1
|
Gharandouq MH, Ismail MA, Saleh T, Zihlif M, Ababneh NA. Metformin Protects Human Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons from Oxidative Damage Through Antioxidant Mechanisms. Neurotox Res 2025; 43:15. [PMID: 40100475 DOI: 10.1007/s12640-025-00734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/18/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
The antidiabetic drug metformin possesses antioxidant and cell protective effects including in neuronal cells, suggesting its potential use for treating neurodegenerative diseases. This study aimed to assess metformin's effects on viability and antioxidant activity in human-induced pluripotent stem cell (hiPSC)-derived neurons under varying concentrations and stress conditions. Six lines of hiPSC-derived neuronal progenitors derived from healthy human iPSCs were treated with metformin (1-500 µM) on day 18 of differentiation. For mature neurons (day 30), three concentrations (10 µM, 50 µM, and 100 µM) were used to assess cytotoxicity. MG132 proteasomal inhibitor and sodium arsenite (NaArs) were used to investigate oxidative stress, and 50 µM of metformin was tested for its protective effects against oxidative stress in hiPSC-derived neurons. Metformin treatment did not affect cell viability, neuronal differentiation, or trigger reactive oxygen species (ROS) generation in healthy hiPSC-derived motor neurons. Additionally, mitochondrial membrane potential (MMP) loss was not observed at 50 µM metformin. Metformin effectively protected neurons from stress agents and elevated the expression of antioxidant genes when treated with MG132. However, an interplay between MG132 and metformin resulted in lower expression of Nrf2 and NQO1 compared to the MG132 group alone, indicating reduced JC-1 aggregate levels due to MG132 proteasomal inhibition. Metformin upregulated antioxidant genes in hiPSC-derived neurons under stress conditions and protected the cells from oxidative damage.
Collapse
Affiliation(s)
- Mohammad H Gharandouq
- Faculty of Biological Sciences, The University of Jordan, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Queen Rania Street, Amman, 11942, Jordan
| | - Mohammad A Ismail
- Cell Therapy Center, The University of Jordan, Queen Rania Street, Amman, 11942, Jordan
- South Australian ImmunoGENomics Cancer Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, Arabian Gulf University, Manama, Bahrain
| | - Malik Zihlif
- Department of Pharmaceutical Sciences, School of Medicine, University of Jordan, Amman, Jordan
| | - Nidaa A Ababneh
- Cell Therapy Center, The University of Jordan, Queen Rania Street, Amman, 11942, Jordan.
| |
Collapse
|
2
|
Kooshki A, Farmani R, Amirabadizadeh A, Mehrpour O, Sanjari MJ, Nakhaee S. Essential and toxic metal concentrations in biological samples of multiple sclerosis patients: A systematic review and meta-analysis. PLoS One 2024; 19:e0313851. [PMID: 39642137 PMCID: PMC11623488 DOI: 10.1371/journal.pone.0313851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/01/2024] [Indexed: 12/08/2024] Open
Abstract
The role of trace elements and toxic metals on human health has been extensively discussed concerning disease pathogenesis and risk factors of diseases. In this systematic review and meta-analysis, we aimed to investigate arsenic (As), cadmium (Cd), lead (Pb), iron (Fe), zinc (Zn), and magnesium (Mg) levels in individuals with multiple sclerosis (MS) and healthy controls. We searched different databases/search engines for this systematic review and meta-analysis, including Web of Science, PubMed, Scopus, and Google Scholar, until June 27, 2024. Out of 5466 studies identified, 65 met our eligibility criteria and were included in the systematic review. For the meta-analysis, 58 studies with 10420 participants (5316 multiple sclerosis patients and 5104 healthy controls) had adequate data for inclusion. Results from the pooled data, analyzed using a random-effects model, revealed higher levels of As (Hedge's g = 4.00 μg/l, 95% CI = 2.03 to 5.98, P <0.001; I2 = 97.69%, P<0.001) and Cd (Hedge's g = 1.20 μg/l, 95% CI = 0.13 to 2.27, P = 0.028; I2 = 97.99%, P<0.001) in multiple sclerosis patients compared to healthy ones. However, no significant differences were observed in the concentrations of Zn, Fe, Mg, and Pb between the two groups. This study identified elevated As and Cd levels in MS patients, indicating the need for targeted interventions and public health guidelines for toxic metal exposure. Limiting exposure to contaminated environments and maintaining essential element levels through natural resources or supplements is essential, as there may be a possible relationship between multiple sclerosis and the concentrations of these elements in humans.
Collapse
Affiliation(s)
- Alireza Kooshki
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Reyhane Farmani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Amirabadizadeh
- Research Institute for Endocrine Sciences, Student Research Committee, Endocrine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Poison & Drug Information Center, Wayne State University, School of Medicine, Detroit, MI, United States of America
| | - Mohammad Javad Sanjari
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
3
|
Xie S, Liu H, Zhu S, Chen Z, Wang R, Zhang W, Xian H, Xiang R, Xia X, Sun Y, Long J, Wang Y, Wang M, Wang Y, Yu Y, Huang Z, Lu C, Xu Z, Liu H. Arsenic trioxide and p97 inhibitor synergize against acute myeloid leukemia by targeting nascent polypeptides and activating the ZAKα-JNK pathway. Cancer Gene Ther 2024; 31:1486-1497. [PMID: 39122830 PMCID: PMC11489083 DOI: 10.1038/s41417-024-00818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Arsenic trioxide (ATO) has exhibited remarkable efficacy in treating acute promyelocytic leukemia (APL), primarily through promoting the degradation of the PML-RARα fusion protein. However, ATO alone fails to confer any survival benefit to non-APL acute myeloid leukemia (AML) patients and exhibits limited efficacy when used in combination with other agents. Here, we explored the general toxicity mechanisms of ATO in APL and potential drugs that could be combined with ATO to exhibit synergistic lethal effects on other AML. We demonstrated that PML-RARα degradation and ROS upregulation were insufficient to cause APL cell death. Based on the protein synthesis of different AML cells and their sensitivity to ATO, we established a correlation between ATO-induced cell death and protein synthesis. Our findings indicated that ATO induced cell death by damaging nascent polypeptides and causing ribosome stalling, accompanied by the activation of the ZAKα-JNK pathway. Furthermore, ATO-induced stress activated the GCN2-ATF4 pathway, and ribosome-associated quality control cleared damaged proteins with the assistance of p97. Importantly, our data revealed that inhibiting p97 enhanced the effectiveness of ATO in killing AML cells. These explorations paved the way for identifying optimal synthetic lethal drugs to enhance ATO treatment on non-APL AML.
Collapse
Affiliation(s)
- Shufeng Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China.
| | - Hui Liu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Zhihong Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Ruiheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Wenjie Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huajian Xian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Rufang Xiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Xia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Yong Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Jinlan Long
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuanli Wang
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Minghui Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Yixin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Yaoyifu Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Zixuan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Chaoqun Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Zhenshu Xu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China.
| |
Collapse
|
4
|
Zsarnovszky A, Alymbaeva D, Jocsak G, Szabo C, Mária Schilling-Tóth B, Sandor Kiss D. Endocrine disrupting effects on morphological synaptic plasticity. Front Neuroendocrinol 2024; 75:101157. [PMID: 39393417 DOI: 10.1016/j.yfrne.2024.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary; Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary.
| | - Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Csaba Szabo
- Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | | | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| |
Collapse
|
5
|
Jahan S, Ansari UA, Srivastava AK, Aldosari S, Alabdallat NG, Siddiqui AJ, Khan A, Albadrani HM, Sarkar S, Khan B, Adnan M, Pant AB. A protein-miRNA biomic analysis approach to explore neuroprotective potential of nobiletin in human neural progenitor cells (hNPCs). Front Pharmacol 2024; 15:1343569. [PMID: 38348393 PMCID: PMC10860404 DOI: 10.3389/fphar.2024.1343569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024] Open
Abstract
Chemical-induced neurotoxicity is increasingly recognized to accelerate the development of neurodegenerative disorders (NDs), which pose an increasing health burden to society. Attempts are being made to develop drugs that can cross the blood-brain barrier and have minimal or no side effects. Nobiletin (NOB), a polymethoxylated flavonoid with anti-oxidative and anti-inflammatory effects, has been demonstrated to be a promising compound to treat a variety of NDs. Here, we investigated the potential role of NOB in sodium arsenate (NA)-induced deregulated miRNAs and target proteins in human neural progenitor cells (hNPCs). The proteomics and microRNA (miRNA) profiling was done for different groups, namely, unexposed control, NA-exposed, NA + NOB, and NOB groups. Following the correlation analysis between deregulated miRNAs and target proteins, RT-PCR analysis was used to validate the selected genes. The proteomic analysis showed that significantly deregulated proteins were associated with neurodegeneration pathways, response to oxidative stress, RNA processing, DNA repair, and apoptotic process following exposure to NA. The OpenArray analysis confirmed that NA exposure significantly altered miRNAs that regulate P53 signaling, Wnt signaling, cell death, and cell cycle pathways. The RT-PCR validation studies concur with proteomic data as marker genes associated with autophagy and apoptosis (HO-1, SQSTM1, LC-3, Cas3, Apaf1, HSP70, and SNCA1) were altered following NA exposure. It was observed that the treatment of NOB significantly restored the deregulated miRNAs and proteins to their basal levels. Hence, it may be considered one of its neuroprotective mechanisms. Together, the findings are promising to demonstrate the potential applicability of NOB as a neuroprotectant against chemical-induced neurotoxicity.
Collapse
Affiliation(s)
- Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, 11952 Majmaah, Saudi Arabia
| | - Uzair Ahmad Ansari
- Developmental Toxicology Laboratory, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankur Kumar Srivastava
- Developmental Toxicology Laboratory, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India
| | - Sahar Aldosari
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, 11952 Majmaah, Saudi Arabia
| | - Nessrin Ghazi Alabdallat
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, 11952 Majmaah, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Sana Sarkar
- Developmental Toxicology Laboratory, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India
| | - Bushra Khan
- Developmental Toxicology Laboratory, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Aditya Bhushan Pant
- Developmental Toxicology Laboratory, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Shayan M, Barangi S, Hosseinzadeh H, Mehri S. The protective effect of natural or chemical compounds against arsenic-induced neurotoxicity: Cellular and molecular mechanisms. Food Chem Toxicol 2023; 175:113691. [PMID: 36871878 DOI: 10.1016/j.fct.2023.113691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Arsenic is a notorious metalloid that exists in the earth's crust and is considered toxic for humans and the environment. Both cancerous and non-cancerous complications are possible after arsenic exposure. Target organs include the liver, lungs, kidney, heart, and brain. Arsenic-induced neurotoxicity, the main focus of our study, can occur in central and peripheral nervous systems. Symptoms can develop in a few hours, weeks, or years depending on the quantity of arsenic and the duration of exposure. In this review, we aimed to gather all the compounds, natural and chemical, that have been studied as protective agents in cellular, animal, and human reports. Oxidative stress, apoptosis, and inflammation are frequently described as destructive mechanisms in heavy metal toxicity. Moreover, reduced activity of acetylcholinesterase, the altered release of monoamine neurotransmitters, down-regulation of N-methyl-D-aspartate receptors, and decreased brain-derived neurotrophic factor are important underlying mechanisms of arsenic-induced neurotoxicity. As for neuroprotection, though some compounds have yet limited data, there are others, such as curcumin, resveratrol, taurine, or melatonin which have been studied more deeply and might be closer to a reliable protective agent. We collected the available information on all protective agents and the mechanisms by which they fight against arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Mersedeh Shayan
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Hamdan DI, Tawfeek N, El-Shiekh RA, Khalil HMA, Mahmoud MY, Bakr AF, Zaafar D, Farrag N, Wink M, El-Shazly AM. Salix subserrata Bark Extract-Loaded Chitosan Nanoparticles Attenuate Neurotoxicity Induced by Sodium Arsenate in Rats in Relation with HPLC-PDA-ESI-MS/MS Profile. AAPS PharmSciTech 2022; 24:15. [PMID: 36522541 DOI: 10.1208/s12249-022-02478-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Pollution is a worldwide environmental risk. Arsenic (As) is an environmental pollutant with a major health concern due to its toxic effects on multiple body organs, including the brain. Humans are exposed to As through eating contaminated food and water or via skin contact. Salix species (willow) are plants with medicinal efficacy. Salix subserrata Willd bark extract-loaded chitosan nanoparticles (SBE.CNPs) was formulated, characterized, and evaluated against As-induced neurotoxicity. The stem bark was selected for nanoparticle formulation based on HPLC-PDA-ESI-MS/MS profiling and in vitro antioxidant assessment using free radical scavenging activity. SBE.CNPs demonstrated an average un-hydrated diameter of 193.4 ± 24.5 nm and zeta potential of + 39.6 ± 0.4 mV with an encapsulation efficiency of 83.7 ± 4.3%. Compared to As-intoxicated rats, SBE.CNP-treated rats exhibited anxiolytic activity and memory-boosting as evidenced in open field test, light-dark activity box, and Y-maze. Also, it increased the antioxidant biomarkers, including superoxide dismutase and glutathione peroxidase associated with reducing the malondialdehyde levels and apoptotic activity. Besides this, SBE.CNPs maintained the brain architecture and downregulated both nuclear factor-kappa B and heme oxygenase-1 expression. These results suggest that SBE.CNP administration showed promising potent neuroprotective and antioxidative efficiencies against arsenic-induced oxidative threats.
Collapse
Affiliation(s)
- Daila I Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Shibin Elkom, 32511, Egypt.
| | - Nora Tawfeek
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El Aini st., Cairo, 11562, Egypt
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Mohamed Y Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Alaa F Bakr
- Pathology Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Dalia Zaafar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Information and Technology, El Mokattam, Egypt
| | - Nawaal Farrag
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Assem Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Faculty of Pharmacy, El Saleheya El Gadida University, 44813 El Saleheya El Gadida, El Saleheya, Egypt
| |
Collapse
|
8
|
Wisessaowapak C, Worasuttayangkurn L, Maliphol K, Nakareangrit W, Cholpraipimolrat W, Nookabkaew S, Watcharasit P, Satayavivad J. The 28-day repeated arsenic exposure increases tau phosphorylation in the rat brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103974. [PMID: 36089238 DOI: 10.1016/j.etap.2022.103974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 05/10/2023]
Abstract
Herein, we examined whether prolonged arsenic exposure altered tau phosphorylation in the brain of Sprague Dawley rats expressing endogenous wild-type tau. The results showed that daily intraperitoneal injections of 2.5 mg/kg BW sodium arsenite over 28 days caused arsenic accumulation in the rat brain. Interestingly, we found an increase in tau phosphorylation at the Tau 1 region (189-207) and S202 in the hippocampus, S404 in the cerebral cortex, and S396 and S404 in the cerebellum of arsenic-treated rats. Additionally, arsenic increased active ERK1/2 phosphorylation at T202/Y204 in the hippocampus, cerebral cortex, and cerebellum. Meanwhile, we detected increasing active JNK phosphorylation at T183/Y185 in the hippocampus and cerebellum. Moreover, p35, a neuron-specific activator of CDK5, was also elevated in the cerebellum of arsenic-treated rats, suggesting that CDK5 activity may be increased by arsenic. These results suggested that arsenic may induce tau phosphorylation through the activation of tau kinases, ERK1/2, JNK, and CDK5. Together, the findings from this study demonstrated that prolonged arsenic exposure is implicated in neurodegeneration by promoting tau phosphorylation in the rat brain and points toward a possible prevention strategy against neurodegeneration induced by environmental arsenic exposure.
Collapse
Affiliation(s)
| | | | | | - Watanyoo Nakareangrit
- Translational Research Unit, Chulabhorn Research Institute, 54 KamphaengPhet6 Rd, Bangkok 10210 Thailand
| | | | - Sumontha Nookabkaew
- Laboratory of Pharmacology, Chulabhorn Research Institute, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Piyajit Watcharasit
- Laboratory of Pharmacology, Chulabhorn Research Institute, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand; Chulabhorn Graduate Institute, 906 KamphaengPhet6 Rd, Bangkok, 10210 Thailand.
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand; Chulabhorn Graduate Institute, 906 KamphaengPhet6 Rd, Bangkok, 10210 Thailand
| |
Collapse
|
9
|
Du X, Luo L, Huang Q, Zhang J. Cortex metabolome and proteome analysis reveals chronic arsenic exposure via drinking water induces developmental neurotoxicity through hnRNP L mediated mitochondrial dysfunction in male rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153325. [PMID: 35074374 DOI: 10.1016/j.scitotenv.2022.153325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Lots of people are at the risk of arsenic-contaminated drinking water. Arsenic exposure was confirmed to be closely linked to neurocognitive deficits, particularly during childhood. The multi-omics approaches are known be well suitable for toxicological research. Thus, this study aimed to explore the molecular mechanisms of arsenic-induced learning and memory function impairments through the integrative proteome and metabolome analysis of cortex in rats. The weaned rats were exposed to arsenic-contaminated drinking water for six months to mimic the developmental exposure. 220 differential proteins and 19 differential metabolites were identified in the cortex, and nine potential biomarkers were found to be related to impaired Morris water maze (MWM) indicators. Chronic arsenic exposure affected the cognitive function by inducing the overproduction of amyloid-β (Aβ) peptides and the redox imbalance in the mitochondria. Glycolysis and tricarboxylic acid (TCA) cycle enhancement driven by the increased heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a low-dose protective mechanism against arsenic-induced ATP deficiency and oxidative stress. Moreover, apoptosis is another important pathway of arsenic-induced neurotoxicity. This study provides new evidence about the alterations of proteins and metabolites in the cortex of the exposed rats under arsenic toxicity. These findings suggest hnRNP L could be a potential target for the treatment of arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiaoyan Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Lianzhong Luo
- Department of Pharmacy, Xiamen Medical College, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China.
| |
Collapse
|
10
|
Tripathi S, Fhatima S, Parmar D, Singh DP, Mishra S, Mishra R, Singh G. Therapeutic effects of CoenzymeQ10, Biochanin A and Phloretin against arsenic and chromium induced oxidative stress in mouse ( Mus musculus) brain. 3 Biotech 2022; 12:116. [PMID: 35547012 PMCID: PMC9023648 DOI: 10.1007/s13205-022-03171-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/19/2022] [Indexed: 12/24/2022] Open
Abstract
Arsenic and chromium are the most common environmental toxicants prevailing in nature. Hence, the present study endeavors to investigate the salutary effects of Coenzyme Q10 (CoQ10), Biochanin A (BCA), and Phloretin (PHL) on the combined neurotoxic impact of arsenic and chromium in the Swiss albino mice (Mus musculus). Sodium meta-arsenite (100 ppm) and potassium dichromate (75 ppm) were given orally in conjugation with CoQ10 (10 mg/kg), BCA & PHL (50 mg/kg each) in accordance with body weight per day for the 2 weeks experimental duration. Weight reduction was figured out in the exposed toxic group of arsenic and chromium in contrast with the comparison group (control), and with the selected anti-oxidants treatment, it rose significantly to the basal status (p < 0.05). The concentration of arsenic and chromium was reduced significantly (p < 0.001) amidst all the natural compounds co-medicated groups. Anti-oxidant indicators, viz. lipid peroxidation (LPO) and protein carbonyl content (PCC), were found elevated, with reduction observed in the levels of superoxide dismutase (SOD), reduced glutathione (GSH), glutathione s-transferase (GST), and total thiols (TT) in the arsenic and chromium, co-exposed mice. The alterations in redox homeostasis were well corroborated with the estimations of cholinesterase's enzymes (p < 0.05) along with DNA fragmentation assay and altered Nrf2 signaling. The administration of CoQ10, BCA, and PHL ameliorated the effects of arsenic and chromium induced oxidative stress in the exposed mice. Our research unfolds the remedial outcome of these natural compounds contrary to the combined arsenic and chromium associated-neurotoxicity in the experimental model.
Collapse
|
11
|
Kalo MB, Rezaei M. In vitro toxic interaction of arsenic and hyperglycemia in mitochondria: an important implication of increased vulnerability in pre-diabetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28375-28385. [PMID: 34993818 DOI: 10.1007/s11356-022-18513-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollutants and lifestyle both contribute to the rapidly increasing prevalence of type 2 diabetes mellitus (T2DM) worldwide. Evidence suggests that exposure to environmental contaminants such as arsenic is associated with impaired glucose metabolism and insulin signaling. In the present study, isolated rat liver mitochondria (1 mg/ml) were co-exposed to low concentration of arsenic trioxide (ATO) ( IC25 = 40 µM) and hyperglycemic condition (20, 40, 80, 160 mM glucose or 20, 40, 80, 160 mM pyruvate (PYR)). Mitochondrial dehydrogenase activity (complex II), glutathione content (GSH), reactive oxygen species (ROS), lipid peroxidation, mitochondrial membrane potential (ΔΨ), and mitochondrial swelling were then evaluated in the presence of ATO 40 µM and PYR 40 mM. Unexpectedly, glucose alone (20, 40, 80, 160 mM) had no toxic effect on mitochondria, even at very high concentrations and even when combined with ATO. Interestingly, PYR at low concentrations (≤ 10 mM) has a protective effect on mitochondria, but at higher concentrations (≥ 40 mM) with ATO, it decreased the complex II activity and increased mitochondrial ROS production, lipid peroxidation, GSH depletion, mitochondrial membrane damage, and swelling (p < 0.05). In conclusion, PYR but not glucose increased ATO mitochondrial toxicity even at low concentrations. These results suggest that pre-diabetics with non-clinical hyperglycemia, who are inevitably exposed to low concentrations of arsenic through food and water, may develop mitochondrial dysfunction that accelerates their progression to diabetes over time.
Collapse
Affiliation(s)
- Mersad Bagherpour Kalo
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Khedr NF, Talkan OFA. New insights into arsenic, lead, and iron neurotoxicity: Activation of MAPK signaling pathway and oxidative stress. J Biochem Mol Toxicol 2022; 36:e23040. [DOI: 10.1002/jbt.23040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023]
Affiliation(s)
- Naglaa F. Khedr
- Department of Biochemistry, Faculty of Pharmacy Tanta University Tanta Egypt
| | - Ola F. A. Talkan
- Chemistry Department, Animal Health Research Institute‐Shiben El‐Kom Lab. Agriculture Research Center Menofia Shiben El‐Kom Egypt
| |
Collapse
|
13
|
MMP2-responsive dual-targeting drug delivery system for valence-controlled arsenic trioxide prodrug delivery against hepatic carcinoma. Int J Pharm 2021; 609:121209. [PMID: 34678398 DOI: 10.1016/j.ijpharm.2021.121209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/25/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023]
Abstract
Arsenic trioxide (ATO) is the active ingredient in traditional Chinese medicine, i.e., Arsenic, which has shown excellent therapeutic effects on hepatocellular carcinoma. However, due to its poor tumor distribution and high toxicity, the mass adoption of ATO in clinical applications has been severely impeded. In this study, matrix metalloproteinase 2 (MMP2)-responsive cleaved cell-penetrating peptide (PF) and folate (FA) co-modified liposome coated calcium arsenate nanoparticles (FA/PF-LP-CaAs) were fabricated based on these two considerations: (1) The tumor microenvironment characterized by overexpressed MMP2 in extracellular matrix and folate receptor on the cell membrane can enhance drug accumulation and accelerate endocytosis; (2) leveraging different toxicity of arsenic in different valence states, i.e., AsV can be reduced to more toxic AsIII by glutathione in tumor cells. Furthermore, FA/PF-LP-CaAs could be responsively degraded by the mild acidic tumor environment, and the degraded product could escape from lysosomes after endocytosis. More importantly, in light of the in vivo biodistribution and pharmacodynamic studies, the vehicle was able to accumulate in the tumor efficiently. Also, it was able to exhibit excellent anti-tumor efficacy with minimized side effects when compared to single-modified counterparts. Thus, the novel strategy based on the tumor microenvironment proposed in this work can enhance the tumor-targeting efficiency and intratumor toxicity.
Collapse
|
14
|
Liu X, Chen Y, Wang H, Wei Y, Yuan Y, Zhou Q, Fang F, Shi S, Jiang X, Dong Y, Li X. Microglia-derived IL-1β promoted neuronal apoptosis through ER stress-mediated signaling pathway PERK/eIF2α/ATF4/CHOP upon arsenic exposure. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125997. [PMID: 34229406 DOI: 10.1016/j.jhazmat.2021.125997] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is the leading toxicant of hazardous environmental chemicals, which is linked with neurotoxicity including cognitive dysfunction, neurodevelopmental alterations and neurodegenerative disorders. It has been suggested that sustained pro-inflammatory response is one of the triggering factors of arsenic-induced neurotoxicity. Microglia, the immune cells in the central nervous system, response to physiological and pathological stress, and release a large array of pro-inflammatory cytokines if activated excessively. Several studies indicated that arsenic was capable of inducing microglia activation, however, the role of the subsequently released pro-inflammatory cytokines in arsenic-induced neurotoxicity remains to be elucidated. Our findings demonstrated that arsenic-induced cognitive dysfunction, microglia activation, up-regulation and release of IL-1β and ER stress-mediated apoptosis could be attenuated by minocycline, a recognized inhibitor of microglia activation. In addition, the IL-1 receptor antagonist IL-1ra diminished arsenic-induced activation of ER stress-mediated apoptotic pathway PERK/eIF2α/ATF4/CHOP and neuronal apoptosis. Our findings provided evidences that arsenic-induced microglia activation also contributed to neuronal apoptosis through pro-inflammatory cytokine. Microglia-derived IL-1β promoted hippocampal neuronal apoptosis through ER stress-mediated PERK/eIF2α/ATF4/CHOP apoptotic pathway. Neuronal apoptosis induced by prolonged activation of microglia was partially involved in the arsenic-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Xudan Liu
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yao Chen
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Huanhuan Wang
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuting Wei
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Ye Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qianqian Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Fang Fang
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Sainan Shi
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaojing Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yinqiao Dong
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xin Li
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
15
|
Fu SC, Lin JW, Liu JM, Liu SH, Fang KM, Su CC, Hsu RJ, Wu CC, Huang CF, Lee KI, Chen YW. Arsenic induces autophagy-dependent apoptosis via Akt inactivation and AMPK activation signaling pathways leading to neuronal cell death. Neurotoxicology 2021; 85:133-144. [PMID: 34038756 DOI: 10.1016/j.neuro.2021.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Inorganic arsenic (As3+), a well-known worldwide industrial and environmental pollutant, has been linked to neurodegenerative disorders (NDs). Autophagy plays an important role in controlling neuronal cell survival/death. However, limited information is available regarding the toxicological mechanism at the interplay between autophagy and As3+-induced neurotoxicity. The present study found that As3+ exposure induced a concomitant activation of apoptosis and autophagy in Neuro-2a cells, which was accompanied with the increase of phosphatidylserine exposure on outer membrane leaflets and apoptotic cell population, and the activation of caspase-3, -7, and PARP as well as the elevation of protein expressions of LC3-II, Atg-5, and Beclin-1, and the accumulation of autophagosome. Pretreatment of cells with autophagy inhibitor 3-MA, but not that of Z-VAD-FMK (a pan-caspase inhibitor), effectively prevented the As3+-induced autophagic and apoptotic responses, indicating that As3+-triggered autophagy was contributing to neuronal cell apoptosis. Furthermore, As3+ exposure evoked the dephosphorylation of Akt. Pretreatment with SC79, an Akt activator, could significantly attenuated As3+-induced Akt inactivation as well as autophagic and apoptotic events. Expectedly, inhibition of Akt signaling with LY294002 obviously enhanced As3+-triggered autophagy and apoptosis. Exposure to As3+ also dramatically increased the phosphorylation level of AMPKα. Pretreatment of AMPK inhibitor (Compound C) could markedly abrogate the As3+-induced phosphorylated AMPKα expression, and autophagy and apoptosis activation. Taken together, these results indicated that As3+ exerted its cytotoxicity in neuronal cells via the Akt inactivation/AMPK activation downstream-regulated autophagy-dependent apoptosis pathways, which ultimately lead to cell death. Our findings suggest that the regulation of Akt/AMPK signals may be a promising intervention to against As3+-induced neurotoxicity and NDs.
Collapse
Affiliation(s)
- Shih-Chang Fu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 330, Taiwan
| | - Jhe-Wei Lin
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jui-Ming Liu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 330, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County, 500, Taiwan; School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ren-Jun Hsu
- Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, Taiwan; Biobank Management Center of Tri-Service General Hospital and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 404, Taiwan; Department of Nursing, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 427, Taiwan.
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
16
|
Kaur I, Behl T, Aleya L, Rahman MH, Kumar A, Arora S, Akter R. Role of metallic pollutants in neurodegeneration: effects of aluminum, lead, mercury, and arsenic in mediating brain impairment events and autism spectrum disorder. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8989-9001. [PMID: 33447979 DOI: 10.1007/s11356-020-12255-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/27/2020] [Indexed: 04/16/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder of the brain characterized by shortfall in the social portfolio of an individual and abbreviated interactive and communication aspects rendering stereotypical behavior and pitfalls in a child's memory, thinking, and learning capabilities. The incidence of ASD has accelerated since the past decade, portraying environment as one of the primary assets, comprising of metallic components aiming to curb the neurodevelopmental pathways in an individual. Many regulations like Clean Air Act and critical steps taken by countries all over the globe, like Sweden and the USA, have rendered the necessity to study the effects of environmental metallic components on ASD progression. The review focuses on the primary metallic components present in the environment (aluminum, lead, mercury, and arsenic), responsible for accelerating ASD symptoms by a set of general mechanisms like oxidative stress reduction, glycolysis suppression, microglial activation, and metalloprotein disruption, resulting in apoptotic signaling, neurotoxic effects, and neuroinflammatory responses. The effect of these metals can be retarded by certain protective strategies like chelation, dietary correction, certain agents (curcumin, mangiferin, selenium), and detoxification enhancement, which can necessarily halt the neurodegenerative effects.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Paris, France
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka, Bangladesh
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
17
|
Zhou H, Lin Y, Zhao W, Teng Y, Cui Y, Wang T, Li C, Jiang YH, Zhang JJ, Wang Y. The role of Hipk2-p53 pathways in arsenic-induced autistic behaviors: A translational study from rats to humans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115568. [PMID: 33254717 DOI: 10.1016/j.envpol.2020.115568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Previous studies have associated the risk of autism spectrum disorder (ASD) with increased exposures to metals and metalloids such as arsenic. In this study, we used an animal-to-human translational strategy to identify key molecular changes that potentially mediated the effects of arsenic exposures on ASD development. In a previously established rat model, we have induced autistic behaviors in rat pups with gestational arsenic exposures (10 and 45 μg/L As2O3 in drinking water). Neuronal apoptosis and the associated epigenetic dysregulations in frontal cortex were assayed to screen potential mediating pathways, which were subsequently validated with qPCR, western blotting, and immunohistochemistry analyses. Furthermore, the identified pathway, along with serum levels of 26 elements including arsenic, were characterized in a case-control study with 21 ASD children and 21 age-matched healthy controls. In animals, we found that arsenic exposures caused difficulties of social interaction and increased stereotypic behaviors in a dose-dependent manner, accompanied by increased neuronal apoptosis and upregulation of Hipk2-p53 pathway in the frontal cortex. In humans, we found that serum levels of Hipk2 and p53 were 24.7 (95%CI: 8.5 to 43.4) % and 23.7 (95%CI: 10.5 to 38.5) % higher in ASD children than in healthy controls. ASD children had significantly higher serum levels of 15 elements, among which arsenic, silicon, strontium, and vanadium were positively associated with both Hipk2 and p53. Results from both the rat arsenic exposure and human case-control studies suggest a likely role of Hipk2-p53 pathway in ASD development induced by exposures to environmental pollutants such as arsenic.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, 550002, China; Department of Neurology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yan Lin
- Global Health Institute & Nicholas School of the Environment, Duke University, Durham, NC, 27705, USA
| | - Weiqing Zhao
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, 550002, China
| | - Yanbo Teng
- Global Health Research Center, Duke Kunshan University, Jiangsu Province, China
| | - Yuxia Cui
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, 550002, China
| | - Tianqi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Chunpei Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yong-Hui Jiang
- Department of Genetics and Pediatrics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Junfeng Jim Zhang
- Global Health Institute & Nicholas School of the Environment, Duke University, Durham, NC, 27705, USA; Global Health Research Center, Duke Kunshan University, Jiangsu Province, China.
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
18
|
Dong N, Feng J, Xie J, Tian X, Li M, Liu P, Zhao Y, Wei C, Gao Y, Li B, Qiu Y, Yan X. Co-exposure to Arsenic-Fluoride Results in Endoplasmic Reticulum Stress-Induced Apoptosis Through the PERK Signaling Pathway in the Liver of Offspring Rats. Biol Trace Elem Res 2020; 197:192-201. [PMID: 31768761 DOI: 10.1007/s12011-019-01975-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
Arsenic and fluoride are two of the major groundwater pollutants. To better understand the liver damage induced during development, 24 male rats exposed to fluoride (F), arsenic (As), and their combination (As + F) from the prenatal stage to 90 days after birth were selected for analysis. Histopathological results showed vacuolar degeneration in the As and As + F groups. Compared to those in the control group, aspartate aminotransferase and alanine aminotransferase levels were significantly increased in the combined group. Catalase activity significantly decreased in the treatment groups compared to that in the controls, and the malondialdehyde content in the As and As + F groups was significantly higher than those in the control group. We further evaluated whether this damage is linked to endoplasmic reticulum stress and its related pathways. The mRNA expression levels of PERK, GRP78, EIF2α, ATF4, and CHOP as well as the protein levels of CHOP was significantly increased in the As + F group compared with the control group. These results demonstrate that As, F, and their combination could lead to liver function damage and reduce the antioxidant capacity of the liver to cause oxidative damage to tissues. Moreover, the combination of As and F triggers endoplasmic reticulum stress-induced apoptosis in liver cells by activating the PERK pathway in the unfolded protein response. As and F seem to have different independent effects, whereas their combination resulted in more severe effects overall.
Collapse
Affiliation(s)
- Nisha Dong
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Feng
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaolin Tian
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
19
|
Concessao P, Bairy LK, Raghavendra AP. Protective effect of Mucuna pruriens against arsenic-induced liver and kidney dysfunction and neurobehavioral alterations in rats. Vet World 2020; 13:1555-1566. [PMID: 33061227 PMCID: PMC7522945 DOI: 10.14202/vetworld.2020.1555-1566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Intoxication of arsenic in rats is known to result in neurological effects as well as liver and kidney dysfunction. Mucuna pruriens has been identified for its medicinal properties. The aim of the study was to investigate the protective effect of aqueous seed extract of M. pruriens on sodium arsenite-induced memory impairment, liver, and kidney functions in rats. MATERIALS AND METHODS The experiment was divided into short-term treatment (45 days) and long-term treatment (90 days), with each group divided into nine sub-groups consisting of six animals each. Sub-groups 1 and 2 served as normal, and N-acetylcysteine (NAC) controls, respectively. Sub-groups 3-9 received sodium arsenite in drinking water (50 mg/L). In addition, sub-group 4 received NAC (210 mg/kg b.wt) orally once daily, sub-groups 5-7 received aqueous seed extract of M. pruriens (350 mg/kg b.wt, 530 mg/kg b.wt, and 700 mg/kg b.wt) orally once daily and sub-groups 8 and 9 received a combination of NAC and aqueous seed extract of M. pruriens (350 mg/kg b.wt and 530 mg/kg b.wt) orally once daily. Following the treatment, the blood was drawn retro-orbitally to assess the liver (serum alanine transaminase [ALT], serum aspartate transaminase, and serum alkaline phosphatase) and kidney (serum urea and serum creatinine) functions. Learning and memory were assessed by passive avoidance test. Animals were sacrificed by an overdose of ketamine, and their Nissl stained hippocampal sections were analyzed for alterations in neural cell numbers in CA1 and CA3 regions. RESULTS In the short-term treatment, groups administered with M. pruriens 530 mg/kg b.wt alone and combination of NAC + M. pruriens 350 mg/kg b.wt exhibited a significant improvement in memory retention, less severe neurodegeneration, and decrease in serum ALT levels. In long-term treatment, groups administered with M. pruriens 700 mg/kg b.wt alone and combination of NAC+M. pruriens 350 mg/kg b.wt, respectively, showed better memory retention, decreased neural deficits, and reduced levels of kidney and liver enzymes. CONCLUSION The seed extract of M. pruriens showed significant enhancement in memory and learning. The number of surviving neurons in the CA1 and CA3 regions also increased on treatment with M. pruriens. Serum ALT, serum urea, and serum creatinine levels showed significant improvement on long-term treatment with M. pruriens.
Collapse
Affiliation(s)
- Preethi Concessao
- Department of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Laxminarayana Kurady Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Archana Parampalli Raghavendra
- Department of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
20
|
Park HR, Sun R, Panganiban RA, Christiani DC, Lu Q. MicroRNA-124 Reduces Arsenic-induced Endoplasmic Reticulum Stress and Neurotoxicity and is Linked with Neurodevelopment in Children. Sci Rep 2020; 10:5934. [PMID: 32246005 PMCID: PMC7125130 DOI: 10.1038/s41598-020-62594-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Arsenic (As) exposure adversely affects neurodevelopment in children. Accumulation of misfolded proteins in cells exposed to As leads to endoplasmic reticulum (ER) stress response, which, if not relieved, results in cell death. Despite the potential role of ER stress for As-induced neurotoxicity, the underlying mechanisms remain poorly understood. Here we aimed to investigate the roles of microRNA(miR)-124, a novel ER stress suppressor, in As-induced ER stress response and cytotoxicity in neural cells. We further aimed to link these in vitro findings to neurodevelopmental outcomes in children who were exposed to As. Using Quantitative RT-PCR and Cyquant assay, we showed that miR-124 protects against As-induced cytotoxicity in neural cells with concomitant suppression of As-induced ER stress. In addition, As-induced cytotoxicity was exacerbated in miR-124 knockout cells generated by CRISPR-based gene editing compared scramble control. Furthermore, we identified two miR-124 SNPs rs67543816 (p = 0.0003) and rs35418153 (p = 0.0004) that are significantly associated with a mental composite score calculated from the Bayley Scales of Infant Development III in Bangladesh children. Our study reveals As-induced ER stress as a crucial mechanism underlying the toxic effects of As on neural cell function and neurodevelopment and identifies miR-124 as a potential preventative and therapeutic target against detrimental effects of As exposure in children.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Ryan Sun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Ronald A Panganiban
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - David C Christiani
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
21
|
Garza-Lombó C, Pappa A, Panayiotidis MI, Gonsebatt ME, Franco R. Arsenic-induced neurotoxicity: a mechanistic appraisal. J Biol Inorg Chem 2019; 24:1305-1316. [PMID: 31748979 DOI: 10.1007/s00775-019-01740-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
Abstract
Arsenic is a metalloid found in groundwater as a byproduct of soil/rock erosion and industrial and agricultural processes. This xenobiotic elicits its toxicity through different mechanisms, and it has been identified as a toxicant that affects virtually every organ or tissue in the body. In the central nervous system, exposure to arsenic can induce cognitive dysfunction. Furthermore, iAs has been linked to several neurological disorders, including neurodevelopmental alterations, and is considered a risk factor for neurodegenerative disorders. However, the exact mechanisms involved are still unclear. In this review, we aim to appraise the neurotoxic effects of arsenic and the molecular mechanisms involved. First, we discuss the epidemiological studies reporting on the effects of arsenic in intellectual and cognitive function during development as well as studies showing the correlation between arsenic exposure and altered cognition and mental health in adults. The neurotoxic effects of arsenic and the potential mechanisms associated with neurodegeneration are also reviewed including data from experimental models supporting epidemiological evidence of arsenic as a neurotoxicant. Next, we focused on recent literature regarding arsenic metabolism and the molecular mechanisms that begin to explain how arsenic damages the central nervous system including, oxidative stress, energy failure and mitochondrial dysfunction, epigenetics, alterations in neurotransmitter homeostasis and synaptic transmission, cell death pathways, and inflammation. Outlining the specific mechanisms by which arsenic alters the cell function is key to understand the neurotoxic effects that convey cognitive dysfunction, neurodevelopmental alterations, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA. .,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
22
|
Masjosthusmann S, Siebert C, Hübenthal U, Bendt F, Baumann J, Fritsche E. Arsenite interrupts neurodevelopmental processes of human and rat neural progenitor cells: The role of reactive oxygen species and species-specific antioxidative defense. CHEMOSPHERE 2019; 235:447-456. [PMID: 31272005 DOI: 10.1016/j.chemosphere.2019.06.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 05/10/2023]
Abstract
Arsenic exposure disturbs brain development in humans. Although developmental neurotoxicity (DNT) of arsenic has been studied in vivo and in vitro, its mode-of-action (MoA) is not completely understood. Here, we characterize the adverse neurodevelopmental effects of sodium arsenite on developing human and rat neural progenitor cells (hNPC, rNPC). Moreover, we analyze the involvement of reactive oxygen species (ROS) and the role of the glutathione (GSH)-dependent antioxidative defense for arsenite-induced DNT in a species-specific manner. We determined IC50 values for sodium arsenite-dependent (0.1-10 μM) inhibition of hNPC and rNPC migration (6.0 μM; >10 μM), neuronal (2.7 μM; 4.4 μM) and oligodendrocyte (1.1 μM; 2.0 μM) differentiation. ROS involvement was studied by quantifying the expression of ROS-regulated genes, measuring glutathione (GSH) levels, inhibiting GSH synthesis and co-exposing cells to the antioxidant N-acetylcysteine. Arsenite reduces NPC migration, neurogenesis and oligodendrogenesis of differentiating hNPC and rNPC at sub-cytotoxic concentrations. Species-specific arsenite cytotoxicity and induction of antioxidative gene expression is inversely related to GSH levels with rNPC possessing >3-fold the amount of GSH than hNPC. Inhibition of GSH synthesis increased the sensitivity towards arsenite in rNPC > hNPC. N-acetylcysteine antagonized arsenite-mediated induction of HMOX1 expression as well as reduction of neuronal and oligodendrocyte differentiation in hNPC suggesting involvement of oxidative stress in arsenite DNT. hNPC are more sensitive towards arsenite-induced neurodevelopmental toxicity than rNPC, probably due to their lower antioxidative defense capacities. This species-specific MoA data might be useful for adverse outcome pathway generation and future integrated risk assessment strategies concerning DNT.
Collapse
Affiliation(s)
- Stefan Masjosthusmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Clara Siebert
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Ulrike Hübenthal
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Farina Bendt
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Jenny Baumann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany; Heinrich-Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
23
|
Chung YP, Yen CC, Tang FC, Lee KI, Liu SH, Wu CC, Hsieh SS, Su CC, Kuo CY, Chen YW. Methylmercury exposure induces ROS/Akt inactivation-triggered endoplasmic reticulum stress-regulated neuronal cell apoptosis. Toxicology 2019; 425:152245. [PMID: 31330229 DOI: 10.1016/j.tox.2019.152245] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Epidemiological studies have positively linked mercury exposure and neurodegenerative diseases (ND). Methylmercury (MeHg), an organic form of mercury, is a ubiquitous and potent environmental neurotoxicant that easily crosses the blood-brain barrier and causes irreversible injury to the central nervous system (CNS). However, the molecular mechanisms underlying MeHg-induced neurotoxicity remain unclear. Here, the present study found that Neuro-2a cells underwent apoptosis in response to MeHg (1-5 μM), which was accompanied by increased phosphatidylserine (PS) exposure on the outer cellular membrane leaflets, caspase-3 activity, and the activation of caspase cascades and poly (ADP-ribose) polymerase (PARP). Exposure of Neuro-2a cells to MeHg also triggered endoplasmic reticulum (ER) stress, which was identified via several key molecules (including: glucose-regulated protein (GRP)78, GRP94, C/EBP homologous protein (CHOP) X-box binding protein(XBP)-1, protein kinase R-like ER kinase (PERK), eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme(IRE)-1, activation transcription factor(AFT)4, and ATF6. Transfection with GRP78-, GRP94-, CHOP-, and XBP-1-specific small interfering (si)RNA significantly suppressed the expression of these proteins, and attenuated cytotoxicity and caspase-12, -7, and -3 activation in MeHg-exposed cells. Furthermore, MeHg dramatically decreased Akt phosphorylation, and the overexpression of activation of Akt1 (myr-Akt1) could significantly prevent MeHg-induced Akt inactivation, as well as apoptotic and ER stress-related signals. Pretreatment with the antioxidant N-acetylcysteine (NAC) effectively prevented MeHg-induced neuronal cell reactive oxygen species (ROS) generation, apoptotic and ER stress-related signals, and Akt inactivation. Collectively, these results indicate that MeHg exerts its cytotoxicity in neurons by inducing ROS-mediated Akt inactivation up-regulated ER stress, which induces apoptosis and ultimately leads to cell death.
Collapse
Affiliation(s)
- Yao-Pang Chung
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Feng-Cheng Tang
- Department of Occupational Medicine, Changhua Christian Hospital, Changhua County, 500, Taiwan; Department of Leisure Services Management, Chaoyang University of Technology, Taichung, 413, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Taichung, 427, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Shang-Shu Hsieh
- Department of Emergency, Taichung Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Taichung, 427, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
24
|
Ahmed RG, El-Gareib AW. Gestational Arsenic Trioxide Exposure Acts as a Developing Neuroendocrine-Disruptor by Downregulating Nrf2/PPARγ and Upregulating Caspase-3/NF-ĸB/Cox2/BAX/iNOS/ROS. Dose Response 2019; 17:1559325819858266. [PMID: 31258454 PMCID: PMC6589982 DOI: 10.1177/1559325819858266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The goal of this investigation was to evaluate the effects of gestational administrations of arsenic trioxide (ATO; As2O3) on fetal neuroendocrine development (the thyroid-cerebrum axis). Pregnant Wistar rats were orally administered ATO (5 or 10 mg/kg) from gestation day (GD) 1 to 20. Both doses of ATO diminished free thyroxine and free triiodothyronine levels and augmented thyrotropin level in both dams and fetuses at GD 20. Also, the maternofetal hypothyroidism in both groups caused a dose-dependent reduction in the fetal serum growth hormone, insulin growth factor-I (IGF-I), and IGF-II levels at embryonic day (ED) 20. These disorders perturbed the maternofetal body weight, fetal brain weight, and survival of pregnant and their fetuses. In addition, destructive degeneration, vacuolation, hyperplasia, and edema were observed in the fetal thyroid and cerebrum of both ATO groups at ED 20. These disruptions appear to depend on intensification in the values of lipid peroxidation, nitric oxide, and H2O2, suppression of messenger RNA (mRNA) expression of nuclear factor erythroid 2-related factor 2 and peroxisome proliferator-activated receptor gamma, and activation of mRNA expression of caspase-3, nuclear factor kappa-light-chain-enhancer of activated B cells, cyclooxygenase-2, Bcl-2–associated X protein, and inducible nitric oxide synthase in the fetal cerebrum. These data suggest that gestational ATO may disturb thyroid-cerebrum axis generating fetal neurodevelopmental toxicity.
Collapse
Affiliation(s)
- R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
25
|
Su CT, Hsieh RL, Chung CJ, Huang PT, Lin YC, Ao PL, Shiue HS, Chen WJ, Huang SR, Lin MI, Mu SC, Hsueh YM. Plasma selenium influences arsenic methylation capacity and developmental delays in preschool children in Taiwan. ENVIRONMENTAL RESEARCH 2019; 171:52-59. [PMID: 30654249 DOI: 10.1016/j.envres.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Inefficient arsenic methylation capacity has been associated with developmental delay in preschool children. Selenium has antioxidant and anti-inflammatory properties that protect experimental animals from chemically induced neurotoxicity. The present study was designed to explore whether plasma selenium levels affects arsenic methylation capacity related to developmental delay in preschool children. A case-control study was conducted from August 2010 to March 2014. All participants were recruited from the Shin Kong Wu Ho-Su Memorial Teaching Hospital. In total, 178 children with a developmental delay and 88 children without a delay were recruited. High-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry were used to determine urinary arsenic species, including arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV). Plasma selenium levels were measured by inductively coupled plasma mass spectrometry. As results, plasma selenium concentration was significantly inversely associated with the odds ratio (OR) of developmental delay. Plasma selenium concentration was positively associated with arsenic methylation capacity [percentage of inorganic arsenic and percentage of MMAV (MMAV%) decreased, and percentage of DMAV (DMAV%) increased]. High plasma selenium concentration and high DMA% significantly and additively interacted to decrease the OR of developmental delay; the OR and 95% confidence interval were 0.40 (0.18-0.90). This is the first study to show a combined dose-response effect of plasma selenium concentration and that efficient arsenic methylation capacity decreased the OR of developmental delay in preschool children.
Collapse
Affiliation(s)
- Chien-Tien Su
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Pai-Tsang Huang
- Department of Occupational Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pui-Lam Ao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Jen Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shiau-Rung Huang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ming-I Lin
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shu-Chi Mu
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
26
|
Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Chirumbolo S, Skalnaya MG, Tinkov AA. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. ENVIRONMENTAL RESEARCH 2018; 166:234-250. [PMID: 29902778 DOI: 10.1016/j.envres.2018.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Japan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Heba A Yassa
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Jan Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
27
|
R G A, El-Gareib AW. WITHDRAWN: Toxic effects of gestational arsenic trioxide on the neuroendocrine axis of developing rats. Food Chem Toxicol 2018:S0278-6915(18)30663-X. [PMID: 30218683 DOI: 10.1016/j.fct.2018.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ahmed R G
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
28
|
Protective Effect of Hydroxytyrosol Against Oxidative Stress Mediated by Arsenic-Induced Neurotoxicity in Rats. Appl Biochem Biotechnol 2018; 186:27-39. [PMID: 29497947 DOI: 10.1007/s12010-018-2723-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/19/2018] [Indexed: 10/17/2022]
Abstract
The present study reports beneficial effect of hydroxytyrosol (HT) against arsenic (As)-induced oxidative stress in the rat brain. Rats were orally administered with sodium arsenite dissolved in distilled water (25 ppm, by oral gavage) for 8 weeks or HT (10 mg/kg b. wt.) in combination with As. Results showed increase in protein oxidation and lipid peroxidation, while catalase and superoxide dismutase (SOD) activities as well as GSH content were decreased after As exposure in rat brain. Fourier transform infrared analysis showed significant alteration in peak area values that also validated the oxidative damage to lipids and proteins. In addition, As exposure caused increase in protein expression of caspase-3 and Bax, while Bcl-2 expression was downregulated resulting in translocation of cytochrome c from mitochondria to cytosol. Treatment of HT with As reversed protein oxidation, lipid peroxidation, and increased GSH content as well as catalase and SOD activities. Administration of HT also prevented translocation of cytochrome c from mitochondria and increased mitochondria/cytosol ratio of cytochrome c. Hence, treatment of HT with As improved antioxidant system and efficiently lowered the generation of oxidative stress in rat brain.
Collapse
|
29
|
Liu H, Yu C, Xu T, Zhang X, Dong M. Synergistic protective effect of paeoniflorin and β-ecdysterone against rotenone-induced neurotoxicity in PC12 cells. Apoptosis 2018; 21:1354-1365. [PMID: 27688248 DOI: 10.1007/s10495-016-1293-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There are several factors, like oxidative stress and neurons loss, involving neurodegenerative diseases such as Parkinson's disease (PD). The combination of antioxidant and anti-apoptotic agent is becoming a promising approach to fight against PD. This study evaluates the hypothesis that paeoniflorin (PF) and β-ecdysterone (β-Ecd) synergize to protect PC12 cells against toxicity induced by PD-related neurotoxin rotenone. The combination of PF and β-Ecd, hereafter referred to as the PF/β-Ecd, at suboptimal concentrations increased the viability of rotenone-exposed PC12 cells in a synergistic manner. PF and β-Ecd cooperate to attenuate the rotenone-induced apoptosis by decrease in Bax expression, caspase-9 activity, and caspase-3 activity. PF or PF/β-Ecd, but not β-Ecd, inhibited rotenone-triggered protein kinase C-δkinase C-δ (PKCδ) upregulation and nuclear factor κB (NF-κB) activation. β-Ecd or PF/β-Ecd, but not PF, enhanced serine/threonine protein kinase (Akt) activation, promoted nuclear factor E2-related factor 2 (Nrf2) nuclear accumulation, suppressed reactive oxygen species (ROS) production. Neuroprotection of PF/β-Ecd could be completely blocked by PKCδ inhibitor rottlerin plus Akt specific inhibitor LY294002. Dual blockade of the PKCδ/NF-κB pathway by PF and activation of Akt/Nrf2 pathway by β-Ecd results in a synergistic neuroprotective effect against rotenone-induced neurotoxicity in vitro. These findings provide the rationale for determining the in vivo activity of combined therapy with PF and β-Ecd against PD.
Collapse
Affiliation(s)
- Han Liu
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China
| | - Chunlei Yu
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China
| | - Tianjiao Xu
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China
| | - Xiaojie Zhang
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China.
| |
Collapse
|
30
|
Li D, Wei Y, Xu S, Niu Q, Zhang M, Li S, Jing M. A systematic review and meta-analysis of bidirectional effect of arsenic on ERK signaling pathway. Mol Med Rep 2018; 17:4422-4432. [PMID: 29328451 PMCID: PMC5802217 DOI: 10.3892/mmr.2018.8383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/21/2017] [Indexed: 01/05/2023] Open
Abstract
Arsenic is a toxic metal, which ultimately leads to cell apoptosis. ERK is considered a key transcriptional regulator of arsenic‑induced apoptosis. Due to a few controversial issues about arsenic‑mediated extracellular signal‑regulated MAP kinases (ERK) signaling, a meta‑analysis was performed. Subgroup analyses demonstrated that high doses (≥2 µmol/l) of arsenic increased the expression of Ras, ERK, ERK1, ERK2, phosphorylated (p)‑ERK, p‑ERK1, and p‑ERK2, while low doses (<2 µmol/l) decreased the expression of Ras, ERK1, p‑ERK, and p‑ERK2 when compared to control groups. Long term exposure (>24 h) to arsenic led to inhibition of expression of ERK1, p‑ERK1, and p‑ERK2, whereas short‑term exposure (≤24 h) triggered the expression of ERK1, ERK2, p‑ERK, p‑ERK1, and p‑ERK2. Furthermore, normal cells exposed to arsenic exhibited higher production levels of Ras and p‑ERK. Conversely, exposure of cancer cells to arsenic showed a lower level of production of Ras and p‑ERK as well as higher level of p‑ERK1 and p‑ERK2 as compared to control group. Short‑term exposure of normal cells to high doses of arsenic may promote ERK signaling pathway. In contrast, long‑term exposure of cancer cells to low doses of arsenic may inhibit ERK signaling pathway. This study may be helpful in providing a theoretical basis for the diverging result of arsenic adverse effects on one hand and therapeutic mechanisms on the other concerning arsenic‑induced apoptosis.
Collapse
Affiliation(s)
- Dongjie Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Yutao Wei
- Department of Cardiothoracic Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Shangzhi Xu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Qiang Niu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Mei Zhang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Shugang Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Mingxia Jing
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
31
|
Wang Y, Zhao H, Guo M, Shao Y, Liu J, Jiang G, Xing M. Arsenite renal apoptotic effects in chickens co-aggravated by oxidative stress and inflammatory response. Metallomics 2018; 10:1805-1813. [DOI: 10.1039/c8mt00234g] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The kidney is the most crucial site for the excretion of arsenic and its metabolites.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife Resources, Northeast Forestry University
- Harbin 150040
- China
| | - Hongjing Zhao
- College of Wildlife Resources, Northeast Forestry University
- Harbin 150040
- China
| | - Menghao Guo
- College of Wildlife Resources, Northeast Forestry University
- Harbin 150040
- China
| | - Yizhi Shao
- College of Wildlife Resources, Northeast Forestry University
- Harbin 150040
- China
| | - Juanjuan Liu
- College of Wildlife Resources, Northeast Forestry University
- Harbin 150040
- China
| | - Guangshun Jiang
- College of Wildlife Resources, Northeast Forestry University
- Harbin 150040
- China
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University
- Harbin 150040
- China
| |
Collapse
|
32
|
Souza JMO, Grotto D, Batista BL, Barbosa F. Distribution of arsenic and oxidative stress in mice after rice ingestion. J Trace Elem Med Biol 2017; 44:192-200. [PMID: 28965576 DOI: 10.1016/j.jtemb.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/17/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022]
Abstract
This study evaluated the effects of rice naturally contaminated with arsenic (As) and the same As-species added as solubilized-salt on the redox state and the As distribution in male mice. The total As amount in the Brazilian polished rice used in this study was 169.81±6.12ngg-1. Indeed, the concentrations of As species were 40.77ngg-1 (arsenite, As3+), 65.71ngg-1 (dimethylarsinic acid, DMA), 11.90ngg-1 (monomethylarsonic acid, MMA), and 25.96ngg-1 (arsenate, As5+). In this sense, animals were randomly divided into seven groups with six mice per group: I) control: habitual food; II) rice I: diet containing 10% of rice naturally containing As (4.08μg As3+/kg diet, 6.57μg DMA/kg diet, 1.19μg MMA/kg diet, and 2.60μg As5+/kg diet); III) rice II: diet containing 20% of rice naturally containing As (8.15μg As3+/kg diet, 13.14μg DMA/kg diet, 2.38μg MMA/kg diet, and 5.19μg As5+/kg diet); IV) rice III: diet containing 40% of rice naturally containing As (16.31μg As3+/kg diet, 26.28μg DMA/kg diet, 4.76μg MMA/kg diet, and 10.38μg As5+/kg diet); V) spiked feed I: diet containing As species as solubilized-salt (concentration equivalent to group II); VI) spiked feed II: diet containing As species as solubilized-salt (concentration equivalent to group III); VII) spiked feed III: diet containing As species as solubilized-salt (concentration equivalent to group IV). The time of treatment was 100days. After euthanasia, it was observed an increase in total As concentration in tissue samples of groups treated with diet containing rice naturally contaminated and diet containing As species. For instance, the highest As concentrations (higher than 330ngg-1) was observed in the bladder of animals belonging to Rice II and III and spiked feed III groups. Furthermore, it was verified the highest As concentrations in bladder > hair > lung > kidney > liver > blood. We also observed the presence of DMA and As5+ in liver and kidneys. Regarding oxidative stress biomarkers, we observed significant reduction of Glutathione (GSH) concentration in blood of animals belonging to groups IV, V, VI and VII. Besides, the antioxidant enzymes activities, Glutathione Peroxidase (GSH-Px), Catalase (CAT) and superoxide dismutase (SOD), increased significantly in blood of animals belonging to group VII. On the other hand, it was not observed differences in nitric oxide (NO) levels among all the groups used in this study and the control group. Thus, we conclude that some minor effects were found in mice exposed to the diet containing the highest amount of rice naturally contaminated with As species. These findings contribute to evaluate the safety of human dietary consumption.
Collapse
Affiliation(s)
- Juliana Maria Oliveira Souza
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil.
| | - Denise Grotto
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil; Universidade de Sorocaba (Uniso)-Rodovia Raposo Tavares km 92,5, São Paulo, Brazil
| | - Bruno Lemos Batista
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo André, SP, Brazil
| | - Fernando Barbosa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil
| |
Collapse
|
33
|
Evaluation of serum arsenic and its effects on antioxidant alterations in relapsing-remitting multiple sclerosis patients. Mult Scler Relat Disord 2017; 19:79-84. [PMID: 29156301 DOI: 10.1016/j.msard.2017.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/02/2017] [Accepted: 11/12/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Environmental factors that are involved in the development of autoimmune diseases include bacteria, viruses, and xenobiotics such as chemicals, drugs, and metals. Regarding the metals, a number of studies have demonstrated that oxidative stress is one of the well-directed pathways of arsenic-induced tissue damages. This study was designed to explore the serum concentrations of arsenic and its correlation with markers associated with oxidative stress in relapsing-remitting MS (RRMS) patients. METHODS This case-controlled study comprised 50 patients with RRMS and 50 healthy subjects. Serum arsenic levels, total antioxidant potential, malondialdehyde (MDA), and lactate levels were measured. RESULTS The arsenic value, MDA, and lactate levels were elevated meaningfully while FRAP level significantly was decreased in RRMS patients with respect to healthy subjects (P <0.05). Furthermore, arsenic serum levels were positively correlated with serum concentrations of MDA and lactate. In contrast, serum levels were negatively correlated to FRAP values in RRMS patients. CONCLUSION Taken together, the association between arsenic level and oxidative stress parameters supports the hypothesis that high serum arsenic levels may play a critical role in the pathogenesis of MS progression.
Collapse
|
34
|
Hwang SG, Chapagain S, Lee JW, Han AR, Jang CS. Genome-wide transcriptome profiling of genes associated with arsenate toxicity in an arsenic-tolerant rice mutant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:40-51. [PMID: 28987861 DOI: 10.1016/j.plaphy.2017.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 05/07/2023]
Abstract
The presence of arsenic (As) in polluted environments, such as ground water, affects the accumulation of As in rice grains and causes a serious threat to human health. However, the precise molecular regulations related to As toxicity and tolerance in rice remain largely unknown. In the present study, we developed an arsenic-tolerant type 1 (ATT1) rice mutant by γ-irradiation mutagenesis and performed genome-wide transcriptome analysis for the characterization of As-responsive genes. Toxicity inhibited transcriptional regulation of putative genes involved in photosynthesis, mitochondrial electron transport, and lipid biosynthesis metabolism in wild-type (WT) and ATT1 rice mutant. However, many cysteine biosynthesis-related genes were significantly upregulated in both plants. We also attempted to elucidate the putative genes associated with As tolerance by comparing transcriptomes and identified ATT1-specific transcriptional regulation of genes involved in stress and RNA-protein synthesis. This analysis identified 50 genes that had DNA polymorphisms in upstream regions that differed from those in the exon regions, which suggested that genetic variations in the upstream regions might enhance As tolerance in the mutants. Therefore, the expression profiles of the genes evaluated in this study may improve understanding of the functional roles of As-related genes in response to As tolerance mechanisms and could potentially be used in molecular breeding to limit As accumulation in rice grains.
Collapse
Affiliation(s)
- Sun-Goo Hwang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - Sandeep Chapagain
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - Jae Woo Lee
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - A-Reum Han
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea.
| |
Collapse
|
35
|
Sun H, Yang Y, Shao H, Sun W, Gu M, Wang H, Jiang L, Qu L, Sun D, Gao Y. Sodium Arsenite-Induced Learning and Memory Impairment Is Associated with Endoplasmic Reticulum Stress-Mediated Apoptosis in Rat Hippocampus. Front Mol Neurosci 2017; 10:286. [PMID: 28936164 PMCID: PMC5594089 DOI: 10.3389/fnmol.2017.00286] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic arsenic exposure has been associated to cognitive deficits. However, mechanisms remain unknown. The present study investigated the neurotoxic effects of sodium arsenite in drinking water over different dosages and time periods. Based on results from the Morris water maze (MWM) and morphological analysis, an exposure to sodium arsenite could induce neuronal damage in the hippocampus, reduce learning ability, and accelerate memory impairment. Sodium arsenite significantly increased homocysteine levels in serum and brain. Moreover, sodium arsenite triggered unfolded protein response (UPR), leading to the phosphorylation of RNA-regulated protein kinase-like ER kinase (PERK) and eukaryotic translation initiation factor 2 subunit α (eIF2α), and the induction of activating transcription factor 4 (ATF4). Arsenite exposure also stimulated the expression of the endoplasmic reticulum (ER) stress markers, glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and the cleavage of caspase-12. Furthermore, exposure to arsenite enhanced apoptosis as demonstrated by expression of caspase-3 and TUNEL assay in the hippocampus. The results suggest that exposure to arsenite can significantly decrease learning ability and accelerate memory impairment. Potential mechanisms are related to enhancement of homocysteine and ER stress-induced apoptosis in the hippocampus.
Collapse
Affiliation(s)
- Hongna Sun
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Yanmei Yang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Hanwen Shao
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Weiwei Sun
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Muyu Gu
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Hui Wang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Lixin Jiang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Lisha Qu
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Dianjun Sun
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Yanhui Gao
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China.,Institution of Environmentally Related Diseases, Harbin Medical UniversityHarbin, China
| |
Collapse
|
36
|
Yousefsani BS, Pourahmad J, Hosseinzadeh H. The mechanism of protective effect of crocin against liver mitochondrial toxicity caused by arsenic III. Toxicol Mech Methods 2017; 28:105-114. [DOI: 10.1080/15376516.2017.1368054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bahareh Sadat Yousefsani
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Shah P, Trinh E, Qiang L, Xie L, Hu WY, Prins GS, Pi J, He YY. Arsenic Induces p62 Expression to Form a Positive Feedback Loop with Nrf2 in Human Epidermal Keratinocytes: Implications for Preventing Arsenic-Induced Skin Cancer. Molecules 2017; 22:molecules22020194. [PMID: 28125038 PMCID: PMC5361890 DOI: 10.3390/molecules22020194] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 01/29/2023] Open
Abstract
Exposure to inorganic arsenic in contaminated drinking water poses an environmental public health threat for hundreds of millions of people in the US and around the world. Arsenic is a known carcinogen for skin cancer. However, the mechanism by which arsenic induces skin cancer remains poorly understood. Here, we have shown that arsenic induces p62 expression in an autophagy-independent manner in human HaCaT keratinocytes. In mouse skin, chronic arsenic exposure through drinking water increases p62 protein levels in the epidermis. Nrf2 is required for basal and arsenic-induced p62 up-regulation. p62 knockdown reduces arsenic-induced Nrf2 activity, and induces sustained p21 up-regulation. p62 induction is associated with increased proliferation in mouse epidermis. p62 knockdown had little effect on arsenic-induced apoptosis, while it decreased cell proliferation following arsenic treatment. Our findings indicate that arsenic induces p62 expression to regulate the Nrf2 pathway in human keratinocytes and suggest that targeting p62 may help prevent arsenic-induced skin cancer.
Collapse
Affiliation(s)
- Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA.
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Elaine Trinh
- Department of Biological Sciences and Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA.
| | - Lishi Xie
- Department of Urology, College of Medicine, and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Wen-Yang Hu
- Department of Urology, College of Medicine, and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Gail S Prins
- Department of Urology, College of Medicine, and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA.
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
38
|
Kharroubi W, Haj Ahmed S, Nury T, Andreoletti P, Sakly R, Hammami M, Lizard G. Mitochondrial dysfunction, oxidative stress and apoptotic induction in microglial BV-2 cells treated with sodium arsenate. J Environ Sci (China) 2017; 51:44-51. [PMID: 28115150 DOI: 10.1016/j.jes.2016.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/15/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
The treatment of microglial BV-2 cells with sodium arsenate (As(V): 0.1-400μmol/L - 48hr) induces a dose-dependent response. The neurotoxic effects of high concentrations of As(V) (100, 200 and 400μmol/L) are characterized by increased levels of mitochondrial complexes I, II, and IV followed by increased superoxide anion generation. Moreover, As(V) triggers an apoptotic mode of cell death, demonstrated by an apoptotic SubG1 peak, associated with an alteration of plasma membrane integrity. There is also a decrease in transmembrane mitochondrial potential and mitochondrial adenosine triphosphate ATP. It is therefore tempting to speculate that As(V) triggers mitochondrial dysfunction, which may lead to defective oxidative phosphorylation subsequently causing mitochondrial oxidative damage, which in turn induces an apoptotic mode of cell death.
Collapse
Affiliation(s)
- Wafa Kharroubi
- Univ. Bourgogne Franche-Comté Laboratory Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism EA7270/INSERM, Faculty of Sciences Gabriel, Dijon 21000, France; Laboratory of Nutrition-Functional Foods and Vascular Diseases, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia.
| | - Samia Haj Ahmed
- Univ. Bourgogne Franche-Comté Laboratory Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism EA7270/INSERM, Faculty of Sciences Gabriel, Dijon 21000, France; Laboratory of Nutrition-Functional Foods and Vascular Diseases, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia
| | - Thomas Nury
- Univ. Bourgogne Franche-Comté Laboratory Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism EA7270/INSERM, Faculty of Sciences Gabriel, Dijon 21000, France
| | - Pierre Andreoletti
- Univ. Bourgogne Franche-Comté Laboratory Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism EA7270/INSERM, Faculty of Sciences Gabriel, Dijon 21000, France
| | - Rachid Sakly
- Laboratory of Nutrition-Functional Foods and Vascular Diseases, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia
| | - Mohamed Hammami
- Laboratory of Nutrition-Functional Foods and Vascular Diseases, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia
| | - Gérard Lizard
- Univ. Bourgogne Franche-Comté Laboratory Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism EA7270/INSERM, Faculty of Sciences Gabriel, Dijon 21000, France
| |
Collapse
|
39
|
Arsenic trioxide mediates HAPI microglia inflammatory response and the secretion of inflammatory cytokine IL-6 via Akt/NF-κB signaling pathway. Regul Toxicol Pharmacol 2016; 81:480-488. [DOI: 10.1016/j.yrtph.2016.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
|
40
|
Alizadeh-Ghodsi M, Zavvari A, Ebrahimi-Kalan A, Shiri-Shahsavar MR, Yousefi B. The hypothetical roles of arsenic in multiple sclerosis by induction of inflammation and aggregation of tau protein: A commentary. Nutr Neurosci 2016; 21:92-96. [PMID: 27697018 DOI: 10.1080/1028415x.2016.1239399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Multiple sclerosis (MS) is a disease which manifests demyelination of neuronal cells in the brain. Despite extensive research on the mechanisms of disease development and progression, the exact mechanism is not elucidated yet, which has hampered drug development and subsequent treatment of the disease. We have recently shown that the serum levels of arsenic and malondialdehyde, a lipid peroxidation marker, are high in MS patients. In this article, we would like to formulate the hypothesis that arsenic may cause MS by induction of inflammation, degeneration, and apoptosis in neuronal cells. The induction of ROS generation in cells upon exposure to arsenic as a heavy metal may be involved in the pathogenesis of MS. Tau protein, a member of the family of microtubule-associated proteins, is mainly expressed in neurons and contribute to the assembly of neuronal microtubules network. Arsenic may affect the hyperphosphorylation and aggregation of tau proteins and may be involved in the cascade leading to deregulation of tau function associated with neurodegeneration. For validation of this hypothesis, studies might be conducted to evaluate the association of arsenic levels and tau protein levels in MS patients. Further studies might also focus on the trafficking along microtubules in neurons of MS patient with regard to hyperphosphorylation of tau protein. This hypothesis may add a new dimension to the understanding of MS etiology and help to design novel therapeutic agents against potential targets that might be discovered. If this hypothesis proves to be true, tau phosphorylation inhibitors can be potential candidates for MS drug development.
Collapse
Affiliation(s)
- Mohammadreza Alizadeh-Ghodsi
- a Neurosciences Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Biochemistry and Clinical Laboratories, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Zavvari
- b Department of Biochemistry and Clinical Laboratories, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,c Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abbas Ebrahimi-Kalan
- a Neurosciences Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,d Neurosciences Department, School of Advanced Medical Sciences , Tabriz University of Medical Sciences, Tabriz , Iran
| | - Mohammad Reza Shiri-Shahsavar
- e Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, International Campus , Tehran University of Medical Sciences , Tehran , Iran
| | - Bahman Yousefi
- c Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,f Students' Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
41
|
An Y, Liu T, Liu X, Zhao L, Wang J. Rac1 and Cdc42 Play Important Roles in Arsenic Neurotoxicity in Primary Cultured Rat Cerebellar Astrocytes. Biol Trace Elem Res 2016; 170:173-82. [PMID: 26231544 DOI: 10.1007/s12011-015-0456-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022]
Abstract
This study aimed to explore whether Rac1 and Cdc42, representative members of Ras homologue guanosine triphosphatases (Rho GTPases), are involved in neurotoxicity induced by arsenic exposure in rat nervous system. Expressions of Rac1 and Cdc42 in rat cerebellum and cerebrum exposed to different doses of NaAsO2 (Wistar rats drank 0, 2, 10, and 50 mg/L NaAsO2 water for 3 months) were examined. Both Rac1 and Cdc42 expressions increased significantly in a dose-dependent manner in cerebellum (P < 0.01) by Western blot and immunohistochemistry assay, but in cerebrum, Rac1 and Cdc42 expressions only in 2 mg/L exposure groups were significantly higher than those in control groups (P < 0.01). Five to 50 μM NaAsO2 decreased cell viability in a dose-dependent manner in primary cultured rat astrocytes, whereas 1 μM NaAsO2 increased the cell viability in these cells. Rac1 inhibitor, NSC23766, decreased NaAsO2-induced apoptosis and increased the cell viability in primary cultured rat cerebellar astrocytes exposed to 30 μM NaAsO2. Cdc42 inhibitor, ZCL278, increased cell viability in the cells exposed to 30 μM NaAsO2. Taken together, our current studies in vivo and in vitro indicate that activations of Rac1 and Cdc42 play a very important role in arsenic neurotoxicity in rat cerebellum, providing a new insight into arsenic neurotoxicity.
Collapse
Affiliation(s)
- Yuan An
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China
| | - Tingting Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China
| | - Lijun Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China
| | - Jing Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China.
| |
Collapse
|
42
|
Zhou H, Liu Y, Tan XJ, Wang YC, Liu KY, Cui YX. Inhibitory effect of arsenic trioxide on neuronal migration in vitro and its potential molecular mechanism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:671-677. [PMID: 26407229 DOI: 10.1016/j.etap.2015.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
Primary neuron cultures were established from the brains of neonatal rats and the effects of arsenic trioxide (As2O3) on the migration of neurons and the potential mechanism of As2O3 were investigated. Boyden chamber assay was used to detect the effect of AS2O3 on neuronal migration. Matrix metalloproteinase-2 (MMP-2) and MMP-9 RNA expression and doublecortin (DCX) protein expression were measured. Neuronal migration ability was significantly lower in the 20 μmol/L group compared with the other three groups (all p < 0.001). The expression of both MMP-2 and MMP-9 was significantly inversely correlated with As2O3 concentration. The expression of DCX was significantly higher in the control group compared with the other three groups (all p ≤ 0.003). Thus, the inhibitory effect of As2O3 on the migration of primary neurons might be related to the reduction in MMP-2 and MMP-9 activities and decrease in β-actin and DCX expression.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Ye Liu
- Department of Otorhinolaryngology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xin-Jie Tan
- Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yu-Chuan Wang
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Kai-Yu Liu
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yu-Xia Cui
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| |
Collapse
|
43
|
Prakash C, Soni M, Kumar V. Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review. J Appl Toxicol 2015; 36:179-88. [DOI: 10.1002/jat.3256] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/01/2015] [Accepted: 09/28/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Chandra Prakash
- Department of Biochemistry; Maharshi Dayanand University; Rohtak 124001 Haryana India
| | - Manisha Soni
- Department of Biochemistry; Maharshi Dayanand University; Rohtak 124001 Haryana India
| | - Vijay Kumar
- Department of Biochemistry; Maharshi Dayanand University; Rohtak 124001 Haryana India
| |
Collapse
|
44
|
Wang H, Liu Z, Gou Y, Qin Y, Xu Y, Liu J, Wu JZ. Apoptosis and necrosis induced by novel realgar quantum dots in human endometrial cancer cells via endoplasmic reticulum stress signaling pathway. Int J Nanomedicine 2015; 10:5505-12. [PMID: 26357474 PMCID: PMC4560518 DOI: 10.2147/ijn.s83838] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Realgar (AS4S4) has been used in traditional medicines for malignancy, but the poor water solubility is still a major hindrance to its clinical use. Realgar quantum dots (RQDs) were therefore synthesized with improved water solubility and bioavailability. Human endometrial cancer JEC cells were exposed to various concentrations of RQDs to evaluate their anticancer effects and to explore mechanisms by the MTT assay, transmission electron microscopy (TEM), flow cytometry, real-time reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. Results revealed that the highest photoluminescence quantum yield of the prepared RQDs was up to approximately 70%, with the average size of 5.48 nm. RQDs induced antipro-liferative activity against JEC cells in a concentration-dependent manner. In light microscopy and TEM examinations, RQDs induced vacuolization and endoplasmic reticulum (ER) dilation in JEC cells in a concentration-dependent manner. ER stress by RQDs were further confirmed by increased expression of GADD153 and GRP78 at both mRNA and protein levels. ER stress further led to JEC cell apoptosis and necrosis, as evidenced by flow cytometry and mitochondrial membrane potential detection. Our findings demonstrated that the newly synthesized RQDs were effective against human endometrial cancer cells. The underlying mechanism appears to be, at least partly, due to ER stress leading to apoptotic cell death and necrosis.
Collapse
Affiliation(s)
- Huan Wang
- Research Center for Medicine and Biology, Zunyi Medical College, Zunyi, People's Republic of China ; Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical College, Zunyi, People's Republic of China ; Department of Microbiolog, Zunyi Medical College, Zunyi, People's Republic of China y
| | - Zhengyun Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, People's Republic of China
| | - Ying Gou
- Department of Microbiolog, Zunyi Medical College, Zunyi, People's Republic of China y
| | - Yu Qin
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, People's Republic of China
| | - Yaze Xu
- Pharmacy School, Zunyi Medical College, Zunyi, People's Republic of China
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, People's Republic of China
| | - Jin-Zhu Wu
- Department of Chemistry, School of Science, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|
45
|
Wang Y, Bai C, Guan H, Chen R, Wang X, Wang B, Jin H, Piao F. Subchronic exposure to arsenic induces apoptosis in the hippocampus of the mouse brains through the Bcl‐2/Bax pathway. J Occup Health 2015; 57:212-21. [PMID: 25787108 DOI: 10.1539/joh.14-0226-oa] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yachen Wang
- Department of Occupational and Environmental HealthDalian Medical UniversityP.R. China
| | - Canming Bai
- Department of NeurosurgeryThe Second Affiliated Hospital, Dalian Medical UniversityP.R. China
| | - Huai Guan
- Department of Obstetrics and GynecologyNo. 210 Hospital of PLAP.R. China
- Department of Obstetrics and GynecologyGeneral Hospital of Beijing Military CommandP.R. China
| | - Ruolin Chen
- Department of Occupational and Environmental HealthDalian Medical UniversityP.R. China
| | - Xiaoxu Wang
- Department of Occupational and Environmental HealthDalian Medical UniversityP.R. China
| | - Bingwen Wang
- Department of Occupational and Environmental HealthDalian Medical UniversityP.R. China
| | - Hetian Jin
- Department of Radiation OncologyNo. 202 Hospital of PLAP.R. China
| | - Fengyuan Piao
- Department of Occupational and Environmental HealthDalian Medical UniversityP.R. China
| |
Collapse
|
46
|
von Stackelberg K, Guzy E, Chu T, Henn BC. Exposure to Mixtures of Metals and Neurodevelopmental Outcomes: A Multidisciplinary Review Using an Adverse Outcome Pathway Framework. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2015; 35:971-1016. [PMID: 26096925 PMCID: PMC5108657 DOI: 10.1111/risa.12425] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Current risk assessment guidance calls for an individual chemical-by-chemical approach that fails to capture potential interactive effects of exposure to environmental mixtures and genetic variability. We conducted a review of the literature on relationships between prenatal and early life exposure to mixtures of lead (Pb), arsenic (As), cadmium (Cd), and manganese (Mn) with neurodevelopmental outcomes. We then used an adverse outcome pathway (AOP) framework to integrate lines of evidence from multiple disciplines based on evolving guidance developed by the Organization for Economic Cooperation and Development (OECD). Toxicological evidence suggests a greater than additive effect of combined exposures to As-Pb-Cd and to Mn with any other metal, and several epidemiologic studies also suggest synergistic effects from binary combinations of Pb-As, Pb-Cd, and Pb-Mn. The exposure levels reported in these epidemiologic studies largely fall at the high-end (e.g., 95th percentile) of biomonitoring data from the National Health and Nutrition Examination Survey (NHANES), suggesting a small but significant potential for high-end exposures. This review integrates multiple data sources using an AOP framework and provides an initial application of the OECD guidance in the context of potential neurodevelopmental toxicity of several metals, recognizing the evolving nature of regulatory interpretation and acceptance.
Collapse
Affiliation(s)
- Katherine von Stackelberg
- Harvard Center for Risk Analysis, Boston, MA 02215;
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215
| | - Elizabeth Guzy
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215
| | - Tian Chu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215
| | - Birgit Claus Henn
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215
- Now at the Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118
| |
Collapse
|
47
|
Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression. BIOMED RESEARCH INTERNATIONAL 2015; 2015:159015. [PMID: 26114099 PMCID: PMC4465655 DOI: 10.1155/2015/159015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/05/2015] [Accepted: 04/21/2015] [Indexed: 11/17/2022]
Abstract
Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water) on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM) and open field test (OFT) in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST) and forced swimming test (FST) in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.
Collapse
|
48
|
Uptake, Metabolic Effects and Toxicity of Arsenate and Arsenite in Astrocytes. Neurochem Res 2015; 41:465-75. [DOI: 10.1007/s11064-015-1570-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/17/2022]
|
49
|
Sun B, Zhai H, Zhang LB, Zhang CX, Wu XS. Removal of Trace Arsenic Based on Biomimetic Separation. Ind Eng Chem Res 2014. [DOI: 10.1021/ie503033r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Bo Sun
- School of Chemistry and Chemical
Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Hao Zhai
- School of Chemistry and Chemical
Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Li-Bing Zhang
- School of Chemistry and Chemical
Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Chun-Xue Zhang
- School of Chemistry and Chemical
Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xin-Shi Wu
- School of Chemistry and Chemical
Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
50
|
Lu TH, Su CC, Tang FC, Chen CH, Yen CC, Fang KM, Lee KI, Hung DZ, Chen YW. Chloroacetic acid triggers apoptosis in neuronal cells via a reactive oxygen species-induced endoplasmic reticulum stress signaling pathway. Chem Biol Interact 2014; 225:1-12. [PMID: 25451595 DOI: 10.1016/j.cbi.2014.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/07/2014] [Accepted: 10/17/2014] [Indexed: 11/18/2022]
Abstract
Chloroacetic acid (CA), a chlorinated analog of acetic acid and an environmental toxin that is more toxic than acetic, dichloroacetic, or trichloroacetic acids, is widely used in chemical industries. Furthermore, CA has been found to be the major disinfection by-products (DBPs) of drinking water. CA has been reported to be highly corrosive and to induce severe tissue injuries (including nervous system) that lead to death in mammals. However, the effects and underlying mechanisms of CA-induced neurotoxicity remain unknown. In the present study, we found that CA (0.5-2.0 mM) significantly increased LDH release, decreased the number of viable cells (cytotoxicity) and induced apoptotic events (including: increases in the numbers of apoptotic cells, the membrane externalization of phosphatidylserine (PS), and caspase-3/-7 activity) in Neuro-2a cells. CA (1.5 mM; the approximate to LD50) also triggered ER stress, which was identified by monitoring several key molecules that are involved in the unfolded protein responses (including the increase in the expressions of p-PERK, p-IRE-1, p-eIF2α, ATF-4, ATF-6, CHOP, XBP-1, GRP 78, GRP 94, and caspase-12) and calpain activity. Transfection of GRP 78- and GRP 94-specific si-RNA effectively abrogated CA-induced cytotoxicity, caspase-3/-7 and caspase-12 activity, and GRP 78 and GRP 94 expression in Neuro-2a cells. Additionally, pretreatment with 2.5 mM N-acetylcysteine (NAC; a glutathione (GSH) precursor) dramatically suppressed the increase in lipid peroxidation, cytotoxicity, apoptotic events, calpain and caspase-12 activity, and ER stress-related molecules in CA-exposed cells. Taken together, these results suggest that the higher concentration of CA exerts its cytotoxic effects in neuronal cells by triggering apoptosis via a ROS-induced ER stress signaling pathway.
Collapse
Affiliation(s)
- Tien-Hui Lu
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Rd., 404 Taichung, Taiwan.
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, No. 135 Nanxiao St., Changhua City, 500 Changhua County, Taiwan.
| | - Feng-Cheng Tang
- Department of Occupational Medicine, Changhua Christian Hospital, No. 135 Nanxiao St., Changhua City, 500 Changhua County, Taiwan.
| | - Chun-Hung Chen
- Department of Emergency, China Medical University Hospital, No. 2 Yuh-Der Rd., 404 Taichung, Taiwan.
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, No. 110 Section 1, Jian-Guo N. Rd., 402 Taichung, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, No. 110 Section 1, Jian-Guo N. Rd., 402 Taichung, Taiwan.
| | - Kai-Min Fang
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Rd., 404 Taichung, Taiwan; Department of Otolaryngology, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City 220, Taiwan.
| | - kuan-I Lee
- Department of Emergency, Taichung Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, No. 66 Section 1, Fongsing Rd., Tanzih Township, Taichung 427, Taiwan.
| | - Dong-Zong Hung
- Division of Toxicology, Trauma & Emergency Center, China Medical University Hospital, No. 2 Yuh-Der Rd., 404 Taichung, Taiwan.
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Rd., 404 Taichung, Taiwan.
| |
Collapse
|