1
|
Carter BM, Day GJ, Zhang WH, Sessions RB, Jackson CJ, Perriman AW. Partitioning of an Enzyme-Polymer Surfactant Nanocomplex into Lipid-Rich Cellular Compartments Drives In Situ Hydrolysis of Organophosphates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401982. [PMID: 38992997 DOI: 10.1002/smll.202401982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Most organophosphates (OPs) are hydrophobic, and after exposure, can sequester into lipophilic regions within the body, such as adipose tissue, resulting in long term chronic effects. Consequently, there is an urgent need for therapeutic agents that can decontaminate OPs in these hydrophobic regions. Accordingly, an enzyme-polymer surfactant nanocomplex is designed and tested comprising chemically supercharged phosphotriesterase (Agrobacterium radiobacter; arPTE) electrostatically conjugated to amphiphilic polymer surfactant chains ([cat.arPTE][S-]). Experimentally-derived structural data are combined with molecular dynamics (MD) simulations to provide atomic level detail on conformational ensembles of the nanocomplex using dielectric constants relevant to aqueous and lipidic microenvironments. These show the formation of a compact admicelle pseudophase surfactant corona under aqueous conditions, which reconfigures to yield an extended conformation at a low dielectric constant, providing insight into the mechanism underpinning cell membrane binding. Significantly, it demonstrated that [cat.arPTE][S-] spontaneously binds to human mesenchymal stem cell membranes (hMSCs), resulting in on-cell OP hydrolysis. Moreover, the nanoconstruct can endocytose and partition into the intracellular fatty vacuoles of adipocytes and hydrolyze sequestered OP.
Collapse
Affiliation(s)
- Benjamin M Carter
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Graham J Day
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - William H Zhang
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
2
|
Dym O, Aggarwal N, Ashani Y, Leader H, Albeck S, Unger T, Hamer-Rogotner S, Silman I, Tawfik DS, Sussman JL. The impact of molecular variants, crystallization conditions and the space group on ligand-protein complexes: a case study on bacterial phosphotriesterase. Acta Crystallogr D Struct Biol 2023; 79:992-1009. [PMID: 37860961 PMCID: PMC10619419 DOI: 10.1107/s2059798323007672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/03/2023] [Indexed: 10/21/2023] Open
Abstract
A bacterial phosphotriesterase was employed as an experimental paradigm to examine the effects of multiple factors, such as the molecular constructs, the ligands used during protein expression and purification, the crystallization conditions and the space group, on the visualization of molecular complexes of ligands with a target enzyme. In this case, the ligands used were organophosphates that are fragments of the nerve agents and insecticides on which the enzyme acts as a bioscavenger. 12 crystal structures of various phosphotriesterase constructs obtained by directed evolution were analyzed, with resolutions of up to 1.38 Å. Both apo forms and holo forms, complexed with the organophosphate ligands, were studied. Crystals obtained from three different crystallization conditions, crystallized in four space groups, with and without N-terminal tags, were utilized to investigate the impact of these factors on visualizing the organophosphate complexes of the enzyme. The study revealed that the tags used for protein expression can lodge in the active site and hinder ligand binding. Furthermore, the space group in which the protein crystallizes can significantly impact the visualization of bound ligands. It was also observed that the crystallization precipitants can compete with, and even preclude, ligand binding, leading to false positives or to the incorrect identification of lead drug candidates. One of the co-crystallization conditions enabled the definition of the spaces that accommodate the substituents attached to the P atom of several products of organophosphate substrates after detachment of the leaving group. The crystal structures of the complexes of phosphotriesterase with the organophosphate products reveal similar short interaction distances of the two partially charged O atoms of the P-O bonds with the exposed β-Zn2+ ion and the buried α-Zn2+ ion. This suggests that both Zn2+ ions have a role in stabilizing the transition state for substrate hydrolysis. Overall, this study provides valuable insights into the challenges and considerations involved in studying the crystal structures of ligand-protein complexes, highlighting the importance of careful experimental design and rigorous data analysis in ensuring the accuracy and reliability of the resulting phosphotriesterase-organophosphate structures.
Collapse
Affiliation(s)
- Orly Dym
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nidhi Aggarwal
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yacov Ashani
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Haim Leader
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Albeck
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shelly Hamer-Rogotner
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Israel Silman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Joel L. Sussman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Yu J, Fu Y, Cao Z. QM/MM and MM MD Simulations on Enzymatic Degradation of the Nerve Agent VR by Phosphotriesterase. J Phys Chem B 2023; 127:7462-7471. [PMID: 37584503 DOI: 10.1021/acs.jpcb.3c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
V-type nerve agents are hardly degraded by phosphotriesterase (PTE). Interestingly, the PTE variant of BHR-73MNW can effectively improve the hydrolytic efficiency of VR, especially for its Sp-enantiomer. Here, the whole enzymatic degradation of both Sp and Rp enantiomers of VR by the wild-type PTE and its variant BHR-73MNW was investigated by quantum mechanics/molecular mechanics (QM/MM) calculations and MM molecular dynamics simulations. Present results indicate that the degradation of VR can be initiated by the nucleophilic attack of the bridging OH- and the zinc-bound water molecule. The QM/MM-predicted energy barriers for the hydrolytic process of Sp-VR are 19.8 kcal mol-1 by the variant with water as a nucleophile and 22.0 kcal mol-1 by the wild-type PTE with OH- as a nucleophile, and corresponding degraded products are bound to the dinuclear metal site in monodentate and bidentate coordination modes, respectively. The variant effectively increases the volume of the large pocket, allowing more water molecules to enter the active pocket and resulting in the improvement of the degradation efficiency of Sp-VR. The hydrolysis of Rp-VR is triggered only by the hydroxide with an energy span of 20.6 kcal mol-1 for the wild-type PTE and 20.7 kcal mol-1 for the variant BHR-73-MNW PTE. Such mechanistic insights into the stereoselective degradation of VR by PTE and the role of water may inspire further studies to improve the catalytic efficiency of PTE toward the detoxification of nerve agents.
Collapse
Affiliation(s)
- Jun Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Chen J, Guo Z, Xin Y, Gu Z, Zhang L, Guo X. Effective remediation and decontamination of organophosphorus compounds using enzymes: From rational design to potential applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161510. [PMID: 36632903 DOI: 10.1016/j.scitotenv.2023.161510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Organophosphorus compounds (OPs) have been widely used in agriculture for decades because of their high insecticidal efficiency, which maintains and increases crop yields worldwide. More importantly, OPs, as typical chemical warfare agents, are a serious concern and significant danger for military and civilian personnel. The widespread use of OPs, superfluous and unreasonable use, has caused great harm to the environment and food chain. Developing efficient and environmentally friendly solutions for the decontamination of OPs is a long-term challenge. Microbial enzymes show potential application as natural and green biocatalysts. Thus, utilizing OP-degrading enzymes for environmental decontamination presents significant advantages, as these enzymes can rapidly hydrolyze OPs; are environmentally friendly, nonflammable, and noncorrosive; and can be discarded safely and easily. Here, the properties, structure and catalytic mechanism of various typical OP-degrading enzymes are reviewed. The methods and effects utilized to improve the expression level, catalytic performance and stability of OP-degrading enzymes were systematically summarized. In addition, the immobilization of OP-degrading enzymes was explicated emphatically, and the latest progress of cascade reactions based on immobilized enzymes was discussed. Finally, the latest applications of OP-degrading enzymes were summarized, including biosensors, nanozyme mimics and medical detoxification. This review provides guidance for the future development of OP-degrading enzymes and promotes their application in the field of environmental bioremediation and medicine.
Collapse
Affiliation(s)
- Jianxiong Chen
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zitao Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Xin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Liang Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
5
|
Job L, Köhler A, Eichinger A, Testanera M, Escher B, Worek F, Skerra A. Structural and Functional Analysis of a Highly Active Designed Phosphotriesterase for the Detoxification of Organophosphate Nerve Agents Reveals an Unpredicted Conformation of the Active Site Loop. Biochemistry 2023; 62:942-955. [PMID: 36752589 DOI: 10.1021/acs.biochem.2c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Neurotoxic organophosphorus compounds (OPs) pose a severe threat if misused in military conflicts or by terrorists. Administration of a hydrolytic enzyme that can decompose the circulating nerve agent into non-toxic metabolites in vivo offers a potential treatment. A promising candidate is the homo-dimeric phosphotriesterase originating from the bacterium Brevundimonas diminuta (BdPTE), which has been subject to several rational and combinatorial protein design studies. A series of engineered versions with much improved catalytic efficiencies toward medically relevant nerve agents was described, carrying up to 22 mutations per enzyme subunit. To provide a basis for further rational design, we have determined the crystal structure of the highly active variant 10-2-C3(C59V/C227V)─stabilized against oxidation by substitution of two unpaired Cys residues─in complex with a substrate analogue at 1.5 Å resolution. Unexpectedly, the long loop segment (residues 253-276) that covers the active site shows a totally new conformation, with drastic structural deviations up to 19 Å, which was neither predicted in any of the preceding protein design studies nor seen in previous crystallographic analyses of less far evolved enzyme versions. Inspired by this structural insight, additional amino acid exchanges were introduced and their effects on protein stability as well as on the catalytic efficiency toward several neurotoxic OPs were investigated. Somewhat surprisingly, our results suggest that the presently available engineered version of BdPTE, in spite of its design on the basis of partly false structural assumptions, constitutes a fairly optimized enzyme for the detoxification of relevant OP nerve agents.
Collapse
Affiliation(s)
- Laura Job
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Anja Köhler
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany.,Bundeswehr Institut für Pharmakologie und Toxikologie, Neuherbergstr. 11, 80937 München, Germany
| | - Andreas Eichinger
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Mauricio Testanera
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Benjamin Escher
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Franz Worek
- Bundeswehr Institut für Pharmakologie und Toxikologie, Neuherbergstr. 11, 80937 München, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| |
Collapse
|
6
|
Job L, Köhler A, Testanera M, Escher B, Worek F, Skerra A. Engineering of a phosphotriesterase with improved stability and enhanced activity for detoxification of the pesticide metabolite malaoxon. Protein Eng Des Sel 2023; 36:gzad020. [PMID: 37941439 DOI: 10.1093/protein/gzad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
Organophosphorus (OP) pesticides are still widely applied but pose a severe toxicological threat if misused. For in vivo detoxification, the application of hydrolytic enzymes potentially offers a promising treatment. A well-studied example is the phosphotriesterase of Brevundimonas diminuta (BdPTE). Whereas wild-type BdPTE can hydrolyse pesticides like paraoxon, chlorpyrifos-oxon and mevinphos with high catalytic efficiencies, kcat/KM >2 × 107 M-1 min-1, degradation of malaoxon is unsatisfactory (kcat/KM ≈ 1 × 104 M-1 min-1). Here, we report the rational engineering of BdPTE mutants with improved properties and their efficient production in Escherichia coli. As result, the mutant BdPTE(VRNVVLARY) exhibits 37-fold faster malaoxon hydrolysis (kcat/KM = 4.6 × 105 M-1 min-1), together with enhanced expression yield, improved thermal stability and reduced susceptibility to oxidation. Therefore, this BdPTE mutant constitutes a powerful candidate to develop a biocatalytic antidote for the detoxification of this common pesticide metabolite as well as related OP compounds.
Collapse
Affiliation(s)
- Laura Job
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Anja Köhler
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstr, 11, 80937 München, Germany
| | - Mauricio Testanera
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Benjamin Escher
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Franz Worek
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstr, 11, 80937 München, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| |
Collapse
|
7
|
Stigler L, Köhler A, Koller M, Job L, Escher B, Potschka H, Thiermann H, Skerra A, Worek F, Wille T. Post-VX exposure treatment of rats with engineered phosphotriesterases. Arch Toxicol 2021; 96:571-583. [PMID: 34962578 PMCID: PMC8837561 DOI: 10.1007/s00204-021-03199-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/09/2021] [Indexed: 12/05/2022]
Abstract
The biologically stable and highly toxic organophosphorus nerve agent (OP) VX poses a major health threat. Standard medical therapy, consisting of reactivators and competitive muscarinic receptor antagonists, is insufficient. Recently, two engineered mutants of the Brevundimonas diminuta phosphotriesterase (PTE) with enhanced catalytic efficiency (kcat/KM = 21 to 38 × 106 M−1 min−1) towards VX and a preferential hydrolysis of the more toxic P(−) enantiomer were described: PTE-C23(R152E)-PAS(100)-10-2-C3(I106A/C59V/C227V/E71K)-PAS(200) (PTE-2), a single-chain bispecific enzyme with a PAS linker and tag having enlarged substrate spectrum, and 10-2-C3(C59V/C227V)-PAS(200) (PTE-3), a stabilized homodimeric enzyme with a double PASylation tag (PAS-tag) to reduce plasma clearance. To assess in vivo efficacy, these engineered enzymes were tested in an anesthetized rat model post-VX exposure (~ 2LD50) in comparison with the recombinant wild-type PTE (PTE-1), dosed at 1.0 mg kg−1 i.v.: PTE-2 dosed at 1.3 mg kg−1 i.v. (PTE-2.1) and 2.6 mg kg−1 i.v. (PTE-2.2) and PTE-3 at 1.4 mg kg−1 i.v. Injection of the mutants PTE-2.2 and PTE-3, 5 min after s.c. VX exposure, ensured survival and prevented severe signs of a cholinergic crisis. Inhibition of erythrocyte acetylcholinesterase (AChE) could not be prevented. However, medulla oblongata and diaphragm AChE activity was partially preserved. All animals treated with the wild-type enzyme, PTE-1, showed severe cholinergic signs and died during the observation period of 180 min. PTE-2.1 resulted in the survival of all animals, yet accompanied by severe signs of OP poisoning. This study demonstrates for the first time efficient detoxification in vivo achieved with low doses of heterodimeric PTE-2 as well as PTE-3 and indicates the suitability of these engineered enzymes for the development of highly effective catalytic scavengers directed against VX.
Collapse
Affiliation(s)
- Lisa Stigler
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Anja Köhler
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.,Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Marianne Koller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Laura Job
- Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Benjamin Escher
- Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University Munich, Königinstraße 16, 80539, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Arne Skerra
- Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.
| |
Collapse
|
8
|
Overview of a bioremediation tool: organophosphorus hydrolase and its significant application in the food, environmental, and therapy fields. Appl Microbiol Biotechnol 2021; 105:8241-8253. [PMID: 34665276 DOI: 10.1007/s00253-021-11633-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022]
Abstract
In the past decades, the organophosphorus compounds had been widely used in the environment and food industries as pesticides. Owing to the life-threatening and long-lasting problems of organophosphorus insecticide (OPs), an effective detection and removal of OPs have garnered growing attention both in the scientific and practical fields in recent years. Bacterial organophosphorus hydrolases (OPHs) have been extensively studied due to their high specific activity against OPs. OPH could efficiently hydrolyze a broad range of substrates both including the OP pesticides and some nerve agents, suggesting a great potential for the remediation of OPs. In this review, the microbial identification, molecular modification, and practical application of OPHs were comprehensively discussed.Key points• Microbial OPH is a significant bioremediation tool against OPs.• Identification and molecular modification of OPH was discussed in detail.• The applications of OPH in food, environmental, and therapy fields are presented.
Collapse
|
9
|
Bigley AN, Harvey SP, Narindoshvili T, Raushel FM. Substrate Analogues for the Enzyme-Catalyzed Detoxification of the Organophosphate Nerve Agents-Sarin, Soman, and Cyclosarin. Biochemistry 2021; 60:2875-2887. [PMID: 34494832 DOI: 10.1021/acs.biochem.1c00361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The G-type nerve agents, sarin (GB), soman (GD), and cyclosarin (GF), are among the most toxic compounds known. Much progress has been made in evolving the enzyme phosphotriesterase (PTE) from Pseudomonas diminuta for the decontamination of the G-agents; however, the extreme toxicity of the G-agents makes the use of substrate analogues necessary. Typical analogues utilize a chromogenic leaving group to facilitate high-throughput screening, and substitution of an O-methyl for the P-methyl group found in the G-agents, in an effort to reduce toxicity. Till date, there has been no systematic evaluation of the effects of these substitutions on catalytic activity, and the presumed reduction in toxicity has not been tested. A series of 21 G-agent analogues, including all combinations of O-methyl, p-nitrophenyl, and thiophosphate substitutions, have been synthesized and evaluated for their ability to unveil the stereoselectivity and catalytic activity of PTE variants against the authentic G-type nerve agents. The potential toxicity of these analogues was evaluated by measuring the rate of inactivation of acetylcholinesterase (AChE). All of the substitutions reduced inactivation of AChE by more than 100-fold, with the most effective being the thiophosphate analogues, which reduced the rate of inactivation by about 4-5 orders of magnitude. The analogues were found to reliably predict changes in catalytic activity and stereoselectivity of the PTE variants and led to the identification of the BHR-30 variant, which has no apparent stereoselectivity against GD and a kcat/Km of 1.4 × 106, making it the most efficient enzyme for GD decontamination reported till date.
Collapse
Affiliation(s)
- Andrew N Bigley
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Steven P Harvey
- US Army DEVCOM-CBC, FCDD-CBR-CC E3400, 5183 Blackhawk Rd. Aberdeen Proving Ground, Aberdeen, Maryland 21010, United States
| | - Tamari Narindoshvili
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Frank M Raushel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.,Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 7784, United States
| |
Collapse
|
10
|
Finnegan TJ, Gunawardana VWL, Badjić JD. Molecular Recognition of Nerve Agents and Their Organophosphorus Surrogates: Toward Supramolecular Scavengers and Catalysts. Chemistry 2021; 27:13280-13305. [PMID: 34185362 PMCID: PMC8453132 DOI: 10.1002/chem.202101532] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/19/2022]
Abstract
Nerve agents are tetrahedral organophosphorus compounds (OPs) that were developed in the last century to irreversibly inhibit acetylcholinesterase (AChE) and therefore impede neurological signaling in living organisms. Exposure to OPs leads to a rapid development of symptoms from excessive salivation, nasal congestion and chest pain to convulsion and asphyxiation which if left untreated may lead to death. These potent toxins are prepared on a large scale from inexpensive staring materials, making it feasible for terrorist groups or states to use them against military and civilians. The existing antidotes provide limited protection and are difficult to apply to a large number of affected individuals. While new prophylactics are currently being developed, there is still need for therapeutics capable of both preventing and reversing the effects of OP poisoning. In this review, we describe how the science of molecular recognition can expand the pallet of tools for rapid and safe sequestration of nerve agents.
Collapse
Affiliation(s)
- Tyler J Finnegan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| | | | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| |
Collapse
|
11
|
Köhler A, Escher B, Job L, Koller M, Thiermann H, Skerra A, Worek F. Catalytic activity and stereoselectivity of engineered phosphotriesterases towards structurally different nerve agents in vitro. Arch Toxicol 2021; 95:2815-2823. [PMID: 34160649 PMCID: PMC8298220 DOI: 10.1007/s00204-021-03094-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Highly toxic organophosphorus nerve agents, especially the extremely stable and persistent V-type agents such as VX, still pose a threat to the human population and require effective medical countermeasures. Engineered mutants of the Brevundimonas diminuta phosphotriesterase (BdPTE) exhibit enhanced catalytic activities and have demonstrated detoxification in animal models, however, substrate specificity and fast plasma clearance limit their medical applicability. To allow better assessment of their substrate profiles, we have thoroughly investigated the catalytic efficacies of five BdPTE mutants with 17 different nerve agents using an AChE inhibition assay. In addition, we studied one BdPTE version that was fused with structurally disordered PAS polypeptides to enable delayed plasma clearance and one bispecific BdPTE with broadened substrate spectrum composed of two functionally distinct subunits connected by a PAS linker. Measured kcat/KM values were as high as 6.5 and 1.5 × 108 M-1 min-1 with G- and V-agents, respectively. Furthermore, the stereoselective degradation of VX enantiomers by the PASylated BdPTE-4 and the bispecific BdPTE-7 were investigated by chiral LC-MS/MS, resulting in a several fold faster hydrolysis of the more toxic P(-) VX stereoisomer compared to P(+) VX. In conclusion, the newly developed enzymes BdPTE-4 and BdPTE-7 have shown high catalytic efficacy towards structurally different nerve agents and stereoselectivity towards the toxic P(-) VX enantiomer in vitro and offer promise for use as bioscavengers in vivo.
Collapse
Affiliation(s)
- Anja Köhler
- Institut für Pharmakologie und Toxikologie der Bundeswehr, 80937, Munich, Germany
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising, Germany
| | - Benjamin Escher
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising, Germany
| | - Laura Job
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising, Germany
| | - Marianne Koller
- Institut für Pharmakologie und Toxikologie der Bundeswehr, 80937, Munich, Germany
| | - Horst Thiermann
- Institut für Pharmakologie und Toxikologie der Bundeswehr, 80937, Munich, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising, Germany.
| | - Franz Worek
- Institut für Pharmakologie und Toxikologie der Bundeswehr, 80937, Munich, Germany.
| |
Collapse
|
12
|
Xu W, Zhao S, Zhang W, Wu H, Guang C, Mu W. Recent advances and future prospective of organophosphorus-degrading enzymes: identification, modification, and application. Crit Rev Biotechnol 2021; 41:1096-1113. [PMID: 33906533 DOI: 10.1080/07388551.2021.1898331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The organophosphorus-based OPs) nerve agents and pesticides have been applied in the agriculture industry for a long time. However, they were found to have a persistent effect on the environment and threaten human health. Traditional methods, including incineration and landfilling, could not thoroughly remove these organophosphorus compounds (OPs). Meanwhile, chemical hydrolysis for decontamination was also inhibited due to the presence of corrosive materials and high costs. Biological remediation for OPs employing microorganisms and organophosphorus-degrading enzymes is promising due to a mild and controllable procedure, environmental-friendly reactions, and high efficacy. A wide variety of enzymes have shown latent ability in degrading OPs hazards like organophosphorus hydrolase (OPH), organophosphorus acid anhydrolase (OPAA), the diisopropylfluorophosphatase (DFPase), and mammalian paraoxonase 1 (PON 1). To this end, increasing efforts have been made on these intriguing enzymes to increase their expression level, enhance the catalytic activity, modify the optimal substrate, and expand the practical application. In this review, the enzyme resource, crystal structure, molecular modification, and industry application were compared and discussed in detail. Moreover, the proposed ideas and positive results could be useful for the other relevant OPs-degrading enzymes.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sumao Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Wang L, Sun Y. Engineering organophosphate hydrolase for enhanced biocatalytic performance: A review. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Yang J, Xiao Y, Liu Y, Li R, Long L. Structure-based redesign of the bacterial prolidase active-site pocket for efficient enhancement of methyl-parathion hydrolysis. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00490e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutagenesis at four residues surrounding the active-site pocket of an old bacterial prolidase scaffold led to a 10 000-fold increase in methyl-parathion hydrolysis and broadening substrate specificity against organophosphorus compounds.
Collapse
Affiliation(s)
- Jian Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| | - Yunzhu Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| | - Yu Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| | - Ru Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| |
Collapse
|
15
|
Hrvat NM, Kovarik Z. Counteracting poisoning with chemical warfare nerve agents. Arh Hig Rada Toksikol 2020; 71:266-284. [PMID: 33410774 PMCID: PMC7968514 DOI: 10.2478/aiht-2020-71-3459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphylation of the pivotal enzyme acetylcholinesterase (AChE) by nerve agents (NAs) leads to irreversible inhibition of the enzyme and accumulation of neurotransmitter acetylcholine, which induces cholinergic crisis, that is, overstimulation of muscarinic and nicotinic membrane receptors in the central and peripheral nervous system. In severe cases, subsequent desensitisation of the receptors results in hypoxia, vasodepression, and respiratory arrest, followed by death. Prompt action is therefore critical to improve the chances of victim's survival and recovery. Standard therapy of NA poisoning generally involves administration of anticholinergic atropine and an oxime reactivator of phosphylated AChE. Anticholinesterase compounds or NA bioscavengers can also be applied to preserve native AChE from inhibition. With this review of 70 years of research we aim to present current and potential approaches to counteracting NA poisoning.
Collapse
Affiliation(s)
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
16
|
Escher B, Köhler A, Job L, Worek F, Skerra A. Translating the Concept of Bispecific Antibodies to Engineering Heterodimeric Phosphotriesterases with Broad Organophosphate Substrate Recognition. Biochemistry 2020; 59:4395-4406. [PMID: 33146522 DOI: 10.1021/acs.biochem.0c00751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have adopted the concept of bispecific antibodies, which can simultaneously block or cross-link two different biomolecular targets, to create bispecific enzymes by exploiting the homodimeric quaternary structure of bacterial phosphotriesterases (PTEs). The PTEs from Brevundimonas diminuta and Agrobacterium radiobacter, whose engineered variants can efficiently hydrolyze organophosphorus (OP) nerve agents and pesticides, respectively, have attracted considerable interest for the treatment of the corresponding intoxications. OP nerve agents and pesticides still pose a severe toxicological threat in military conflicts, including acts of terrorism, as well as in agriculture, leading to >100000 deaths per year. In principle, engineered conventional homodimeric PTEs may provoke hydrolytic inactivation of individual OPs in vivo, and their application as catalytic bioscavengers via administration into the bloodstream has been proposed. However, their narrow substrate specificity would necessitate therapeutic application of a set or mixture of different enzymes, which complicates biopharmaceutical development. We succeeded in combining subunits from both enzymes and to stabilize their heterodimerization by rationally designing electrostatic steering mutations, thus breaking the natural C2 symmetry. The resulting bispecific enzyme from two PTEs with different bacterial origin exhibits an ultrabroad OP substrate profile and allows the efficient detoxification of both nerve agents and pesticides. Our approach of combining two active sites with distinct substrate specificities within one artificial dimeric biocatalyst-retaining the size and general properties of the original enzyme without utilizing protein mixtures or much larger fusion proteins-not only should facilitate biological drug development but also may be applicable to oligomeric enzymes with other catalytic activities.
Collapse
Affiliation(s)
- Benjamin Escher
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Anja Köhler
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany.,Bundeswehr Institut für Pharmakologie und Toxikologie, Neuherbergstrasse 11, 80937 München, Germany
| | - Laura Job
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Franz Worek
- Bundeswehr Institut für Pharmakologie und Toxikologie, Neuherbergstrasse 11, 80937 München, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| |
Collapse
|
17
|
Chi MC, Liao TY, Lin MG, Lin LL, Wang TF. Expression and physicochemical characterization of an N-terminal polyhistidine-tagged phosphotriesterase from the soil bacterium Brevundimonas diminuta. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Theoretical Study of VX Hydrolysis Mechanism Catalyzed by Phosphotriesterase Mutant H254R. ChemistrySelect 2020. [DOI: 10.1002/slct.202002112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Amend N, Niessen KV, Seeger T, Wille T, Worek F, Thiermann H. Diagnostics and treatment of nerve agent poisoning—current status and future developments. Ann N Y Acad Sci 2020; 1479:13-28. [DOI: 10.1111/nyas.14336] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Niko Amend
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Karin V. Niessen
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| |
Collapse
|
20
|
Job L, Köhler A, Escher B, Worek F, Skerra A. A catalytic bioscavenger with improved stability and reduced susceptibility to oxidation for treatment of acute poisoning with neurotoxic organophosphorus compounds. Toxicol Lett 2019; 321:138-145. [PMID: 31891759 DOI: 10.1016/j.toxlet.2019.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 10/25/2022]
Abstract
Organophosphorus (OP)1 nerve agents pose a severe toxicological threat, both after dissemination in military conflicts and by terrorists. Hydrolytic enzymes, which may be administered into the blood stream of victims by injection and can decompose the circulating nerve agent into non-toxic metabolites in vivo, could offer a treatment. Indeed, for the phosphotriesterase found in the bacterium Brevundimonas diminuta (BdPTE),2 engineered versions with improved catalytic efficiencies have been described; yet, their biochemical stabilities are insufficient for therapeutic use. Here, we describe the application of rational protein design to develop novel mutants of BdPTE that are less susceptible to oxidative damage. In particular, the replacement of two unpaired cysteine residues by more inert amino acids led to higher stability while maintaining high catalytic activity towards a broad spectrum of substrates, including OP pesticides and V-type nerve agents. The mutant BdPTE enzymes were produced in Escherichia coli, purified to homogeneity, and their biochemical and enzymological properties were assessed. Several candidates both revealed enhanced thermal stability and were less susceptible to oxidative stress, as demonstrated by mass spectrometry. These mutants of BdPTE may show promise for the treatment of acute intoxications by nerve agents as well as OP pesticides.
Collapse
Affiliation(s)
- Laura Job
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany.
| | - Anja Köhler
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany; Bundeswehr Institut für Pharmakologie und Toxikologie, Neuherbergstr. 11, 80937 München, Germany.
| | - Benjamin Escher
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany.
| | - Franz Worek
- Bundeswehr Institut für Pharmakologie und Toxikologie, Neuherbergstr. 11, 80937 München, Germany.
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany.
| |
Collapse
|
21
|
Fan F, Zheng Y, Zhang Y, Zheng H, Zhong J, Cao Z. A Comprehensive Understanding of Enzymatic Degradation of the G-Type Nerve Agent by Phosphotriesterase: Revised Role of Water Molecules and Rate-Limiting Product Release. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01877] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fangfang Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People’s Republic of China
| | - Yongchao Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, People’s Republic of China
| | - Yuwei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People’s Republic of China
| | - He Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, People’s Republic of China
| | - Jinyi Zhong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, People’s Republic of China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People’s Republic of China
| |
Collapse
|
22
|
Rosenberg Y, Fink J, MacLoughlin R, Ooms-Konecny T, Sullivan D, Gerk W, Mao L, Jiang X, Lees J, Urban L, Rajendran N. Aerosolized recombinant human butyrylcholinesterase delivered by a nebulizer provides long term protection against inhaled paraoxon in macaques. Chem Biol Interact 2019; 309:108712. [PMID: 31201777 DOI: 10.1016/j.cbi.2019.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
The recent intentional use of nerve agents and pesticides in Europe and Afghanistan highlights the need for an effective countermeasure against organophosphates (OP) toxins. The most developed pretreatment candidate to date is plasma (native) human butyrylcholinesterase (HuBChE), which is limited in availability and because of its 1:1 stoichiometry with OPs, a large dose will present challenges when delivered parenterally both in terms of pharmacokinetics and manageability in the field. A tetrameric recombinant (r) form of human BChE produced in CHO-K1 cells with similar structure, in vivo stability and antidotal efficacy as the native form, has been developed to deliver rHuBChE as an aerosol (aer) to form a pulmonary bioshield capable of neutralizing inhaled OPs in situ and prevent AChE inhibition in the blood and in the brain; the latter associated with the symptoms of OP toxicity. Previous proof-of-concept macaque studies demonstrated that delivery of 9 mg/kg using a microsprayer inserted down the trachea, resulted in protection against an inhaled dose of 15ug/kg of aer-paraoxon (aer-Px) given 72 h later. In the present studies, pulmonary delivery of rHuBChE in macaques was achieved using Aerogen vibrating mesh nebulizers, similar to that used for human self-administration. The promising findings indicate that despite the poor lung deposition observed in macaques using nebulizers (13-20%), protective levels of RBC-AChE were still present in the blood even when exposure aer-Px (55 μg/kg) was delayed for five days. This long term retention of 5 mg/kg rHuBChE deposited in the lung bodes well for the use of an aer-rHuBChE pretreatment in humans where a user-friendly customized nebulizer with increased lung deposition up to 50% will provide even longer protection at a lower dose.
Collapse
Affiliation(s)
| | - James Fink
- Department of Respiratory Care, Texas State University, Round Rock, TX, 78665, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pereira AF, de Castro AA, Soares FV, Soares Leal DH, da Cunha EFF, Mancini DT, Ramalho TC. Development of technologies applied to the biodegradation of warfare nerve agents: Theoretical evidence for asymmetric homogeneous catalysis. Chem Biol Interact 2019; 308:323-331. [PMID: 31173750 DOI: 10.1016/j.cbi.2019.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/21/2019] [Accepted: 06/03/2019] [Indexed: 01/31/2023]
Abstract
Organophosphorus compounds have been widely employed to the development of warfare nerve agents and pesticides, resulting in a huge number of people intoxicated annually, being a serious problem of public health. Efforts worldwide have been done in order to design new technologies that are capable of combating or even reversing the poisoning caused by these OP nerve agents. In this line, the bioremediation arises as a promising and efficient alternative for this purpose. As an example of degrading enzymes, there is the organophosphate-degrading (OpdA) enzyme from Agrobacterium radiobacter, which has been quite investigated experimentally due to its high performance in the degradation of neurotoxic nerve agents. This work aims to look into the structural and electronic details that govern the interaction modes of these compounds in the OpdA active site, with the posterior hydrolysis reaction prediction. Our findings have brought about data about the OpdA performance towards different nerve agents, and among them, we may realize that the degradation efficiency strongly depends on the nerve agent structure and its stereochemistry, being in this case the compound Tabun the one more effectively hydrolyzed. By means of the chemical bonds (AIM) and orbitals (FERMO) analysis, it is suggested that the initial reactivity of the OP nerve agents in the OpdA active site does not necessarily dictate the reactivity and interaction modes over the reaction coordinate.
Collapse
Affiliation(s)
- Ander Francisco Pereira
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | - Alexandre A de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | - Flavia Villela Soares
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | - Daniel Henriques Soares Leal
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, MG, 37200-000, Brazil; Department of Health Sciences, Federal University of Espírito Santo, São Mateus, ES, 29932-540, Brazil
| | - Elaine F F da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | - Daiana Teixeira Mancini
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | - Teodorico C Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, MG, 37200-000, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
24
|
Li D, Ma Y, Zhou Y, Gou J, Zhong Y, Zhao L, Han L, Ovchinnikov S, Ma L, Huang S, Greisen P, Shang Y. A structural and data-driven approach to engineering a plant cytochrome P450 enzyme. SCIENCE CHINA-LIFE SCIENCES 2019; 62:873-882. [DOI: 10.1007/s11427-019-9538-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/26/2019] [Indexed: 10/26/2022]
|
25
|
The evolution of phosphotriesterase for decontamination and detoxification of organophosphorus chemical warfare agents. Chem Biol Interact 2019; 308:80-88. [PMID: 31100274 DOI: 10.1016/j.cbi.2019.05.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/22/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022]
Abstract
The organophosphorus chemical warfare agents were initially synthesized in the 1930's and are some of the most toxic compounds ever discovered. The standard means of decontamination are either harsh chemical hydrolysis or high temperature incineration. Given the continued use of chemical warfare agents there are ongoing efforts to develop gentle environmentally friendly means of decontamination and medical counter measures to chemical warfare agent intoxication. Enzymatic decontamination offers the benefits of extreme specificity and mild conditions, allowing their use for both environmental and medical applications. The most promising enzyme for decontamination of the organophosphorus chemical warfare agents is the enzyme phosphotriesterase from Pseudomonas diminuta. However, the catalytic activity of the wild-type enzyme with the chemical warfare agents falls far below that seen with its best substrates, and its stereochemical preference is for the less toxic enantiomer of the chiral phosphorus center found in most chemical warfare agents. Rational design efforts have succeeded in the dramatic improvement of the stereochemical preference of PTE for the more toxic enantiomers. Directed evolution experiments, including site-saturation mutagenesis, targeted error-prone PCR, computational design, and quantitative library analysis, have systematically improved the catalytic activity against the chemical warfare nerve agents. These efforts have resulted in greater than 4-orders of magnitude improvement in catalytic activity and have led to the identification of variants that are highly effective at detoxifying both G-type and V-type nerve agents. The best of these variants have the ability to prevent intoxication when delivered as a post-exposure treatment for VX and as a pre-exposure treatment for G-agent intoxication with observed protective factors up to 60-fold. Combining the best variant, H257Y/L303T, with a PCB polymer coating has enabled the development of a long lasting circulating prophylactic treatment that is highly effective against sarin.
Collapse
|
26
|
Bigley AN, Desormeaux E, Xiang DF, Bae SY, Harvey SP, Raushel FM. Overcoming the Challenges of Enzyme Evolution To Adapt Phosphotriesterase for V-Agent Decontamination. Biochemistry 2019; 58:2039-2053. [DOI: 10.1021/acs.biochem.9b00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew N. Bigley
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Emily Desormeaux
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Dao Feng Xiang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sue Y. Bae
- U.S. Army Edgewood Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Steven P. Harvey
- U.S. Army Edgewood Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Frank M. Raushel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
27
|
Herbert J, Thiermann H, Worek F, Wille T. COPD and asthma therapeutics for supportive treatment in organophosphate poisoning. Clin Toxicol (Phila) 2019; 57:644-651. [PMID: 30696282 DOI: 10.1080/15563650.2018.1540785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Context: Nerve agents like sarin or VX have repeatedly been used in military conflicts or homicidal attacks, as seen in Syria or Malaysia 2017. Together with pesticides, nerve agents assort as organophosphorus compounds (OP), which inhibit the enzyme acetylcholinesterase. To counteract subsequent fatal symptoms due to acetylcholine (ACh) accumulation, oximes plus atropine are administered, a regimen that lacks efficacy in several cases of OP poisoning. New therapeutics are in development, but still need evaluation before clinical employment. Supportive treatment with already approved drugs presents an alternative, whereby compounds from COPD and asthma therapy are likely options. A recent pilot study by Chowdhury et al. included β2-agonist salbutamol in the treatment of OP-pesticide poisoned patients, yielding ambiguous results concerning the addition. Here, we provide experimental data for further investigations regarding the value of these drugs in OP poisoning. Methods: By video-microscopy, changes in airway area were analyzed in VX-poisoned rat precision cut lung slices (PCLS) after ACh-induced airway contraction and subsequent application of selected anticholinergics/β2-agonists. Results: Glycopyrrolate and ipratropium efficiently antagonized an ACh-induced airway contraction in VX-poisoned PCLS (EC50 glycopyrrolate 15.8 nmol/L, EC50 ipratropium 2.3 nmol/L). β2-agonists formoterol and salbutamol had only negligible effects when solely applied in the same setting. However, combination of formoterol or salbutamol with low dosed glycopyrrolate or atropine led to an additive effect compared to the sole application [50.6 ± 8.8% airway area increase after 10 nmol/L formoterol +1 nmol/L atropine versus 11.7 ± 9.2% (10 nmol/L formoterol) or 8.6 ± 5.9% (1 nmol/L atropine)]. Discussion: We showed antagonizing effects of anticholinergics and β2-agonists on ACh-induced airway contractions in VX-poisoned PCLS, thus providing experimental data to support a prospective comprehensive clinical study. Conclusions: Our results indicate that COPD and asthma therapeutics could be a valuable addition to the treatment of OP poisoning.
Collapse
Affiliation(s)
- Julia Herbert
- a Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, Munich , Germany
| | - Horst Thiermann
- a Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, Munich , Germany
| | - Franz Worek
- a Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, Munich , Germany
| | - Timo Wille
- a Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, Munich , Germany
| |
Collapse
|
28
|
Liu EJ, Jiang S. Expressing a Monomeric Organophosphate Hydrolase as an EK Fusion Protein. Bioconjug Chem 2018; 29:3686-3690. [DOI: 10.1021/acs.bioconjchem.8b00607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erik J. Liu
- Department of Chemical Engineering University of Washington Seattle, Washington 98195, United States
| | - Shaoyi Jiang
- Department of Chemical Engineering University of Washington Seattle, Washington 98195, United States
| |
Collapse
|
29
|
Catalytic bioscavengers as countermeasures against organophosphate nerve agents. Chem Biol Interact 2018; 292:50-64. [DOI: 10.1016/j.cbi.2018.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
|
30
|
|
31
|
Nicoludis JM, Gaudet R. Applications of sequence coevolution in membrane protein biochemistry. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:895-908. [PMID: 28993150 PMCID: PMC5807202 DOI: 10.1016/j.bbamem.2017.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
Recently, protein sequence coevolution analysis has matured into a predictive powerhouse for protein structure and function. Direct methods, which use global statistical models of sequence coevolution, have enabled the prediction of membrane and disordered protein structures, protein complex architectures, and the functional effects of mutations in proteins. The field of membrane protein biochemistry and structural biology has embraced these computational techniques, which provide functional and structural information in an otherwise experimentally-challenging field. Here we review recent applications of protein sequence coevolution analysis to membrane protein structure and function and highlight the promising directions and future obstacles in these fields. We provide insights and guidelines for membrane protein biochemists who wish to apply sequence coevolution analysis to a given experimental system.
Collapse
Affiliation(s)
- John M Nicoludis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, United States.
| |
Collapse
|
32
|
Lushchekina SV, Schopfer LM, Grigorenko BL, Nemukhin AV, Varfolomeev SD, Lockridge O, Masson P. Optimization of Cholinesterase-Based Catalytic Bioscavengers Against Organophosphorus Agents. Front Pharmacol 2018; 9:211. [PMID: 29593539 PMCID: PMC5859046 DOI: 10.3389/fphar.2018.00211] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
Organophosphorus agents (OPs) are irreversible inhibitors of acetylcholinesterase (AChE). OP poisoning causes major cholinergic syndrome. Current medical counter-measures mitigate the acute effects but have limited action against OP-induced brain damage. Bioscavengers are appealing alternative therapeutic approach because they neutralize OPs in bloodstream before they reach physiological targets. First generation bioscavengers are stoichiometric bioscavengers. However, stoichiometric neutralization requires administration of huge doses of enzyme. Second generation bioscavengers are catalytic bioscavengers capable of detoxifying OPs with a turnover. High bimolecular rate constants (kcat/Km > 106 M−1min−1) are required, so that low enzyme doses can be administered. Cholinesterases (ChE) are attractive candidates because OPs are hemi-substrates. Moderate OP hydrolase (OPase) activity has been observed for certain natural ChEs and for G117H-based human BChE mutants made by site-directed mutagenesis. However, before mutated ChEs can become operational catalytic bioscavengers their dephosphylation rate constant must be increased by several orders of magnitude. New strategies for converting ChEs into fast OPase are based either on combinational approaches or on computer redesign of enzyme. The keystone for rational conversion of ChEs into OPases is to understand the reaction mechanisms with OPs. In the present work we propose that efficient OP hydrolysis can be achieved by re-designing the configuration of enzyme active center residues and by creating specific routes for attack of water molecules and proton transfer. Four directions for nucleophilic attack of water on phosphorus atom were defined. Changes must lead to a novel enzyme, wherein OP hydrolysis wins over competing aging reactions. Kinetic, crystallographic, and computational data have been accumulated that describe mechanisms of reactions involving ChEs. From these studies, it appears that introducing new groups that create a stable H-bonded network susceptible to activate and orient water molecule, stabilize transition states (TS), and intermediates may determine whether dephosphylation is favored over aging. Mutations on key residues (L286, F329, F398) were considered. QM/MM calculations suggest that mutation L286H combined to other mutations favors water attack from apical position. However, the aging reaction is competing. Axial direction of water attack is not favorable to aging. QM/MM calculation shows that F329H+F398H-based multiple mutants display favorable energy barrier for fast reactivation without aging.
Collapse
Affiliation(s)
- Sofya V Lushchekina
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia
| | - Lawrence M Schopfer
- Department of Biochemistry and Molecular Biology, Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bella L Grigorenko
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Alexander V Nemukhin
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Sergei D Varfolomeev
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Oksana Lockridge
- Department of Biochemistry and Molecular Biology, Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| |
Collapse
|
33
|
Rosenberg YJ, Mao L, Jiang X, Lees J, Zhang L, Radic Z, Taylor P. Post-exposure treatment with the oxime RS194B rapidly reverses early and advanced symptoms in macaques exposed to sarin vapor. Chem Biol Interact 2017; 274:50-57. [PMID: 28693885 PMCID: PMC5586507 DOI: 10.1016/j.cbi.2017.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 01/04/2023]
Abstract
Organophosphate (OP) nerve agents and pesticides trigger a common mechanism of neurotoxicity resulting from critical targeting and inhibition of acetylcholinesterases (AChE) in central and peripheral synapses in the cholinergic nervous system. Therapeutic countermeasures have thus focused on either administering an oxime post-exposure, that can rapidly reactivate OP-inhibited AChE, or by preventing OP poisoning through administering pre-exposure treatments that scavenge OPs before they inhibit their physiological AChE targets. While several pyridinium aldoxime antidotes are currently approved, their utility is impaired due to their inability to cross the blood-brain barrier (BBB) efficiently. The present study utilized a macaque (Ma) model to demonstrate the efficacy of a novel zwitterionic and centrally acting oxime RS194B to reactivate sarin- and paraoxon-inhibited macaque AChE and butyrylcholinesterase (BChE) in vitro and to further assess the capacity of RS194B to effect a reversal of clinical symptoms following sarin inhalation in vivo. In vitro, oxime reactivation of MaAChE and MaBChE was shown to be comparable to their human orthologs, while the macaque studies indicated that IM administration of 62.5 mg/kg of RS194B and 0.28 mg/kg atropine after continuous exposure to 49.6 μg/kg sarin vapor, rapidly reactivated the inhibited AChE and BChE in blood and reversed both early and advanced clinical symptoms of sarin-induced toxicity following pulmonary exposure within 1 h. The rapid cessation of autonomic and central symptoms, including convulsions, observed in macaques bodes well for the use of RS194B as an intra- or post-exposure human treatment and validates the macaque model in generating efficacy and toxicology data required for approval under the FDA Animal rule.
Collapse
Affiliation(s)
| | | | | | | | - Limin Zhang
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla 92093-0650, USA.
| | - Zoran Radic
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla 92093-0650, USA.
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla 92093-0650, USA.
| |
Collapse
|
34
|
Herbert J, Thiermann H, Worek F, Wille T. Precision cut lung slices as test system for candidate therapeutics in organophosphate poisoning. Toxicology 2017; 389:94-100. [DOI: 10.1016/j.tox.2017.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 01/23/2023]
|
35
|
Paladino A, Marchetti F, Rinaldi S, Colombo G. Protein design: from computer models to artificial intelligence. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Antonella Paladino
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Filippo Marchetti
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Silvia Rinaldi
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Giorgio Colombo
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| |
Collapse
|
36
|
Masson P, Nachon F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. J Neurochem 2017; 142 Suppl 2:26-40. [PMID: 28542985 DOI: 10.1111/jnc.14026] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
Organophosphorus agents (OPs) irreversibly inhibit acetylcholinesterase (AChE) causing a major cholinergic syndrome. The medical counter-measures of OP poisoning have not evolved for the last 30 years with carbamates for pretreatment, pyridinium oximes-based AChE reactivators, antimuscarinic drugs and neuroprotective benzodiazepines for post-exposure treatment. These drugs ensure protection of peripheral nervous system and mitigate acute effects of OP lethal doses. However, they have significant limitations. Pyridostigmine and oximes do not protect/reactivate central AChE. Oximes poorly reactivate AChE inhibited by phosphoramidates. In addition, current neuroprotectants do not protect the central nervous system shortly after the onset of seizures when brain damage becomes irreversible. New therapeutic approaches for pre- and post-exposure treatments involve detoxification of OP molecules before they reach their molecular targets by administrating catalytic bioscavengers, among them phosphotriesterases are the most promising. Novel generation of broad spectrum reactivators are designed for crossing the blood-brain barrier and reactivate central AChE. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| | - Florian Nachon
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, Cédex, France
| |
Collapse
|
37
|
Mabanglo MF, Xiang DF, Bigley AN, Raushel FM. Structure of a Novel Phosphotriesterase from Sphingobium sp. TCM1: A Familiar Binuclear Metal Center Embedded in a Seven-Bladed β-Propeller Protein Fold. Biochemistry 2016; 55:3963-74. [DOI: 10.1021/acs.biochem.6b00364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark F. Mabanglo
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842, United States
| | - Dao Feng Xiang
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842, United States
| | - Andrew N. Bigley
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842, United States
| | - Frank M. Raushel
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842, United States
| |
Collapse
|
38
|
Toxicology of organophosphorus compounds in view of an increasing terrorist threat. Arch Toxicol 2016; 90:2131-2145. [DOI: 10.1007/s00204-016-1772-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/16/2016] [Indexed: 12/19/2022]
|