernard Marchand
- Laboratoire Parasites et Ecosystèmes méditerranéens, UMR CNRS 6134 SPE, Università di Corsica, F-20250, Corti, Corsica, France
| | - Jean Giannettini
- Laboratoire de Biochimie et Biologie moléculaire du végétal, UMR CNRS 6134 SPE, Università di Corsica, F-20250, Corti, Corsica, France
| | - Jérémie Santini
- Laboratoire de Biochimie et Biologie moléculaire du végétal, UMR CNRS 6134 SPE, Università di Corsica, F-20250, Corti, Corsica, France.
| | - Yann Quilichini
- Laboratoire Parasites et Ecosystèmes méditerranéens, UMR CNRS 6134 SPE, Università di Corsica, F-20250, Corti, Corsica, France
| |
Collapse
|
30
|
Tillotson J, Zerio CJ, Harder B, Ambrose AJ, Jung KS, Kang M, Zhang DD, Chapman E. Arsenic Compromises Both p97 and Proteasome Functions. Chem Res Toxicol 2017; 30:1508-1514. [PMID: 28636814 PMCID: PMC5687067 DOI: 10.1021/acs.chemrestox.7b00158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exposure to arsenic is a worldwide problem that affects more than 200 million people. The underlying mechanisms of arsenic toxicity have been difficult to ascertain due to arsenic's pleotropic effects. A number of recent investigations have shown that arsenic can compromise protein quality control through the ubiquitin proteasome system (UPS) or the endoplasmic reticulum associated protein degradation (ERAD) pathway. In this article, a link between arsenic and protein quality control is reported. Biochemical and cellular data demonstrate a misregulation of the ATPase cycle of the ATPase associated with various cellular activities (AAA+) chaperone, p97. Interestingly, the loss of p97 activity is due to the increased rate of ATP hydrolysis, which mimics a collection of pathogenic genetic p97 lesions. Cellular studies, using a well characterized reporter of both the proteasome and p97, show the proteasome to also be compromised. This loss of both p97 and proteasome functions can explain the catastrophic protein quality control issues observed in acute, high level arsenic exposures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Donna D. Zhang
- Corresponding Authors: (D.D.Z.) University of Arizona, Department of Pharmacology and Toxicology, College of Pharmacy, 1703 East Mabel St., P.O. Box 210119, Tucson, AZ, USA 85721-0119. Tel: 520-626-9918. .; (E.C.) University of Arizona, Department of Pharmacology and Toxicology, College of Pharmacy, 1703 East Mabel St., P.O. Box 210119, Tucson, AZ, USA 85721-0207. Tel: 520-626-2740.
| | - Eli Chapman
- Corresponding Authors: (D.D.Z.) University of Arizona, Department of Pharmacology and Toxicology, College of Pharmacy, 1703 East Mabel St., P.O. Box 210119, Tucson, AZ, USA 85721-0119. Tel: 520-626-9918. .; (E.C.) University of Arizona, Department of Pharmacology and Toxicology, College of Pharmacy, 1703 East Mabel St., P.O. Box 210119, Tucson, AZ, USA 85721-0207. Tel: 520-626-2740.
| |
Collapse
|
31
|
Chen C, Jiang X, Gu S, Zhang Z. MicroRNA-155 regulates arsenite-induced malignant transformation by targeting Nrf2-mediated oxidative damage in human bronchial epithelial cells. Toxicol Lett 2017; 278:38-47. [PMID: 28688901 DOI: 10.1016/j.toxlet.2017.07.215] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/01/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022]
Abstract
Arsenite is a well-documented human lung carcinogen but the detailed mechanisms of carcinogenesis remain unclear. In this study, human bronchial epithelial (16-HBE) cells were continuously exposed to 2.5μM arsenite for about 13 weeks to induce the phenotypes of malignant transformation. Our results showed that Nrf2 expression was gradually decreased whereas no significant change was observed on NF-κB activation with increased time of arsenite exposure. To test the roles of Nrf2-meidtaed oxidative damage in the arsenite-induced malignant transformation, we compared the levels of cGMP, PKG and oxidative damage-related indicators between arsenic-transformed cells and control cells. Our data demonstrated there were no significantly differences on the contents of cGMP, PKG, MDA and the production of ROS, but the levels of GSH and NO, the activities of SOD, tNOS and iNOS were significantly enhanced in the arsenic-transformed cells. Importantly, Nrf2 inactivation could be modulated by miR-155, and inhibition of miR-155 remarkably attenuated the malignant phenotypes and promoted apoptotic cell death in the arsenic-transformed cells. Together, our findings provide the novel mechanism that miR-155 may regulate arsenite-induced cell malignant transformation by targeting Nrf2-mediated oxidative damage, indicating that inhibition of miR-155 may be a potential strategy against lung carcinogenesis of arsenite.
Collapse
Affiliation(s)
- Chengzhi Chen
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China; Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuejun Jiang
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China; Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shiyan Gu
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zunzhen Zhang
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
32
|
Winterbottom EF, Koestler DC, Fei DL, Wika E, Capobianco AJ, Marsit CJ, Karagas MR, Robbins DJ. The aquaglyceroporin AQP9 contributes to the sex-specific effects of in utero arsenic exposure on placental gene expression. Environ Health 2017; 16:59. [PMID: 28615018 PMCID: PMC5471920 DOI: 10.1186/s12940-017-0267-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 06/06/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Sex-specific factors play a major role in human health and disease, including responses to environmental stresses such as toxicant exposure. Increasing evidence suggests that such sex differences also exist during fetal development. In a previous report using the resources of the New Hampshire Birth Cohort Study (NHBCS), we found that low-to-moderate in utero exposure to arsenic, a highly toxic and widespread pollutant, was associated with altered expression of several key developmental genes in the fetal portion of the placenta. These associations were sex-dependent, suggesting that in utero arsenic exposure differentially impacts male and female fetuses. In the present study, we investigated the molecular basis for these sex-specific responses to arsenic. METHODS Using NanoString technology, we further analyzed the fetal placenta samples from the NHBCS for the expression of genes encoding arsenic transporters and metabolic enzymes. Multivariable linear regression analysis was used to examine their relationship with arsenic exposure and with key developmental genes, after stratification by fetal sex. RESULTS We found that maternal arsenic exposure was strongly associated with expression of the AQP9 gene, encoding an aquaglyceroporin transporter, in female but not male fetal placenta. Moreover, AQP9 expression associated with that of a subset of female-specific arsenic-responsive genes. CONCLUSIONS Our results suggest that AQP9 is upregulated in response to arsenic exposure in female, but not male, fetal placenta. Based on these results and prior studies, increased AQP9 expression may lead to increased arsenic transport in the female fetal placenta, which in turn may alter the expression patterns of key developmental genes that we have previously shown to be associated with arsenic exposure. Thus, this study suggests that AQP9 may play a role in the sex-specific effects of in utero arsenic exposure.
Collapse
Affiliation(s)
- Emily F. Winterbottom
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Devin C. Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Dennis Liang Fei
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136 USA
- Department of Pharmacology and Toxicology, Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
- Current address: Weill Cornell Medicine, New York, NY 10065 USA
| | - Eric Wika
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Anthony J. Capobianco
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA 30322 USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - David J. Robbins
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
33
|
Varghese MV, Abhilash M, Alex M, Paul MVS, Prathapan A, Raghu KG, Nair RH. Attenuation of arsenic trioxide induced cardiotoxicity through flaxseed oil in experimental rats. Redox Rep 2017; 22:346-352. [PMID: 28209094 DOI: 10.1080/13510002.2017.1289313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES Arsenic trioxide (As2O3) is a potent drug for acute promyelocytic leukaemia, but its clinical trials are allied with some serious adverse events mainly cardiac functional abnormalities. So the objective of our investigation is to identify the cardioprotective action of flaxseed oil (FSO), a natural compound against As2O3 induced cardiotoxicity. METHODS Male wistar rats were treated with As2O3 (4 mg/kg) to induce cardiotoxicity. FSO (250 and 500 mg/kg) was given in combination with As2O3 for evaluating its cardioprotective efficacy. RESULTS Treatment with As2O3 resulted in deposition of arsenic in heart tissue, increased cardiac marker enzymes release, lipid peroxidation (LPO), oxidative insults and pathological damages in the heart. Co-treatment with FSO (500 mg/kg) significantly reduced the arsenic accumulation, cardiac marker enzymes, LPO and cardiac structural alterations. FSO treatment significantly improved cardiac glutathione content, antioxidant enzymes and reduced the pathological damages in cardiac tissue. Gas chromatographic-mass spectrometry analysis revealed that the major fatty acid content in the FSO is alpha-linolenic acid, which has a strong milieu in cardiac health. CONCLUSION The results of the current investigation suggested that FSO is an effective agent in reducing arsenic-induced cardiac toxicity and can be used as an adjunct/dietary supplement for the cancer patients on As2O3 therapy.
Collapse
Affiliation(s)
| | - M Abhilash
- a School of Biosciences , Mahatma Gandhi University , Kottayam , India
| | - Manju Alex
- a School of Biosciences , Mahatma Gandhi University , Kottayam , India
| | - M V Sauganth Paul
- a School of Biosciences , Mahatma Gandhi University , Kottayam , India
| | - A Prathapan
- b Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) , Trivandrum , India
| | - K G Raghu
- b Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) , Trivandrum , India
| | | |
Collapse
|
34
|
BonakdarYazdi B, Khodagholi F, Shaerzadeh F, Sharifzadeh A, Ahmadi R, Sanati M, Mehdizadeh H, Payandehmehr B, Vali L, Jahromi MM, Taghizadeh G, Sharifzadeh M. The effect of arsenite on spatial learning: Involvement of autophagy and apoptosis. Eur J Pharmacol 2017; 796:54-61. [PMID: 27993642 DOI: 10.1016/j.ejphar.2016.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/03/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022]
Abstract
Spatial learning plays a major role in one's information recording. Arsenic is one of ubiquitous environmental toxins with known neurological effects. However, studies investigating the effects of arsenic on spatial learning and related mechanisms are limited. This study was planned toexaminethe effects of bilateral intra-hippocampal infusion of different concentrations of sodium arsenite (5, 10 and 100nM, 5µl/side) on spatial learning in Wistar rats. Moreover, we evaluated levels of LC3-II, Atg7 and Atg12 as reliable biomarkers of autophagy and caspase-3 and Bax/Bcl-2 ratio as indicators of apoptosis in the hippocampus. Interestingly, low concentrations of sodium arsenite (5 and 10nM) significantly increased spatial acquisition but pre-training administration of sodium arsenite100nM did not significantly alter spatial learning. LC3-II levels were significantly increased in groups treated with sodium arsenite 5 and 10nM and decreased in the group receiving arsenite 100nM compared to the control group. Atg7 and Atg12 levels were obviously higher in all groups treated with sodium arsenite compared to control. However, caspase-3 cleavage and Bax/Bcl-2 ratio were notably greater in 100nM, and lesser in 5nM arsenite group in comparison with control animals. The results of this study showed that the low concentrations of sodium arsenite could facilitate spatial learning. This facilitation could be attributed to neuronal autophagy induced by low concentrations of sodium arsenite. These findings may help to clarify the regulatory pathways for apoptosis and autophagy balance due to sodium arsenite.
Collapse
Affiliation(s)
- Behnoosh BonakdarYazdi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Toxicology and poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shaerzadeh
- Department of Physiology, faculty of medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Ramesh Ahmadi
- Department of Physiology, Azad University, Qom, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Toxicology and poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Hajar Mehdizadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Toxicology and poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Borna Payandehmehr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Toxicology and poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Vali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Sulaibekhat, Kuwait
| | | | - Ghorban Taghizadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Toxicology and poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Occupational Therapy, Faculty of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Toxicology and poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Yang A, Liu S, Cheng N, Pu H, Dai M, Ding J, Li J, Li H, Hu X, Ren X, He J, Zheng T, Bai Y. Multiple metals exposure, elevated blood glucose and dysglycemia among Chinese occupational workers. J Diabetes Complications 2017; 31:101-107. [PMID: 27623387 DOI: 10.1016/j.jdiacomp.2016.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/17/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023]
Abstract
AIMS Exposure to metals may adversely affect cardiometabolic health. The aim of this study is to directly evaluate the roles of multiple metals exposure in glucose homeostasis, the dysfunction of which has been linked to diabetes and cardiovascular diseases (CVDs). METHODS We performed a cross-sectional analysis of baseline data from 464 metal-exposed workers who participated in a large prospective occupational study in China (Jinchang Cohort). The logistic regression model was used to evaluate the association between urinary metal levels and high fasting plasma glucose (high-FPG) (≥ 75th percentile) and dysglycemia. RESULTS Increasing levels of urinary nickel were prospectively associated with high-FPG: multivariable odds ratios (ORs) were 1.00 for the 1st quartile (lowest), 1.20 (95% confidence interval [CI]: 0.60-2.43) for the 2nd quartile, 1.64 (0.78-3.49) for the 3rd quartile and 3.17 (1.38-7.30) for the 4th quartile (highest) (P-trend=0.004). The positive associations were also observed between urinary zinc and high-FPG (4th vs. 1st quartile=2.71, 95%CI: 1.26-5.84, P-trend=0.01). Inverse associations between urinary cobalt and risk of high-FPG and dysglycemia were observed (P-trend <0.05). For dysglycemia, the positive trends of increasing levels of urinary nickel and zinc still remained, although urinary nickel was no longer statistically significant. A significant association between urinary arsenic and dysglycemia was also found. However, no associations were observed between urinary copper, cadmium, and risk of high-FPG or dysglycemia. CONCLUSION Multiple urinary metals, particularly arsenic, nickel, zinc, and cobalt, were associated with elevated blood glucose among Chinese occupational workers, supporting the notion that metal exposure plays a critical role in the development of diabetes.
Collapse
Affiliation(s)
- Aimin Yang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China; Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - Simin Liu
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA; Department of Medicine (Endocrinology), Rhode Island Hospital and the Alpert Medical School, Brown University, Providence, RI. USA
| | - Ning Cheng
- Center of Medical Laboratory, Lanzhou University, Lanzhou, Gansu, China
| | - Hongquan Pu
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang, Gansu, China
| | - Min Dai
- Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Jiao Ding
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang, Gansu, China
| | - Juansheng Li
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Haiyan Li
- Center of Medical Laboratory, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaobin Hu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaowei Ren
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jie He
- Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA.
| | - Yana Bai
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
36
|
Songini M, Mannu C, Targhetta C, Bruno G. Type 1 diabetes in Sardinia: facts and hypotheses in the context of worldwide epidemiological data. Acta Diabetol 2017; 54:9-17. [PMID: 27639869 DOI: 10.1007/s00592-016-0909-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) results from an autoimmune destruction of insulin-producing beta cells that requires lifelong insulin treatment. While significant advances have been achieved in treatment, prevention of complications and quality of life in diabetic people, the identification of environmental triggers of the disease is far more complex. The island of Sardinia has the second highest incidence of T1D in the world (45/100,000), right after Finland (64.2/100,000). The genetic background as well as the environment of the island's inhabitants makes it an ideal region for investigating environmental, immunological and genetic factors related to the etiopathogenesis of T1D. Several epidemiological studies, conducted over the years, have shown that exposures to important known environmental risk factors have changed over time, including nutritional factors, pollution, chemicals, toxins and infectious diseases in early life. These environmental risk factors might be involved in T1D pathogenesis, as they might initiate autoimmunity or accelerate and precipitate an already ongoing beta cell destruction. In terms of environmental factors, Sardinia is also particular in terms of the incidence of infection with Mycobacterium avium paratuberculosis (MAP) that recent studies have linked to T1D in the Sardinian population. Furthermore, the unique geochemical profile of Sardinia, with its particular density of heavy metals, leads to the assumption that exposure of the Sardinian population to heavy metals could also affect T1D incidence. These factors lead us to hypothesize that T1D incidence in Sardinia may be affected by the exposure to multifactorial agents, such as MAP, common viruses and heavy metals.
Collapse
Affiliation(s)
| | - C Mannu
- Diabetes Unit, Cagliari, Italy
| | | | - G Bruno
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| |
Collapse
|
37
|
Chen C, Gu S, Jiang X, Zhang Z. Arsenite-induced endoplasmic reticulum-dependent apoptosis through disturbance of calcium homeostasis in HBE cell line. ENVIRONMENTAL TOXICOLOGY 2017; 32:197-216. [PMID: 26677073 DOI: 10.1002/tox.22226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
Calcium (Ca2+ ) is a ubiquitous cell signal responsible for multiple fundamental cellular functions, including apoptosis. Whether the homeostasis of Ca2+ is involved in arsenite-induced apoptosis remains unclear. In this study, we observed that arsenite significantly elevated the intracellular Ca2+ concentration in a dose- and time-dependent manner. By using the Ca2+ -ATPase inhibitor, thapsigargin, and the inositol 1,4,5- trisphosphate receptors (IP3Rs) inhibitor, heparin, we further confirmed that the disturbance of endoplasmic reticulum (ER) Ca2+ homeostasis caused Ca2+ overload in the cells. Moreover, loss of ER Ca2+ homeostasis also led to ER stress, mitochondrial dysfunction, and NF-κB activation. Importantly, pretreatment of cells with heparin remarkably attenuated the elevated cell apoptosis induced by arsenite, but inhibition of ER Ca2+ uptake with thapsigargin exacerbated arsenite-induced cell damage significantly. Together, we demonstrated for the first time that arsenite disturbed the Ca2+ homeostasis in ER, which subsequently led to ER stress, mitochondrial dysfunction, and NF-κB nuclear translocation, and thus consequently triggering cell apoptosis. Our findings indicate regulation of disrupted Ca2+ homeostasis in ER may be a potential strategy for prevention of arsenite toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 197-216, 2017.
Collapse
Affiliation(s)
- Chengzhi Chen
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shiyan Gu
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuejun Jiang
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zunzhen Zhang
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
38
|
Chen C, Gu S, Jiang X, Zhang Z. Nuclear translocation of nuclear factor kappa B is regulated by G protein signaling pathway in arsenite-induced apoptosis in HBE cell line. ENVIRONMENTAL TOXICOLOGY 2016; 31:1819-1833. [PMID: 26306706 DOI: 10.1002/tox.22183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Arsenite is a certainly apoptosis inducer in various cell types. However, the detailed mechanism underlying how arsenite trigger apoptosis remains elusive. In this study, using human bronchial epithelial cell as a culture system, we demonstrated that arsenite-induced nuclear translocation of nuclear factor kappa B (NF-κB) resulted in the release of cytochrome c, the modulation of Fas and FasL, caspase activation, and ultimately leading to cell apoptosis. Importantly, we showed for the first time that the NF-κB-mediated apoptosis induced by arsenite was regulated by G protein-adenylate cyclase (AC)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway. Inhibition of this classical G protein signaling pathway by a typical PKA inhibitor, H-89, caused the inactivation of NF-κB, the depletion of caspase-3, 8 and 9 activities, and thus reducing the level of cell apoptosis. Taken together, our results indicate that arsenite is able to trigger cell apoptosis in human bronchial epithelial cells through the nuclear translocation of NF-κB, which can be modulated by G protein signaling pathway. These findings further suggest that inhibition of G protein-mediated pathway by specific inhibitors may be a potential strategy for the prevention of arsenite toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1819-1833, 2016.
Collapse
Affiliation(s)
- Chengzhi Chen
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shiyan Gu
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuejun Jiang
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zunzhen Zhang
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
39
|
Örd D, Örd T, Biene T, Örd T. TRIB3 increases cell resistance to arsenite toxicity by limiting the expression of the glutathione-degrading enzyme CHAC1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2668-2680. [PMID: 27526673 DOI: 10.1016/j.bbamcr.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Arsenic, a metalloid with cytotoxic and carcinogenic effects related to the disruption of glutathione homeostasis, induces the expression of ATF4, a central transcription factor in the cellular stress response. However, the interplay between factors downstream of ATF4 is incompletely understood. In this article, we investigate the role of Tribbles homolog 3 (TRIB3), a regulatory member of the ATF4 pathway, in determining cell sensitivity to arsenite. Our results show that arsenite potently upregulates Trib3 mRNA and protein in an ATF4-dependent manner in mouse embryonic fibroblasts. Trib3-deficient cells display increased susceptibility to arsenite-induced cell death, which is rescued by re-expressing TRIB3. In cells lacking TRIB3, arsenite stress leads to markedly elevated mRNA and protein levels of Chac1, a gene that encodes a glutathione-degrading enzyme and is not previously known to be repressed by TRIB3. Analysis of the Chac1 promoter identified two regulatory elements that additively mediate the induction of Chac1 by arsenite and ATF4, as well as the robust suppression of Chac1 by TRIB3. Crucially, Chac1 silencing enhances glutathione levels and eliminates the increased susceptibility of Trib3-deficient cells to arsenite stress. Moreover, Trib3-deficient cells demonstrate an increased rate of glutathione consumption, which is abolished by Chac1 knockdown. Taken together, these data indicate that excessive Chac1 expression is detrimental to arsenite-treated cell survival and that TRIB3 is critical for restraining the pro-death potential of Chac1 during arsenite stress, representing a novel mechanism of cell viability regulation that occurs within the ATF4 pathway.
Collapse
Affiliation(s)
- Daima Örd
- Estonian Biocentre, Riia 23b, 51010 Tartu, Estonia
| | - Tiit Örd
- Estonian Biocentre, Riia 23b, 51010 Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Tuuliki Biene
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Tõnis Örd
- Estonian Biocentre, Riia 23b, 51010 Tartu, Estonia.
| |
Collapse
|
40
|
Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice. J Toxicol 2016; 2016:4763434. [PMID: 27375740 PMCID: PMC4916309 DOI: 10.1155/2016/4763434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/15/2016] [Indexed: 01/11/2023] Open
Abstract
Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system.
Collapse
|
41
|
Feseke SK, St-Laurent J, Anassour-Sidi E, Ayotte P, Bouchard M, Levallois P. Arsenic exposure and type 2 diabetes: results from the 2007-2009 Canadian Health Measures Survey. HEALTH PROMOTION AND CHRONIC DISEASE PREVENTION IN CANADA-RESEARCH POLICY AND PRACTICE 2016; 35:63-72. [PMID: 26083521 DOI: 10.24095/hpcdp.35.4.01] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Inorganic arsenic and its metabolites are considered dangerous to human health. Although several studies have reported associations between low-level arsenic exposure and diabetes mellitus in the United States and Mexico, this association has not been studied in the Canadian population. We evaluated the association between arsenic exposure, as measured by total arsenic concentration in urine, and the prevalence of type 2 diabetes (T2D) in 3151 adult participants in Cycle 1 (2007-2009) of the Canadian Health Measures Survey (CHMS). METHODS All participants were tested to determine blood glucose and glycated hemoglobin. Urine analysis was also performed to measure total arsenic. In addition, participants answered a detailed questionnaire about their lifestyle and medical history. We assessed the association between urinary arsenic levels and T2D and prediabetes using multivariate logistic regression while adjusting for potential confounders. RESULTS Total urinary arsenic concentration was positively associated with the prevalence of T2D and prediabetes: adjusted odds ratios were 1.81 (95% CI: 1.12-2.95) and 2.04 (95% CI: 1.03-4.05), respectively, when comparing the highest (fourth) urinary arsenic concentration quartile with the lowest (first) quartile. Total urinary arsenic was also associated with glycated hemoglobin levels in people with untreated diabetes. CONCLUSION We found significant associations between arsenic exposure and the prevalence of T2D and prediabetes in the Canadian population. Causal inference is limited due to the cross-sectional design of the study and the absence of long-term exposure assessment.
Collapse
Affiliation(s)
- S K Feseke
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Québec, Quebec, Canada.,Département de médecine sociale et préventive, Faculté de médecine, Université Laval, Québec, Quebec, Canada
| | - J St-Laurent
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Québec, Quebec, Canada
| | - E Anassour-Sidi
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Québec, Quebec, Canada
| | - P Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Québec, Quebec, Canada.,Département de médecine sociale et préventive, Faculté de médecine, Université Laval, Québec, Quebec, Canada.,Direction de la santé environnementale et de la toxicologie, Institut national de santé publique du Québec, Québec, Quebec, Canada
| | - M Bouchard
- Département de santé environnementale et santé au travail, Chaire d'analyse et de gestion des risques toxicologiques, École de santé publique, Université de Montréal, Montréal, Quebec, Canada
| | - P Levallois
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Québec, Quebec, Canada.,Département de médecine sociale et préventive, Faculté de médecine, Université Laval, Québec, Quebec, Canada.,Direction de la santé environnementale et de la toxicologie, Institut national de santé publique du Québec, Québec, Quebec, Canada
| |
Collapse
|
42
|
Rodríguez V, Limón-Pacheco J, Del Razo L, Giordano M. Effects of inorganic arsenic exposure on glucose transporters and insulin receptor in the hippocampus of C57BL/6 male mice. Neurotoxicol Teratol 2016; 54:68-77. [DOI: 10.1016/j.ntt.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 01/06/2023]
|
43
|
Darabos C, Qiu J, Moore JH. AN INTEGRATED NETWORK APPROACH TO IDENTIFYING BIOLOGICAL PATHWAYS AND ENVIRONMENTAL EXPOSURE INTERACTIONS IN COMPLEX DISEASES. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2016; 21:9-20. [PMID: 26776169 PMCID: PMC4721271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Complex diseases are the result of intricate interactions between genetic, epigenetic and environmental factors. In previous studies, we used epidemiological and genetic data linking environmental exposure or genetic variants to phenotypic disease to construct Human Phenotype Networks and separately analyze the effects of both environment and genetic factors on disease interactions. To better capture the intricacies of the interactions between environmental exposure and the biological pathways in complex disorders, we integrate both aspects into a single "tripartite" network. Despite extensive research, the mechanisms by which chemical agents disrupt biological pathways are still poorly understood. In this study, we use our integrated network model to identify specific biological pathway candidates possibly disrupted by environmental agents. We conjecture that a higher number of co-occurrences between an environmental substance and biological pathway pair can be associated with a higher likelihood that the substance is involved in disrupting that pathway. We validate our model by demonstrating its ability to detect known arsenic and signal transduction pathway interactions and speculate on candidate cell-cell junction organization pathways disrupted by cadmium. The validation was supported by distinct publications of cell biology and genetic studies that associated environmental exposure to pathway disruption. The integrated network approach is a novel method for detecting the biological effects of environmental exposures. A better understanding of the molecular processes associated with specific environmental exposures will help in developing targeted molecular therapies for patients who have been exposed to the toxicity of environmental chemicals.
Collapse
Affiliation(s)
- Christian Darabos
- The Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, U.S.A2The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | | | | |
Collapse
|
44
|
Jansen RJ, Argos M, Tong L, Li J, Rakibuz-Zaman M, Islam MT, Slavkovich V, Ahmed A, Navas-Acien A, Parvez F, Chen Y, Gamble MV, Graziano JH, Pierce BL, Ahsan H. Determinants and Consequences of Arsenic Metabolism Efficiency among 4,794 Individuals: Demographics, Lifestyle, Genetics, and Toxicity. Cancer Epidemiol Biomarkers Prev 2015; 25:381-90. [PMID: 26677206 DOI: 10.1158/1055-9965.epi-15-0718] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/18/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Exposure to inorganic arsenic (iAs), a class I carcinogen, affects several hundred million people worldwide. Once absorbed, iAs is converted to monomethylated (MMA) and then dimethylated forms (DMA), with methylation facilitating urinary excretion. The abundance of each species in urine relative to their sum (iAs%, MMA%, and DMA%) varies across individuals, reflecting differences in arsenic metabolism capacity. METHODS The association of arsenic metabolism phenotypes with participant characteristics and arsenical skin lesions was characterized among 4,794 participants in the Health Effects of Arsenic Longitudinal Study (Araihazar, Bangladesh). Metabolism phenotypes include those obtained from principal component (PC) analysis of arsenic species. RESULTS Two independent PCs were identified: PC1 appears to represent capacity to produce DMA (second methylation step), and PC2 appears to represent capacity to convert iAs to MMA (first methylation step). PC1 was positively associated (P <0.05) with age, female sex, and BMI, while negatively associated with smoking, arsenic exposure, education, and land ownership. PC2 was positively associated with age and education but negatively associated with female sex and BMI. PC2 was positively associated with skin lesion status, while PC1 was not. 10q24.32/AS3MT region polymorphisms were strongly associated with PC1, but not PC2. Patterns of association for most variables were similar for PC1 and DMA%, and for PC2 and MMA% with the exception of arsenic exposure and SNP associations. CONCLUSIONS Two distinct arsenic metabolism phenotypes show unique associations with age, sex, BMI, 10q24.32 polymorphisms, and skin lesions. IMPACT This work enhances our understanding of arsenic metabolism kinetics and toxicity risk profiles.
Collapse
Affiliation(s)
- Rick J Jansen
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Maria Argos
- Divison of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Jiabei Li
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | | | | | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | | | - Ana Navas-Acien
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yu Chen
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, New York
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Brandon L Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois. Department of Human Genetics and Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois.
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois. Department of Human Genetics and Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois. Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
45
|
Arshad MN, Nisar MA, Khurshid M, Hussain SZ, Maqsood U, Asghar MT, Nazir J. Molecular basis of arsenite (As⁺³)-induced acute cytotoxicity in human cervical epithelial carcinoma cells. Libyan J Med 2015; 10:26875. [PMID: 25922308 PMCID: PMC4412877 DOI: 10.3402/ljm.v10.26875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/20/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Rapid industrialization is discharging toxic heavy metals into the environment, disturbing human health in many ways and causing various neurologic, cardiovascular, and dermatologic abnormalities and certain types of cancer. The presence of arsenic in drinking water from different urban and rural areas of the major cities of Pakistan, for example, Lahore, Faisalabad, and Kasur, was found to be beyond the permissible limit of 10 parts per billion set by the World Health Organization. Therefore the present study was initiated to examine the effects of arsenite (As(+3)) on DNA biosynthesis and cell death. METHODS After performing cytotoxic assays on a human epithelial carcinoma cell line, expression analysis was done by quantitative polymerase chain reaction, western blotting, and flow cytometry. RESULTS We show that As(+3) ions have a dose- and time-dependent cytotoxic effect through the activation of the caspase-dependent apoptotic pathway. In contrast to previous research, the present study was designed to explore the early cytotoxic effects produced in human cells during exposure to heavy dosage of As(+3) (7.5 µg/ml). Even treatment for 1 h significantly increased the mRNA levels of p21 and p27 and caspases 3, 7, and 9. It was interesting that there was no change in the expression levels of p53, which plays an important role in G2/M phase cell cycle arrest. CONCLUSION Our results indicate that sudden exposure of cells to arsenite (As(+3)) resulted in cytotoxicity and mitochondrial-mediated apoptosis resulting from up-regulation of caspases.
Collapse
Affiliation(s)
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan;
| | - Mohsin Khurshid
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Umer Maqsood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | - Jawad Nazir
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
46
|
Qiu LQ, Abey S, Harris S, Shah R, Gerrish KE, Blackshear PJ. Global analysis of posttranscriptional gene expression in response to sodium arsenite. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:324-30. [PMID: 25493608 PMCID: PMC4383576 DOI: 10.1289/ehp.1408626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/19/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Inorganic arsenic species are potent environmental toxins and causes of numerous health problems. Most studies have assumed that arsenic-induced changes in mRNA levels result from effects on gene transcription. OBJECTIVES We evaluated the prevalence of changes in mRNA stability in response to sodium arsenite in human fibroblasts. METHODS We used microarray analyses to determine changes in steady-state mRNA levels and mRNA decay rates following 24-hr exposure to noncytotoxic concentrations of sodium arsenite, and we confirmed some of these changes using real-time reverse-transcription polymerase chain reaction (RT-PCR). RESULTS In arsenite-exposed cells, 186 probe set-identified transcripts were significantly increased and 167 were significantly decreased. When decay rates were analyzed after actinomycin D treatment, only 4,992 (9.1%) of probe set-identified transcripts decayed by > 25% after 4 hr. Of these, 70 were among the 353 whose steady-state levels were altered by arsenite, and of these, only 4 exhibited significantly different decay rates between arsenite and control treatment. Real-time RT-PCR confirmed a major, significant arsenite-induced stabilization of the mRNA encoding δ aminolevulinate synthase 1 (ALAS1), the rate-limiting enzyme in heme biosynthesis. This change presumably accounted for at least part of the 2.7-fold increase in steady-state ALAS1 mRNA levels seen after arsenite treatment. This could reflect decreases in cellular heme caused by the massive induction by arsenite of heme oxygenase mRNA (HMOX1; 68-fold increase), the rate-limiting enzyme in heme catabolism. CONCLUSIONS We conclude that arsenite modification of mRNA stability is relatively uncommon, but in some instances can result in significant changes in gene expression.
Collapse
Affiliation(s)
- Lian-Qun Qiu
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
47
|
Fei W, Chen W, Shengnan L, Huihui W, Shuhua X, Guifan S. Inflammatory cytokine COX-2 mediated cell proliferation through increasing cyclin D1 expression induced by inorganic arsenic in SV-HUC-1 human uroepithelial cells. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00196j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inorganic arsenic promotes SV-HUC-1 cells proliferation.
Collapse
Affiliation(s)
- Wang Fei
- Department of Occupational and Environmental Health
- Liaoning Provincial Key Lab of Arsenic Biological Effect and Poisoning
- School of Public Health
- China Medical University
- Shenyang
| | - Wang Chen
- Department of Occupational and Environmental Health
- Liaoning Provincial Key Lab of Arsenic Biological Effect and Poisoning
- School of Public Health
- China Medical University
- Shenyang
| | - Liu Shengnan
- Department of Occupational and Environmental Health
- Liaoning Provincial Key Lab of Arsenic Biological Effect and Poisoning
- School of Public Health
- China Medical University
- Shenyang
| | - Wang Huihui
- Department of Occupational and Environmental Health
- Liaoning Provincial Key Lab of Arsenic Biological Effect and Poisoning
- School of Public Health
- China Medical University
- Shenyang
| | - Xi Shuhua
- Department of Occupational and Environmental Health
- Liaoning Provincial Key Lab of Arsenic Biological Effect and Poisoning
- School of Public Health
- China Medical University
- Shenyang
| | - Sun Guifan
- Department of Occupational and Environmental Health
- Liaoning Provincial Key Lab of Arsenic Biological Effect and Poisoning
- School of Public Health
- China Medical University
- Shenyang
| |
Collapse
|
48
|
Tan S, Li H, Jin Y, Yu H. In vitro and in vivo effects of sublethal cadmium on the expression of MT2 and ABCC2 genes in grass carp (Ctenopharyngodon idellus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:258-264. [PMID: 25103569 DOI: 10.1016/j.ecoenv.2014.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
To gain more knowledge about the physiological regulation of metal pollutant detoxification in grass carp, we examined Cd concentration and its the potential influence on the expression of metallothionein 2 (MT2) and multidrug resistance protein 2 (ABCC2) mRNA in the liver and kidney, using in vitro and in vivo experiments. First, the full-length of MT2 cDNA and partial ABCC2 cDNA was obtained, consisting 183bp and 366bp respectively. In vivo approach, grass carp received 96h exposure of Cd (1/10 LD50), and MT2 and ABCC2 mRNA expression were determined by qRT-PCR. The Cd treatment resulted in an increase of MT2 mRNA level in the liver with Cd accumulation. Nonetheless, the elevation ABCC2 mRNA in the liver was appeared at 48h after Cd exposure, as well as the expression of MT2 and ABCC2 mRNA in the kidney. The in vitro experiment was carried out using the hepatocyte (L86) and nephroblasts (CIK). The qRT-RCR results showed that MT2 and ABCC2 mRNA dramatically increased following Cd exposure (1/10 LD50); however, ABCC2 mRNA expression was suppressed in the L86 cell line at first (6h). In conclusion, this result suggested that both MT2 and ABCC2 mRNA may play important roles in the detoxification of toxic metals, and MT2 gene was more sensitive to Cd induction.
Collapse
Affiliation(s)
- Shuwen Tan
- College of Life Science, Foshan University, No. 1 Xianhu University Road, Nanhai, Foshan, Guangdong 528231, China; Holdone Aquaculture Breeding Limited Company, Foshan, Guangdong 528231, China
| | - Hua Li
- College of Life Science, Foshan University, No. 1 Xianhu University Road, Nanhai, Foshan, Guangdong 528231, China; Holdone Aquaculture Breeding Limited Company, Foshan, Guangdong 528231, China
| | - Ying Jin
- College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Hui Yu
- College of Life Science, Foshan University, No. 1 Xianhu University Road, Nanhai, Foshan, Guangdong 528231, China; Holdone Aquaculture Breeding Limited Company, Foshan, Guangdong 528231, China.
| |
Collapse
|
49
|
Bräuner EV, Nordsborg RB, Andersen ZJ, Tjønneland A, Loft S, Raaschou-Nielsen O. Long-term exposure to low-level arsenic in drinking water and diabetes incidence: a prospective study of the diet, cancer and health cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:1059-65. [PMID: 24927198 PMCID: PMC4181933 DOI: 10.1289/ehp.1408198] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/11/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Established causes of diabetes do not fully explain the present epidemic. High-level arsenic exposure has been implicated in diabetes risk, but the effect of low-level arsenic exposure in drinking water remains unclear. OBJECTIVE We sought to determine whether long-term exposure to low-level arsenic in drinking water in Denmark is associated with an increased risk of diabetes using a large prospective cohort. METHODS During 1993-1997, we recruited 57,053 persons. We followed each cohort member for diabetes occurrence from enrollment until 31 December 2006. We traced and geocoded residential addresses of the cohort members and used a geographic information system to link addresses with water-supply areas. We estimated individual exposure to arsenic using all addresses from 1 January 1971 until the censoring date. Cox proportional hazards models were used to model the association between arsenic exposure and diabetes incidence, separately for two definitions of diabetes: all cases and a more strict definition in which cases of diabetes based solely on blood glucose results were excluded. RESULTS Over a mean follow-up period of 9.7 years for 52,931 eligible participants, there were a total of 4,304 (8.1%) diabetes cases, and 3,035 (5.8%) cases of diabetes based on the more strict definition. The adjusted incidence rate ratios (IRRs) per 1-μg/L increment in arsenic levels in drinking water were as follows: IRR = 1.03 (95% CI: 1.01, 1.06) and IRR = 1.02 (95% CI: 0.99, 1.05) for all and strict diabetes cases, respectively. CONCLUSIONS Long-term exposure to low-level arsenic in drinking water may contribute to the development of diabetes.
Collapse
|
50
|
Sarkar S, Mukherjee S, Chattopadhyay A, Bhattacharya S. Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: expression of antioxidant genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 107:1-8. [PMID: 24905690 DOI: 10.1016/j.ecoenv.2014.05.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
Occurrence of arsenic in the aquatic environment of West Bengal (India), Bangladesh and other countries are of immediate environmental concern. In the present study, zebrafish (Danio rerio) was used as a model to investigate oxidative stress related enzyme activities and expression of antioxidant genes in the brain to 50µg/L arsenic trioxide for 90 days. In treated fish, generation of reactive oxygen species (ROS), malondialdehyde (MDA) and conjugated diene (CD) showed a triphasic response attaining a peak at the end of the exposure. In addition, a gradual increase in GSH level was noted until 60 days and at 90 days, a sudden fall was recorded which heightened arsenic toxicity. However, GSH level does not correlate well with the glutathione reductase (GR) activity. Generation of ROS in zebrafish brain due to As2O3 exposure was further evidenced by significant alteration of glutathione peroxidase (GPx) and catalase (CAT) activity, which converts H2O2 to water and helps in detoxication. Moreover, enhanced mRNA level of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in As2O3 exposed zebrafish indicates a protective role of Nrf2. kelch-like ECH-associated protein 1 (Keap1), a negative regulator of Nrf2, inversely correlates with the mRNA expression of Nrf2. As2O3 induced toxicity was also validated by the alteration in NRF2 and NRF2 dependent expression of proteins such as heme oxygenase1 (HO1) and NAD(P)H dehydrogenase quinone1 (NQO1). The mRNA expression of glutathione peroxidase (Gpx1), catalase (Cat), manganese superoxide dismutase (Mn-Sod), copper/zinc superoxide dismutase (Cu/Zn Sod) and cytochrome c oxidase1 (Cox1) were also up regulated. The expression of uncoupling protein 2 (Ucp2), an important mitochondrial enzyme was also subdued in arsenic exposed zebrafish. The oxidative stress induced by arsenic also cause reduced mRNA expression of B-cell lymphoma 2 (Bcl2) present in the inner mitochondrial membrane and thereby indicating onset of apoptosis in treated fish. It is concluded that even a low dose of arsenic trioxide is toxic enough to induce significant oxidative stress in zebrafish brain.
Collapse
Affiliation(s)
- Shuvasree Sarkar
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Science, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| | - Sandip Mukherjee
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Science, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| | - Ansuman Chattopadhyay
- Radiation Genetics and Chemical Mutagenesis Laboratory, Department of Zoology, School of Life Science, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| | - Shelley Bhattacharya
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Science, Visva-Bharati University, Santiniketan, West Bengal 731235, India.
| |
Collapse
|