1
|
van Allen KA, Gang N, Hoyeck MP, Perera I, Zhang D, Atlas E, Lynn FC, Bruin JE. Characterizing the effects of Dechlorane Plus on β-cells: a comparative study across models and species. Islets 2024; 16:2361996. [PMID: 38833523 PMCID: PMC11152096 DOI: 10.1080/19382014.2024.2361996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Epidemiological studies consistently link environmental toxicant exposure with increased Type 2 diabetes risk. Our study investigated the diabetogenic effects of a widely used flame retardant, Dechlorane Plus (DP), on pancreatic β-cells using rodent and human model systems. We first examined pancreas tissues from male mice exposed daily to oral gavage of either vehicle (corn oil) or DP (10, 100, or 1000 μg/kg per day) and fed chow or high fat diet for 28-days in vivo. DP exposure did not affect islet size or endocrine cell composition in either diet group. Next, we assessed the effect of 48-hour exposure to vehicle (DMSO) or DP (1, 10, or 100 nM) in vitro using immortalized rat β-cells (INS-1 832/3), primary mouse and human islets, and human stem-cell derived islet-like cells (SC-islets). In INS-1 832/3 cells, DP did not impact glucose-stimulated insulin secretion (GSIS) but significantly decreased intracellular insulin content. DP had no effect on GSIS in mouse islets or SC-islets but had variable effects on GSIS in human islets depending on the donor. DP alone did not affect insulin content in mouse islets, human islets, or SC-islets, but mouse islets co-exposed to DP and glucolipotoxic (GLT) stress conditions (28.7 mM glucose + 0.5 mM palmitate) had reduced insulin content compared to control conditions. Co-exposure of mouse islets to DP + GLT amplified the upregulation of Slc30a8 compared to GLT alone. Our study highlights the importance and challenges of using different in vitro models for studying chemical toxicity.
Collapse
Affiliation(s)
- Kyle A. van Allen
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Noa Gang
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Myriam P. Hoyeck
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Dahai Zhang
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francis C. Lynn
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Jennifer E Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Kouiti M, Castillo-Hermoso MÁ, Youlyouz-Marfak I, Khan KS, Thangaratinam S, Olmedo-Requena R, Zamora J, Jiménez-Moléon JJ. Persistent organic pollutant exposure as a risk factor of gestational diabetes mellitus: A systematic review and meta-analysis. BJOG 2024; 131:579-588. [PMID: 38044810 DOI: 10.1111/1471-0528.17725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Findings related to the association between persistent organic pollutants (POPs) and gestational diabetes mellitus (GDM) are inconclusive. OBJECTIVES To estimate the strength of the association between POP exposure and GDM in a systematic review with meta-analysis. SEARCH STRATEGY MEDLINE, Scopus and Web of Science were searched until July 2023. SELECTION CRITERIA Cohort and case-control studies analysing the association between POPs and GDM. DATA COLLECTION AND ANALYSIS We assessed the risk of bias using the Quality in Prognosis Studies scale (QUIPS). Standardised mean differences were pooled using random-effect models. MAIN RESULTS Sixteen articles including 12 216 participants were selected. The risk of bias was high in four articles (25%), moderate in 11 (68.75%) and low in one (6.25%). Small mean difference between GDM cases and controls was observed for PFHpA (0.26, 95% confidence interval [CI] 0.1-0.35, I2 = 0.0%), PCB180 (0.37, 95% CI 0.19-0.56; I2 = 25.3%), BDE47 (0.23, 95% CI 0.0-0.45, I2 = 0%), BDE99 (0.36, 95% CI 0.14-0.59; I2 = 0%), BDE100 (0.42, 95% CI 0.19-0.64; I2 = 0%) and HCB (0.22, 95% CI 0.01-0.42, I2 = 39.6%). No considerable difference was observed for the rest of POPs. CONCLUSION Small mean differences between GDM cases and controls were observed for some POPs. However, evidence shows mostly moderate quality and results were heterogeneous. Improved research methodology is needed to assess POPs and GDM risk.
Collapse
Affiliation(s)
- Malak Kouiti
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, Granada, Spain
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | | | - Ibtissam Youlyouz-Marfak
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | - Khalid Saeed Khan
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, Granada, Spain
- Consorcio Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Shakila Thangaratinam
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, UK
| | - Rocío Olmedo-Requena
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, Granada, Spain
- Consorcio Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Javier Zamora
- Consorcio Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, UK
- Clinical Biostatistics Unit, Hospital Ramon y Cajal (IRYCIS), Madrid, Spain
| | - José Juan Jiménez-Moléon
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, Granada, Spain
- Consorcio Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
4
|
Ma J, Li Y, Qian L, Geng S, Yao X, Gao X, Yan Y, Wen J. Serum levels of polychlorinated biphenyls and polybrominated diphenyl ethers in early pregnancy and their associations with gestational diabetes mellitus. CHEMOSPHERE 2023; 339:139640. [PMID: 37499805 DOI: 10.1016/j.chemosphere.2023.139640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Polychlorinated Biphenyls (PCBs) and Polybrominated Diphenyl Ethers (PBDEs) are extensively present in humans and may disturb glucose metabolism during pregnancy. However, previous reports on the associations between PCBs/PBDEs levels and gestational diabetes mellitus (GDM) have been inconsistent. We performed a nested case-control study to measure the serum levels of 6 PCB and 7 PBDE congeners in early pregnancy, and to assess their associations with GDM risk and blood glucose levels. Totally, 208 serum samples (104 GDM cases and 104 controls) were included based on a prospective cohort which was carried out in Jiangsu province, China, from 2020 to 2022. The results showed that PCB-153 was the major PCB congener, whereas PBDE-47 was the predominant PBDE congener. The continuous concentrations of PCB-153, PBDE-28, and total PCB were significantly related to an increased risk of GDM, with adjusted ORs (95%CI) of 1.25 (1.04-1.50), 1.19 (1.02-1.39), and 1.37 (1.05-1.79), respectively. Potential dose-response relationships were also observed between serum levels of PCB-153 (P = 0.011), PBDE-28 (P = 0.028), total PCB (P = 0.048), and total PCB/PBDE (P = 0.010) and GDM risk. Moreover, PCB-153, PBDE-28 and total PCB levels were positively related to 1-h OGTT blood glucose (adjusted βPCB-153: 0.14, 95%CI: 0.00-0.28; adjusted βPBDE-28: 0.20, 95%CI: 0.08-0.32; adjusted βtotal PCB: 0.30, 95%CI: 0.09-0.50), whereas none of the PCBs/PBDEs were statistically related to fasting blood glucose and 2-h OGTT blood glucose (all P > 0.05). Further meta-analysis also supported the association of PCBs exposure with GDM risk. Our study provides further evidence that PCBs/PBDEs exposure may increase GDM risk during pregnancy.
Collapse
Affiliation(s)
- Jinqi Ma
- Department of Obstetrics and Gynecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Ying Li
- Department of Obstetrics and Gynecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Li Qian
- Department of Obstetrics and Gynecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Xian Gao
- Department of Obstetrics and Gynecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Yan Yan
- Department of Obstetrics and Gynecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China.
| |
Collapse
|
5
|
Xue J, Xiao Q, Zhang M, Li D, Wang X. Toxic Effects and Mechanisms of Polybrominated Diphenyl Ethers. Int J Mol Sci 2023; 24:13487. [PMID: 37686292 PMCID: PMC10487835 DOI: 10.3390/ijms241713487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants used in plastics, textiles, polyurethane foam, and other materials. They contain two halogenated aromatic rings bonded by an ester bond and are classified according to the number and position of bromine atoms. Due to their widespread use, PBDEs have been detected in soil, air, water, dust, and animal tissues. Besides, PBDEs have been found in various tissues, including liver, kidney, adipose, brain, breast milk and plasma. The continued accumulation of PBDEs has raised concerns about their potential toxicity, including hepatotoxicity, kidney toxicity, gut toxicity, thyroid toxicity, embryotoxicity, reproductive toxicity, neurotoxicity, and immunotoxicity. Previous studies have suggested that there may be various mechanisms contributing to PBDEs toxicity. The present study aimed to outline PBDEs' toxic effects and mechanisms on different organ systems. Given PBDEs' bioaccumulation and adverse impacts on human health and other living organisms, we summarize PBDEs' effects and potential toxicity mechanisms and tend to broaden the horizons to facilitate the design of new prevention strategies for PBDEs-induced toxicity.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (Q.X.); (M.Z.); (D.L.)
| | | | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (Q.X.); (M.Z.); (D.L.)
| |
Collapse
|
6
|
Kozlova EV, Chinthirla BD, Bishay AE, Pérez PA, Denys ME, Krum JM, DiPatrizio NV, Currás-Collazo MC. Glucoregulatory disruption in male mice offspring induced by maternal transfer of endocrine disrupting brominated flame retardants in DE-71. Front Endocrinol (Lausanne) 2023; 14:1049708. [PMID: 37008952 PMCID: PMC10063979 DOI: 10.3389/fendo.2023.1049708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/23/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction Polybrominated diphenyl ethers (PBDEs) are commercially used flame retardants that bioaccumulate in human tissues, including breast milk. PBDEs produce endocrine and metabolic disruption in experimental animals and have been associated with diabetes and metabolic syndrome (MetS) in humans, however, their sex-specific diabetogenic effects are not completely understood. Our past works show glucolipid dysregulation resulting from perinatal exposure to the commercial penta-mixture of PBDEs, DE-71, in C57BL/6 female mice. Methods As a comparison, in the current study, the effects of DE-71 on glucose homeostasis in male offspring was examined. C57BL/6N dams were exposed to DE-71 at 0.1 mg/kg/d (L-DE-71), 0.4 mg/kg/d (H-DE-71), or received corn oil vehicle (VEH/CON) for a total of 10 wks, including gestation and lactation and their male offspring were examined in adulthood. Results Compared to VEH/CON, DE-71 exposure produced hypoglycemia after a 11 h fast (H-DE-71). An increased fast duration from 9 to 11 h resulted in lower blood glucose in both DE-71 exposure groups. In vivo glucose challenge showed marked glucose intolerance (H-DE-71) and incomplete clearance (L- and H-DE-71). Moreover, L-DE-71-exposed mice showed altered glucose responses to exogenous insulin, including incomplete glucose clearance and/or utilization. In addition, L-DE-71 produced elevated levels of plasma glucagon and the incretin, active glucagon-like peptide-1 (7-36) amide (GLP-1) but no changes were detected in insulin. These alterations, which represent criteria used clinically to diagnose diabetes in humans, were accompanied with reduced hepatic glutamate dehydrogenase enzymatic activity, elevated adrenal epinephrine and decreased thermogenic brown adipose tissue (BAT) mass, indicating involvement of several organ system targets of PBDEs. Liver levels of several endocannabinoid species were not altered. Discussion Our findings demonstrate that chronic, low-level exposure to PBDEs in dams can dysregulate glucose homeostasis and glucoregulatory hormones in their male offspring. Previous findings using female siblings show altered glucose homeostasis that aligned with a contrasting diabetogenic phenotype, while their mothers displayed more subtle glucoregulatory alterations, suggesting that developing organisms are more susceptible to DE-71. We summarize the results of the current work, generated in males, considering previous findings in females. Collectively, these findings offer a comprehensive account of differential effects of environmentally relevant PBDEs on glucose homeostasis and glucoregulatory endocrine dysregulation of developmentally exposed male and female mice.
Collapse
Affiliation(s)
- Elena V. Kozlova
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA, United States
| | - Bhuvaneswari D. Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| | - Anthony E. Bishay
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| | - Pedro A. Pérez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Maximillian E. Denys
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| | - Julia M. Krum
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Margarita C. Currás-Collazo
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| |
Collapse
|
7
|
Che Z, Jia H, Chen R, Pan K, Fan Z, Su C, Wu Z, Zhang T. Associations between exposure to brominated flame retardants and metabolic syndrome and its components in U.S. adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159935. [PMID: 36336051 DOI: 10.1016/j.scitotenv.2022.159935] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Humans are simultaneously exposed to numerous of environmental brominated flame retardants (BFRs). We aim to explore the overall associations of BFRs mixture on metabolic syndrome (MetS) and its components and further identify significant chemicals. METHODS This study included 4641 adults from the National Health and Nutrition Examination Survey (NHANES) in 2007-2016. The weighted logistic regression was conducted to estimate the association of a single BFR exposure with MetS and its components. Meanwhile, the weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were adopted to evaluate the overall associations of BFRs mixture on MetS and its components, and to identify significant chemicals. We also evaluated potential associations modified by sex. RESULTS In the weighted logistic regression model, PBB153 were positively associated with MetS in a dose-dependent manner (Ptrend < 0.05). For its components, increasing quartiles of most BFRs were positively associated with abdominal obesity, hypertriglyceridemia, and low HDL. However, we found no statistically significant associations between BFRs and hypertension and hyperglycemia. WQS analyses found that BFRs mixture was positively associated with MetS (OR: 1.30; 95%CI:1.14, 1.46), abdominal obesity (OR: 1.15; 95%CI:1.03, 1.27), hypertriglyceridemia (OR:1.43; 95%CI:1.19, 1.67), and low HDL (OR: 1.15; 95%CI:1.01, 1.29). BKMR showed associations in a similar direction as WQS for BFRs mixture. For MetS, hypertriglyceridemia and Low HDL, PBB153, PBDE28 and PBDE209 were the most heavily weighting chemicals and had the highest the posterior inclusion probabilities in the WQS and BKMR, respectively. BFRs showed stronger associations of MetS and its components in males than in females. CONCLUSIONS The present study suggested exposure to BFRs mixture was positively associated with MetS and its components in adults, and PBB153, PBDE28 and PBDE209 were the significant chemicals. However, prospective cohort studies are still needed to confirm the causal effect between BFRs mixture and MetS.
Collapse
Affiliation(s)
- Zhiqiang Che
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huixun Jia
- School of Public Health, Fudan University, Shanghai, China; National Clinical Research Center for Ophthalmic Diseases, Shanghai, China; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Renjie Chen
- School of Public Health, Fudan University, Shanghai, China
| | - Keyu Pan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhe Fan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chang Su
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention/Key Laboratory of Trace Element Nutrition of National Health Commission, Beijing 100050, 29 Nanwei Road, Xicheng District, Beijing, China.
| | - Zhenyu Wu
- School of Public Health, Fudan University, Shanghai, China.
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
8
|
Mao G, Tang J, Liao T, Shi X, Dong F, Feng W, Chen Y, Zhao T, Wu X, Yang L. Metabolism toxicity and susceptibility of decabromodiphenyl ether (BDE-209) exposure on BRL cells with insulin resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91306-91324. [PMID: 35896870 DOI: 10.1007/s11356-022-21980-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by insulin resistance (IR) and has attracted worldwide attention due to its high prevalence. As a typical persistent organic pollutant, decabromodiphenyl ether (BDE-209) has been detected in food and human samples, and the concentration trends increase year by year. In addition, it has been proved to have the potential to increase the risk of IR, but it is rarely reported whether it could aggravate IR in T2DM. Therefore, in this study, the IR-BRL (buffalo rat liver cells with IR) model was applied to study the metabolism toxicity and susceptibility of BDE-209. Results showed that BDE-209 could inhibit glucose absorption and increase the levels of serum total cholesterol (TC) and triglyceride (TG), ultimately leading to the disorder of glucolipid metabolism in IR-BRL cells. Besides, it also could cause cell damage by increasing the levels of aspartate transaminase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) in cells. Moreover, its potential mechanisms were to: (1) affect the transport of glucose, synthesis of glycogen and fatty acid via IRS-1/GLUT4 and IRS-1/PI3K/AKT/GSK-3β pathways; (2) impact the proliferation and differentiation by regulating the expression of Mek1/2, Erk1/2, and mTOR proteins and genes. Furthermore, susceptibility analysis showed that there was a significant synergism interaction between IR and BDE-209, which suggested that IR-BRL cells were more susceptible to the metabolism toxicity induced by BDE-209.
Collapse
Affiliation(s)
- Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| | - Junjie Tang
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Taotao Liao
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Xiaoxiang Shi
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - FangYuan Dong
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
- Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
- Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
- Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| |
Collapse
|
9
|
Yan D, Jiao Y, Yan H, Liu T, Yan H, Yuan J. Endocrine-disrupting chemicals and the risk of gestational diabetes mellitus: a systematic review and meta-analysis. Environ Health 2022; 21:53. [PMID: 35578291 PMCID: PMC9109392 DOI: 10.1186/s12940-022-00858-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/26/2022] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To conduct a comprehensive systematic review and meta-analysis to estimate the relationship between endocrine-disrupting chemicals (EDCs), including polychlorinated biphenyls (PCBs), poly-brominated diphenyl ethers (PBDEs), phthalates (PAEs), and per- and polyfluoroalkyl substances (PFAS) exposure and risk of gestational diabetes mellitus (GDM). METHODS Relevant studies from their inception to November 2021 were identified by searching EMBASE, PubMed, and Web of Science. The cohort and case-control studies that reported effect size with 95% confidence intervals (CIs) of EDC exposure and GDM were selected. The heterogeneity among the included studies was quantified by I2 statistic. Publication bias was evaluated through the Begg and Egger tests. RESULTS Twenty-five articles with a total of 23,796 participants were found. Results indicated that exposure to PCBs has a significant influence on the incidence of GDM (OR = 1.14; 95% CI = 1.00--1.31; n = 8). The risk of GDM was found to be associated with PBDE exposure (OR = 1.32; 95% CI = 1.15-1.53; n = 4). PAEs and PFASs exposure were also positively associated with the risk of GDM, with summary ORs of 1.10 (95% CI = 1.03-1.16; n = 7 for PAEs) and 1.09 (95% CI = 1.02-1.16; n = 11 for PFASs), respectively. When only cohort studies were considered, the summary OR between PCBs exposure and the risk of GDM was 0.99 (95% CI = 0.91-1.09; n = 5). Meanwhile, the summary ORs from cohort studies for PBDEs, PAEs, and PFASs exposure were 1.12 (95% CI = 1.00-1.26; n = 2), 1.08 (95% CI = 1.02-1.15; n = 5), and 1.06 (95% CI = 1.00-1.12; n = 8), respectively. The Beggs and Egger tests did not show publication bias, and the sensitivity analyses did not change the results in this meta-analysis. CONCLUSION These results support that exposure to certain EDCs, including PCBs, PBDEs, PAEs, and PFAS, increase the risk of GDM. Further large-sample epidemiologic researches and mechanistic studies are needed to verify the potential relationship and biological mechanisms. These results are of public health significance because the daily EDC exposure is expected to increase the risk of GDM development.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Yang Jiao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, People's Republic of China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Tian Liu
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, People's Republic of China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
10
|
Hoyeck MP, Matteo G, MacFarlane EM, Perera I, Bruin JE. Persistent organic pollutants and β-cell toxicity: a comprehensive review. Am J Physiol Endocrinol Metab 2022; 322:E383-E413. [PMID: 35156417 PMCID: PMC9394781 DOI: 10.1152/ajpendo.00358.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023]
Abstract
Persistent organic pollutants (POPs) are a diverse family of contaminants that show widespread global dispersion and bioaccumulation. Humans are continuously exposed to POPs through diet, air particles, and household and commercial products; POPs are consistently detected in human tissues, including the pancreas. Epidemiological studies show a modest but consistent correlation between exposure to POPs and increased diabetes risk. The goal of this review is to provide an overview of epidemiological evidence and an in-depth evaluation of the in vivo and in vitro evidence that POPs cause β-cell toxicity. We review evidence for six classes of POPs: dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), flame retardants, and per- and polyfluoroalkyl substances (PFAS). The available data provide convincing evidence implicating POPs as a contributing factor driving impaired glucose homeostasis, β-cell dysfunction, and altered metabolic and oxidative stress pathways in islets. These findings support epidemiological data showing that POPs increase diabetes risk and emphasize the need to consider the endocrine pancreas in toxicity assessments. Our review also highlights significant gaps in the literature assessing islet-specific endpoints after both in vivo and in vitro POP exposure. In addition, most rodent studies do not consider the impact of biological sex or secondary metabolic stressors in mediating the effects of POPs on glucose homeostasis and β-cell function. We discuss key gaps and limitations that should be assessed in future studies.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Geronimo Matteo
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erin M MacFarlane
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer E Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Zhu Y, Jing L, Li X, Zhou G, Zhang Y, Sang Y, Gao L, Liu S, Shi Z, Sun Z, Ge W, Zhou X. Decabromodiphenyl ether-induced PRKACA hypermethylation contributed to glycolipid metabolism disorder via regulating PKA/AMPK pathway in rat and L-02 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103808. [PMID: 35007761 DOI: 10.1016/j.etap.2022.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BDE-209 is the most prevalent congener of polybrominated diphenyl ethers and has high bioaccumulation in humans and animals. BDE-209 has been reported to disrupt glycolipid metabolism, but the mechanisms are still unclear. In this study, we found that BDE-209 induced liver tissue injury and hepatotoxicity, increased the glucose and total cholesterol levels in the serum of rats, and increased glucose and triglyceride levels in L-02 cells. BDE-209 exposure changed the PKA, p-PKA, AMPK, p-AMPK, ACC, and FAS expression in rats' liver and L-02 cells. Moreover, BDE-209 induced PRKACA-1 hypermethylation in L-02 cells. AMPK activator (AICAR) inhibited the changes of p-AMPK, ACC, and FAS expression and elevation of glucose and triglyceride levels induced by BDE-209. DNA methylation inhibitor (5-Aza-CdR) reversed BDE-209 induced alters of PKA/AMPK/ACC/FAS signaling pathway. These results demonstrated that BDE-209 could disrupt the glycolipid metabolism by causing PRKACA-1 hypermethylation to regulate the PKA/AMPK signaling pathway in hepatocytes.
Collapse
Affiliation(s)
- Yupeng Zhu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069 Beijing, China; Haidian Maternal&Child Health Hospital, Health Care Department for Women, Beijing 100080, China
| | - Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069 Beijing, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069 Beijing, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069 Beijing, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069 Beijing, China
| | - Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069 Beijing, China
| | - Leqiang Gao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069 Beijing, China
| | - Sitong Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China
| | - Zhixiong Shi
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069 Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069 Beijing, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069 Beijing, China.
| |
Collapse
|
12
|
Zhu Y, Jing L, Li X, Zheng D, Zhou G, Zhang Y, Sang Y, Shi Z, Sun Z, Zhou X. Decabromodiphenyl ether disturbs hepatic glycolipid metabolism by regulating the PI3K/AKT/GLUT4 and mTOR/PPARγ/RXRα pathway in mice and L02 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142936. [PMID: 33138992 DOI: 10.1016/j.scitotenv.2020.142936] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Decabromodiphenyl ether (BDE-209) is a persistent environmental pollutant that poses great risks to human health and has been associated with glucose and lipid metabolism. However, the mechanisms by which BDE-209 disturbs glycolipid metabolism in the liver remain unclear. Therefore, this study sought to confirm the effects of BDE-209 on glycolipid metabolism in mice livers and L02 cells to elucidate potential mechanisms of action. In vivo BDE-209 exposure caused histological damage and lipid accumulation, elevated glucose, low-density lipoprotein, total cholesterol, and triglyceride levels, and decreased glycogen and high-density lipoprotein levels in mice livers. Moreover, in vitro BDE-209 exposure not only induced L02 cells cytotoxicity (i.e., reduced cell viability and increased LDH leakage and ROS generation) but also increased glucose and triglyceride concentrations in L02 cells. Furthermore, IGF-1, an activator of the PI3K-AKT pathway, markedly inhibited BDE-209-induced glucose concentration increase in L02 cells and antagonized the inhibitory effect of BDE-209 on the PI3K/AKT/GLUT4 pathway by counteracting the changes in the expression levels of p-IRS, AKT, PI3K, p-AKT, and GLUT4. Moreover, GW9662, a PPARγ inhibitor, blocked lipid accumulation and the upregulation of the mTOR/PPARγ/RXRα pathway in L02 cells induced by BDE-209 by relieving the increases in p-mTOR, PPARγ, and RXRα protein expression levels. In summary, this study revealed that BDE-209 disrupted glycolipid metabolism by inhibiting the PI3K/AKT/GLUT4 pathway and activating the mTOR/PPARγ/RXRα pathway.
Collapse
Affiliation(s)
- Yupeng Zhu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Haidian Maternal&Child Health Hospital, Health Care Department for Women, Beijing 100080, China
| | - Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Dan Zheng
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhixiong Shi
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
13
|
Kozlova EV, Chinthirla BD, Pérez PA, DiPatrizio NV, Argueta DA, Phillips AL, Stapleton HM, González GM, Krum JM, Carrillo V, Bishay AE, Basappa KR, Currás-Collazo MC. Maternal transfer of environmentally relevant polybrominated diphenyl ethers (PBDEs) produces a diabetic phenotype and disrupts glucoregulatory hormones and hepatic endocannabinoids in adult mouse female offspring. Sci Rep 2020; 10:18102. [PMID: 33093533 PMCID: PMC7582149 DOI: 10.1038/s41598-020-74853-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are brominated flame retardant chemicals and environmental contaminants with endocrine-disrupting properties that are associated with diabetes and metabolic syndrome in humans. However, their diabetogenic actions are not completely characterized or understood. In this study, we investigated the effects of DE-71, a commercial penta-mixture of PBDEs, on glucoregulatory parameters in a perinatal exposure model using female C57Bl/6 mice. Results from in vivo glucose and insulin tolerance tests and ex vivo analyses revealed fasting hyperglycemia, glucose intolerance, reduced sensitivity and delayed glucose clearance after insulin challenge, decreased thermogenic brown adipose tissue mass, and exaggerated hepatic endocannabinoid tone in F1 offspring exposed to 0.1 mg/kg DE-71 relative to control. DE-71 effects on F0 dams were more limited indicating that indirect exposure to developing offspring is more detrimental. Other ex vivo glycemic correlates occurred more generally in exposed F0 and F1, i.e., reduced plasma insulin and altered glucoregulatory endocrines, exaggerated sympathoadrenal activity and reduced hepatic glutamate dehydrogenase enzymatic activity. Hepatic PBDE congener analysis indicated maternal transfer of BDE-28 and -153 to F1 at a collective level of 200 ng/g lipid, in range with maximum values detected in serum of human females. Given the persistent diabetogenic phenotype, especially pronounced in female offspring after developmental exposure to environmentally relevant levels of DE-71, additional animal studies should be conducted that further characterize PBDE-induced diabetic pathophysiology and identify critical developmental time windows of susceptibility. Longitudinal human studies should also be conducted to determine the risk of long-lasting metabolic consequences after maternal transfer of PBDEs during early-life development.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Bhuvaneswari D Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Pedro A Pérez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | | | | | - Gwendolyn M González
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Julia M Krum
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Valeria Carrillo
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Karthik R Basappa
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Margarita C Currás-Collazo
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
14
|
Suvorov A, Naumov V, Shtratnikova V, Logacheva M, Shershebnev A, Wu H, Gerasimov E, Zheludkevich A, Pilsner JR, Sergeyev O. Rat liver epigenome programing by perinatal exposure to 2,2',4'4'-tetrabromodiphenyl ether. Epigenomics 2019; 12:235-249. [PMID: 31833787 DOI: 10.2217/epi-2019-0315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Perinatal exposures to polybrominated diphenyl ethers permanently reprogram liver metabolism and induce a nonalcoholic fatty liver disease-like phenotype and insulin resistance in rodents. Aim: To test if these changes are associated with altered liver epigenome. Materials & methods: Expression of small RNA and changes in DNA methylation in livers of adult rats were analyzed following perinatal exposure to 2,2',4,4'-tetrabromodiphenyl ether, the polybrominated diphenyl ether congener most prevalent in human tissues. Results: We identified 33 differentially methylated DNA regions and 15 differentially expressed miRNAs. These changes were enriched for terms related to lipid and carbohydrate metabolism, insulin signaling, Type-2 diabetes and nonalcoholic fatty liver disease. Conclusion: Changes in the liver epigenome are a likely candidate mechanism of long-term maintenance of an aberrant metabolic phenotype.
Collapse
Affiliation(s)
- Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts 686 North Pleasant Street Amherst, MA 01003, USA.,A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory, House 1, Building 40, 119992, Moscow, Russia
| | - Vladimir Naumov
- Kulakov National Medical Research Center of Obstetrics, Gynecology & Perinatology, Ministry of Health of the Russian Federation, Oparina 4, 117997, Moscow, Russia
| | - Victoria Shtratnikova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory, House 1, Building 40, 119992, Moscow, Russia.,Center for Data-Intensive Biomedicine & Biotechnology, Skolkovo Institute of Science & Technology, 143028, Moscow, Russia
| | - Maria Logacheva
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory, House 1, Building 40, 119992, Moscow, Russia.,Center for Data-Intensive Biomedicine & Biotechnology, Skolkovo Institute of Science & Technology, 143028, Moscow, Russia
| | - Alex Shershebnev
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts 686 North Pleasant Street Amherst, MA 01003, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts 686 North Pleasant Street Amherst, MA 01003, USA.,Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, New York, NY 10032, USA
| | - Evgeny Gerasimov
- E.I. Martsinovsky Institute of Medical Parasitology & Tropical Medicine, I.M. Sechenov First Moscow State Medical University, 20 Malaya Pirogovskaya, 119435, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | | | - Jonathan R Pilsner
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts 686 North Pleasant Street Amherst, MA 01003, USA
| | - Oleg Sergeyev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory, House 1, Building 40, 119992, Moscow, Russia.,Chapaevsk Medical Association, 3a Meditsinskaya St., Samara region, 446100, Chapaevsk, Russia
| |
Collapse
|
15
|
Sarkar D, Joshi D, Singh SK. Maternal BDE-209 exposure during lactation causes testicular and epididymal toxicity through increased oxidative stress in peripubertal mice offspring. Toxicol Lett 2019; 311:66-79. [DOI: 10.1016/j.toxlet.2019.04.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
|
16
|
Scoville DK, Li CY, Wang D, Dempsey JL, Raftery D, Mani S, Gu H, Cui JY. Polybrominated Diphenyl Ethers and Gut Microbiome Modulate Metabolic Syndrome-Related Aqueous Metabolites in Mice. Drug Metab Dispos 2019; 47:928-940. [PMID: 31123037 PMCID: PMC6657215 DOI: 10.1124/dmd.119.086538] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent environmental toxicants associated with increased risk for metabolic syndrome. Intermediary metabolism is influenced by the intestinal microbiome. To test the hypothesis that PBDEs reduce host-beneficial intermediary metabolites in an intestinal microbiome-dependent manner, 9-week old male conventional (CV) and germ-free (GF) C57BL/6 mice were orally gavaged once daily with vehicle, BDE-47, or BDE-99 (100 μmol/kg) for 4 days. Intestinal microbiome (16S rDNA sequencing), liver transcriptome (RNA-Seq), and intermediary metabolites in serum, liver, as well as small and large intestinal contents (SIC and LIC; LC-MS) were examined. Changes in intermediary metabolite abundances in serum, liver, and SIC, were observed under basal conditions (CV vs. GF mice) and by PBDE exposure. PBDEs altered the largest number of metabolites in the LIC; most were regulated by PBDEs in GF conditions. Importantly, intestinal microbiome was necessary for PBDE-mediated decreases in branched-chain and aromatic amino acid metabolites, including 3-indolepropionic acid, a tryptophan metabolite recently shown to be protective against inflammation and diabetes. Gene-metabolite networks revealed a positive association between the hepatic glycan synthesis gene α-1,6-mannosyltransferase (Alg12) mRNA and mannose, which are important for protein glycosylation. Glycome changes have been observed in patients with metabolic syndrome. In LIC of CV mice, 23 bacterial taxa were regulated by PBDEs. Correlations of certain taxa with distinct serum metabolites further highlight a modulatory role of the microbiome in mediating PBDE effects. In summary, PBDEs impact intermediary metabolism in an intestinal microbiome-dependent manner, suggesting that dysbiosis may contribute to PBDE-mediated toxicities that include metabolic syndrome.
Collapse
Affiliation(s)
- David K Scoville
- Department of Environmental and Occupational Health Sciences (D.K.S., C.Y.L., J.L.D., J.Y.C.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., D.R.), University of Washington, Seattle, Washington; Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); Albert Einstein College of Medicine, Bronx, New York (S.M.); and Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.)
| | - Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences (D.K.S., C.Y.L., J.L.D., J.Y.C.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., D.R.), University of Washington, Seattle, Washington; Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); Albert Einstein College of Medicine, Bronx, New York (S.M.); and Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.)
| | - Dongfang Wang
- Department of Environmental and Occupational Health Sciences (D.K.S., C.Y.L., J.L.D., J.Y.C.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., D.R.), University of Washington, Seattle, Washington; Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); Albert Einstein College of Medicine, Bronx, New York (S.M.); and Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.)
| | - Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences (D.K.S., C.Y.L., J.L.D., J.Y.C.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., D.R.), University of Washington, Seattle, Washington; Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); Albert Einstein College of Medicine, Bronx, New York (S.M.); and Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.)
| | - Daniel Raftery
- Department of Environmental and Occupational Health Sciences (D.K.S., C.Y.L., J.L.D., J.Y.C.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., D.R.), University of Washington, Seattle, Washington; Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); Albert Einstein College of Medicine, Bronx, New York (S.M.); and Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.)
| | - Sridhar Mani
- Department of Environmental and Occupational Health Sciences (D.K.S., C.Y.L., J.L.D., J.Y.C.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., D.R.), University of Washington, Seattle, Washington; Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); Albert Einstein College of Medicine, Bronx, New York (S.M.); and Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.)
| | - Haiwei Gu
- Department of Environmental and Occupational Health Sciences (D.K.S., C.Y.L., J.L.D., J.Y.C.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., D.R.), University of Washington, Seattle, Washington; Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); Albert Einstein College of Medicine, Bronx, New York (S.M.); and Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.)
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences (D.K.S., C.Y.L., J.L.D., J.Y.C.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., D.R.), University of Washington, Seattle, Washington; Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); Albert Einstein College of Medicine, Bronx, New York (S.M.); and Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.)
| |
Collapse
|
17
|
Zhu Y, Li X, Liu J, Zhou G, Yu Y, Jing L, Shi Z, Zhou X, Sun Z. The effects of decabromodiphenyl ether on glycolipid metabolism and related signaling pathways in mice. CHEMOSPHERE 2019; 222:849-855. [PMID: 30743236 DOI: 10.1016/j.chemosphere.2019.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Decabromodiphenyl ether (BDE-209), an addictive type flame retardant, is widely found in environments, and could affect the glycolipid metabolism. The present study was designed to investigate the potential mechanism of BDE-209 affecting glycolipid metabolism. Forty mice were randomly divided into four groups, and they were exposed to BDE-209 at dosages of 0, 7.5, 25 and 75 mg kg-1·d-1 for 28 d, respectively. The results showed that BDE-209 increased the serum levels of glucose, insulin, and triglyceride, also decreased the level of high-density lipoprotein, and damaged the structures of liver and adipose tissue in mice. BDE-209 significantly increased the protein expression of p-IRS, markedly decreased the expressions of PI3K, p-AKT, and GLUT4, significantly improved the lipid metabolism related factor expressions of p-mTOR, mTOR, PPARγ and RXRɑ, also inhibited the activity of antioxidant enzymes in the liver of mice. These results suggested that BDE-209 could affect glucose metabolism and inhibiting PI3K/AKT/GLUT4 signaling pathway resulting from improving the p-IRS expression, and interfered with lipid metabolism through activate mTOR/PPARγ/RXRα resulting from oxidative stress in mice.
Collapse
Affiliation(s)
- Yupeng Zhu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Yang Yu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China.
| | - Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Zhixiong Shi
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China.
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| |
Collapse
|
18
|
Li K, Xia J, Mehmood MA, Zhao XQ, Liu CG, Bai FW. Extracellular redox potential regulation improves yeast tolerance to furfural. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.11.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Zhang Y, Mao P, Li G, Hu J, Yu Y, An T. Delineation of 3D dose-time-toxicity in human pulmonary epithelial Beas-2B cells induced by decabromodiphenyl ether (BDE209). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:661-669. [PMID: 30228062 DOI: 10.1016/j.envpol.2018.09.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/24/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Due to frequent detection in environment as well as in the human body, the adverse effects of decabromodiphenyl ether (BDE209) have been extensively studied in the past few years. However, information regarding the inhalation toxicity of BDE209 to humans is currently limited. In this study, the cytotoxicity, cell damage, and inflammation markers including IL-6, IL-8, and TNF-α in the Beas-2B cell line induced by BDE209 were measured using a central composite design. Results showed that as BDE209 concentrations (5-65 μg mL-1) and exposure time (6-30 h) were increased, cell viability sharply decreased from 99.7% to 29.7% and LDH activity increased from 0.1% to 13.1%. Furthermore, expression of IL-6, IL-8 and TNF-α transcripts were enhanced from 4.7 to 29.1 fold, 3.4-68.9 fold, and 2.8-47.0 fold, respectively, and the concentration of IL-6 and IL-8 proteins increased from 5.4 to 16.7 pg mL-1 and 71.0-550.0 pg mL-1, respectively. Results indicate that BDE209 exposure can inhibit cell viability, increase LDH leakage, and upregulate the transcript (mRNA) and protein levels of inflammatory markers of IL-6 and IL-8 in Beas-2B cells. Moreover, these effects were both dose- and time-dependent, and dose and time had a synergistic effect - enhancing toxicity when in combination. Cell density affected both LDH activity and IL-8 release but had little effect on cell activity and IL-6 release in the Beas-2B cells. In contrast, TNF-α protein was not detected but its mRNA expression level was upregulated. This study will provide a reference for human health risk assessment, especially for the toxic damage that BDE209 exposure can elicit in the respiratory tract.
Collapse
Affiliation(s)
- Yanan Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Pu Mao
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510182, China
| | - Guiying Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
20
|
Decabromodiphenyl ether exacerbates hyperglycemia in diet-induced obese mice. Toxicology 2018; 412:12-18. [PMID: 30468867 DOI: 10.1016/j.tox.2018.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
Decabromodiphenyl ether (decaBDE) is a brominated flame retardant used in plastic and textile articles. It has become a ubiquitous environmental contaminant, however; the relationship between decaBDE and obesity remains to be elucidated. We aimed to clarify if oral decaBDE exposure can be a factor in obesity and its related metabolic dysfuctions. Male C57BL/6 J mice were fed a normal (ND, 9.0 kcal% fat) or high-fat (HFD, 62.2 kcal% fat) diet and treated with decaBDE (the equivalent of three doses of 0, 0.5 (L-DecaBDE), and 10 (H-DecaBDE) μg/kg body weight/day) ad libitum in drinking water from 5 to 20 weeks of age. In HFD-fed mice, decaBDE exposure markedly increased both fasting blood glucose levels compared with vehicle exposure, which was more prominent in H-DecaBDE-exposed mice. DecaBDE exposure significantly reduced mRNA levels of glucose transporter 4 and thyroid hormone receptor alpha in skeletal muscle and mechanistic target of rapamycin complex 2 in brown adipose tissue compared with vehicle exposure under HFD-feeding. The tendency for hyperglycemia and the remarkable activation of insulin signaling pathway-related genes were observed in ND + DecaBDE mice compared to the ND + Vehicle mice. These results demonstrate that decaBDE can contribute to the enhancement of diet-induced hyperglycemia through disruption of glucose homeostasis.
Collapse
|
21
|
Qiu LL, Wang C, Yao S, Li N, Hu Y, Yu Y, Xia R, Zhu J, Ji M, Zhang Z, Wang SL. Fenvalerate induces oxidative hepatic lesions through an overload of intracellular calcium triggered by the ERK/IKK/NF-κB pathway. FASEB J 2018; 33:2782-2795. [PMID: 30307764 DOI: 10.1096/fj.201801289r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fenvalerate (FEN), a mainstream pyrethroid pesticide, was initially recommended as a low-toxicity agent for controlling agricultural and domestic pests. Despite the widespread use of FEN worldwide, little data are available on FEN-induced hepatic lesions and molecular mechanisms. In the present study, we first performed an occupational cross-sectional study on FEN factory workers and found that the levels of serum alanine aminotransferase (ALT) and total antioxidant capacity increased, whereas malondialdehyde decreased in laborers in the working areas where the levels of airborne FEN were much higher compared with the office area. The results were then confirmed by animal experiments that abnormal hepatic histology, increased ALT level, and compromised hepatic oxidative capability were observed in rats exposed to a high concentration of FEN. Furthermore, the bioinformatics analysis of gene microarray in rat liver tissue showed that FEN significantly changed the expressions of genes related to the regulation of intracellular calcium ion homeostasis and the calcium signal pathway. Finally, the functional experiments in Buffalo rat liver (BRL) cells demonstrated that FEN first activated ERK MAPK, followed by IKK and NF-κB, which triggered the transcription of genes responsible for accelerating an overload of intracellular calcium ions, prompted reactive oxygen species generation in the mitochondria, and finally, induced hepatic cellular apoptosis. The calcium signaling pathway and in particular, an overload of intracellular calcium play a critical role in this pathophysiological process via the ERK/IKK/NF-κB pathway. Our study furthers the understanding of the mechanism of FEN-induced hepatic injuries and may have implications in the prevention and control of liver diseases induced by environmental pesticides.-Qiu, L.-L., Wang, C., Yao, S., Li, N., Hu, Y., Yu, Y., Xia, R., Zhu, J., Ji, M., Zhang, Z., Wang S.-L. Fenvalerate induces oxidative hepatic lesions through an overload of intracellular calcium triggered by the ERK/IKK/NF-κB pathway.
Collapse
Affiliation(s)
- Liang-Lin Qiu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,School of Public Health, Nantong University, Nantong, China
| | - Chao Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Shen Yao
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Li
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuhuan Hu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yongquan Yu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Rong Xia
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiansheng Zhu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Minghui Ji
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhan Zhang
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Shou-Lin Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Liu X, Zhang L, Li J, Meng G, Chi M, Li T, Zhao Y, Wu Y. A nested case-control study of the association between exposure to polybrominated diphenyl ethers and the risk of gestational diabetes mellitus. ENVIRONMENT INTERNATIONAL 2018; 119:232-238. [PMID: 29980046 DOI: 10.1016/j.envint.2018.06.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/31/2018] [Accepted: 06/22/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is rapidly increasing worldwide. Exposure to endocrine-disrupting chemicals such as polybrominated diphenyl ethers (PBDEs) is thought to be a contributor to GDM, independent of diet and physical activity. OBJECTIVE The prospective association between PBDEs body burden in early pregnancy and GDM risk was investigated. METHODS A nested case-control study of 439 pregnant women was conducted between 2013 and 2015 in Beijing, China. Seven predominant PBDE congeners were measured in first trimester maternal serum by gas chromatography-high resolution mass spectrometry. Pregnant women were screened for GDM at 24-28 weeks of gestation using the oral glucose tolerance test. GDM was defined based on the diagnostic criteria set by China Ministry of Health. Conditional logistic and linear regression were used to estimate the association between PBDEs exposure and GDM risk, and PBDEs exposure and glucose level, respectively. RESULTS A total of 77 (17.5%) women developed GDM in this study. Median concentrations of PBDEs were higher in women with GDM. Analyses parameterizing PBDE concentrations as continuous variables suggested significant associations between BDE-153, -154, -183 and GDM risk with an estimated odds ratio of 4.04 (95%CI: 1.92, 8.52), 1.88 (95%CI: 1.15, 3.09) and 1.91 (95%CI: 1.31, 2.08), respectively. In the quartile analyses, a significant increase in the odds ratio of GDM was associated with the highest levels of BDE-153 (OR = 3.42 95%CI: 1.49, 7.89) and BDE-183 (OR = 3.70, 95%CI: 1.58, 8.65), whereas, BDE-154 demonstrated an inverted U-shaped association with GDM. In addition, BDE-153 and -154 were significantly positively associated with fasting glucose, and both 1 h and 2 h glucose level (p < 0.05). CONCLUSIONS These results suggest that exposure to PBDEs disturbs maternal glucose homeostasis and increases the risk of GDM. These findings should be replicated in future studies with a larger population and wider range of exposure.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China; The Key Laboratory of Food Safety Risk Assessment, Ministry of Health and China National Center for Food Safety Risk Assessment, Beijing, China; School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Lei Zhang
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health and China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jingguang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China; The Key Laboratory of Food Safety Risk Assessment, Ministry of Health and China National Center for Food Safety Risk Assessment, Beijing, China; School of Food Science and Technology, Nanchang University, Nanchang, China.
| | - Guimin Meng
- Beijing Fengtai Hospital Obstetrics and Gynecology, Beijing, China
| | - Min Chi
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tiantian Li
- Department of Environmental Health Risk Assessment, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yunfeng Zhao
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health and China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yongning Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China; The Key Laboratory of Food Safety Risk Assessment, Ministry of Health and China National Center for Food Safety Risk Assessment, Beijing, China; School of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Xue M, Zhou L, Kojima N, Machimura T, Tokai A. Decabromodiphenyl Ether (DecaBDE) in Electrical and Electronic Equipment in Japan: Stock, Emission, and Substitution Evaluation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13224-13230. [PMID: 29052980 DOI: 10.1021/acs.est.7b03656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DecaBDE has been widely used as flame retardant in electrical and electronic equipment (EEE). It has recently been listed in Annex A of the Stockholm Convention. The time series flow, stock, and emission of DecaBDE in EEE in Japan were quantified. On this basis, a risk/risk trade-off analysis of substituting DecaBDE with triphenyl phosphate (TPhP) that is one possible phosphorus-based alternative was conducted. The stock of DecaBDE reached a maximum of ∼42 000 t in 1995. Even though the demand flow was negligible in 2030, the stock was modeled to be still ∼470 t. The outflow of DecaBDE, from the use phase to the disposal phase, peaked at ∼4500 t/yr. in 2001. The DecaBDE emission to atmosphere was mainly derived from the production phase before 1990. The use phase became the largest contributor to the total emission from 1995 to 2000. Whereas the disposal phase dominated the total emission from 2000 onward. In the substitution analysis, a trade-off between human and ecological health effect was revealed in case of replacing DecaBDE with TPhP. This study attempted to give an overall picture of DecaBDE application at national level providing insights into relevant environmental policy making.
Collapse
Affiliation(s)
- Mianqiang Xue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University , 2-1 Yamadaoka, Suita, Osaka 565 0871, Japan
| | - Liang Zhou
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University , 2-1 Yamadaoka, Suita, Osaka 565 0871, Japan
| | - Naoya Kojima
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University , 2-1 Yamadaoka, Suita, Osaka 565 0871, Japan
| | - Takashi Machimura
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University , 2-1 Yamadaoka, Suita, Osaka 565 0871, Japan
| | - Akihiro Tokai
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University , 2-1 Yamadaoka, Suita, Osaka 565 0871, Japan
| |
Collapse
|
24
|
Yan M, Dou T, Lv W, Wang X, Zhao L, Chang X, Zhou Z. Integrated analysis of paraquat-induced microRNAs-mRNAs changes in human neural progenitor cells. Toxicol In Vitro 2017; 44:196-205. [DOI: 10.1016/j.tiv.2017.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/30/2017] [Accepted: 06/10/2017] [Indexed: 10/19/2022]
|
25
|
Sarkar D, Singh SK. Maternal exposure to polybrominated diphenyl ether (BDE-209) during lactation affects germ cell survival with altered testicular glucose homeostasis and oxidative status through down-regulation of Cx43 and p27Kip1 in prepubertal mice offspring. Toxicology 2017; 386:103-119. [DOI: 10.1016/j.tox.2017.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/12/2017] [Accepted: 05/27/2017] [Indexed: 11/29/2022]
|
26
|
Zhang Z, Yu Y, Xu H, Wang C, Ji M, Gu J, Yang L, Zhu J, Dong H, Wang SL. High-fat diet aggravates 2,2′,4,4′-tetrabromodiphenyl ether-inhibited testosterone production via DAX-1 in Leydig cells in rats. Toxicol Appl Pharmacol 2017; 323:1-8. [DOI: 10.1016/j.taap.2017.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 01/19/2023]
|
27
|
Huang J, Zhao L, Yang P, Chen Z, Tang N, Z. Ruan X, Chen Y. Genome-Wide Transcriptome Analysis of CD36 Overexpression in HepG2.2.15 Cells to Explore Its Regulatory Role in Metabolism and the Hepatitis B Virus Life Cycle. PLoS One 2016; 11:e0164787. [PMID: 27749922 PMCID: PMC5066966 DOI: 10.1371/journal.pone.0164787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/02/2016] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatocyte-specific DNA virus whose gene expression and replication are closely associated with hepatic metabolic processes. Thus, a potential anti-viral strategy is to target the host metabolic factors necessary for HBV gene expression and replication. Recent studies revealed that fatty acid translocase CD36 is involved in the replication, assembly, storage, and secretion of certain viruses, such as hepatitis C virus (HCV) and human immunodeficiency virus (HIV). However, the relationship between CD36 and the HBV life cycle remains unclear. Here, we showed, for the first time, that increased CD36 expression enhances HBV replication in HepG2.2.15 cells. To understand the underlying molecular basis, we performed genome-wide sequencing of the mRNA from HepG2.2.15-CD36 overexpression (CD36OE) cells and HepG2.2.15-vector cells using RNA Sequencing (RNA-seq) technology to analyze the differential transcriptomic profile. Our results identified 141 differentially expressed genes (DEGs) related to CD36 overexpression, including 79 upregulated genes and 62 downregulated genes. Gene ontology and KEGG pathway analysis revealed that some of the DEGs were involved in various metabolic processes and the HBV life cycle. The reliability of the RNA-Seq data was confirmed by qPCR analysis. Our findings provide clues to build a link between CD36, host metabolism and the HBV life cycle and identified areas that require further investigation.
Collapse
Affiliation(s)
- Jian Huang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Zhao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ping Yang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhen Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiong Z. Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, United Kingdom
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
28
|
Xiong K, Liao H, Long L, Ding Y, Huang J, Yan J. Necroptosis contributes to methamphetamine-induced cytotoxicity in rat cortical neurons. Toxicol In Vitro 2016; 35:163-168. [PMID: 27288563 DOI: 10.1016/j.tiv.2016.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/06/2023]
Abstract
UNLABELLED Necroptosis, a programmed necrosis, is involved in various types of neurodegenerative diseases. In this study, we investigated whether necroptosis contributed to neuronal damage in a methamphetamine injury model. METHODS Primary cultures of embryonic cortical neurons from Sprague-Dawley rats were subjected to different doses of methamphetamine with/without pre-treatment with a specific necroptosis inhibitor, Necrostatin-1. Necrosis was assessed by determining lactate dehydrogenase release and by Annexin V/propidium iodide double staining, while the neuronal ultra-structure was examined by electron microscopy. Tumor necrosis factor-α protein levels were determined by enzyme-linked immunosorbent assay. RESULTS At early stages (12h) of post-treatment with methamphetamine, significant necrosis occurred and the viability of neurons decreased in a dose- and time-dependent manner in this model of acute neuronal injury. Pretreatment with Necrostatin-1 led to significant neuronal preservation compared with the methamphetamine-treated groups. Furthermore, tumor necrosis factor-α expression increased in a dose-dependent manner following methamphetamine exposure. CONCLUSION Methamphetamine induced necrosis in rat cortical neurons in vitro, both time and dose dependently, and necroptosis may be an important newly identified mode of cortical neuronal death caused by single high-dose methamphetamine administration.
Collapse
Affiliation(s)
- Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Huidan Liao
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Lingling Long
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Yanjun Ding
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
29
|
Zhang B, Li B, Chen D, Zong J, Sun F, Qu H, Liang C. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation. PLoS One 2016; 11:e0161502. [PMID: 27537181 PMCID: PMC4990298 DOI: 10.1371/journal.pone.0161502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/05/2016] [Indexed: 11/18/2022] Open
Abstract
In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field.
Collapse
Affiliation(s)
- Biao Zhang
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Baizhi Li
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Dai Chen
- NovelBio Bio-Pharm Technology Co., Ltd, Shanghai 200000, P.R. China
| | - Jie Zong
- NovelBio Bio-Pharm Technology Co., Ltd, Shanghai 200000, P.R. China
| | - Fei Sun
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Huixin Qu
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Chongyang Liang
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
- * E-mail:
| |
Collapse
|
30
|
Zhang Z, Li S, Liu L, Wang L, Xiao X, Sun Z, Wang X, Wang C, Wang M, Li L, Xu Q, Gao W, Wang SL. Environmental exposure to BDE47 is associated with increased diabetes prevalence: Evidence from community-based case-control studies and an animal experiment. Sci Rep 2016; 6:27854. [PMID: 27291303 PMCID: PMC4904204 DOI: 10.1038/srep27854] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
Brominated flame retardants exposure has been associated with increasing trends of diabetes and metabolic disease. Thus, the purpose of this study was to provide evidence of polybrominated diphenyl ethers (PBDEs) exposure in relation to diabetes prevalence and to reveal the potential underlying mechanism in epidemiological and animal studies. All the participants received a questionnaire, health examination, and the detection of 7 PBDE congeners in serum in two independent community-based studies from 2011 to 2012 in China. Male rats were exposed to 2,2’4,4’-tetrabromodiphenyl ether (BDE47) for 8 weeks to explore its effects on glucose homeostasis and potential mechanisms using high-throughput genomic analysis. Among the 7 congeners, BDE47 showed significant high detection rate and concentration in cases in Study I and Study II. Every tertile of BDE47 exposure significantly increased the risk of diabetes prevalence in Study I (Ptrend = 0.001) and Study II (Ptrend < 0.001). Additionally, BDE47 treatments induced hyperglycemia in rats. Furthermore, gene microarray analysis showed that diabetes pathway and three gene ontology terms involved in glucose transport were enriched. The results indicated that environmental exposure to BDE47 was associated with increased diabetes prevalence. However, further prospective and mechanistic studies are needed to the causation of diabetes in relation to BDE47.
Collapse
Affiliation(s)
- Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China.,State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Shushu Li
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China.,State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Lu Liu
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China.,State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Li Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China
| | - Xue Xiao
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China.,State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Zhenzhen Sun
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China.,State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Xichen Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China.,State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Chao Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China.,State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| | - Meilin Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China
| | - Lei Li
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China
| | - Qiujin Xu
- Lake Research Center, Chinese Research Academy of Environmental Sciences, Beijing Anwai Beiyuan, Beijing 100012, P. R. China
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 Gilbert Drive, Lubbock, TX 79416, U.S.A
| | - Shou-Lin Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P. R. China.,State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China
| |
Collapse
|
31
|
Can exposure to environmental chemicals increase the risk of diabetes type 1 development? BIOMED RESEARCH INTERNATIONAL 2015; 2015:208947. [PMID: 25883945 PMCID: PMC4391693 DOI: 10.1155/2015/208947] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/14/2014] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged.
Collapse
|
32
|
Brominated Flame Retardants and Their Replacements in Food Packaging and Household Products: Uses, Human Exposure, and Health Effects. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2014. [DOI: 10.1007/978-1-4471-6500-2_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Blanco J, Mulero M, Domingo JL, Sanchez DJ. Perinatal exposure to BDE-99 causes decreased protein levels of cyclin D1 via GSK3β activation and increased ROS production in rat pup livers. Toxicol Sci 2013; 137:491-8. [PMID: 24218147 DOI: 10.1093/toxsci/kft257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We here examined the potential liver toxicity in rat pups from dams exposed during the gestational and lactation periods to 2,2',4,4',5-pentabromodiphenyl ether (BDE-99). Dams were exposed to 0, 1, and 2mg/kg/day of BDE-99 from gestation day 6 to postnatal day 21. When the pups were weaning, the liver from 1 pup of each litter was excised to evaluate oxidative stress markers and the messenger RNA (mRNA) expression of multiple cytochrome P450 (CYP) isoforms. To determine whether thyroid hormone (TH) was disrupted, the protein and mRNA expressions of several TH receptor (TR) isoforms, as well as the protein levels of cyclin D1 and the phosphorylated protein kinases Akt and glycogen synthase kinase 3 beta (GSK3β), were evaluated. Perinatal exposure to BDE-99 produced decreased levels of cyclin D1 in rat pup livers. A decrease in the active form of Akt and an increase in the active form of GSK3β were observed. The decreased Akt pathway may be due to a potential disruption of the nongenomic actions of TH by BDE-99 and its metabolites. This possible TH disruption was noted as a decrease in TR isoforms expression. By contrast, we observed an upregulation of CYP2B1 gene expression, which is correlated with an increase in reactive oxygen species production. This outcome indicates activation of the nuclear constitutive androstane receptor, which could induce the expression of other enzymes capable of metabolizing TH. The present findings support the hypothesis that perinatal exposure to PBDEs, at levels found in humans, may have serious implications for metabolic processes in rat pup livers.
Collapse
Affiliation(s)
- Jordi Blanco
- * Laboratory of Toxicology and Environmental Health and
| | | | | | | |
Collapse
|