1
|
Pavan C, Leinardi R, Benhida A, Ibouraadaten S, Yakoub Y, Brule SVD, Lison D, Turci F, Huaux F. Short- and long-term pathologic responses to quartz are induced by nearly free silanols formed during crystal fracturing. Part Fibre Toxicol 2024; 21:52. [PMID: 39633374 PMCID: PMC11619699 DOI: 10.1186/s12989-024-00611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Inhalation of respirable crystalline silica particles, including quartz, is associated with an increased risk of developing pathologies, including persistent lung inflammation, fibrosis, cancer, and systemic autoimmunity. We demonstrated that the nearly free silanols (NFS) generated upon quartz fracturing trigger the early molecular events determining quartz toxicity. Here, we address the involvement of NFS in driving short- and long-term pathogenic responses, including lung inflammation, fibrosis, cancer, and autoimmunity in multiple mouse models. RESULTS In vivo pulmonary responses to as-grown NFS-poor quartz (gQ) and fractured NFS-rich quartz (gQ-f) of synthetic origin were compared to two NFS-rich reference quartz dusts (Min-U-Sil 5, mQ-f). Acute and persistent inflammation, as well as fibrosis, were assessed 3 and 60 days, respectively, after administering one dose of particles (2 mg) via oropharyngeal aspiration (o.p.a.) to C57BL/6 mice. The carcinogenic potential was assessed in a co-carcinogenicity study using A/J mice, which were pre-treated with 3-methylcholanthrene (3-MC) and administered four doses of quartz particles (4 × 1 mg, o.p.a.), then sacrificed after 10 months. Autoimmunity was evaluated in autoimmune-prone 129/Sv mice 4 months after particle administration (2 × 1.25 mg, o.p.a). Mice exposed to NFS-rich quartz exhibited a strong acute lung inflammatory response, characterized by pro-inflammatory cytokine release and leukocyte accumulation, which persisted for up to 60 days. No inflammatory effect was observed in mice treated with NFS-poor gQ. Fibrosis onset (i.e., increased levels of pro-fibrotic factors, hydroxyproline, and collagen) was prominent in mice exposed to NFS-rich but not to NFS-poor quartz. Additionally, lung cancer development (tumour numbers) and autoimmune responses (elevated IgG and anti-dsDNA autoantibody levels) were only observed after exposure to NFS-rich quartz. CONCLUSIONS Collectively, the results indicate that NFS, which occur upon fracturing of quartz particles, play a crucial role in the short- and long-term local and systemic responses to quartz. The assessment of NFS on amorphous or crystalline silica particles may help create a predictive model of silica pathogenicity.
Collapse
Affiliation(s)
- Cristina Pavan
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
- Department of Chemistry, University of Turin, Turin, Italy.
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy.
| | - Riccardo Leinardi
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Anissa Benhida
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Saloua Ibouraadaten
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Yousof Yakoub
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Sybille van den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Francesco Turci
- Department of Chemistry, University of Turin, Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
2
|
Zeidler-Erdely PC, Kodali V, Falcone LM, Mercer R, Leonard SS, Stefaniak AB, Grose L, Salmen R, Trainor-DeArmitt T, Battelli LA, McKinney W, Stone S, Meighan TG, Betler E, Friend S, Hobbie KR, Service S, Kashon M, Antonini JM, Erdely A. Absence of lung tumor promotion with reduced tumor size in mice after inhalation of copper welding fumes. Carcinogenesis 2024; 45:630-641. [PMID: 39046922 DOI: 10.1093/carcin/bgae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Welding fumes are a Group 1 (carcinogenic to humans) carcinogen as classified by the International Agency for Research on Cancer. The process of welding creates inhalable fumes rich in iron (Fe) that may also contain known carcinogenic metals such as chromium (Cr) and nickel (Ni). Epidemiological evidence has shown that both mild steel (Fe-rich) and stainless steel (Fe-rich + Cr + Ni) welding fume exposure increases lung cancer risk, and experimental animal data support these findings. Copper-nickel (CuNi) welding processes have not been investigated in the context of lung cancer. Cu is intriguing, however, given the role of Cu in carcinogenesis and cancer therapeutics. This study examines the potential for a CuNi fume to induce mechanistic key characteristics of carcinogenesis in vitro and to promote lung tumorigenesis, using a two-stage mouse bioassay, in vivo. Male A/J mice, initiated with 3-methylcholanthrene (MCA; 10 µg/g), were exposed to CuNi fumes or air by whole-body inhalation for 9 weeks (low deposition-LD and high deposition-HD) and then sacrificed at 30 weeks. In BEAS-2B cells, the CuNi fume-induced micronuclei and caused DNA damage as measured by γ-H2AX. The fume exhibited high reactivity and a dose-response in cytotoxicity and oxidative stress. In vivo, MCA/CuNi HD and LD significantly decreased lung tumor size and adenomas. MCA/CuNi HD exposure significantly decreased gross-evaluated tumor number. In summary, the CuNi fume in vitro exhibited characteristics of a carcinogen, but in vivo, the exposure resulted in smaller tumors, fewer adenomas, less hyperplasia severity, and with HD exposure, less overall lung lesions/tumors.
Collapse
Affiliation(s)
- Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Vamsi Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Lauryn M Falcone
- Department of Dermatology, University of Pittsburgh Medical Center, 3708 Fifth Avenue Suite 500.68, Pittsburgh, PA 15213, United States
| | - Robert Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Stephen S Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Aleksandr B Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Lindsay Grose
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Rebecca Salmen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Taylor Trainor-DeArmitt
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Lori A Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Samuel Stone
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Terence G Meighan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Ella Betler
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Sherri Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Kristen R Hobbie
- Pathology Department, Inotiv, P.O. Box 13501, Research Triangle Park, NC 27709, United States
| | - Samantha Service
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Michael Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| |
Collapse
|
3
|
McCarrick S, Karlsson HL, Carlander U. Modelled lung deposition and retention of welding fume particles in occupational scenarios: a comparison to doses used in vitro. Arch Toxicol 2022; 96:969-985. [PMID: 35188583 PMCID: PMC8921161 DOI: 10.1007/s00204-022-03247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
Translating particle dose from in vitro systems to relevant human exposure remains a major challenge for the use of in vitro studies in assessing occupational hazard and risk of particle exposure. This study aimed to model the lung deposition and retention of welding fume particles following occupational scenarios and subsequently compare the lung doses to those used in vitro. We reviewed published welding fume concentrations and size distributions to identify input values simulating real-life exposure scenarios in the multiple path particle dosimetry (MPPD) model. The majority of the particles were reported to be below 0.1 μm and mass concentrations ranged between 0.05 and 45 mg/m3. Following 6-h exposure to 5 mg/m3 with a count median diameter of 50 nm, the tracheobronchial lung dose (0.89 µg/cm2) was found to exceed the in vitro cytotoxic cell dose (0.125 µg/cm2) previously assessed by us in human bronchial epithelial cells (HBEC-3kt). However, the tracheobronchial retention decreased rapidly when no exposure occurred, in contrast to the alveolar retention which builds-up over time and exceeded the in vitro cytotoxic cell dose after 1.5 working week. After 1 year, the tracheobronchial and alveolar retention was estimated to be 1.15 and 2.85 µg/cm2, respectively. Exposure to low-end aerosol concentrations resulted in alveolar retention comparable to cytotoxic in vitro dose in HBEC-3kt after 15-20 years of welding. This study demonstrates the potential of combining real-life exposure data with particle deposition modelling to improve the understanding of in vitro concentrations in the context of human occupational exposure.
Collapse
Affiliation(s)
- Sarah McCarrick
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ulrika Carlander
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
4
|
Zeidler-Erdely PC, Erdely A, Kodali V, Andrews R, Antonini J, Trainor-DeArmitt T, Salmen R, Battelli L, Grose L, Kashon M, Service S, McKinney W, Stone S, Falcone L. Lung toxicity profile of inhaled copper-nickel welding fume in A/J mice. Inhal Toxicol 2022; 34:275-286. [PMID: 35724235 PMCID: PMC9872095 DOI: 10.1080/08958378.2022.2089783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Objective: Stainless steel welding creates fumes rich in carcinogenic metals such as chromium (Cr). Welding consumables devoid of Cr are being produced in an attempt to limit worker exposures to toxic and carcinogenic metals. The study objective was to characterize a copper-nickel (Cu-Ni) fume generated using gas metal arc welding (GMAW) and determine the pulmonary deposition and toxicity of the fume in mice exposed by inhalation. Materials and Methods: Male A/J mice (6-8 weeks of age) were exposed to air or Cu-Ni welding fumes for 2 (low deposition) or 4 (high deposition) hours/day for 10 days. Mice were sacrificed, and bronchoalveolar lavage (BAL), macrophage function, and histopathological analyses were performed at different timepoints post-exposure to evaluate resolution. Results and Discussion: Characterization of the fume indicated that most of the particles were between 0.1 and 1 µm in diameter, with a mass median aerodynamic diameter of 0.43 µm. Metal content of the fume was Cu (∼76%) and Ni (∼12%). Post-exposure, BAL macrophages had a reduced ability to phagocytose E. coli, and lung cytotoxicity was evident and significant (>12%-19% fold change). Loss of body weight was also significant at the early timepoints. Lung inflammation, the predominant finding identified by histopathology, was observed as a subacute response early that progressively resolved by 28 days with only macrophage aggregates remaining late (84 days). Conclusions: Overall, there was high acute lung toxicity with a resolution of the response in mice which suggests that the Cu-Ni fume may not be ideal for reducing toxic and inflammatory lung effects.
Collapse
Affiliation(s)
- Patti C. Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Vamsi Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ronnee Andrews
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - James Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Taylor Trainor-DeArmitt
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Rebecca Salmen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Lori Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Lindsay Grose
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Samantha Service
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Samuel Stone
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Lauryn Falcone
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Cediel-Ulloa A, Isaxon C, Eriksson A, Primetzhofer D, Sortica MA, Haag L, Derr R, Hendriks G, Löndahl J, Gudmundsson A, Broberg K, Gliga AR. Toxicity of stainless and mild steel particles generated from gas-metal arc welding in primary human small airway epithelial cells. Sci Rep 2021; 11:21846. [PMID: 34750422 PMCID: PMC8575907 DOI: 10.1038/s41598-021-01177-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
Welding fumes induce lung toxicity and are carcinogenic to humans but the molecular mechanisms have yet to be clarified. The aim of this study was to evaluate the toxicity of stainless and mild steel particles generated via gas-metal arc welding using primary human small airway epithelial cells (hSAEC) and ToxTracker reporter murine stem cells, which track activation of six cancer-related pathways. Metal content (Fe, Mn, Ni, Cr) of the particles was relatively homogenous across particle size. The particles were not cytotoxic in reporter stem cells but stainless steel particles activated the Nrf2-dependent oxidative stress pathway. In hSAEC, both particle types induced time- and dose-dependent cytotoxicity, and stainless steel particles also increased generation of reactive oxygen species. The cellular metal content was higher for hSAEC compared to the reporter stem cells exposed to the same nominal dose. This was, in part, related to differences in particle agglomeration/sedimentation in the different cell media. Overall, our study showed differences in cytotoxicity and activation of cancer-related pathways between stainless and mild steel welding particles. Moreover, our data emphasizes the need for careful assessment of the cellular dose when comparing studies using different in vitro models.
Collapse
Affiliation(s)
- Andrea Cediel-Ulloa
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Christina Isaxon
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Axel Eriksson
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Daniel Primetzhofer
- Department of Physics and Astronomy, Applied Nuclear Physics, Uppsala University, Uppsala, Sweden
- The Tandem Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Lars Haag
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Jakob Löndahl
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden.
| |
Collapse
|
6
|
Boudjema J, Lima B, Grare C, Alleman LY, Rousset D, Perdrix E, Achour D, Anthérieu S, Platel A, Nesslany F, Leroyer A, Nisse C, Lo Guidice JM, Garçon G. Metal enriched quasi-ultrafine particles from stainless steel gas metal arc welding induced genetic and epigenetic alterations in BEAS-2B cells. NANOIMPACT 2021; 23:100346. [PMID: 35559847 DOI: 10.1016/j.impact.2021.100346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 06/15/2023]
Abstract
Recent evidence has supported welding fume (WF)-derived ultrafine particles (UFP) could be the driving force of their adverse health effects. However, UFP have not yet been extensively studied and are currently not included in present air quality standards/guidelines. Here, attention was focused on the underlying genetic and epigenetic mechanisms by which the quasi-UFP (Q-UFP, i.e., ≤ 0.25 μm) of the WF emitted by gas metal arc welding-stainless steel (GMAW-SS) exert their toxicity in human bronchial epithelial BEAS-2B cells. The Q-UFP under study showed a monomodal size distribution in number centered on 104.4 ± 52.3 nm and a zeta potential of -13.8 ± 0.3 mV. They were enriched in Fe > Cr > Mn > Si, and displayed a relatively high intrinsic oxidative potential. Dose-dependent activation of nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B signaling pathway, glutathione alteration, and DNA, protein and lipid oxidative damage were reported in BEAS-2B cells acutely (1.5 and 9 μg/cm2, 24 h) or repeatedly (0.25 and 1.5 μg/cm2, 3 × 24 h) exposed to Q-UFP (p < 0.05). Alterations of the Histone H3 acetylation were reported for any exposure (p < 0.05). Differentially regulated miRNA and mRNA indicated the activation of some critical cell signaling pathways related to oxidative stress, inflammation, and cell cycle deregulation towards apoptosis. Taken together, these results highlighted the urgent need to better evaluate the respective toxicity of the different metals and to include the Q-UFP fraction of WF in current air quality standards/guidelines relevant to the occupational settings.
Collapse
Affiliation(s)
- J Boudjema
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France; Action Santé Travail, Aix-Noulette, France
| | - B Lima
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - C Grare
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - L Y Alleman
- IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - D Rousset
- Institut National de Recherche et de Sécurité (INRS), Department of Pollutant Metrology, 54500 Vandœuvre-lès-Nancy, France
| | - E Perdrix
- IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - D Achour
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - S Anthérieu
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - A Platel
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - F Nesslany
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - A Leroyer
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - C Nisse
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - J-M Lo Guidice
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - G Garçon
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| |
Collapse
|
7
|
Zeidler-Erdely PC, Falcone LM, Antonini JM, Fraser K, Kashon ML, Battelli LA, Salmen R, Trainor T, Grose L, Friend S, Yang C, Erdely A. Tumorigenic response in lung tumor susceptible A/J mice after sub-chronic exposure to calcium chromate or iron (III) oxide. Toxicol Lett 2020; 334:60-65. [PMID: 32961271 PMCID: PMC9827416 DOI: 10.1016/j.toxlet.2020.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023]
Abstract
Iron oxides are Group 3 (not classifiable as to its carcinogenicity to humans) according to the International Agency for Research on Cancer (IARC). Occupational exposures during iron and steel founding and hematite underground mining as well as other iron predominant exposures such as welding are Group 1 (carcinogenic to humans). The objective of this study was to investigate the potential of iron as iron (III) oxide (Fe2O3) to initiate lung tumors in A/J mice, a lung tumor susceptible strain. Male A/J mice were exposed by oropharyngeal aspiration to suspensions of Fe2O3 (1 mg) or calcium chromate (CaCrO4; 100 μg; positive control) for 26 weeks (once per week). Shams were exposed to 50 μL phosphate buffered saline (PBS; vehicle). Mice were euthanized 70 weeks after the first exposure and lung nodules were enumerated. Both CaCrO4 and Fe2O3 significantly increased gross-observed lung tumor multiplicity in A/J mice (9.63 ± 0.55 and 3.35 ± 0.30, respectively) compared to sham (2.31 ± 0.19). Histopathological analysis showed that bronchiolo-alveolar adenomas (BAA) and carcinomas (BAC) were the primary lung tumor types in all groups and were increased in the exposed groups compared to sham. BAC were significantly increased (146 %) in the CaCrO4 group and neared significance in the Fe2O3 group (100 % increase; p = 0.085). BAA and other histopathological indices of toxicity followed the same pattern with exposed groups increased compared to sham control. In conclusion, evidence from this study, in combination with our previous studies, demonstrate that exposure to iron alone may be a potential risk factor for lung carcinogenesis.
Collapse
Affiliation(s)
- Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; West Virginia University, School of Medicine, Morgantown, WV, United States.
| | - Lauryn M Falcone
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; West Virginia University, School of Medicine, Morgantown, WV, United States
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Kelly Fraser
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; West Virginia University, School of Medicine, Morgantown, WV, United States
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Lori A Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Rebecca Salmen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Taylor Trainor
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Lindsay Grose
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Sherri Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Chengfeng Yang
- University of Kentucky, College of Medicine, Lexington, KY, United States
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; West Virginia University, School of Medicine, Morgantown, WV, United States
| |
Collapse
|
8
|
Two-stage 3-methylcholanthrene and butylated hydroxytoluene-induced lung carcinogenesis in mice. Methods Cell Biol 2020; 163:153-173. [PMID: 33785163 DOI: 10.1016/bs.mcb.2020.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung cancer is one of the deadliest types of cancer and as such requires disease models that are useful for identification of novel pathways for biomarkers as well as to test therapeutic agents. Adenocarcinoma (ADC), the most prevalent type of lung cancer, is a subtype of non-small cell lung carcinoma (NSCLC) and a disease driven mainly by smoking. However, it is also the most common subtype of lung cancer found in non-smokers with environmental exposures. Chemically driven models of lung cancer, also called primary models of lung cancer, are important because they do not overexpress or delete oncogenes or tumor suppressor genes, respectively, to increase oncogenesis. Instead these models test tumor development without forcing a specific pathway (i.e., Kras). The primary focus of this chapter is to discuss a well-established 2-stage mouse model of lung adenocarcinomas. The initiator (3-methylcholanthrene, MCA) does not elicit many, if any, tumors if not followed by exposure to the tumor promoter (butylated hydroxytoluene, BHT). In sensitive strains, such as A/J, FVB, and BALB, significantly greater numbers of tumors develop following the MCA/BHT protocol compared to MCA alone. BHT does not elicit tumors on its own; it is a non-genotoxic carcinogen and promoter. In these sensitive strains, promotion is also associated with inflammation characterized by infiltrating macrophages, lymphocytes, and neutrophils, and other inflammatory cell types in addition to increases in total protein content reflective of lung hyperpermeability. This 2-stage model is a useful tool to identify unique promotion specific events to then test in future intervention studies.
Collapse
|
9
|
Morgan J, Bell R, Jones AL. Endogenous doesn't always mean innocuous: a scoping review of iron toxicity by inhalation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:107-136. [PMID: 32106786 DOI: 10.1080/10937404.2020.1731896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ambient air pollution is a leading risk factor for the global burden of disease. One possible pathway of particulate matter (PM)-induced toxicity is through iron (Fe), the most abundant metal in the atmosphere. The aim of the review was to consider the complexity of Fe-mediated toxicity following inhalation exposure focusing on the chemical and surface reactivity of Fe as a transition metal and possible pathways of toxicity via reactive oxygen species (ROS) generation as well as considerations of size, morphology, and source of PM. A broad term search of 4 databases identified 2189 journal articles and reports examining exposure to Fe via inhalation in the past 10 years. These were sequentially analyzed by title, abstract and full-text to identify 87 articles publishing results on the toxicity of Fe-containing PM by inhalation or instillation to the respiratory system. The remaining 87 papers were examined to summarize research dealing with in vitro, in vivo and epidemiological studies involving PM containing Fe or iron oxide following inhalation or instillation. The major findings from these investigations are summarized and tabulated. Epidemiological studies showed that exposure to Fe oxide is correlated with an increased incidence of cancer, cardiovascular diseases, and several respiratory diseases. Iron PM was found to induce inflammatory effects in vitro and in vivo and to translocate to remote locations including the brain following inhalation. A potential pathway for the PM-containing Fe-mediated toxicity by inhalation is via the generation of ROS which leads to lipid peroxidation and DNA and protein oxidation. Our recommendations include an expansion of epidemiological, in vivo and in vitro studies, integrating research improvements outlined in this review, such as the method of particle preparation, cell line type, and animal model, to enhance our understanding of the complex biological interactions of these particles.
Collapse
Affiliation(s)
- Jody Morgan
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Robin Bell
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Alison L Jones
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
10
|
McCarrick S, Wei Z, Moelijker N, Derr R, Persson KA, Hendriks G, Odnevall Wallinder I, Hedberg Y, Karlsson HL. High variability in toxicity of welding fume nanoparticles from stainless steel in lung cells and reporter cell lines: the role of particle reactivity and solubility. Nanotoxicology 2019; 13:1293-1309. [PMID: 31418618 DOI: 10.1080/17435390.2019.1650972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Millions of people in the world perform welding as their primary occupation resulting in exposure to metal-containing nanoparticles in the fumes generated. Even though health effects including airway diseases are well-known, there is currently a lack of studies investigating how different welding set-ups and conditions affect the toxicity of generated nanoparticles of the welding fume. The aim of this study was to investigate the toxicity of nine types of welding fume particles generated via active gas shielded metal arc welding (GMAW) of chromium-containing stainless steel under different conditions and, furthermore, to correlate the toxicity to the particle characteristics. Toxicological endpoints investigated were generation of reactive oxygen species (ROS), cytotoxicity, genotoxicity and activation of ToxTracker reporter cell lines. The results clearly underline that the choice of filler material has a large influence on the toxic potential. Fume particles generated by welding with the tested flux-cored wire (FCW) were found to be more cytotoxic compared to particles generated by welding with solid wire or metal-cored wire (MCW). FCW fume particles were also the most potent in causing ROS and DNA damage and they furthermore activated reporters related to DNA double- strand breaks and p53 signaling. Interestingly, the FCW fume particles were the most soluble in PBS, releasing more chromium in the hexavalent form and manganese compared to the other fumes. These results emphasize the importance of solubility of different metal constituents of the fume particles, rather than the total metal content, for their acute toxic potential.
Collapse
Affiliation(s)
- Sarah McCarrick
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zheng Wei
- Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | - Inger Odnevall Wallinder
- Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yolanda Hedberg
- Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Abstract
Nickel (Ni) metal and Ni compounds are widely used in applications like stainless steel, alloys, and batteries. Nickel is a naturally occurring element in water, soil, air, and living organisms, and is essential to microorganisms and plants. Thus, human and environmental nickel exposures are ubiquitous. Production and use of nickel and its compounds can, however, result in additional exposures to humans and the environment. Notable human health toxicity effects identified from human and/or animal studies include respiratory cancer, non-cancer toxicity effects following inhalation, dermatitis, and reproductive effects. These effects have thresholds, with indirect genotoxic and epigenetic events underlying the threshold mode of action for nickel carcinogenicity. Differences in human toxicity potencies/potentials of different nickel chemical forms are correlated with the bioavailability of the Ni2+ ion at target sites. Likewise, Ni2+ has been demonstrated to be the toxic chemical species in the environment, and models have been developed that account for the influence of abiotic factors on the bioavailability and toxicity of Ni2+ in different habitats. Emerging issues regarding the toxicity of nickel nanoforms and metal mixtures are briefly discussed. This review is unique in its covering of both human and environmental nickel toxicity data.
Collapse
|
12
|
Zeidler-Erdely PC, Falcone LM, Antonini JM. Influence of welding fume metal composition on lung toxicity and tumor formation in experimental animal models. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:372-377. [PMID: 30933662 PMCID: PMC6538433 DOI: 10.1080/15459624.2019.1587172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Millions of workers in the US and worldwide are exposed to complex, metal-rich welding fumes. Although welding is a crucial industrial process, the generated fumes are known to cause acute and chronic health effects when inhaled. The International Agency for Research on Cancer (IARC) classified welding fumes as carcinogenic to humans (Group 1) in 2017, based on sufficient epidemiological evidence and limited evidence in animals, an upgrade from the former Group 2B (possibly carcinogenic to humans ) classification. There is human evidence that both iron-abundant mild steel as well as chromium- and nickel-containing stainless steel welding fumes contribute to an increased risk of lung cancer. Recent animal studies show that welding fumes may act as lung tumor promoters, regardless of the presence or absence of potentially carcinogenic metals, such as chromium and nickel. The goal of this manuscript was to examine the pulmonary responses associated with welding fumes by reviewing a series of recent experimental animal studies that assessed the influence of welding fume metal composition (e.g., stainless steel versus mild steel welding fume) on markers of lung toxicity and tumor development. Additional in vivo laboratory studies are needed to further explore the association between welding and lung cancer and to help advance our understanding of a potential mechanistic link.
Collapse
Affiliation(s)
- Patti C. Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
- West Virginia University, School of Medicine, Morgantown, WV
| | - Lauryn M. Falcone
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
- West Virginia University, School of Medicine, Morgantown, WV
| | - James M. Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| |
Collapse
|
13
|
Falcone LM, Erdely A, Salmen R, Keane M, Battelli L, Kodali V, Bowers L, Stefaniak AB, Kashon ML, Antonini JM, Zeidler-Erdely PC. Pulmonary toxicity and lung tumorigenic potential of surrogate metal oxides in gas metal arc welding-stainless steel fume: Iron as a primary mediator versus chromium and nickel. PLoS One 2018; 13:e0209413. [PMID: 30586399 PMCID: PMC6306264 DOI: 10.1371/journal.pone.0209413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 12/24/2022] Open
Abstract
In 2017, the International Agency for Research on Cancer classified welding fumes as "carcinogenic to humans" (Group 1). Both mild steel (MS) welding, where fumes lack carcinogenic chromium and nickel, and stainless steel (SS) increase lung cancer risk in welders; therefore, further research to better understand the toxicity of the individual metals is needed. The objectives were to (1) compare the pulmonary toxicity of chromium (as Cr(III) oxide [Cr2O3] and Cr (VI) calcium chromate [CaCrO4]), nickel [II] oxide (NiO), iron [III] oxide (Fe2O3), and gas metal arc welding-SS (GMAW-SS) fume; and (2) determine if these metal oxides can promote lung tumors. Lung tumor susceptible A/J mice (male, 4-5 weeks old) were exposed by oropharyngeal aspiration to vehicle, GMAW-SS fume (1.7 mg), or a low or high dose of surrogate metal oxides based on the respective weight percent of each metal in the fume: Cr2O3 + CaCrO4 (366 + 5 μg and 731 + 11 μg), NiO (141 and 281 μg), or Fe2O3 (1 and 2 mg). Bronchoalveolar lavage, histopathology, and lung/liver qPCR were done at 1, 7, 28, and 84 days post-aspiration. In a two-stage lung carcinogenesis model, mice were initiated with 3-methylcholanthrene (10 μg/g; intraperitoneal; 1x) or corn oil then exposed to metal oxides or vehicle (1 x/week for 5 weeks) by oropharyngeal aspiration. Lung tumors were counted at 30 weeks post-initiation. Results indicate the inflammatory potential of the metal oxides was Fe2O3 > Cr2O3 + CaCrO4 > NiO. Overall, the pneumotoxic effects were negligible for NiO, acute but not persistent for Cr2O3 + CaCrO4, and persistent for the Fe2O3 exposures. Fe2O3, but not Cr2O3 + CaCrO4 or NiO significantly promoted lung tumors. These results provide experimental evidence that Fe2O3 is an important mediator of welding fume toxicity and support epidemiological findings and the IARC classification.
Collapse
Affiliation(s)
- Lauryn M. Falcone
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
- West Virginia University, School of Medicine, Morgantown, West Virginia, United States of America
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
- West Virginia University, School of Medicine, Morgantown, West Virginia, United States of America
| | - Rebecca Salmen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Michael Keane
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Lori Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Vamsi Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Lauren Bowers
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Aleksandr B. Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Michael L. Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - James M. Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Patti C. Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
- West Virginia University, School of Medicine, Morgantown, West Virginia, United States of America
| |
Collapse
|
14
|
Krishnaraj J, Baba AB, Viswanathan P, Veeravarmal V, Balasubramanian V, Nagini S. Impact of stainless-steel welding fumes on proteins and non-coding RNAs regulating DNA damage response in the respiratory tract of Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1231-1245. [PMID: 30507362 DOI: 10.1080/15287394.2018.1550027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Substantial evidence has established the negative impact of inhalation exposure to welding fumes on respiratory functions. The aim of the present study was to investigate the effect of welding fume inhalation on expression of molecules that function as sensors, transducers and effectors of DNA damage response (DDR) in the respiratory tract of male Sprague-Dawley rats. Animals were exposed to 50 mg/m3 stainless steel welding fumes for 1 h/d for 4, 8, and 12 weeks, respectively. Histological examination demonstrated preneoplastic changes in trachea and bronchi with focal atelectasis and accumulation of chromium (Cr) in the lungs. This was associated with elevated levels of DNA damage markers (8-oxodG, γH2AX), ATM phosphorylation, cell cycle arrest, apoptosis induction, activation of homologous recombination (HR), non-homologous end joining (NHEJ), and Nrf2 signaling, as well as altered expression of noncoding RNAs (ncRNAs). However, after 12 weeks of exposure, DDR was compromised as reflected by resumption of the cell cycle, repair inhibition, and failure of apoptosis. Data demonstrate that exposure to welding fumes influences two crucial layers of DDR regulation, phosphorylation of key proteins in NHEJ and HR, as well as the ncRNAs that epigenetically modulate DDR. Evidence indicates that marked DNA damage coupled with non-productive DNA repair and apoptosis avoidance may be involved in neoplastic transformation.
Collapse
Affiliation(s)
- Jayaraman Krishnaraj
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| | - Abdul Basit Baba
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| | - Periasamy Viswanathan
- b Division of Pathology, Rajah Muthiah Medical College & Hospital , Annamalai University , Annamalinagar , TN , India
| | - Veeran Veeravarmal
- c Division of Oral Pathology, Rajah Muthiah Dental College & Hospital , Annamalai University , Annamalinagar , TN , India
| | - Viswalingam Balasubramanian
- d Department of Manufacturing Engineering, Faculty of Engineering and Technology , Annamalai University , Annamalainagar , TN , India
| | - Siddavaram Nagini
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| |
Collapse
|
15
|
Falcone LM, Erdely A, Kodali V, Salmen R, Battelli LA, Dodd T, McKinney W, Stone S, Donlin M, Leonard HD, Cumpston JL, Cumpston JB, Andrews RN, Kashon ML, Antonini JM, Zeidler-Erdely PC. Inhalation of iron-abundant gas metal arc welding-mild steel fume promotes lung tumors in mice. Toxicology 2018; 409:24-32. [PMID: 30055299 PMCID: PMC6390845 DOI: 10.1016/j.tox.2018.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Welding fumes were reclassified as a Group 1 carcinogen by the International Agency for Research on Cancer in 2017. Gas metal arc welding (GMAW) is a process widely used in industry. Fume generated from GMAW-mild steel (MS) is abundant in iron with some manganese, while GMAW-stainless steel (SS) fume also contains significant amounts of chromium and nickel, known carcinogenic metals. It has been shown that exposure to GMAW-SS fume in A/J mice promotes lung tumors. The objective was to determine if GMAW-MS fume, which lacks known carcinogenic metals, also promotes lung tumors in mice. Male A/J mice received a single intraperitoneal injection of corn oil or the initiator 3-methylcholanthrene (MCA; 10 μg/g) and, one week later, were exposed by whole-body inhalation to GMAW-MS aerosols for 4 hours/day x 4 days/week x 8 weeks at a mean concentration of 34.5 mg/m3. Lung nodules were enumerated by gross examination at 30 weeks post-initiation. GMAW-MS fume significantly increased lung tumor multiplicity in mice initiated with MCA (21.86 ± 1.50) compared to MCA/air-exposed mice (8.34 ± 0.59). Histopathological analysis confirmed these findings and also revealed an absence of inflammation. Bronchoalveolar lavage analysis also indicated a lack of lung inflammation and toxicity after short-term inhalation exposure to GMAW-MS fume. In conclusion, this study demonstrates that inhalation of GMAW-MS fume promotes lung tumors in vivo and aligns with epidemiologic evidence that shows MS welders, despite less exposure to carcinogenic metals, are at an increased risk for lung cancer.
Collapse
Affiliation(s)
- L M Falcone
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; West Virginia University, School of Medicine, Morgantown, WV, United States
| | - A Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; West Virginia University, School of Medicine, Morgantown, WV, United States
| | - V Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - R Salmen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - L A Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - T Dodd
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - W McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - S Stone
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - M Donlin
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - H D Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - J L Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - J B Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - R N Andrews
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, United States
| | - M L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - J M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - P C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; West Virginia University, School of Medicine, Morgantown, WV, United States.
| |
Collapse
|
16
|
Shoeb M, Joseph P, Kodali V, Mustafa G, Farris BY, Umbright C, Roberts JR, Erdely A, Antonini JM. Silica inhalation altered telomere length and gene expression of telomere regulatory proteins in lung tissue of rats. Sci Rep 2017; 7:17284. [PMID: 29230030 PMCID: PMC5725592 DOI: 10.1038/s41598-017-17645-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/28/2017] [Indexed: 12/27/2022] Open
Abstract
Exposure to silica can cause lung fibrosis and cancer. Identification of molecular targets is important for the intervention and/or prevention of silica-induced lung diseases. Telomeres consist of tandem repeats of DNA sequences at the end of chromosomes, preventing chromosomal fusion and degradation. Regulator of telomere length-1 (RTEL1) and telomerase reverse transcriptase (TERT), genes involved in telomere regulation and function, play important roles in maintaining telomere integrity and length. The goal of this study was to assess the effect of silica inhalation on telomere length and the regulation of RTEL1 and TERT. Lung tissues and blood samples were collected from rats at 4, 32, and 44 wk after exposure to 15 mg/m3 of silica × 6 h/d × 5 d. Controls were exposed to air. At all-time points, RTEL1 expression was significantly decreased in lung tissue of the silica-exposed animals compared to controls. Also, significant increases in telomere length and TERT were observed in the silica group at 4 and 32 wk. Telomere length, RTEL1 and TERT expression may serve as potential biomarkers related to silica exposure and may offer insight into the molecular mechanism of silica-induced lung disease and tumorigeneses.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| | - Pius Joseph
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Vamsi Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Gul Mustafa
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Breanne Y Farris
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Christina Umbright
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jenny R Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
17
|
Hariri A, Mohamad Noor N, Paiman NA, Ahmad Zaidi AM, Zainal Bakri SF. Heavy metals found in the breathing zone, toenails and lung function of welders working in an air-conditioned welding workplace. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2017; 24:646-651. [DOI: 10.1080/10803548.2017.1368950] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Azian Hariri
- Centre for Energy and Industrial Environment Studies (CEIES), Universiti Tun Hussein Onn Malaysia, Malaysia
| | - Noraishah Mohamad Noor
- Centre of Research and Innovation, DRB-HICOM University of Automotive Malaysia, Malaysia
| | - Nuur Azreen Paiman
- Centre for Energy and Industrial Environment Studies (CEIES), Universiti Tun Hussein Onn Malaysia, Malaysia
| | | | | |
Collapse
|
18
|
Guha N, Loomis D, Guyton KZ, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Vilahur N, Muller K, Straif K. Carcinogenicity of welding, molybdenum trioxide, and indium tin oxide. Lancet Oncol 2017; 18:581-582. [PMID: 28408286 DOI: 10.1016/s1470-2045(17)30255-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Neela Guha
- International Agency for Research on Cancer, Lyon, France
| | - Dana Loomis
- International Agency for Research on Cancer, Lyon, France
| | | | - Yann Grosse
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | - Nadia Vilahur
- International Agency for Research on Cancer, Lyon, France
| | - Karen Muller
- International Agency for Research on Cancer, Lyon, France
| | - Kurt Straif
- International Agency for Research on Cancer, Lyon, France
| |
Collapse
|