1
|
Koruk H, Payne C, Cressey P, Thanou M, Pouliopoulos AN. Delivering Gd-Labeled IgG Antibodies Into the Mouse Brain Following Focused Ultrasound Treatment. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:1018-1027. [PMID: 40087107 DOI: 10.1016/j.ultrasmedbio.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE Antibody-based therapy has emerged as a powerful tool for targeted treatment of neurological diseases, such as brain cancer and neurodegenerative disorders. However, direct, scalable, and safe confirmation of antibody delivery into the brain remains challenging. Antibodies can be effectively tracked when tagged with molecules that are detectable by medical imaging modalities, such as MRI, PET, or SPECT. In this study, we aimed to confirm gadolinium (Gd)-labeled IgG antibody delivery into the mouse brain using MRI, following exposure to focused ultrasound (FUS) and circulating microbubbles. METHODS We acquired MR images of the mouse brain to evaluate antibody delivery into the targeted brain region. First, we quantified the MR signal of Gd-labeled IgG antibodies in phantoms using preclinical 9.4 T and clinical 3 T MRI scanners. Then, we determined optimal ultrasound and MR imaging parameters to non-invasively and safely disrupt the blood-brain barrier in a localized and reversible manner and effectively monitor antibody delivery into the murine brain, respectively. RESULTS We confirmed that IgG antibodies can be reliably delivered into the murine brain using FUS and microbubble treatment and that we can track their biodistribution within the brain parenchyma using clinically relevant MR image sequences. The maximum detected volume of Gd-IgG antibody delivery (n = 4) was determined to be 0.12 ± 0.02 mm3 at t = 75.3 ± 17.3 minutes following treatment. CONCLUSION This work paves the way for a scalable and non-ionizing method for performing and evaluating antibody delivery into the brain.
Collapse
Affiliation(s)
- Hasan Koruk
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Chris Payne
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Paul Cressey
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Maya Thanou
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | | |
Collapse
|
2
|
Macfarlane AI, Soares JH, Maharaj M. Diagnostic accuracy of MRI without gadolinium for follow-up of pilocytic astrocytoma in the paediatric population. J Clin Neurosci 2025; 135:111173. [PMID: 40086097 DOI: 10.1016/j.jocn.2025.111173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE Pilocytic astrocytoma is the most common glial tumour in the paediatric population with a long-term life expectancy after surgery. Long-term radiological follow-up with magnetic resonance imaging (MRI) is necessary to detect recurrence of tumour or growth of residual tumour. Established MRI protocols typically dictate post-gadolinium sequences despite concerns around the side-effect and safety concerns of gadolinium-based contrast agents. This study aims to investigate whether omission of gadolinium-enhanced sequences for the long term follow-up MRI for paediatric patients with pilocytic astrocytoma, maintains diagnostic accuracy assessing potential recurrence or growth of residual tumour. METHODS A retrospective review of follow-up MRI for 47 patients with histopathologically proven pilocytic astrocytoma was performed. Patients with optic pathway or suprasellar glioma were excluded from this study. All patients underwent surgery and had a minimum of 2 years of postoperative imaging for review. MRIs were chosen from most recent report of stability or at a time when growth/progression had been diagnosed. Two neuroradiologists and two paediatric neurosurgeons were randomly allocated a series of MRIs with gadolinium enhanced sequences removed, reviewers were blinded to the original report and subsequent treatment decisions. In addition, 30 paired MRI studies were randomly allocated to second review to test interobserver reliability. The reviewer responses were recorded and compared with the original report and analysed with respect to preserved diagnostic accuracy. RESULTS 170 MRI scans were subject to review across 66 episodes of care for 47 patients. 22.7 % of patients experienced growth of residual tumour during the period of follow-up. The sensitivity of non-enhanced MRI for detection of growth was 82 % (95 %CI 64.40-92.12) with a specificity of 97.10 % (95 % CI 90.03-99.20). Accuracy was similar for both neuroradiologists and neurosurgeons (91.49 % vs. 94 %). Interobserver reliability was calculated using Cohen's Kappa co-efficient with a result of 0.792 showing substantial agreement. We also confirmed a statistically significant difference between gross total resection and sub-total resection and correlation with future growth (41 % vs. 0 %, n = 64, p = 0.001). CONCLUSION In paediatric patients who have undergone surgery for pilocytic astrocytoma, long term MRI follow-up without gadolinium-enhanced sequences maintains diagnostic accuracy compared with enhanced sequences. Omission of gadolinium-enhanced sequences may lead to decreased costs, duration of scans and anxiety around follow-up procedures.
Collapse
Affiliation(s)
- Adam Ian Macfarlane
- Department of Neurosurgery, Sydney Children's Hospital, Randwick, NSW, Australia.
| | - Jewel Hannah Soares
- Faculty of Medicine & Health, The University of New South Wales, Kensington, NSW, Australia
| | - Monish Maharaj
- Faculty of Medicine & Health, The University of New South Wales, Kensington, NSW, Australia; Department of Radiology, Prince of Wales Hospital, Randwick, NSW, Australia; NeuroSpine Clinic, Prince of Wales Private Hospital, Randwick, NSW, Australia
| |
Collapse
|
3
|
Mitiushev ND, Musaeva DU, Artemov DA, Syuy AV, Pavlova OS, Pirogov YA, Kabachkov EN, Fionov AV, Kytin VG, Konstantinova EA, Timoshenko VY, Baranov AN. Gadolinium-doped carbon nanoparticles: coordination, spectroscopic characterization and magnetic resonance relaxivity. Dalton Trans 2025. [PMID: 40208667 DOI: 10.1039/d5dt00362h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Carbon nanoparticles (CNPs) are attracting great attention as potential multifunctional agents for biomedical applications because of their bright fluorescence, low toxicity and flexibility of their physico-chemical properties. In the present paper, aqueous solutions of CNPs doped with gadolinium (Gd) (Gd-CNPs) within a widely varying range of Gd concentrations were prepared by hydrothermal synthesis. The influence of Gd doping on the optical properties and magnetic resonance (MR) relaxivity of Gd-CNPs was revealed. The Gd content was determined using X-ray fluorescence and spectrophotometry analysis. The composition of surface functional groups and coordination of Gd ions in Gd-CNPs were established by means of IR absorption spectroscopy and X-ray photoemission spectroscopy (XPS). The optical properties of Gd-CNPs in aqueous solutions were characterized by means of UV-visible-near-IR absorption spectroscopy and photoluminescence measurements with different excitation wavelengths. The local surroundings of Gd ions and paramagnetic centers in Gd-CNPs were probed by using electron paramagnetic resonance (EPR) spectroscopy. MR proton relaxation measurements in aqueous solutions of Gd-CNPs were carried out to determine the effect of Gd concentration on their MR contrasting. The obtained results characterize the coordination of Gd ions in Gd-CNPs and demonstrate new insights for controlling the optical and MR contrast properties of these nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Nikita D Mitiushev
- Faculty of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Moscow District, 142432 Chernogolovka, Russia
| | - Daria U Musaeva
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Daniil A Artemov
- Faculty of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexander V Syuy
- Emerging Technologies Research Center, XPANCEO, Dubai Investment Park First, Dubai, United Arab Emirates
| | - Olga S Pavlova
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Yury A Pirogov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Eugene N Kabachkov
- Institute of Solid State Physics, Russian Academy of Sciences, Moscow District, 142432 Chernogolovka, Russia
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Acad. Semenov Av. 1, Moscow district, 142432 Chernogolovka, Russia
| | - Alexandr V Fionov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.
| | - Vladimir G Kytin
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | | | - Viktor Yu Timoshenko
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Andrey N Baranov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.
| |
Collapse
|
4
|
DeAguero J, Howard T, Escobar GP, Dokladny K, Wagner B. Early endolysosomal dysfunction is a contributing factor to gadolinium-based contrast agent mouse renal proximal tubule epithelial cell injury. Cell Biol Toxicol 2025; 41:65. [PMID: 40175829 PMCID: PMC11965215 DOI: 10.1007/s10565-025-10014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
The prevalence of contrast-enhanced magnetic resonance imaging (MRI) examinations and the absence of safer alternatives to gadolinium-based contrast agents (GBCAs) make the associated adverse effects of GBCAs much more concerning. Safety concerns arise from the toxic behavior of heavy metal gadolinium (Gd3+) and the potential release of the metal from the chelating ligand. Renal insufficiency and other patient factors increase the susceptibility to the toxic effects of GBCAs. It is, therefore, imperative that the molecular and cellular mechanisms underlying GBCA toxicity be defined. This study aims to determine GBCA-induced endolysosomal dysfunction in mouse renal proximal tubule epithelial cells. Loss of cell viability was agent- and time-dependent, and proximal tubule injury was detectable following 24 h linear GBCA exposure. Both classes of GBCAs displayed lysosomotropic behaviors, characterized by early lysosomal enlargement and lysosomal injury. Hijacking of the endolysosomal system by these agents inhibited cathepsin processing by blocking the transport and maturation of cathepsin B (CTSB) and cathepsin D (CTSD). Lysosomal enlargement coincided with the translocation of CTSB and CTSD from the lysosomal lumen to the cytosol, suggesting lysosomal membrane destabilization. Even though both agents displayed a similar response, linear exposures appeared to exhibit a greater effect. Disturbance of mitochondrial activity and loss of cell viability occurs downstream of early lysosome damage. This effect was partially restored by lysosomal protease inhibitor co-treatment. This data suggests that GBCA exposures induce a lysosomal stress response, and partial LMP occurs upstream of mitochondrial dysfunction and resultant cellular injury.
Collapse
Affiliation(s)
- Joshua DeAguero
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Tamara Howard
- Department of Cell Biology & Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - G Patricia Escobar
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Karol Dokladny
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Brent Wagner
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- New Mexico Veterans Administration Health Care System, Research Service, Albuquerque, NM, USA.
| |
Collapse
|
5
|
Smieja D, Czupalla O, Günther C, Bussi S, Coppo A, Jones P, Forni M, Fretellier N, Bourrinet P, Luetjens CM. Evaluation of Gadolinium-Based Contrast Agents in Juvenile Non-Human Primates Including Behavioral Evaluations Such as Learning and Memory. Birth Defects Res 2025; 117:e2470. [PMID: 40237208 DOI: 10.1002/bdr2.2470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/14/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The US Food and Drug Administration (FDA) requested the four Gadolinium-Based Contrast Agents (GBCA) New Drug Application (NDA) holders to investigate the effects of gadolinium (Gd) retention on fetal and neonatal development in mice and juvenile non-human primates (NHP) as well as the effects of repeated GBCA administrations on behavioral, neurological, and histopathological endpoints. METHODS Two linear (gadodiamide and gadobenate dimeglumine) and one macrocyclic (gadobutrol) GBCA, intended to be representative of linear non-ionic, linear ionic, and macrocyclic GBCAs, were investigated in a juvenile toxicity study in the cynomolgus monkey. Clinical observations, body weight, food consumption, clinical chemistry, full histopathology, and behavioral/neurological parameters including learning and memory were assessed. Additionally, Gd was quantified in the brain and other selected organs/tissues. A total of 84 juvenile animals (n = 12/group) were intravenously dosed every 4 weeks from postnatal day 28 for a total of 8 administrations over 29 weeks. Evaluation at the end of dosing, or after a recovery phase, was conducted to assess the reversibility of any observed effects. Necropsy was performed on Day 198 of the dosing phase for four animals/group and Day 365 of the recovery phase for the remaining eight animals/group. RESULTS No GBCA-related adverse effects were observed in juvenile cynomolgus monkeys either at the end of the dosing or recovery periods. The no-observed-effect-levels (NOEL) for gadobutrol and gadodiamide administration were 0.9 mmol/kg and, for gadobenate dimeglumine, 0.3 mmol/kg (due to a non-adverse difference in learning during the recovery phase in the high dose group). The no-observed-adverse-effect-level (NOAEL) for all GBCAs was established as at least 0.9 mmol/kg. CONCLUSIONS Gd levels observed in brain tissue of cynomolgus monkey after juvenile exposure to multiples of equivalent clinical doses of all GBCAs tested did not correlate with any adverse morphological or functional findings. This study showed no evidence that exposure to GBCA during development presents a potential risk for long-term effects such as behavioral, neurological, or histopathological findings in the brain, and/or impaired learning or memory.
Collapse
Affiliation(s)
- Daniela Smieja
- Labcorp Early Development Services GmbH, Münster, Germany
| | | | | | | | | | - Paul Jones
- GE HealthCare, Plc, Chalfont St. Giles, UK
| | | | | | | | | |
Collapse
|
6
|
Dias I, Gano L, Chaves S, Santos MA. Gadolinium Complex with Tris-Hydroxypyridinone as an Input for New Imaging Probes: Thermodynamic Stability, Molecular Modeling and Biodistribution. Molecules 2025; 30:1295. [PMID: 40142068 PMCID: PMC11945079 DOI: 10.3390/molecules30061295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The development of gadolinium-based magnetic resonance imaging (MRI) contrast agents (CAs) is a highly challenging and demanding research field in metal-coordination medicinal chemistry. The recognized high capacity of hydroxypyridinone (HOPO)-based compounds to coordinate Gd (III) led us to evaluate the set of physic-chemical-biological properties of a new Gd (III) complex with a hexadentate tripodal ligand (H3L) containing three 3,4-HOPO chelating moieties attached to an anchoring cyclohexane backbone. In particular, the thermodynamic stability constants of the complex were evaluated by potentiometry, showing the formation of a highly stable (1:1) Gd-L complex (log βGdL = 26.59), with full coordination even in an acid-neutral pH under the experimental conditions used. Molecular simulations of the Gd (III) complex revealed a minimum energy structure with somewhat-distorted octahedral geometry, involving full metal hexa-coordination by the three bidentate moieties of the ligand arms, indicating that an extra water molecule should be coordinated to the metal ion, an important feature for the CAs (and the required enhancement of water proton relaxivity). In vivo biodistribution studies with the 67Ga complex, as a surrogate of the corresponding Gd complex, showed in vivo stability and rapid excretion from the animal body. Though deserving further investigation, these results may give an input on future perspectives towards new MRI diagnostic agents.
Collapse
Affiliation(s)
- Inês Dias
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), Loures, 2695-066 Bobadela, Portugal;
| | - Sílvia Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - M. Amélia Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
7
|
Zhang K, Triphan SMF, Wielpütz MO, Ziener CH, Ladd ME, Schlemmer HP, Kauczor HU, Sedlaczek O, Kurz FT. Non-contrast free-breathing liver perfusion imaging using velocity selective ASL combined with prospective motion compensation. Z Med Phys 2025; 35:87-97. [PMID: 38960810 PMCID: PMC11910247 DOI: 10.1016/j.zemedi.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
PURPOSE To apply velocity selective arterial spin labeling (VSASL) combined with a navigator-based (NAV) prospective motion compensation method for a free-breathing liver perfusion measurement without contrast agent. METHODS Sinc-modulated Velocity Selective Inversion (sinc-VSI) pulses were applied as labeling and control pulses. In order to account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI based readouts, navigator and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. The sinc-VSI without velocity-selective gradients during the control condition but with velocity-selective gradients along all three directions during labeling was chosen for the VSASL. The VSASL was compared with pseudo-continuous ASL (pCASL) methods, which selectively tagged the moving spins using a tagging plane placed at the portal vein and hepatic artery. RESULTS The motion caused by respiratory activity was effectively computed using the navigator signal. The coefficients of variation (CoV) of average liver voxel in NAV were significantly decreased when compared to breath-hold (BH), with an average reduction of 29.4 ± 18.44% for control images, and 29.89 ± 20.83% for label images (p < 0.001). The resulting maps of normalized ASL signal (normalized to M0) showed significantly higher perfusion weightings in the NAV-compensated VSASL, when compared to the NAV-compensated pCASL techniques. CONCLUSIONS This study demonstrates the feasibility of using a navigator-based prospective motion compensation technique in conjunction with VSASL for the measurement of liver perfusion without the use of contrast agents while allowing for free-breathing.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Divison of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Simon M F Triphan
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Christian H Ziener
- Divison of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Mark E Ladd
- Divison of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany; Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | | | - Hans-Ulrich Kauczor
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Sedlaczek
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Divison of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Felix T Kurz
- Divison of Radiology, German Cancer Research Center, Heidelberg, Germany; Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
8
|
Rafanan J, Ghani N, Kazemeini S, Nadeem-Tariq A, Shih R, Vida TA. Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment. Int J Mol Sci 2025; 26:917. [PMID: 39940686 PMCID: PMC11817476 DOI: 10.3390/ijms26030917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Advances in neuro-oncology have transformed the diagnosis and management of brain tumors, which are among the most challenging malignancies due to their high mortality rates and complex neurological effects. Despite advancements in surgery and chemoradiotherapy, the prognosis for glioblastoma multiforme (GBM) and brain metastases remains poor, underscoring the need for innovative diagnostic strategies. This review highlights recent advancements in imaging techniques, liquid biopsies, and artificial intelligence (AI) applications addressing current diagnostic challenges. Advanced imaging techniques, including diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS), improve the differentiation of tumor progression from treatment-related changes. Additionally, novel positron emission tomography (PET) radiotracers, such as 18F-fluoropivalate, 18F-fluoroethyltyrosine, and 18F-fluluciclovine, facilitate metabolic profiling of high-grade gliomas. Liquid biopsy, a minimally invasive technique, enables real-time monitoring of biomarkers such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), circulating tumor cells (CTCs), and tumor-educated platelets (TEPs), enhancing diagnostic precision. AI-driven algorithms, such as convolutional neural networks, integrate diagnostic tools to improve accuracy, reduce interobserver variability, and accelerate clinical decision-making. These innovations advance personalized neuro-oncological care, offering new opportunities to improve outcomes for patients with central nervous system tumors. We advocate for future research integrating these tools into clinical workflows, addressing accessibility challenges, and standardizing methodologies to ensure broad applicability in neuro-oncology.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (J.R.); (N.G.); (S.K.); (A.N.-T.); (R.S.)
| |
Collapse
|
9
|
Wu Y, Lloveras V, Lope-Piedrafita S, Mulero-Acevedo M, Candiota AP, Vidal-Gancedo J. Synthesis and Relaxivity study of amino acid-branched radical dendrimers as MRI contrast agents for potential brain tumor imaging. Acta Biomater 2025; 192:461-472. [PMID: 39647652 DOI: 10.1016/j.actbio.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
This study introduces a series of water-soluble radical dendrimers (G0 to G5) as promising magnetic resonance imaging (MRI) contrast agents that could potentially address clinical safety concerns associated with current gadolinium-based contrast agents. By using a simplified synthetic approach based on a cyclotriphosphazene core and lysine-derived branching units, we successfully developed a G5 dendrimer containing up to 192 units of 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) radical. This synthesis offers advantages including ease of preparation, purification, and tunable water solubility through the incorporation of glutamic acid anion residues. Comprehensive characterization using 1H NMR, FT-IR, and SEC-HPLC confirmed the dendrimers' structures and purity. Electron paramagnetic resonance (EPR) spectroscopy revealed that TEMPO groups in higher generation dendrimers exhibited decreased mobility and stronger spin exchange in their local environments. In vitro MRI showed that relaxivity (r1) increased with higher dendrimer generations, with G5 exhibiting an exceptionally high r1 of over 24 mM-1s-1. Molecular dynamics simulations provided crucial insights into structure-property relationships, revealing the importance of water accessibility to TEMPO groups for enhancing relaxivity. Vero cell viability assay demonstrated G3 and G3.5 have good biocompatibility. In vivo MRI experiments in mice demonstrated that G3.5 was excreted through the kidneys and selectively accumulated in glioblastoma tumors. STATEMENT OF SIGNIFICANCE: This study explores a class of MRI contrast agents based on organic radical dendrimers as a potential alternative to gadolinium-based agents. We present a simplified synthesis method for water-soluble dendrimers containing up to 192 TEMPO radical units-the highest number achieved to date for this class of compounds-resulting in record-high relaxivity values. Our approach offers easier preparation, purification, and tunable water solubility, representing an improvement over existing methods. Through combined experimental and computational studies, we provide insights into the structure-property relationships governing relaxivity. In vivo experiments demonstrate the dendrimers' potential for glioblastoma imaging, with predominantly renal excretion. This work represents a step towards developing metal-free MRI contrast agents with promising relaxivity and biocompatibility, potentially opening new avenues for diagnostic imaging research.
Collapse
Affiliation(s)
- Yufei Wu
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain
| | - Vega Lloveras
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain.
| | - Silvia Lope-Piedrafita
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Unitat de Biofísica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marta Mulero-Acevedo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ana Paula Candiota
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - José Vidal-Gancedo
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain.
| |
Collapse
|
10
|
Wang Y, Fushimi Y, Nakajima S, Sakata A, Okuchi S, Otani S, Tagawa H, Ikeda S, Ito S, Tanji M, Ibi Y, Morita S, Urushibata Y, Arakawa Y, Nakamoto Y. Quantitative Assessment of Gadolinium Deposition in Dentate Nuclei with MR Fingerprinting. Acad Radiol 2025; 32:391-399. [PMID: 39227216 DOI: 10.1016/j.acra.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
RATIONALE AND OBJECTIVES Gadolinium deposition in the dentate nucleus (DN) has been evaluated by T1-weighted imaging (T1WI) and T1 (R1) mapping, but not MR fingerprinting (MRF). This study investigated associations between T1 and T2 values of DN and gadolinium-based contrast agents (GBCAs) using 2-dimensional MRF. MATERIALS AND METHODS This study included 101 patients. Region of interest analysis was performed for T1 and T2 values of DN on MRF (T1-MRF, T2-MRF) and T1-weighted images (T1WI ratio). T1 and T2 ratios compared to normal cerebellar white matter (T1-MRF ratio, T2-MRF ratio) were calculated. The type of previous GBCA was confirmed in 79 patients, and linear regressions were performed between T1, T2 values and number of GBCAs. RESULTS Good correlations were observed between T1-MRF and T1WI ratio (ρ = -0.69, P < 0.001) and between T1-MRF ratio and T1WI ratio (ρ = -0.76, P < 0.001). Mild correlations were observed between T2-MRF and T1WI ratio (ρ = -0.32, P < 0.001) and between T2-MRF ratio and T1WI ratio (ρ = -0.44, P < 0.001). The number of linear-type GBCAs was associated with T1-MRF (β = -0.62, P < 0.001) and T1-MRF ratio (β = -0.54, P < 0.001) in univariate linear regression analyses, and with T1-MRF (β = -0.61, P < 0.001) and T1-MRF ratio (β = -0.53, P < 0.001) in multivariate analysis. The number of linear-type GBCAs was associated with T2-MRF (β = -0.30, P < 0.001) and T2-MRF ratio (β = -0.29, P < 0.001) in univariate analyses, and with T2-MRF (β = -0.31, P < 0.001) and T2-MRF ratio (β = -0.32, P < 0.001) in multivariate analyses. No associations were observed between number of macrocyclic GBCAs and T1-MRF (ratio) or T2-MRF (ratio). CONCLUSION The number of linear-type GBCA administrations was associated with lower T1 and T2 values (ratios) in DN.
Collapse
Affiliation(s)
- Yang Wang
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 JAPAN
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 JAPAN.
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 JAPAN
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 JAPAN
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 JAPAN
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 JAPAN
| | - Hiroshi Tagawa
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 JAPAN
| | - Satoshi Ikeda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 JAPAN
| | - Shuichi Ito
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 JAPAN
| | - Masahiro Tanji
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 JAPAN
| | - Yumiko Ibi
- Department of Clinical Trial Science, Institute for Advancement of Clinical and Translational Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 JAPAN
| | - Satoshi Morita
- Department of Clinical Trial Science, Institute for Advancement of Clinical and Translational Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 JAPAN
| | | | - Yoshiki Arakawa
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 JAPAN
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 JAPAN
| |
Collapse
|
11
|
Suslova EV, Shashurin DA, Maslakov KI, Kupreenko SY, Luneva TO, Medvedev OS, Chelkov GA. Composite Contrast Enhancement of Hydrogel-Based Implants for Photon-Counting Computed Tomography Studies. Gels 2024; 10:807. [PMID: 39727565 DOI: 10.3390/gels10120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Hydrogels have a wide range of medical applications, including use within implantable systems. However, when used in implants, their visibility under conventional medical imaging techniques is limited, creating safety risks for patients. In the current work, we assessed the possibility of enhancing hydrogels using Ln-based contrasting agents to facilitate their visualization in photon-counting computed tomography (PCCT). The contrast enhancement of gelatin, polyacrylamide (PAM), and silicone shells of implants was assessed. A novel synthetic route for producing cross-linked nanosized Ln2O3 with polyacrylamide was proposed and discussed in detail. Several prototypes of silicone implants, including silicone shell and gelatin or PAM filling with different combinations of contrasting agents, were produced and assessed in phantom PCCT studies.
Collapse
Affiliation(s)
- Evgeniya V Suslova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Denis A Shashurin
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave. 27 Bld. 10, 119991 Moscow, Russia
| | - Konstantin I Maslakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Stepan Yu Kupreenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Tatyana O Luneva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Oleg S Medvedev
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave. 27 Bld. 10, 119991 Moscow, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Georgy A Chelkov
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia
| |
Collapse
|
12
|
Forbes-Amrhein MM, Chow JS, Horst KK, Kim HH, Krishnamurthy R, Maloney E, McDonald RJ, Scheller LG, Stein D, Callahan MJ. Contrast Media in Children: Ten Important Concepts on Administration, Applications, Complications, and Environmental Considerations, From the AJR Special Series on Contrast Media. AJR Am J Roentgenol 2024. [PMID: 39602099 DOI: 10.2214/ajr.24.32009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Contrast media are an indispensable adjunct to pediatric imaging. The most common include iodine-based contrast media for CT and fluoroscopy, gadolinium-based contrast media and iron-oxide nanoparticles for MRI, and microbubbles for ultrasound. Although many of the considerations in the routine use of contrast media in infants and children (relating for example to renal function, allergic-like reactions, GBCM deposition, and extravasations) are similar to considerations in adult patients, some important differences exist. These variances are often age-dependent and require an appreciation of pediatric physiology for safe and effective clinical practice. This article highlights ten concepts relating to contrast media administration for diagnostic imaging in children that are important for radiologists and pediatricians to recognize and understand. We present contrast media classes and their use in children, discuss safety concerns and complications, and explore environmental impacts.
Collapse
Affiliation(s)
- Monica M Forbes-Amrhein
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Jeanne S Chow
- Department of Radiology, Boston Children's Hospital, Boston, MA
| | - Kelly K Horst
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Helen Hr Kim
- Department of Radiology, Seattle Children's Hospital, Seattle, WA
| | - Rajesh Krishnamurthy
- Department of Diagnostic Radiology, Nationwide Children's Hospital, Ohio State University
| | - Ezekiel Maloney
- Department of Radiology, Seattle Children's Hospital, Seattle, WA
| | - Robert J McDonald
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Leah G Scheller
- Department of Radiology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Deborah Stein
- Division of Nephrology, Boston Children's Hospital, Boston, MA
| | | |
Collapse
|
13
|
Wu Y, Lloveras V, Morgado A, Perez-Inestrosa E, Babaliari E, Psilodimitrakopoulos S, Vida Y, Vidal-Gancedo J. Water-Soluble Bimodal Magnetic-Fluorescent Radical Dendrimers as Potential MRI-FI Imaging Probes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65295-65306. [PMID: 39542431 PMCID: PMC11615848 DOI: 10.1021/acsami.4c13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 11/17/2024]
Abstract
Dual or multimodal imaging probes have become potent tools for enhancing detection sensitivity and accuracy in disease diagnosis. In this context, we present a bimodal imaging dendrimer-based structure that integrates magnetic and fluorescent imaging probes for potential applications in magnetic resonance imaging and fluorescence imaging. It stands out as one of the rare examples where bimodal imaging probes use organic radicals as the magnetic source, despite their tendency to entirely quench fluorophore fluorescence. Opting for organic radicals over metal-based contrast agents like gadolinium (Gd3+)-chelates is crucial to mitigate associated toxicity concerns. We utilized an amino-terminated polyamide dendrimer containing a 1,8-naphthalimide (Naft) fluorescent group, amino acid derivatives as linkers to enhance water solubility, and TEMPO organic radicals as terminal groups. The same dendrimer structure, featuring an equivalent number of branches but lacking the fluorophore group, was also functionalized with amino acid and terminal radicals to serve as a reference. Remarkably, we achieved a fully water-soluble dendrimer-based structure exhibiting both magnetic and fluorescent properties simultaneously. The fluorescence of the Naft group in the final structure is somewhat quenched by the organic radicals, likely due to photoinduced electron transfer with the nitroxyl radical acting as an electron acceptor, which has been supported by density functional theory calculations. Molecular dynamics simulations are employed to investigate how the dendrimers' structure influences the electron paramagnetic resonance characteristics, relaxivity, and fluorescence. In summary, despite the influence of the radicals-fluorophore interactions on fluorescence, this bimodal dendrimer demonstrates significant fluorescent properties and effective r1 relaxivity of 1.3 mM-1 s-1. These properties have proven effective in staining the live mesenchymal stem cells without affecting the cell nucleus.
Collapse
Affiliation(s)
- Yufei Wu
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain
| | - Vega Lloveras
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine (CIBER-BBN), Campus UAB, E-08193 Bellaterra, Spain
| | - Anjara Morgado
- Departamento
de Química Orgánica, Universidad
de Málaga, Campus Teatinos S/n, 29071 Málaga, Spain
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina–IBIMA, Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Ezequiel Perez-Inestrosa
- Departamento
de Química Orgánica, Universidad
de Málaga, Campus Teatinos S/n, 29071 Málaga, Spain
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina–IBIMA, Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Eleftheria Babaliari
- Foundation
for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | - Sotiris Psilodimitrakopoulos
- Foundation
for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | - Yolanda Vida
- Departamento
de Química Orgánica, Universidad
de Málaga, Campus Teatinos S/n, 29071 Málaga, Spain
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina–IBIMA, Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - José Vidal-Gancedo
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine (CIBER-BBN), Campus UAB, E-08193 Bellaterra, Spain
| |
Collapse
|
14
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
15
|
Zhang P, Barbot C, Gandikota R, Li C, Gouriou L, Gouhier G, Ling CC. Synthesis of an Ethylenediaminetetraacetic Acid-like Ligand Based on Sucrose Scaffold and Complexation and Proton Relaxivity Studies of Its Gadolinium(III) Complex in Solution. Molecules 2024; 29:4688. [PMID: 39407616 PMCID: PMC11478042 DOI: 10.3390/molecules29194688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Sucrose constitutes a non-toxic, biodegradable, low-cost and readily available natural product. To expand its utility, we developed total synthesis for a ligand based on a sucrose scaffold for potential use as a metal chelation agent. The designed target (compound 2) has a metal-chelating functionality at both the C-6 and C-6' positions, which can provide a first coordination sphere of eight valencies. The designed total synthesis was highly efficient. To demonstrate the utility of the ligand, we studied its complexation with Gd(III). Using potentiometric titration and high-resolution mass spectrometry, we confirmed the formation of a 1:1 complex with Gd(III), which has a respectable formation constant of ~1013.4. Further NMR relaxivity studies show that the Gd(III) complex has a relaxivity (r1) of 7.6958 mmol-1 s-1.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (P.Z.); (C.L.)
| | - Cécile Barbot
- University Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie University, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France; (C.B.); (R.G.); (L.G.)
| | - Ramakrishna Gandikota
- University Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie University, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France; (C.B.); (R.G.); (L.G.)
| | - Cenxiao Li
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (P.Z.); (C.L.)
| | - Laura Gouriou
- University Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie University, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France; (C.B.); (R.G.); (L.G.)
| | - Géraldine Gouhier
- University Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie University, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France; (C.B.); (R.G.); (L.G.)
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (P.Z.); (C.L.)
| |
Collapse
|
16
|
Luong CT, Audira G, Kurnia KA, Hung CH, Hsiao CD. Fish 3D Locomotion app: a user-friendly computer application package for automatic data calculation and endpoint extraction for novel tank behavior in fish. JOURNAL OF FISH BIOLOGY 2024; 105:1086-1108. [PMID: 39007187 DOI: 10.1111/jfb.15860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/11/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
This paper introduces the Fish 3D Locomotion app (F3LA), a Python-based, Graphical User Interface (GUI)-equipped tool designed to automate behavioral endpoint extraction in zebrafish locomotion assays. Building on our previous work, which utilized a specialized aquatic tank with a mirror and a single camera for fish movement tracking in three dimensions, F3LA significantly enhances data processing efficiency. Its accuracy was tested by reanalyzing and comprehensively comparing the calculated data with the previously published data from prior publications. From the comparison results, 90% of endpoints showed a similar statistical difference result. These minor differences were due to the different starting points for the dataset and updated calculation formulas that are implemented in F3LA. In addition, shoaling area or shoaling volume calculations are also included in F3LA as a new feature that can serve as sensitive indicators of social cohesion, group dynamics, or stress responses, offering insights into neuropsychological conditions or the effects of pharmacological interventions. Furthermore, F3LA offers a marked improvement over manual operations, being at least five times faster, while maintaining consistent accuracy as it reduces human-induced errors, ensuring a higher degree of reliability in the results. Finally, the potency of F3LA was tested to evaluate the toxicities of 14 rare earth elements (REEs) to the adult zebrafish behaviors. Based on the results, our findings suggested that each tested REE altered fish behaviors in different patterns and magnitudes to each other. However, among the tested light rare earth elements (LREEs), neodymium was demonstrated to cause more relatively severe behavior alterations than other LREEs, indicated by the statistically higher value of entropy (0.2695 ± 0.04977 (mean with a standard deviation)) than the control group (0.2352 ± 0.05896). Meanwhile, in terms of heavy rare earth elements (HREEs), erbium seemed to lead to more distinct behavior toxicities than other HREEs, which was shown by the statistically lower level of fractal dimension (2.022 ± 0.3412) than the untreated group (2.255 ± 0.1661). Taken together, F3LA's development marks a significant advance in high-throughput toxicological and pharmacological assessments in zebrafish, leveraging three-dimensional locomotion data for a more comprehensive analysis of fish behavior performance, providing a significant contribution to research in various fields.
Collapse
Affiliation(s)
- Cao Thang Luong
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Kevin Adi Kurnia
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Chih-Hsin Hung
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li, Taiwan
| |
Collapse
|
17
|
Cunningham A, Kirk M, Hong E, Yang J, Howard T, Brearley A, Sáenz-Trevizo A, Krawchuck J, Watt J, Henderson I, Dokladny K, DeAguero J, Escobar GP, Wagner B. The safety of magnetic resonance imaging contrast agents. FRONTIERS IN TOXICOLOGY 2024; 6:1376587. [PMID: 39188505 PMCID: PMC11345262 DOI: 10.3389/ftox.2024.1376587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/01/2024] [Indexed: 08/28/2024] Open
Abstract
Gadolinium-based contrast agents are increasingly used in clinical practice. While these pharmaceuticals are verified causal agents in nephrogenic systemic fibrosis, there is a growing body of literature supporting their role as causal agents in symptoms associated with gadolinium exposure after intravenous use and encephalopathy following intrathecal administration. Gadolinium-based contrast agents are multidentate organic ligands that strongly bind the metal ion to reduce the toxicity of the metal. The notion that cationic gadolinium dissociates from these chelates and causes the disease is prevalent among patients and providers. We hypothesize that non-ligand-bound (soluble) gadolinium will be exceedingly low in patients. Soluble, ionic gadolinium is not likely to be the initial step in mediating any disease. The Kidney Institute of New Mexico was the first to identify gadolinium-rich nanoparticles in skin and kidney tissues from magnetic resonance imaging contrast agents in rodents. In 2023, they found similar nanoparticles in the kidney cells of humans with normal renal function, likely from contrast agents. We suspect these nanoparticles are the mediators of chronic toxicity from magnetic resonance imaging contrast agents. This article explores associations between gadolinium contrast and adverse health outcomes supported by clinical reports and rodent models.
Collapse
Affiliation(s)
- Amy Cunningham
- School of Medicine, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Martin Kirk
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, United States
| | - Emily Hong
- School of Medicine, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Jing Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, United States
| | - Tamara Howard
- Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Angelica Sáenz-Trevizo
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Jacob Krawchuck
- Sandia National Laboratory, Center for Integrated Nanotechnologies, Albuquerque, NM, United States
| | - John Watt
- Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Albuquerque, NM, United States
| | | | - Karol Dokladny
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Kidney Institute of New Mexico, Albuquerque, NM, United States
| | - Joshua DeAguero
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Kidney Institute of New Mexico, Albuquerque, NM, United States
| | - G. Patricia Escobar
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Kidney Institute of New Mexico, Albuquerque, NM, United States
| | - Brent Wagner
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Kidney Institute of New Mexico, Albuquerque, NM, United States
- New Mexico VA Healthcare System, Research Service, Albuquerque, NM, United States
| |
Collapse
|
18
|
Bae S, Liu K, Pouliopoulos AN, Ji R, Jiménez-Gambín S, Yousefian O, Kline-Schoder AR, Batts AJ, Tsitsos FN, Kokossis D, Mintz A, Honig LS, Konofagou EE. Transcranial blood-brain barrier opening in Alzheimer's disease patients using a portable focused ultrasound system with real-time 2-D cavitation mapping. Theranostics 2024; 14:4519-4535. [PMID: 39113808 PMCID: PMC11303073 DOI: 10.7150/thno.94206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/14/2024] [Indexed: 08/10/2024] Open
Abstract
Background : Focused ultrasound (FUS) in combination with microbubbles has recently shown great promise in facilitating blood-brain barrier (BBB) opening for drug delivery and immunotherapy in Alzheimer's disease (AD). However, it is currently limited to systems integrated within the MRI suites or requiring post-surgical implants, thus restricting its widespread clinical adoption. In this pilot study, we investigate the clinical safety and feasibility of a portable, non-invasive neuronavigation-guided FUS (NgFUS) system with integrated real-time 2-D microbubble cavitation mapping. Methods : A phase 1 clinical study with mild to moderate AD patients (N = 6) underwent a single session of microbubble-mediated NgFUS to induce transient BBB opening (BBBO). Microbubble activity under FUS was monitored with real-time 2-D cavitation maps and dosing to ensure the efficacy and safety of the NgFUS treatment. Post-operative MRI was used for BBB opening and closure confirmation as well as safety assessment. Changes in AD biomarker levels in both blood serum and extracellular vesicles (EVs) were evaluated, while changes in amyloid-beta (Aβ) load in the brain were assessed through 18F-florbetapir PET. Results : BBBO was achieved in 5 out of 6 subjects with an average volume of 983 ± 626 mm3 following FUS at the right frontal lobe both in white and gray matter regions. The outpatient treatment was completed within 34.8 ± 10.7 min. Cavitation dose significantly correlated with the BBBO volume (R 2 > 0.9, N = 4), demonstrating the portable NgFUS system's capability of predicting opening volumes. The cavitation maps co-localized closely with the BBBO location, representing the first report of real-time transcranial 2-D cavitation mapping in the human brain. Larger opening volumes correlated with increased levels of AD biomarkers, including Aβ42 (R 2 = 0.74), Tau (R 2 = 0.95), and P-Tau181 (R 2 = 0.86), assayed in serum-derived EVs sampled 3 days after FUS (N = 5). From PET scans, subjects showed a lower Aβ load increase in the treated frontal lobe region compared to the contralateral region. Reduction in asymmetry standardized uptake value ratios (SUVR) correlated with the cavitation dose (R 2 > 0.9, N = 3). Clinical changes in the mini-mental state examination over 6 months were within the expected range of cognitive decline with no additional changes observed as a result of FUS. Conclusion : We showed the safety and feasibility of this cost-effective and time-efficient portable NgFUS treatment for BBBO in AD patients with the first demonstration of real-time 2-D cavitation mapping. The cavitation dose correlated with BBBO volume, a slowed increase in pathology, and serum detection of AD proteins. Our study highlights the potential for accessible FUS treatment in AD, with or without drug delivery.
Collapse
Affiliation(s)
- Sua Bae
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Keyu Liu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | - Robin Ji
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | - Omid Yousefian
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | - Alec J. Batts
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Fotios N. Tsitsos
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Danae Kokossis
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lawrence S. Honig
- Department of Neurology and Taub Institute, Columbia University Irving Medical Center 10032, New York, NY, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
19
|
Strunz F, Stähli C, Heverhagen JT, Hofstetter W, Egli RJ. Gadolinium-Based Contrast Agents and Free Gadolinium Inhibit Differentiation and Activity of Bone Cell Lineages. Invest Radiol 2024; 59:495-503. [PMID: 38117137 DOI: 10.1097/rli.0000000000001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
OBJECTIVES Administration of gadolinium-based contrast agents (GBCA) in magnetic resonance imaging results in the long-term retention of gadolinium (Gd) in tissues and organs, including the bone, and may affect their function and metabolism. This study aims to investigate the effects of Gd and GBCA on the proliferation/survival, differentiation, and function of bone cell lineages. MATERIALS AND METHODS Primary murine osteoblasts (OB) and osteoclast progenitor cells (OPC) isolated from C57BL/6J mice were used to test the effects of Gd 3+ (12.5-100 μM) and GBCA (100-2000 μM). Cultures were supplemented with the nonionic linear Gd-DTPA-BMA (gadodiamide), ionic linear Gd-DTPA (gadopentetic acid), and macrocyclic Gd-DOTA (gadoteric acid). Cell viability and differentiation were analyzed on days 4-6 of the culture. To assess the resorptive activity of osteoclasts, the cells were grown in OPC cultures and were seeded onto layers of amorphous calcium phosphate with incorporated Gd. RESULTS Gd 3+ did not affect OB viability, but differentiation was reduced dose-dependently up to 72.4% ± 6.2%-73.0% ± 13.2% (average ± SD) at 100 μM Gd 3+ on days 4-6 of culture as compared with unexposed controls ( P < 0.001). Exposure to GBCA had minor effects on OB viability with a dose-dependent reduction up to 23.3% ± 10.2% for Gd-DTPA-BMA at 2000 μM on day 5 ( P < 0.001). In contrast, all 3 GBCA caused a dose-dependent reduction of differentiation up to 88.3% ± 5.2% for Gd-DTPA-BMA, 49.8% ± 16.0% for Gd-DTPA, and 23.1% ± 8.7% for Gd-DOTA at 2000 μM on day 5 ( P < 0.001). In cultures of OPC, cell viability was not affected by Gd 3+ , whereas differentiation was decreased by 45.3% ± 9.8%-48.5% ± 15.8% at 100 μM Gd 3+ on days 4-6 ( P < 0.05). Exposure of OPC to GBCA resulted in a dose-dependent increase in cell viability of up to 34.1% ± 11.4% at 2000 μM on day 5 of culture ( P < 0.001). However, differentiation of OPC cultures was reduced on day 5 by 24.2% ± 9.4% for Gd-DTPA-BMA, 47.1% ± 14.0% for Gd-DTPA, and 38.2% ± 10.0% for Gd-DOTA ( P < 0.001). The dissolution of amorphous calcium phosphate by mature osteoclasts was reduced by 36.3% ± 5.3% upon incorporation of 4.3% Gd/Ca wt/wt ( P < 0.001). CONCLUSIONS Gadolinium and GBCA inhibit differentiation and activity of bone cell lineages in vitro. Thus, Gd retention in bone tissue could potentially impair the physiological regulation of bone turnover on a cellular level, leading to pathological changes in bone metabolism.
Collapse
Affiliation(s)
- Franziska Strunz
- From the Bone and Joint Program, Department for BioMedical Research, University of Bern, Bern, Switzerland (F.S., W.H., R.J.E.); Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland (F.S.); RMS-Foundation, Bettlach, Switzerland (C.S.); Department of Diagnostic, Interventional, and Pediatric Radiology, University Hospital, Inselspital, University of Bern, Bern, Switzerland (J.T.H., R.J.E.); and Clinic for Cranio-Maxillofacial Surgery, Department for BioMedical Research, University of Bern, Bern, Switzerland (W.H.)
| | | | | | | | | |
Collapse
|
20
|
Wang C, Zhang C, Sun J, Yan R, Liu X, Jia L, Peng X. Risk of acute kidney injury following contrast-enhanced CT or MRI in a cohort of 3061 hospitalized children in China. BMC Pediatr 2024; 24:400. [PMID: 38898400 PMCID: PMC11186257 DOI: 10.1186/s12887-024-04875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/09/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVES To compare the risk of acute kidney injury (AKI) between hospitalized children who received intravenous contrast media for imaging examinations and those who did not. METHODS This retrospective cohort study enrolled patients aged 0-18 years with serum creatinine levels before and after imaging examinations from 2015 to 2020 at Beijing Children's Hospital. Participants were classified into an exposure group or a control group. Log-binomial regression analysis was used to estimate the adjusted risk ratio (aRR) value for the association between exposure to contrast media and consequential AKI. After which, inverse probability treatment weighting was used to reduce systematic differences in baseline characteristics among the groups. Moreover, subgroup and sensitivity analyses were performed. Finally, multivariate logistic regression analysis was performed to identify risk factors for pediatric AKI. RESULTS In total, 3061 pediatric patients were included in the analyses (median age, 4.5 [IQR, 1.3-8.9] years, 1760 males). According the KDIGO definition of AKI, the incidence of AKI in the exposure group, and the control group were 7.4% and 6.5%, respectively; furthermore, the aRR was 1.35 (95% CI: 1.31-1.39). In patients underwent CT, the risk of AKI in the exposure group of contrast media increased compared with the control group and the aRR was 1.39 (95% CI: 1.09-1.78). However, it is not observed in patients underwent MRI (aRR: 1.36; 95% CI: 0.96-1.95). According to our subgroup analysis of pediatric patients aged ≥ 2 years (aRR: 1.38; 95% CI: 1.05-1.82) and sensitivity analysis (aRR: 1.32, 95% CI: 1.08-1.61), the risk of AKI in the exposure group was greater than that in the control group. An increased risk to exposure to contrast media was seen in females (aRR: 1.41, 95% CI: 1.05-1.89) rather than males (aRR: 1.30, 95% CI: 0.99-1.70). According to the multivariate logistic regression analyses, the baseline eGFR (OR: 1.02; 95% CI: 1.01-1.03) and comorbidities (OR: 2.97; 95% CI: 1.89-4.65) were risk factors, while age (OR: 0.87; 95% CI: 0.84-0.91) was a protective factor against AKI. CONCLUSION The evidence from the present study suggested that the increased risk of AKI in hospitalized children induced by intravascular contrast should not be ignored.
Collapse
Affiliation(s)
- Chen Wang
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children Health, No.56 Nanlishi Road, Beijing, 100045, China
| | - Chao Zhang
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children Health, No.56 Nanlishi Road, Beijing, 100045, China
| | - Jihang Sun
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ruohua Yan
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children Health, No.56 Nanlishi Road, Beijing, 100045, China
| | - Xiaohang Liu
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children Health, No.56 Nanlishi Road, Beijing, 100045, China
| | - Lulu Jia
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nanlishi Road, Beijing, 100045, China.
| | - Xiaoxia Peng
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children Health, No.56 Nanlishi Road, Beijing, 100045, China.
| |
Collapse
|
21
|
Zhang Y, Peng B, Chen S, Liang Q, Zhang Y, Lin S, Xu Z, Zhang J, Hou G, Qiu Y. Reduced coupling between global signal and cerebrospinal fluid inflow in patients with depressive disorder: A resting state functional MRI study. J Affect Disord 2024; 354:136-142. [PMID: 38484877 DOI: 10.1016/j.jad.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Depressed patients often suffer from sleep disturbance, which has been recognized to be responsible for glymphatic dysfunction. The purpose of this study was to investigate the coupling strength of global blood‑oxygen-level-dependent (gBOLD) signals and cerebrospinal fluid (CSF) inflow dynamics, which is a biomarker for glymphatic function, in depressed patients and to explore its potential relationship with sleep disturbance by using resting-state functional MRI. METHODS A total of 138 depressed patients (112 females, age: 34.70 ± 13.11 years) and 84 healthy controls (29 females, age: 36.6 ± 11.75 years) participated in this study. The gBOLD-CSF coupling strength was calculated to evaluate glymphatic function. Sleep disturbance was evaluated using the insomnia items (item 4 for insomnia-early, item 5 for insomnia-middle, and item 6 for insomnia-late) of The 17-item Hamilton Depression Rating Scale for depressed patients, which was correlated with the gBOLD-CSF coupling strength. RESULTS The depressed patients exhibited weaker gBOLD-CSF coupling relative to healthy controls (p = 0.022), possibly due to impairment of the glymphatic system. Moreover, the gBOLD-CSF coupling strength correlated with insomnia-middle (r = 0.097, p = 0.008) in depressed patients. Limitations This study is a cross-sectional study. CONCLUSION Our findings shed light on the pathophysiology of depression, indicating that cerebral waste clearance system deficits are correlated with poor sleep quality in depressed patients.
Collapse
Affiliation(s)
- Yanyu Zhang
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Duobao AVE 56, Liwan district, Guangzhou 510145, People's Republic of China
| | - Bo Peng
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Qunjun Liang
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Yingli Zhang
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Ziyun Xu
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Jiayun Zhang
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Duobao AVE 56, Liwan district, Guangzhou 510145, People's Republic of China
| | - Gangqiang Hou
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China.
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, People's Republic of China.
| |
Collapse
|
22
|
Bae S, Liu K, Pouliopoulos AN, Ji R, Jiménez-Gambín S, Yousefian O, Kline-Schoder AR, Batts AJ, Tsitsos FN, Kokossis D, Mintz A, Honig LS, Konofagou EE. Transcranial Blood-Brain Barrier Opening in Alzheimer's Disease Patients Using a Portable Focused Ultrasound System with Real-Time 2-D Cavitation Mapping. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.12.21.23300222. [PMID: 38196636 PMCID: PMC10775403 DOI: 10.1101/2023.12.21.23300222] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Focused ultrasound (FUS) in combination with microbubbles has recently shown great promise in facilitating blood-brain barrier (BBB) opening for drug delivery and immunotherapy in Alzheimer's disease (AD). However, it is currently limited to systems integrated within the MRI suites or requiring post-surgical implants, thus restricting its widespread clinical adoption. In this pilot study, we investigate the clinical safety and feasibility of a portable, non-invasive neuronavigation-guided FUS (NgFUS) system with integrated real-time 2-D microbubble cavitation mapping. Methods A phase 1 clinical study with mild to moderate AD patients (N=6) underwent a single session of microbubble-mediated NgFUS to induce transient BBB opening (BBBO). Microbubble activity under FUS was monitored with real-time 2-D cavitation maps and dosing to ensure the efficacy and safety of the NgFUS treatment. Post-operative MRI was used for BBB opening and closure confirmation as well as safety assessment. Changes in AD biomarker levels in both blood serum and extracellular vesicles (EVs) were evaluated, while changes in amyloid-beta (Aβ) load in the brain were assessed through 18F-Florbetapir PET. Results BBBO was achieved in 5 out of 6 subjects with an average volume of 983±626 mm3 following FUS at the right frontal lobe both in white and gray matter regions. The outpatient treatment was completed within 34.8±10.7 min. Cavitation dose significantly correlated with the BBBO volume (R 2>0.9, N=4), demonstrating the portable NgFUS system's capability of predicting opening volumes. The cavitation maps co-localized closely with the BBBO location, representing the first report of real-time transcranial 2-D cavitation mapping in the human brain. Larger opening volumes correlated with increased levels of AD biomarkers, including Aβ42 (R 2=0.74), Tau (R 2=0.95), and P-Tau181 (R 2=0.86), assayed in serum-derived EVs sampled 3 days after FUS (N=5). From PET scans, subjects showed a lower Aβ load increase in the treated frontal lobe region compared to the contralateral region. Reduction in asymmetry standardized uptake value ratios (SUVR) correlated with the cavitation dose (R 2>0.9, N=3). Clinical changes in the mini-mental state examination over 6 months were within the expected range of cognitive decline with no additional changes observed as a result of FUS. Conclusion We showed the safety and feasibility of this cost-effective and time-efficient portable NgFUS treatment for BBBO in AD patients with the first demonstration of real-time 2-D cavitation mapping. The cavitation dose correlated with BBBO volume, a slowed increase in pathology, and serum detection of AD proteins. Our study highlights the potential for accessible FUS treatment in AD, with or without drug delivery.
Collapse
Affiliation(s)
- Sua Bae
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Keyu Liu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | - Robin Ji
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | - Omid Yousefian
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | - Alec J. Batts
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Fotios N. Tsitsos
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Danae Kokossis
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lawrence S. Honig
- Department of Neurology and Taub Institute, Columbia University Irving Medical Center 10032, New York, NY, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
23
|
Zimmerer A, Schulze F, Gebhardt S, Huesker K, Stobbe D, Grolimund D, Hesse B, Wassilew GI, Schoon J. Impact of gadolinium-based MRI contrast agent and local anesthetics co-administration on chondrogenic gadolinium uptake and cytotoxicity. Heliyon 2024; 10:e29719. [PMID: 38681575 PMCID: PMC11053198 DOI: 10.1016/j.heliyon.2024.e29719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024] Open
Abstract
The gadolinium-based contrast agent DOTA-Gd is clinically used in combination with local anesthetics for direct magnetic resonance arthrography. It remains unclear whether gadolinium uptake into cartilage is influenced by co-administration of bupivacaine or ropivacaine and whether DOTA-Gd alters their chondrotoxicity. Gadolinium quantification of chondrogenic spheroids revealed enhanced gadolinium uptake after simultaneous exposure to local anesthetics. Analyses of the spatial gadolinium distribution using synchrotron X-ray-fluorescence scanning indicates gadolinium exposed chondrocytes. In vitro exposure to DOTA-Gd does not alter viability and proliferation of human chondrocytes and the chondrotoxic potential of the anesthetics. Reduced viability induced by ropivacaine was found to be reversible, while exposure to bupivacaine leads to irreversible cell death. Our data suggest that ropivacaine is more tolerable than bupivacaine and that DOTA-Gd exposure does not alter the cytotoxicity of both anesthetics. Enhanced gadolinium uptake into cartilage due to co-administration of anesthetics should find attention.
Collapse
Affiliation(s)
- Alexander Zimmerer
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Germany
- Diakonieklinikum Stuttgart, Department of Orthopaedic and Trauma Surgery, Orthopädische Klinik Paulinenhilfe, Stuttgart, Germany
| | - Frank Schulze
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Germany
| | - Sebastian Gebhardt
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Germany
| | - Katrin Huesker
- Immunology Department, Institute for Medical Diagnostics (IMD), Berlin, Germany
| | - Dirk Stobbe
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Germany
| | - Daniel Grolimund
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Bernhard Hesse
- Xploraytion GmbH, Berlin, Germany
- ESRF-The European Synchrotron, Grenoble, France
| | - Georgi I. Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Germany
| |
Collapse
|
24
|
Iacobellis F, Di Serafino M, Russo C, Ronza R, Caruso M, Dell’Aversano Orabona G, Camillo C, Sabatino V, Grimaldi D, Rinaldo C, Barbuto L, Verde F, Giacobbe G, Schillirò ML, Scarano E, Romano L. Safe and Informed Use of Gadolinium-Based Contrast Agent in Body Magnetic Resonance Imaging: Where We Were and Where We Are. J Clin Med 2024; 13:2193. [PMID: 38673466 PMCID: PMC11051151 DOI: 10.3390/jcm13082193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Gadolinium-based contrast agents (GBCAs) have helped to improve the role of magnetic resonance imaging (MRI) for the diagnosis and treatment of diseases. There are currently nine different commercially available gadolinium-based contrast agents (GBCAs) that can be used for body MRI cases, and which are classifiable according to their structures (cyclic or linear) or biodistribution (extracellular-space agents, target/specific-agents, and blood-pool agents). The aim of this review is to illustrate the commercially available MRI contrast agents, their effect on imaging, and adverse reaction on the body, with the goal to lead to their proper selection in different clinical contexts. When we have to choose between the different GBCAs, we have to consider several factors: (1) safety and clinical impact; (2) biodistribution and diagnostic application; (3) higher relaxivity and better lesion detection; (4) higher stability and lower tissue deposit; (5) gadolinium dose/concentration and lower volume injection; (6) pulse sequences and protocol optimization; (7) higher contrast-to-noise ratio at 3.0 T than at 1.5 T. Knowing the patient's clinical information, the relevant GBCAs properties and their effect on body MRI sequences are the key features to perform efficient and high-quality MRI examination.
Collapse
Affiliation(s)
- Francesca Iacobellis
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Marco Di Serafino
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Camilla Russo
- Neuroradiology Unit, Department of Neuroscience Santobono-Pausilipon Children’s Hospital, 80122 Naples, Italy;
| | - Roberto Ronza
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Martina Caruso
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Giuseppina Dell’Aversano Orabona
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Costanza Camillo
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Vittorio Sabatino
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Dario Grimaldi
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Chiara Rinaldo
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Luigi Barbuto
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Francesco Verde
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Giuliana Giacobbe
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Maria Laura Schillirò
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Enrico Scarano
- Department of Radiology, “San Carlo” Hospital, 85100 Potenza, Italy;
| | - Luigia Romano
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| |
Collapse
|
25
|
Wu L, Lu X, Lu Y, Shi M, Guo S, Feng J, Yang S, Xiong W, Xu Y, Yan C, Shen Z. Kilogram-Scale Synthesis of Extremely Small Gadolinium Oxide Nanoparticles as a T 1-Weighted Contrast Agent for Magnetic Resonance Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308547. [PMID: 37988646 DOI: 10.1002/smll.202308547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Magnetic resonance imaging contrast agents are frequently used in clinics to enhance the contrast between diseased and normal tissues. The previously reported poly(acrylic acid) stabilized exceedingly small gadolinium oxide nanoparticles (ES-GdON-PAA) overcame the problems of commercial Gd chelates, but limitations still exist, i.e., high r2/r1 ratio, long blood circulation half-life, and no data for large scale synthesis and formulation optimization. In this study, polymaleic acid (PMA) is found to be an ideal stabilizer to synthesize ES-GdONs. Compared with ES-GdON-PAA, the PMA-stabilized ES-GdON (ES-GdON-PMA) has a lower r2/r1 ratio (2.05, 7.0 T) and a lower blood circulation half-life (37.51 min). The optimized ES-GdON-PMA-9 has an exceedingly small particle size (2.1 nm), excellent water dispersibility, and stability. A facile, efficient, and environmental friendly synthetic method is developed for large-scale synthesis of the ES-GdONs-PMA. The weight of the optimized freeze-dried ES-GdON-PMA-26 synthesized in a 20 L of reactor reaches the kilogram level. The formulation optimization is also finished, and the concentrated ES-GdON-PMA-26 formulation (CGd = 100 mm) after high-pressure steam sterilization possesses eligible physicochemical properties (i.e., pH value, osmolality, viscosity, and density) for investigational new drug application.
Collapse
Affiliation(s)
- Lihe Wu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Xuanyi Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Yudie Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Meng Shi
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Shuai Guo
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Sugeun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22212, South Korea
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
26
|
Fierro O, Siano F, Bianco M, Vasca E, Picariello G. Comprehensive molecular level characterization of protein- and polyphenol-rich tara (Caesalpinia spinosa) seed germ flour suggests novel hypothesis about possible accidental hazards. Food Res Int 2024; 181:114119. [PMID: 38448102 DOI: 10.1016/j.foodres.2024.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Tara (Caesalpinia spinosa, Leguminosae) seed germ (TSG), a by-product of tara gum (E417) extraction, has been used as a protein- and polyphenol-rich food ingredient for human and animal nutrition. Nevertheless, TSG is the alleged culprit for a recent foodborne outbreak of even severe acute illnesses that have affected hundreds of individuals in the USA, perhaps triggered by nonprotein amino acids such as baikiain. Herein, the composition of TSG has been characterized at molecular level, with a focus on proteins, phenolics, lipids, and mineral composition. TSG contains 43.4 % (w/w) proteins, tentatively identified for the first time by proteomics, and 14 % lipids, consisting of 83.6 % unsaturated fatty acids, especially linoleic acid. Ash is surprising high (6.5 %) because of an elevated concentration of P, K, Ca, and Mg. The detection of a rare earth element such as gadolinium (Gd, 1.6 mg kg-1), likely sourced from anthropogenic pollution, suggests alternative hypotheses for the origin of TSG hazards.
Collapse
Affiliation(s)
- Olga Fierro
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy
| | - Francesco Siano
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy
| | - Mariacristina Bianco
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Ermanno Vasca
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Gianluca Picariello
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy.
| |
Collapse
|
27
|
Zou Q, Chen X, Li B, Zhang R, Pan J, Zhang X, Zhang X, Sun SK. Bioinspired BSA@polydopamine@Fe Nanoprobe with Self-Purification Capacity for Targeted Magnetic Resonance Imaging of Acute Kidney Injury. ACS NANO 2024; 18:4783-4795. [PMID: 38301134 DOI: 10.1021/acsnano.3c09193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Contrast-enhanced magnetic resonance imaging (CE-MRI) of acute kidney injury (AKI) is severely hindered by the poor targeting capacity and potential toxicity of current contrast agents. Herein, we propose one-step fabrication of a bovine serum albumin@polydopamine@Fe (BSA@PDA@Fe, BPFe) nanoprobe with self-purification capacity for targeted CE-MRI of AKI. BSA endows the BPFe nanoprobe with renal tubule-targeting ability, and PDA is capable of completely inhibiting the intrinsic metal-induced reactive oxygen species (ROS), which are always involved in Fe/Mn-based agents. The as-prepared nanoprobe owns a tiny size of 2.7 nm, excellent solubility, good T1 MRI ability, superior biocompatibility, and powerful antioxidant capacity. In vivo CE-MRI shows that the BPFe nanoprobe can accumulate in the renal cortex due to the reabsorption effect toward the serum albumin. In the AKI model, impaired renal reabsorption function can be effortlessly detected via the diminishment of renal cortical signal enhancement. More importantly, the administration of the BPFe nanoprobe would not aggravate renal damage of AKI due to the outstanding self-purification capacity. Besides, the BPFe nanoprobe is employed for CE-MR angiography to visualize fine vessel structures. This work provides an MRI contrast agent with good biosafety and targeting ability for CE-MRI of kidney diseases.
Collapse
Affiliation(s)
- Quan Zou
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xi Chen
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Bingjie Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ruijie Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
28
|
Ding L, Lyu Z, Perles-Barbacaru TA, Huang AYT, Lian B, Jiang Y, Roussel T, Galanakou C, Giorgio S, Kao CL, Liu X, Iovanna J, Bernard M, Viola A, Peng L. Modular Self-Assembling Dendrimer Nanosystems for Magnetic Resonance and Multimodality Imaging of Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308262. [PMID: 38030568 DOI: 10.1002/adma.202308262] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Bioimaging is a powerful tool for diagnosing tumors but remains limited in terms of sensitivity and specificity. Nanotechnology-based imaging probes able to accommodate abundant imaging units with different imaging modalities are particularly promising for overcoming these limitations. In addition, the nanosized imaging agents can specifically increase the contrast of tumors by exploiting the enhanced permeability and retention effect. A proof-of-concept study is performed on pancreatic cancer to demonstrate the use of modular amphiphilic dendrimer-based nanoprobes for magnetic resonance (MR) imaging (MRI) or MR/near-infrared fluorescence (NIRF) multimodality imaging. Specifically, the self-assembly of an amphiphilic dendrimer bearing multiple Gd3+ units at its terminals, generates a nanomicellar agent exhibiting favorable relaxivity for MRI with a good safety profile. MRI reveals an up to two-fold higher contrast enhancement in tumors than in normal muscle. Encapsulating the NIRF dye within the core of the nanoprobe yields an MR/NIRF bimodal imaging agent for tumor detection that is efficient both for MRI, at Gd3+ concentrations 1/10 the standard clinical dose, and for NIRF imaging, allowing over two-fold stronger fluorescence intensities. These self-assembling dendrimer nanosystems thus constitute effective probes for MRI and MR/NIRF multimodality imaging, offering a promising nanotechnology platform for elaborating multimodality imaging probes in biomedical applications.
Collapse
Affiliation(s)
- Ling Ding
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Zhenbin Lyu
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Teodora-Adriana Perles-Barbacaru
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Adela Ya-Ting Huang
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Baoping Lian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yifan Jiang
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Tom Roussel
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Christina Galanakou
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Suzanne Giorgio
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS, UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, 13273, France
| | - Monique Bernard
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Angèle Viola
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Ling Peng
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| |
Collapse
|
29
|
Li D, Kirberger M, Qiao J, Gui Z, Xue S, Pu F, Jiang J, Xu Y, Tan S, Salarian M, Ibhagui O, Hekmatyar K, Yang JJ. Protein MRI Contrast Agents as an Effective Approach for Precision Molecular Imaging. Invest Radiol 2024; 59:170-186. [PMID: 38180819 DOI: 10.1097/rli.0000000000001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
ABSTRACT Cancer and other acute and chronic diseases are results of perturbations of common molecular determinants in key biological and signaling processes. Imaging is critical for characterizing dynamic changes in tumors and metastases, the tumor microenvironment, tumor-stroma interactions, and drug targets, at multiscale levels. Magnetic resonance imaging (MRI) has emerged to be a primary imaging modality for both clinical and preclinical applications due to its advantages over other modalities, including sensitivity to soft tissues, nondepth limitations, and the use of nonionizing radiation. However, extending the application of MRI to achieve both qualitative and quantitative precise molecular imaging with the capability to quantify molecular biomarkers for early detection, staging, and monitoring therapeutic treatment requires the capacity to overcome several major challenges including the trade-off between metal-binding affinity and relaxivity, which is an issue frequently associated with small chelator contrast agents. In this review, we will introduce the criteria of ideal contrast agents for precision molecular imaging and discuss the relaxivity of current contrast agents with defined first shell coordination water molecules. We will then report our advances in creating a new class of protein-targeted MRI contrast agents (ProCAs) with contributions to relaxivity largely derived from the secondary sphere and correlation time. We will summarize our rationale, design strategy, and approaches to the development and optimization of our pioneering ProCAs with desired high relaxivity, metal stability, and molecular biomarker-targeting capability, for precision MRI. From first generation (ProCA1) to third generation (ProCA32), we have achieved dual high r1 and r2 values that are 6- to 10-fold higher than clinically approved contrast agents at magnetic fields of 1.5 T, and their relaxivity values at high field are also significantly higher, which enables high resolution during small animal imaging. Further engineering of multiple targeting moieties enables ProCA32 agents that have strong biomarker-binding affinity and specificity for an array of key molecular biomarkers associated with various chronic diseases, while maintaining relaxation and exceptional metal-binding and selectivity, serum stability, and resistance to transmetallation, which are critical in mitigating risks associated with metal toxicity. Our leading product ProCA32.collagen has enabled the first early detection of liver metastasis from multiple cancers at early stages by mapping the tumor environment and early stage of fibrosis from liver and lung in vivo, with strong translational potential to extend to precision MRI for preclinical and clinical applications for precision diagnosis and treatment.
Collapse
Affiliation(s)
- Dongjun Li
- From the Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Department of Chemistry, Georgia State University, Atlanta, GA (D.L., M.K., J.Q., Z.G., S.X., P.F., J.J., S.T., M.S., O.I., K.H., J.J.Y.); and InLighta BioSciences, LLC, Marietta, GA (Y.X., J.J.Y)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gendron C, Bourrinet P, Dencausse A, Fretellier N. Preclinical Safety Assessment of Gadopiclenol: A High-Relaxivity Macrocyclic Gadolinium-Based MRI Contrast Agent. Invest Radiol 2024; 59:108-123. [PMID: 37921752 PMCID: PMC11441737 DOI: 10.1097/rli.0000000000001038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVE Gadopiclenol is a new high-relaxivity macrocyclic gadolinium-based contrast agent for magnetic resonance imaging of the central nervous system and other body regions. The product has been approved by US Food and Drug Administration and is currently being evaluated by European Medicines Agency. For risk assessment of the single diagnostic use in humans, the safety profile of gadopiclenol was evaluated with a series of preclinical studies. MATERIALS AND METHODS With exception of dose-ranging studies, all safety pharmacology and toxicology studies were performed in compliance with Good Laboratory Practice principles. Safety pharmacology studies were conducted to assess potential effects on cardiovascular (in vitro and in dogs), respiratory (in rats and guinea pigs), neurological (in rats), and renal endpoints (in rats). Toxicology studies were also performed to investigate acute toxicity (in rats and mice), extended single-dose (in rats and dogs) and repeated-dose toxicity (in rats and dogs), reproductive (in rats), developmental (in rats and rabbits) and juvenile toxicity (in rats), as well as genotoxicity (in vitro and in rats), local tolerance (in rabbits), potential immediate hypersensitivity (in guinea pigs), and potential tissue retention of gadolinium (in rats). RESULTS Safety pharmacology studies conducted at high intravenous (IV) doses showed a satisfactory tolerance of gadopiclenol in the main body systems. After either single or repeated IV dosing (14 and 28 days) in rats and dogs, gadopiclenol was well tolerated even at high doses. The no-observed-adverse-effect level values (ie, the highest experimental dose without adverse effects) representing between 8 times in rats and 44 times in dogs (based on the exposure), the exposure achieved in humans at the intended diagnostic dose, provide a high safety margin. No or only minor and reversible effects on body weight, food consumption, clinical signs, clinical pathology parameters, or histology were observed at the highest doses. The main histological finding consists in renal tubular vacuolations (exacerbated after repeated exposure), which supports a well-known finding for this class of compounds that has no physiological consequence on kidney function. Reproductive toxicity studies showed no evidence of effects on reproductive performance, fertility, perinatal and postnatal development in rats, or reproductive development in rats or rabbits. The safety profile of gadopiclenol in juvenile rats was satisfactory like in adults. Gadopiclenol was not genotoxic in vitro in the Ames test, a mouse lymphoma assay, and a rat in vivo micronucleus test. There were no signs of local intolerance at the injection site after IV and intra-arterial administration in rabbits. However, because of minor signs of intolerance after perivenous administration, misadministration must be avoided. Gadopiclenol exhibited no signs of potential to induce immediate hypersensitivity in guinea pigs. CONCLUSIONS High safety margins were observed between the single diagnostic dose of 0.05 mmol/kg in humans and the doses showing effects in animal studies. Gadopiclenol is, therefore, well tolerated in various species (mice, rats, dogs, rabbits, and guinea pigs). All observed preclinical data support the clinical approval.
Collapse
Affiliation(s)
- Célia Gendron
- From the Research and Innovation Department, Guerbet, Aulnay-sous-Bois, France
| | | | | | | |
Collapse
|
31
|
Bu J, Wang Z, Ma C, Gao J, Liu G, Pang L, He B, Dong M, Zhang Q, Lei Y, Xu L, Huang S, Li Y, Liu G. Postoperative MRI Findings Following PELD and Their Correlations with Clinical Prognosis are Investigated by Injecting Contrast into Annulus Fibrosus Intraoperatively. J Pain Res 2024; 17:381-392. [PMID: 38312505 PMCID: PMC10838106 DOI: 10.2147/jpr.s442224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/30/2023] [Indexed: 02/06/2024] Open
Abstract
Objective To validate whether a residual mass demonstrated on early postoperative MR after percutaneous endoscopic lumbar discectomy (PELD) is indeed an intraoperatively retained annulus fibrosus, and explore the correlation between imaging changes in the residual mass and clinical prognosis of patients. Methods A prospective study of 118 patients were included. During surgery, a contrast medium, Gadopentetate Dimeglumine, was injected around the ruptured annulus fibrosus. The intensity of the T2 signal, the size of the remaining mass (SR), and the cross-sectional area of the spinal canal (SCSA), VAS, and ODI were assessed at preoperative, 1-h (7-day), 6-month, and 12-month postoperative intervals. Based on VAS at 7 days post-surgery, patients were classified into either a non-remission group (Group A, VAS > 3) or a remission group (Group B, VAS ≤ 3). Results Six patients who developed recurrent LDH were excluded. A residual mass was detected on MRI 1 h after surgery in 94.6% (106/112). During one year of follow-up, 90.1% (101/112) of the patients displayed fibrous annulus remodeling, although 68.7% (77/112) still exhibited herniation. Significant differences were found in the ODI between Groups A and B one week after surgery (p < 0.001). However, no significant differences were observed in T2 signal intensity, SR, and SCSA at 1-h, 6-month and 12-month post-surgery (p > 0.05) between the two groups. In a multiple linear regression analysis, early postoperative ODI changes were associated with T2 signal (B = -10.22, sig < 0.05), long-term changes were associated with alterations in SR (B = 5.63, sig < 0.05) and SCSA (B = -0.13, sig < 0.05). Conclusion The residual mass observed in early postoperative MR images after PELD was the retained annulus fibrosus intraoperatively. Short-term changes in clinical symptoms after PELD were linked to T2 signal intensity, while long-term changes were associated with changes in SR and SCSA.
Collapse
Affiliation(s)
- Jinhui Bu
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, People's Republic of China
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Zhenfei Wang
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Chao Ma
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, People's Republic of China
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Juan Gao
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Guangpu Liu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Libo Pang
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Bo He
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Minghui Dong
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Quan Zhang
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yan Lei
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Long Xu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Sen Huang
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yuming Li
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Guangwang Liu
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, People's Republic of China
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou, People's Republic of China
| |
Collapse
|
32
|
Wang LLW, Gao Y, Chandran Suja V, Boucher ML, Shaha S, Kapate N, Liao R, Sun T, Kumbhojkar N, Prakash S, Clegg JR, Warren K, Janes M, Park KS, Dunne M, Ilelaboye B, Lu A, Darko S, Jaimes C, Mannix R, Mitragotri S. Preclinical characterization of macrophage-adhering gadolinium micropatches for MRI contrast after traumatic brain injury in pigs. Sci Transl Med 2024; 16:eadk5413. [PMID: 38170792 DOI: 10.1126/scitranslmed.adk5413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
The choroid plexus (ChP) of the brain plays a central role in orchestrating the recruitment of peripheral leukocytes into the central nervous system (CNS) through the blood-cerebrospinal fluid (BCSF) barrier in pathological conditions, thus offering a unique niche to diagnose CNS disorders. We explored whether magnetic resonance imaging of the ChP could be optimized for mild traumatic brain injury (mTBI). mTBI induces subtle, yet influential, changes in the brain and is currently severely underdiagnosed. We hypothesized that mTBI induces sufficient alterations in the ChP to cause infiltration of circulating leukocytes through the BCSF barrier and developed macrophage-adhering gadolinium [Gd(III)]-loaded anisotropic micropatches (GLAMs), specifically designed to image infiltrating immune cells. GLAMs are hydrogel-based discoidal microparticles that adhere to macrophages without phagocytosis. We present a fabrication process to prepare GLAMs at scale and demonstrate their loading with Gd(III) at high relaxivities, a key indicator of their effectiveness in enhancing image contrast and clarity in medical imaging. In vitro experiments with primary murine and porcine macrophages demonstrated that GLAMs adhere to macrophages also under shear stress and did not affect macrophage viability or functions. Studies in a porcine mTBI model confirmed that intravenously administered macrophage-adhering GLAMs provide a differential signal in the ChP and lateral ventricles at Gd(III) doses 500- to 1000-fold lower than those used in the current clinical standard Gadavist. Under the same mTBI conditions, Gadavist did not offer a differential signal at clinically used doses. Our results suggest that macrophage-adhering GLAMs could facilitate mTBI diagnosis.
Collapse
Affiliation(s)
- Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Vineeth Chandran Suja
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Masen L Boucher
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Suyog Shaha
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rick Liao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Supriya Prakash
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - John R Clegg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Kaitlyn Warren
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Morgan Janes
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kyung Soo Park
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Michael Dunne
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Bolu Ilelaboye
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Andrew Lu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Solomina Darko
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Camilo Jaimes
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Departments of Pediatrics and Emergency Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| |
Collapse
|
33
|
Iyad N, S.Ahmad M, Alkhatib SG, Hjouj M. Gadolinium contrast agents- challenges and opportunities of a multidisciplinary approach: Literature review. Eur J Radiol Open 2023; 11:100503. [PMID: 37456927 PMCID: PMC10344828 DOI: 10.1016/j.ejro.2023.100503] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Contrast agents is used in magnetic resonance imaging (MRI) to improve the visibility of the details of the organ structures. Gadolinium-based contrast agent (GBCA) has been used since 1988 in MRI for diagnostic and follow-up of patients, the gadolinium good properties make it an effective choice for enhance the signal in MRI by increase its intensity and shortening the relaxation time of the proton. Recently, many studies show a gadolinium deposition in different human organs due to release of free gadolinium various body organs or tissue, which led to increased concern about the use of gadolinium agents, in this study, the potential diseases that may affect the patient and side effects that appear on the patient and related to accumulation of gadolinium were clarified, the study focused on the organs such as brain and bones in which gadolinium deposition was found and the lesions associated with it, and the diseases associated with gadolinium retention includes Nephrogenic Systemic Fibrosis (NSF) and Gadolinium deposition disease (GDD). Some studies tended to improve the contrast agents by developing a new non-gadolinium agents or development of next-generation gadolinium agents. In this review article the latest knowledge about MRI contrast agent.
Collapse
Affiliation(s)
- Nebal Iyad
- Ibn Rushd Radiology Centre, Hebron, Palestine
| | - Muntaser S.Ahmad
- Ibn Rushd Radiology Centre, Hebron, Palestine
- Department of Medical Imaging, Faculty of Allied Medical Health, Palestine Ahliya University, Dheisha, Bethlehem, Palestine
| | - Sanaa G. Alkhatib
- Department of Medical Imaging, Faculty of Allied Medical Health, Palestine Ahliya University, Dheisha, Bethlehem, Palestine
| | - Mohammad Hjouj
- Medical Imaging Department, Faculty of Health Professions, Al-Quds University, Abu Deis - Main Campus, Jerusalem, Palestine
| |
Collapse
|
34
|
Li G, Zheng X, Xu T, Zhang X, Ji B, Xu Z, Bao S, Mei J, Li Z. Preparation of imprinted bacterial cellulose aerogel with intelligent modulation of thermal response stimulation for selective adsorption of Gd(III) from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125806-125815. [PMID: 38006485 DOI: 10.1007/s11356-023-31184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Research on recycling of used rare earth elements has been of great interest. Adsorption is one of the advantageous methods to recover gadolinium with high value. In the process of adsorption and separation of gadolinium from materials, the selectivity of materials for gadolinium can be significantly improved by using ion imprinting technique. However, gadolinium elution process is a traditional pickling process, which may affect the construction of imprinting sites. In this study, bacterial cellulose with three-dimensional spatial structure was used as the base material of aerogel material, and functional materials containing a large number of carboxyl groups were introduced by chemical grafting method. In combination with ion imprinting technology and N-polyacrylamide as intelligent temperature control valve, intelligent imprinting aerogel (PNBC-IIPS) with specific selectivity to gadolinium was prepared. The properties of aerogel materials were analyzed by SEM, FT-IR, and BET characterization. The experimental analysis shows that the desorption of gadolinium can be achieved by controlling the temperature change. The adsorption experiments show that PNBC-IIPS can selectively adsorb gadolinium ions from aqueous solution. The maximum adsorption capacity reached 95.51 mg g-1. Compared with unimprinted aerogel, the maximum adsorption capacity of gadolinium ion is significantly increased, which proves that the introduced ion imprinting technique plays a key role in the adsorption process. Cyclic experiments show that the adsorption capacity of PNBC-IIPS can still maintain 88% of the original adsorption capacity after 5 times of adsorption and desorption. In conclusion, PNBC-IIPS is a green adsorbent for selective recovery of gadolinium ions.
Collapse
Affiliation(s)
- Guomeng Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Xudong Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Tongtong Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Xi Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Biao Ji
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Zihuai Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Sifan Bao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Jinfeng Mei
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| |
Collapse
|
35
|
Henoumont C, Devreux M, Laurent S. Mn-Based MRI Contrast Agents: An Overview. Molecules 2023; 28:7275. [PMID: 37959694 PMCID: PMC10648041 DOI: 10.3390/molecules28217275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
MRI contrast agents are required in the clinic to detect some pathologies, such as cancers. Nevertheless, at the moment, only small extracellular and non-specific gadolinium complexes are available for clinicians. Moreover, safety issues have recently emerged concerning the use of gadolinium complexes; hence, alternatives are urgently needed. Manganese-based MRI contrast agents could be one of these alternatives and increasing numbers of studies are available in the literature. This review aims at synthesizing all the research, from small Mn complexes to nanoparticular agents, including theranostic agents, to highlight all the efforts already made by the scientific community to obtain highly efficient agents but also evidence of the weaknesses of the developed systems.
Collapse
Affiliation(s)
- Céline Henoumont
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Marie Devreux
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
- Center for Microscopy and Molecular Imaging (CMMI), 8 Rue Adrienne Boland, 6041 Gosselies, Belgium
| |
Collapse
|
36
|
Yang Q, Guo Y, Zhou Y, Song J, Song Y, Li H, Gao H, Huang W. Multifunctional Nanotheranostics for Dual-Modal Imaging-Guided Precision Therapy of Nasopharyngeal Carcinoma. Mol Pharm 2023; 20:4743-4757. [PMID: 37579048 DOI: 10.1021/acs.molpharmaceut.3c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Currently, the low survival rate and poor prognosis of patients with nasopharyngeal carcinoma are ascribed to the lack of early and accurate diagnosis and resistance to radiotherapy. In parallel, the integration of imaging-guided diagnosis and precise treatment has gained much attention in the field of theranostic nanotechnology. However, constructing dual-modal imaging-guided nanotheranostics with desired imaging performance as well as great biocompatibility remains challenging. Therefore, we developed a simple but multifunctional nanotheranostic GdCPP for the early and accurate diagnosis and efficient treatment of nasopharyngeal carcinoma (NPC), which combined fluorescence imaging and magnetic resonance imaging (MRI) onto a single nanoplatform for imaging-guided subsequent photodynamic therapy (PDT). GdCPP had an appropriate particle size (81.93 ± 0.69 nm) and was highly stable, resulting in sufficient tumor accumulation, which along with massive reactive oxygen species (ROS) generation upon irradiation further significantly killed tumor cells. Moreover, GdCPP owned much stronger r1 relaxivity (9.396 mM-1 s-1) compared to clinically used Gd-DTPA (5.034 mM-1 s-1) and exhibited better T1WI MRI performance. Under dual-modal imaging-guided PDT, GdCPP achieved efficient therapeutic outcomes without causing any noticeable tissue damage. The results of in vitro and in vivo studies indicated that GdCPP may be a suitable candidate for dual-modal imaging-guided precision tumor therapy.
Collapse
Affiliation(s)
- Qianyu Yang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jiali Song
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Yujun Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610064, China
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| |
Collapse
|
37
|
King RM, Gounis MJ, Schmidt EJ, Leporati A, Gale EM, Bogdanov AA. Molecular Magnetic Resonance Imaging of Aneurysmal Inflammation Using a Redox Active Iron Complex. Invest Radiol 2023; 58:656-662. [PMID: 36822678 PMCID: PMC10401906 DOI: 10.1097/rli.0000000000000960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
OBJECTIVES Inflammation plays a key role in driving brain aneurysmal instability and rupture, but clinical tools to noninvasively differentiate between inflamed and stable aneurysms are lacking. We hypothesize that imaging oxidative changes in the aneurysmal microenvironment driven by myeloid inflammatory cells may represent a noninvasive biomarker to evaluate rupture risk. In this study, we performed initial evaluation of the oxidatively activated probe Fe-PyC3A as a tool for magnetic resonance imaging (MRI) of inflammation in a rabbit model of saccular aneurysm. MATERIALS AND METHODS The difference in longitudinal relaxivity ( r1 ) in reduced and oxidized states of Fe-PyC3A was measured in water and blood plasma phantoms at 3 T. A rabbit saccular aneurysm model was created by endovascular intervention/elastinolysis with subsequent decellularization in situ. Rabbits were imaged at 4 weeks (n = 4) or 12 weeks (n = 4) after aneurysmal induction, when luminal levels of inflammation reflected by the presence of myeloperoxidase positive cells are relatively high and low, respectively, using a 3 T clinical scanner. Both groups were imaged dynamically using a 2-dimensional T1-weighted fast field echo pulse MRI sequence before and up to 4 minutes postinjection of Fe-PyC3A. Dynamic imaging was then repeated after an injection of gadobutrol (0.1 mmol/kg) as negative control probe. Rabbits from the 12-week aneurysm group were also imaged before and 20 minutes and 3 hours after injection of Fe-PyC3A using an axial respiratory gated turbo-spin echo (TSE) pulse sequence with motion-sensitized driven equilibrium (MSDE) preparation. The MSDE/TSE imaging was repeated before, immediately after dynamic acquisition (20 minutes postinjection), and 3 hours after injection of gadobutrol. Aneurysmal enhancement ratios (ERs) were calculated by dividing the postinjection aneurysm versus skeletal muscle contrast ratio by the preinjection contrast ratio. After imaging, the aneurysms were excised and inflammatory infiltrate was characterized by fluorometric detection of myeloperoxidase activity and calprotectin immunostaining, respectively. RESULTS In vitro relaxometry showed that oxidation of Fe-PyC3A by hydrogen peroxide resulted in a 15-fold increase of r1 at 3 T. Relaxometry in the presence of blood plasma showed no more than a 10% increase of r1 , indicating the absence of strong interaction of Fe-PyC3A with plasma proteins. Dynamic imaging with Fe-PyC3A generated little signal enhancement within the blood pool or adjacent muscle but did generate a transient increase in aneurysmal ER that was significantly greater 4 weeks versus 12 weeks after aneurysm induction (1.6 ± 0.30 vs 1.2 ± 0.03, P < 0.05). Dynamic imaging with gadobutrol generated strong aneurysmal enhancement, but also strong enhancement of the blood and muscle resulting in smaller relative ER change. In the 12-week group of rabbits, MSDE/TSE imaging showed that ER values measured immediately after dynamic MRI (20 minutes postinjection) were significantly higher ( P < 0.05) in the case of Fe-PyC3A (1.25 ± 0.06) than for gadobutrol injection (1.03 ± 0.03). Immunohistochemical corroboration using anticalprotectin antibody showed that leukocyte infiltration into the vessel walls and luminal thrombi was significantly higher in the 4-week group versus 12-week aneurysms (123 ± 37 vs 18 ± 7 cells/mm 2 , P < 0.05). CONCLUSIONS Magnetic resonance imaging using Fe-PyC3A injection in dynamic or delayed acquisition modes was shown to generate a higher magnetic resonance signal enhancement in aneurysms that exhibit higher degree of inflammation. The results of our pilot experiments support further evaluation of MRI using Fe-PyC3A as a noninvasive marker of aneurysmal inflammation.
Collapse
Affiliation(s)
- Robert M King
- From the Department of Radiology and New England Center for Stroke Research, UMASS Chan Medical School, Worcester
| | - Matthew J Gounis
- From the Department of Radiology and New England Center for Stroke Research, UMASS Chan Medical School, Worcester
| | - Eric J Schmidt
- From the Department of Radiology and New England Center for Stroke Research, UMASS Chan Medical School, Worcester
| | - Anita Leporati
- From the Department of Radiology and New England Center for Stroke Research, UMASS Chan Medical School, Worcester
| | - Eric M Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown
| | - Alexei A Bogdanov
- From the Department of Radiology and New England Center for Stroke Research, UMASS Chan Medical School, Worcester
| |
Collapse
|
38
|
Li J, Zhang W, Liu S, Yang F, Zhou Y, Cao L, Li Y, Guo Y, Qi X, Xu G, Peng J, Zhao Y. Preclinical Evaluation of a Protein-Based Nanoscale Contrast Agent for MR Angiography at an Ultralow Dose. Int J Nanomedicine 2023; 18:4431-4444. [PMID: 37555188 PMCID: PMC10404595 DOI: 10.2147/ijn.s416741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE BSA-biomineralized Gd nanoparticles (Gd@BSA NPs) have been recognized as promising nanoscale MR contrast agents. The aim of this study was to carry out a preclinical evaluation of these NPs in a middle-sized animal model (rabbits). METHODS New Zealand white rabbits were treated intravenously with Gd@BSA NPs (0.02 mmol Gd/kg) via a clinically-used high-pressure injector, with commercial Gd-diethylene triamine pentaacetate (Gd-DTPA)-injected group as control. Then MR angiography was performed according to the standard clinical protocol with a 3.0-T MR scanner. The SNR and CNR of the main arteries and branches were monitored. Pharmacokinetics and bioclearance were continuously evaluated in blood, urine, and feces. Gd deposition in vital organs was measured by ICP‒MS. Weight monitoring, HE staining, and blood biochemical analysis were also performed to comprehensively estimate systemic toxicity. RESULTS The ultrasmall Gd@BSA NPs (<6 nm) exhibited high stability and T1 relaxivity. Compared to Gd-DTPA, Gd@BSA NPs demonstrated superior vascular system imaging performance at ultralow doses, especially of the cardiac artery and other main branches, and exhibited a significantly higher SNR and CNR. Notably, the Gd@BSA NPs showed a shorter half-life in blood, less retention in organs, and improved biocompatibility. CONCLUSION The preclinical evaluations here demonstrated that Gd@BSA NPs are promising and advantageous MR CA candidates that can be used at a low dose with excellent MR imaging performance, thus suggesting its further clinical trials and applications.
Collapse
Affiliation(s)
- Jianmin Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Wenyi Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Shuang Liu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Fan Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yupeng Zhou
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Lin Cao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yiming Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yunfei Guo
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xiang Qi
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Guoping Xu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Jing Peng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
39
|
Glandorf J, Brunzema F, Klimeš F, Behrendt L, Voskrebenzev A, Gutberlet M, Wernz MM, Grimm R, Wacker F, Vogel-Claussen J. Influence of gadolinium, field-strength and sequence type on quantified perfusion values in phase-resolved functional lung MRI. PLoS One 2023; 18:e0288744. [PMID: 37527251 PMCID: PMC10393130 DOI: 10.1371/journal.pone.0288744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
PURPOSE The purpose of this study is to evaluate the influences of gadolinium-based contrast agents, field-strength and different sequences on perfusion quantification in Phase-Resolved Functional Lung (PREFUL) MRI. MATERIALS AND METHODS Four cohorts of different subjects were imaged to analyze influences on the quantified perfusion maps: 1) at baseline and after 2 weeks to obtain the reproducibility (26 COPD patients), 2) before and after the administration of gadobutrol (11 COPD, 2 PAH and 1 asthma), 3) at 1.5T and 3T (12 healthy, 4 CF), and 4) with different acquisition sequences spoiled gradient echo (SPGR) and balanced steady-state free precession (bSSFP) (11 COPD, 7 healthy). Wilcoxon-signed rank test, Bland-Altman plots, voxelwise Pearson correlations, normalized histogram analyses with skewness and kurtosis and two-sample Kolmogorov-Smirnov tests were performed. P value ≤ 0.05 was considered statistically significant. RESULTS In all cohorts, linear correlations of the perfusion values were significant with correlation coefficients of at least 0.7 considering the entire lung (P<0.01). The reproducibility cohort revealed stable results with a similar distribution. In the gadolinium cohort, the quantified perfusion increased significantly (P<0.01), and no significant change was detected in the histogram analysis. In the field-strength cohort, no significant change of the quantified perfusion was shown, but a significant increase of skewness and kurtosis at 3T (P = 0.01). In the sequence cohort, the quantified perfusion decreased significantly in the bSSFP sequence (P<0.01) together with a significant decrease of skewness and kurtosis (P = 0.02). The field-strength and sequence cohorts had differing probability distribution in the two-sample Kolmogorov-Smirnov tests. CONCLUSION We observed a high susceptibility of perfusion quantification to gadolinium, field-strength or MRI sequence leading to distortion and deviation of the perfusion values. Future multicenter studies should strictly adhere to the identical study protocols to generate comparable results.
Collapse
Affiliation(s)
- Julian Glandorf
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Fynn Brunzema
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Filip Klimeš
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Lea Behrendt
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Marius M Wernz
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
40
|
Qi YM, Xiao EH. Advances in application of novel magnetic resonance imaging technologies in liver disease diagnosis. World J Gastroenterol 2023; 29:4384-4396. [PMID: 37576700 PMCID: PMC10415971 DOI: 10.3748/wjg.v29.i28.4384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Liver disease is a major health concern globally, with high morbidity and mor-tality rates. Precise diagnosis and assessment are vital for guiding treatment approaches, predicting outcomes, and improving patient prognosis. Magnetic resonance imaging (MRI) is a non-invasive diagnostic technique that has been widely used for detecting liver disease. Recent advancements in MRI technology, such as diffusion weighted imaging, intravoxel incoherent motion, magnetic resonance elastography, chemical exchange saturation transfer, magnetic resonance spectroscopy, hyperpolarized MR, contrast-enhanced MRI, and ra-diomics, have significantly improved the accuracy and effectiveness of liver disease diagnosis. This review aims to discuss the progress in new MRI technologies for liver diagnosis. By summarizing current research findings, we aim to provide a comprehensive reference for researchers and clinicians to optimize the use of MRI in liver disease diagnosis and improve patient prognosis.
Collapse
Affiliation(s)
- Yi-Ming Qi
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China
| | - En-Hua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
41
|
Rossi F, Cosentino L, Longhitano F, Minutoli S, Musico P, Osipenko M, Poma GE, Ripani M, Finocchiaro P. The Gamma and Neutron Sensor System for Rapid Dose Rate Mapping in the CLEANDEM Project. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094210. [PMID: 37177414 PMCID: PMC10180947 DOI: 10.3390/s23094210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
The decommissioning of nuclear installations, as well as the possible necessary accident remediations, requires the physical presence of human operators in potentially radiologically hostile environments. The number of active nuclear reactors worldwide is greater than 400, and most of them are 40 to 50 years old, thus implying that soon they will have to be dismantled. In the framework of the H2020 CLEANDEM project, a small robotic vehicle is being developed that is equipped with a series of different sensors for areas that are significantly contaminated by radiation. In this work, we describe the MiniRadMeter system, a compact low-cost sensor capable of being used to perform quick gamma and neutron radiation field mapping of environments prior to the possible start of human operations. The miniature gamma sensor is a 1 cm3 scintillator counter with moderate spectroscopic features read out by means of a 6 × 6 mm2 SiPM, whereas neutrons are detected by means of a silicon diode coupled to a layer of 6LiF and placed inside a 6 × 6 × 6 cm3 polyethylene box. The front-end and data acquisition electronics were developed based on a Raspberry Pi4 microcomputer. In this paper, the system performance and the preliminary test results are described.
Collapse
|
42
|
Shabatina TI, Vernaya OI, Shimanovskiy NL, Melnikov MY. Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents. Pharmaceutics 2023; 15:pharmaceutics15041181. [PMID: 37111666 PMCID: PMC10141702 DOI: 10.3390/pharmaceutics15041181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The development of antiviral treatment and anticancer theragnostic agents in recent decades has been associated with nanotechnologies, and primarily with inorganic nanoparticles (INPs) of metal and metal oxides. The large specific surface area and its high activity make it easy to functionalize INPs with various coatings (to increase their stability and reduce toxicity), specific agents (allowing retention of INPs in the affected organ or tissue), and drug molecules (for antitumor and antiviral therapy). The ability of magnetic nanoparticles (MNPs) of iron oxides and ferrites to enhance proton relaxation in specific tissues and serve as magnetic resonance imaging contrast agents is one of the most promising applications of nanomedicine. Activation of MNPs during hyperthermia by an external alternating magnetic field is a promising method for targeted cancer therapy. As therapeutic tools, INPs are promising carriers for targeted delivery of pharmaceuticals (either anticancer or antiviral) via magnetic drug targeting (in case of MNPs), passive or active (by attaching high affinity ligands) targeting. The plasmonic properties of Au nanoparticles (NPs) and their application for plasmonic photothermal and photodynamic therapies have been extensively explored recently in tumor treatment. The Ag NPs alone and in combination with antiviral medicines reveal new possibilities in antiviral therapy. The prospects and possibilities of INPs in relation to magnetic hyperthermia, plasmonic photothermal and photodynamic therapies, magnetic resonance imaging, targeted delivery in the framework of antitumor theragnostic and antiviral therapy are presented in this review.
Collapse
Affiliation(s)
- Tatyana I Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical University, Moscow 105005, Russia
| | - Olga I Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical University, Moscow 105005, Russia
| | - Nikolay L Shimanovskiy
- Department of Molecular Pharmacology and Radiobiology, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Mikhail Ya Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
| |
Collapse
|
43
|
Jammoul M, Abou-Kheir W, Lawand N. How Safe Is Gadobutrol? Examining the Effect of Gadolinium Deposition on the Nervous System. RADIATION 2023. [DOI: 10.3390/radiation3020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
This study aimed to evaluate the safety of gadobutrol, a gadolinium-based contrast agent used in medical imaging, by investigating its effect on the nervous system under physiological and inflammatory conditions. Male Sprague Dawley rats were divided randomly into four groups, including gadobutrol, saline, LPS + gadobutrol, and LPS + saline, and were given intraperitoneal injections of gadobutrol (2.5 mmol/kg) or saline for 20 days. Weekly sensorimotor and cognitive behavioral tests were performed over 4 weeks, and Gd concentration in nervous tissues was analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Lactate dehydrogenase (LDH) activity was measured to evaluate cytotoxicity, and electromyography (EMG) recordings from the gastrocnemius muscle were also obtained to examine signal transmission in sciatic nerves. The results indicated that gadobutrol did not induce significant behavioral changes under normal conditions. However, when administered along with LPS, the combination led to behavioral dysfunction. ICP-MS analysis revealed a higher concentration of Gd in the cerebrum and spinal cord of gadobutrol + LPS-treated rats, while peripheral nerves showed lower concentrations. In addition, there was a significant increase in LDH activity in the hippocampus of the gadobutrol group. EMG responses to electrical stimulation of the sciatic nerve demonstrated a decreased threshold of nociceptive reflexes in the gadobutrol group. Overall, while gadobutrol may be considered safe under normal physiological conditions, the findings suggest that its safety may be compromised under inflammatory conditions.
Collapse
Affiliation(s)
- Maya Jammoul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
44
|
Oluwasola IE, Ahmad AL, Shoparwe NF, Ismail S. Gadolinium based contrast agents (GBCAs): Uniqueness, aquatic toxicity concerns, and prospective remediation. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 250:104057. [PMID: 36130428 DOI: 10.1016/j.jconhyd.2022.104057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/25/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
The current toxicity concerns of gadolinium-based contrast agents (GBCAs) have birthed the need to regulate and, sometimes restrict its clinical administration. However, tolerable concentration levels of Gd in the water sector have not been set. Therefore, the detection and speedy increase of the anthropogenic Gd-GBCAs in the various water bodies, including those serving as the primary source of drinking water for adults and children, is perturbing. Nevertheless, the strongly canvassed risk-benefit considerations and superior uniqueness of GBCAs compared to the other ferromagnetic metals guarantees its continuous administration for Magnetic resonance imaging (MRI) investigations regardless of the toxicity concerns. Unfortunately, findings have shown that both the advanced and conventional wastewater treatment processes do not satisfactorily remove GBCAs but rather risk transforming the chelated GBCAs to their free ionic metal (Gd 3+) through inadvertent degradation processes. This unintentional water processing-induced GBCA dechelation leads to the intricate pathway for unintentional human intake of Gd ion. Hence exposure to its probable ecotoxicity and several reported inimical effects on human health such as; digestive symptoms, twitching or weakness, cognitive flu, persistent skin diseases, body pains, acute renal and non-renal adverse reactions, chronic skin, and eyes changes. This work proposed an economical and manageable remediation technique for the potential remediation of Gd-GBCAs in wastewater, while a precautionary limit for Gd in public water and commercial drinks is advocated.
Collapse
Affiliation(s)
- Idowu Ebenezer Oluwasola
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia; School of Science and Computer Studies, Food Technology Department, The Federal Polytechnic, Ado Ekiti, Ekiti State 360231, Nigeria.
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia.
| | - Noor Fazliani Shoparwe
- Gold, Rare Earth, and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia.
| | - Suzylawati Ismail
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia.
| |
Collapse
|