1
|
Rodrigues Rodrigues R, Alves MLF, Bilhalva MA, Kremer FS, Junior CM, Ferreira MRA, Galvão CC, Quatrin PHDN, Conceição FR. Large Clostridial Toxins: A Brief Review and Insights into Antigen Design for Veterinary Vaccine Development. Mol Biotechnol 2024:10.1007/s12033-024-01303-6. [PMID: 39472390 DOI: 10.1007/s12033-024-01303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024]
Abstract
The group of large clostridial toxins (LCTs) includes toxins A (TcdA) and B (TcdB) from Clostridioides difficile, hemorrhagic and lethal toxins from Paeniclostridium sordellii, alpha toxin from Clostridium novyi (TcnA), and cytotoxin from Clostridium perfringens. These toxins are associated with severe pathologies in livestock, including gas gangrene (P. sordellii and C. novyi), infectious necrotic hepatitis (C. novyi), avian necrotic enteritis (C. perfringens), and enterocolitis (C. difficile). Immunoprophylaxis is crucial for controlling these diseases, but traditional vaccines face production challenges, such as labor-intensive processes, and often exhibit low immunogenicity. This has led to increased interest in recombinant vaccines. While TcdA and TcdB are well-studied for human immunization, other LCTs remain poorly characterized and require further investigation. Therefore, this study emphasizes the importance of understanding lesser-explored toxins and proposes using immunoinformatics to identify their immunodominant regions. By mapping these regions using silico tools and considering their homology with TcdA and TcdB, the study aims to guide future research in veterinary vaccinology. It also explores alternatives to overcome the limitations of conventional and recombinant vaccines, offering guidelines for developing more effective vaccination strategies against severe infections in animals.
Collapse
Affiliation(s)
- Rafael Rodrigues Rodrigues
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil.
| | - Mariliana Luiza Ferreira Alves
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
- Instituto Federal Sul-Rio-Grandense, IFSul, Campus Pelotas, Pelotas, Rio Grande Do Sul, Brasil
| | - Miguel Andrade Bilhalva
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Frederico Schmitt Kremer
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Clóvis Moreira Junior
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Marcos Roberto Alves Ferreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Cleideanny Cancela Galvão
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Pedro Henrique Dala Nora Quatrin
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| |
Collapse
|
2
|
Varrone E, Carnicelli D, He X, Grasse M, Stampfer K, Huber S, Kellnerová S, Tazzari PL, Ricci F, Paterini P, Ardissino G, Morabito S, Orth-Höller D, Würzner R, Brigotti M. Detection of Cleaved Stx2a in the Blood of STEC-Infected Patients. Toxins (Basel) 2023; 15:690. [PMID: 38133194 PMCID: PMC10747961 DOI: 10.3390/toxins15120690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Typical hemolytic uremic syndrome (HUS) is mainly caused by Shiga toxin-producing Escherichia coli (STEC) releasing Shiga toxin 2 (Stx2). Two different structures of this AB5 toxin have been described: uncleaved, with intact B and A chains, and cleaved, with intact B and a nicked A chain consisting of two fragments, A1 and A2, connected by a disulfide bond. Despite having the same toxic effect on sensitive cells, the two forms differ in their binding properties for circulating cells, serum components and complement factors, thus contributing to the pathogenesis of HUS differently. The outcome of STEC infections and the development of HUS could be influenced by the relative amounts of uncleaved or cleaved Stx2 circulating in patients' blood. Cleaved Stx2 was identified and quantified for the first time in four out of eight STEC-infected patients' sera by a method based on the inhibition of cell-free translation. Cleaved Stx2 was present in the sera of patients with toxins bound to neutrophils and in two out of three patients developing HUS, suggesting its involvement in HUS pathogenesis, although in association with other bacterial or host factors.
Collapse
Affiliation(s)
- Elisa Varrone
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy; (E.V.); (D.C.); (P.P.)
| | - Domenica Carnicelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy; (E.V.); (D.C.); (P.P.)
| | - Xiaohua He
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA;
| | - Marco Grasse
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (K.S.); (S.H.); (S.K.); (R.W.)
| | - Karin Stampfer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (K.S.); (S.H.); (S.K.); (R.W.)
| | - Silke Huber
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (K.S.); (S.H.); (S.K.); (R.W.)
| | - Sára Kellnerová
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (K.S.); (S.H.); (S.K.); (R.W.)
| | - Pier Luigi Tazzari
- Immunohematology and Transfusion Center, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; (P.L.T.); (F.R.)
| | - Francesca Ricci
- Immunohematology and Transfusion Center, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; (P.L.T.); (F.R.)
| | - Paola Paterini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy; (E.V.); (D.C.); (P.P.)
- Center for Applied Biomedical Research-CRBA, University of Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Gianluigi Ardissino
- Center for HUS Control, Prevention and Management, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122 Milano, Italy;
| | - Stefano Morabito
- European Reference Laboratory for Escherichia coli, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | | | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (K.S.); (S.H.); (S.K.); (R.W.)
| | - Maurizio Brigotti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy; (E.V.); (D.C.); (P.P.)
| |
Collapse
|
3
|
Kordus SL, Thomas AK, Lacy DB. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat Rev Microbiol 2022; 20:285-298. [PMID: 34837014 PMCID: PMC9018519 DOI: 10.1038/s41579-021-00660-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Clostridioides difficile is a Gram-positive anaerobe that can cause a spectrum of disorders that range in severity from mild diarrhoea to fulminant colitis and/or death. The bacterium produces up to three toxins, which are considered the major virulence factors in C. difficile infection. These toxins promote inflammation, tissue damage and diarrhoea. In this Review, we highlight recent biochemical and structural advances in our understanding of the mechanisms that govern host-toxin interactions. Understanding how C. difficile toxins affect the host forms a foundation for developing novel strategies for treatment and prevention of C. difficile infection.
Collapse
Affiliation(s)
- Shannon L. Kordus
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - Audrey K. Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,The Veterans Affairs, Tennessee Valley Healthcare, System, Nashville, TN, USA,
| |
Collapse
|
4
|
Activity of Lymphostatin, A Lymphocyte Inhibitory Virulence Factor of Pathogenic Escherichia coli, is Dependent on a Cysteine Protease Motif. J Mol Biol 2021; 433:167200. [PMID: 34400181 PMCID: PMC8505758 DOI: 10.1016/j.jmb.2021.167200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
LifA shares a cysteine protease motif with bacterial toxins and secreted effectors. C1480A substituted LifA has reduced inhibitory activity against T cells. LifA is cleaved in T cells and this requires C1480 and endosome acidification.
Lymphostatin (LifA) is a 366 kDa protein expressed by attaching & effacing Escherichia coli. It plays an important role in intestinal colonisation and inhibits the mitogen- and antigen-stimulated proliferation of lymphocytes and the synthesis of proinflammatory cytokines. LifA exhibits N-terminal homology with the glycosyltransferase domain of large clostridial toxins (LCTs). A DTD motif within this region is required for lymphostatin activity and binding of the sugar donor uridine diphosphate N-acetylglucosamine. As with LCTs, LifA also contains a cysteine protease motif (C1480, H1581, D1596) that is widely conserved within the YopT-like superfamily of cysteine proteases. By analogy with LCTs, we hypothesised that the CHD motif may be required for intracellular processing of the protein to release the catalytic N-terminal domain after uptake and low pH-stimulated membrane insertion of LifA within endosomes. Here, we created and validated a C1480A substitution mutant in LifA from enteropathogenic E. coli strain E2348/69. The purified protein was structurally near-identical to the wild-type protein. In bovine T lymphocytes treated with wild-type LifA, a putative cleavage product of approximately 140 kDa was detected. Appearance of the putative cleavage product was inhibited in a concentration-dependent manner by bafilomycin A1 and chloroquine, which inhibit endosome acidification. The cleavage product was not observed in cells treated with the C1480A mutant of LifA. Lymphocyte inhibitory activity of the purified C1480A protein was significantly impaired. The data indicate that an intact cysteine protease motif is required for cleavage of lymphostatin and its activity against T cells.
Collapse
|
5
|
Abstract
Large clostridial toxins (LCTs) are a family of bacterial exotoxins that infiltrate and destroy target cells. Members of the LCT family include Clostridioides difficile toxins TcdA and TcdB, Paeniclostridium sordellii toxins TcsL and TcsH, Clostridium novyi toxin TcnA, and Clostridium perfringens toxin TpeL. Since the 19th century, LCT-secreting bacteria have been isolated from the blood, organs, and wounds of diseased individuals, and LCTs have been implicated as the primary virulence factors in a variety of infections, including C. difficile infection and some cases of wound-associated gas gangrene. Clostridia express and secrete LCTs in response to various physiological signals. LCTs invade host cells by binding specific cell surface receptors, ultimately leading to internalization into acidified vesicles. Acidic pH promotes conformational changes within LCTs, which culminates in translocation of the N-terminal glycosyltransferase and cysteine protease domain across the endosomal membrane and into the cytosol, leading first to cytopathic effects and later to cytotoxic effects. The focus of this review is on the role of LCTs in infection and disease, the mechanism of LCT intoxication, with emphasis on recent structural work and toxin subtyping analysis, and the genomic discovery and characterization of LCT homologues. We provide a comprehensive review of these topics and offer our perspective on emerging questions and future research directions for this enigmatic family of toxins.
Collapse
|
6
|
Chen P, Lam KH, Liu Z, Mindlin FA, Chen B, Gutierrez CB, Huang L, Zhang Y, Hamza T, Feng H, Matsui T, Bowen ME, Perry K, Jin R. Structure of the full-length Clostridium difficile toxin B. Nat Struct Mol Biol 2019; 26:712-719. [PMID: 31308519 PMCID: PMC6684407 DOI: 10.1038/s41594-019-0268-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023]
Abstract
Clostridium difficile is an opportunistic pathogen that establishes in the colon when the gut microbiota are disrupted by antibiotics or disease. C. difficile infection (CDI) is largely caused by two virulence factors, TcdA and TcdB. Here, we report a 3.87-Å-resolution crystal structure of TcdB holotoxin that captures a unique conformation of TcdB at endosomal pH. Complementary biophysical studies suggest that the C-terminal combined repetitive oligopeptides (CROPs) domain of TcdB is dynamic and can sample open and closed conformations that may facilitate modulation of TcdB activity in response to environmental and cellular cues during intoxication. Furthermore, we report three crystal structures of TcdB-antibody complexes that reveal how antibodies could specifically inhibit the activities of individual TcdB domains. Our studies provide novel insight into the structure and function of TcdB holotoxin and identify intrinsic vulnerabilities that could be exploited to develop new therapeutics and vaccines for the treatment of CDI.
Collapse
Affiliation(s)
- Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Frank A Mindlin
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Baohua Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Craig B Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Therwa Hamza
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
7
|
Beilhartz GL, Tam J, Zhang Z, Melnyk RA. Comment on "A small-molecule antivirulence agent for treating Clostridium difficile infection". Sci Transl Med 2019; 8:370tc2. [PMID: 28003550 DOI: 10.1126/scitranslmed.aad8926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022]
Abstract
New insights into the mechanism of action of ebselen, a small-molecule antivirulence agent that reduces disease pathology in a mouse model of Clostridium difficile infection, suggest a different molecular target may be responsible for its efficacy.
Collapse
Affiliation(s)
- Greg L Beilhartz
- Molecular Structure & Function, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - John Tam
- Molecular Structure & Function, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Zhifen Zhang
- Molecular Structure & Function, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Roman A Melnyk
- Molecular Structure & Function, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada. .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
8
|
Ivarsson ME, Durantie E, Huberli C, Huwiler S, Hegde C, Friedman J, Altamura F, Lu J, Verdu EF, Bercik P, Logan SM, Chen W, Leroux JC, Castagner B. Small-Molecule Allosteric Triggers of Clostridium difficile Toxin B Auto-proteolysis as a Therapeutic Strategy. Cell Chem Biol 2019; 26:17-26.e13. [DOI: 10.1016/j.chembiol.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/27/2018] [Accepted: 09/28/2018] [Indexed: 01/19/2023]
|
9
|
Chung SY, Schöttelndreier D, Tatge H, Fühner V, Hust M, Beer LA, Gerhard R. The Conserved Cys-2232 in Clostridioides difficile Toxin B Modulates Receptor Binding. Front Microbiol 2018; 9:2314. [PMID: 30416488 PMCID: PMC6212469 DOI: 10.3389/fmicb.2018.02314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile toxins TcdA and TcdB are large clostridial glucosyltransferases which are the main pathogenicity factors in C. difficile-associated diseases. Four highly conserved cysteines are present in all large clostridial glucosyltransferases. In this study we focused on the conserved cysteine 2232 within the combined repetitive oligopeptide domain of TcdB from reference strain VPI10463 (clade I). Cysteine 2232 is not present in TcdB from hypervirulent strain R20291 (clade II), where a tyrosine is found instead. Replacement of cysteine 2232 by tyrosine in TcdBV PI10463 reduced binding to the soluble fragments of the two known TcdB receptors, frizzled-2 (FZD2) and poliovirus receptor-like protein-3/nectin-3 (PVRL3). In line with this, TcdBR20291 showed weak binding to PVRL3 in pull-down assays which was increased when tyrosine 2232 was exchanged for cysteine. Surprisingly, we did not observe binding of TcdBR20291 to FZD2, indicating that this receptor is less important for this toxinotype. Competition assay with the receptor binding fragments (aa 1101–1836) of TcdBV PI10463 and TcdBR20291, as well as antibodies newly developed by antibody phage display, revealed different characteristics of the yet poorly described delivery domain of TcdB harboring the second receptor binding region. In summary, we found that conserved Cys-2232 in TcdB indirectly contributes to toxin–receptor interaction.
Collapse
Affiliation(s)
- Soo-Young Chung
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | | | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | - Viola Fühner
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
10
|
Zhang Y, Li S, Yang Z, Shi L, Yu H, Salerno-Goncalves R, Saint Fleur A, Feng H. Cysteine Protease-Mediated Autocleavage of Clostridium difficile Toxins Regulates Their Proinflammatory Activity. Cell Mol Gastroenterol Hepatol 2018; 5:611-625. [PMID: 29930981 PMCID: PMC6009800 DOI: 10.1016/j.jcmgh.2018.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/30/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Clostridium difficile toxin A (TcdA) and C difficile toxin toxin B (TcdB), the major virulence factors of the bacterium, cause intestinal tissue damage and inflammation. Although the 2 toxins are homologous and share a similar domain structure, TcdA is generally more inflammatory whereas TcdB is more cytotoxic. The functional domain of the toxins that govern the proinflammatory activities of the 2 toxins is unknown. METHODS Here, we investigated toxin domain functions that regulate the proinflammatory activity of C difficile toxins. By using a mouse ilea loop model, human tissues, and immune cells, we examined the inflammatory responses to a series of chimeric toxins or toxin mutants deficient in specific domain functions. RESULTS Blocking autoprocessing of TcdB by mutagenesis or chemical inhibition, while reducing cytotoxicity of the toxin, significantly enhanced its proinflammatory activities in the animal model. Furthermore, a noncleavable mutant TcdB was significantly more potent than the wild-type toxin in the induction of proinflammatory cytokines in human colonic tissues and immune cells. CONCLUSIONS In this study, we identified a novel mechanism of regulating the biological activities of C difficile toxins in that cysteine protease-mediated autoprocessing regulates toxins' proinflammatory activities. Our findings provide new insight into the pathogenesis of C difficile infection and the design of therapeutics against the disease.
Collapse
Key Words
- 3D, 3-dimensional
- ACPD, CPD domain of TcdA
- Autoprocessing
- Bgt, GTD of TcdB
- Br, RBD of TcdB
- C difficile
- CDI, Clostridium difficile infection
- CPD, cysteine protease domain
- Cysteine Protease
- GT, glucosyltransferase
- GTD, glucosyltransferase domain
- IL, interleukin
- Inflammation
- InsP6, inositol hexakisphosphate
- MPO, myeloperoxidase
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- RBD, receptor binding domain
- TER, transepithelial electrical resistance
- TcdA, Clostridium difficile toxin A
- TcdB, Clostridium difficile toxin B
- Toxins
- aTcdA, GTD deficient TcdA
Collapse
Affiliation(s)
- Yongrong Zhang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Shan Li
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Zhiyong Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Lianfa Shi
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Hua Yu
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Rosangela Salerno-Goncalves
- Department of Pediatrics and Center for Vaccine Development, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Ashley Saint Fleur
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Hanping Feng
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland,Correspondence Address correspondence to: Hanping Feng, PhD, 650 W Baltimore Street, Room 7211, Baltimore, Maryland 21201. fax: (410) 706-6511.
| |
Collapse
|
11
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
12
|
Chen S, Sun C, Gu H, Wang H, Li S, Ma Y, Wang J. Salubrinal protects against Clostridium difficile toxin B-induced CT26 cell death. Acta Biochim Biophys Sin (Shanghai) 2017; 49:228-237. [PMID: 28119311 DOI: 10.1093/abbs/gmw139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile (C. difficile) is considered to be the major cause of the antibiotic-associated diarrhea and pseudomembranous colitis in animals and humans. The prevalence of C. difficile infections (CDI) has been increasing since 2000. Two exotoxins of C. difficile, Toxin A (TcdA) and Toxin B (TcdB), are the main virulence factors of CDI, which can induce glucosylation of Rho GTPases in host cytosol, leading to cell morphological changes, cell apoptosis, and cell death. The mechanism of TcdB-induced cell death has been investigated for decades, but it is still not completely understood. It has been reported that TcdB induces endoplasmic reticulum stress via PERK-eIF2α signaling pathway in CT26 cell line (BALB/C mouse colon tumor cells). In this study, we found that salubrinal, a selective inhibitor of eIF2α dephosphorylation, efficiently protects CT26 cell line against TcdB-induced cell death and tried to explore the mechanism underlying in this protective effect. Our results demonstrated that salubrinal protects CT26 cells from TcdB-mediated cytotoxic and cytopathic effect, inhibits apoptosis and death of the toxin-exposed cells via caspase-9-dependent pathway, eIF2α signaling pathway, and autophagy. These findings will be helpful for the development of CDI therapies.
Collapse
Affiliation(s)
- Shuyi Chen
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Chunli Sun
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Huawei Gu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Haiying Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Shan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Yi Ma
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
13
|
Affiliation(s)
- Megan Garland
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Sebastian Loscher
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Matthew Bogyo
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| |
Collapse
|
14
|
Clostridium difficile Toxins TcdA and TcdB Cause Colonic Tissue Damage by Distinct Mechanisms. Infect Immun 2016; 84:2871-7. [PMID: 27456833 PMCID: PMC5038081 DOI: 10.1128/iai.00583-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 02/04/2023] Open
Abstract
As the major cause of antibiotic-associated diarrhea, Clostridium difficile is a serious problem in health care facilities worldwide. C. difficile produces two large toxins, TcdA and TcdB, which are the primary virulence factors in disease. The respective functions of these toxins have been difficult to discern, in part because the cytotoxicity profiles for these toxins differ with concentration and cell type. The goal of this study was to develop a cell culture model that would allow a side-by-side mechanistic comparison of the toxins. Conditionally immortalized, young adult mouse colonic (YAMC) epithelial cells demonstrate an exquisite sensitivity to both toxins with phenotypes that agree with observations in tissue explants. TcdA intoxication results in an apoptotic cell death that is dependent on the glucosyltransferase activity of the toxin. In contrast, TcdB has a bimodal mechanism; it induces apoptosis in a glucosyltransferase-dependent manner at lower concentrations and glucosyltransferase-independent necrotic death at higher concentrations. The direct comparison of the responses to TcdA and TcdB in cells and colonic explants provides the opportunity to unify a large body of observations made by many independent investigators.
Collapse
|
15
|
Chen S, Wang H, Gu H, Sun C, Li S, Feng H, Wang J. Identification of an Essential Region for Translocation of Clostridium difficile Toxin B. Toxins (Basel) 2016; 8:toxins8080241. [PMID: 27537911 PMCID: PMC4999857 DOI: 10.3390/toxins8080241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 11/16/2022] Open
Abstract
Clostridium difficile toxin A (TcdA) and toxin B (TcdB) are the major virulence factors involved in C. difficile-associated diarrhea and pseudomembranous colitis. TcdA and TcdB both contain at least four distinct domains: the glucosyltransferase domain, cysteine protease domain, receptor binding domain, and translocation domain. Few studies have investigated the translocation domain and its mechanism of action. Recently, it was demonstrated that a segment of 97 amino acids (AA 1756-1852, designated D97) within the translocation domain of TcdB is essential for the in vitro and in vivo toxicity of TcdB. However, the mechanism by which D97 regulates the action of TcdB in host cells and the important amino acids within this region are unknown. In this study, we discovered that a smaller fragment, amino acids 1756-1780, located in the N-terminus of the D97 fragment, is essential for translocation of the effector glucosyltransferase domain into the host cytosol. A sequence of 25AA within D97 is predicted to form an alpha helical structure and is the critical part of D97. The deletion mutant TcdB∆1756-1780 showed similar glucosyltransferase and cysteine protease activity, cellular binding, and pore formation to wild type TcdB, but it failed to induce the glucosylation of Rho GTPase Rac1 of host cells. Moreover, we found that TcdB∆1756-1780 was rapidly degraded in the endosome of target cells, and therefore its intact glucosyltransferase domain was unable to translocate efficiently into host cytosol. Our finding provides an insight into the molecular mechanisms of action of TcdB in the intoxication of host cells.
Collapse
Affiliation(s)
- Shuyi Chen
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Haiying Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Huawei Gu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Chunli Sun
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Shan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
16
|
Di Bella S, Ascenzi P, Siarakas S, Petrosillo N, di Masi A. Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects. Toxins (Basel) 2016; 8:134. [PMID: 27153087 PMCID: PMC4885049 DOI: 10.3390/toxins8050134] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile infection (CDI) has significant clinical impact especially on the elderly and/or immunocompromised patients. The pathogenicity of Clostridium difficile is mainly mediated by two exotoxins: toxin A (TcdA) and toxin B (TcdB). These toxins primarily disrupt the cytoskeletal structure and the tight junctions of target cells causing cell rounding and ultimately cell death. Detectable C. difficile toxemia is strongly associated with fulminant disease. However, besides the well-known intestinal damage, recent animal and in vitro studies have suggested a more far-reaching role for these toxins activity including cardiac, renal, and neurologic impairment. The creation of C. difficile strains with mutations in the genes encoding toxin A and B indicate that toxin B plays a major role in overall CDI pathogenesis. Novel insights, such as the role of a regulator protein (TcdE) on toxin production and binding interactions between albumin and C. difficile toxins, have recently been discovered and will be described. Our review focuses on the toxin-mediated pathogenic processes of CDI with an emphasis on recent studies.
Collapse
Affiliation(s)
- Stefano Di Bella
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases "L. Spallanzani", Rome 00149, Italy.
| | - Paolo Ascenzi
- Department of Science, Roma Tre University, Rome 00154, Italy.
| | - Steven Siarakas
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, Sydney 2139, Australia.
| | - Nicola Petrosillo
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases "L. Spallanzani", Rome 00149, Italy.
| | | |
Collapse
|
17
|
Zhang Y, Feng H. Pathogenic effects of glucosyltransferase from Clostridium difficile toxins. Pathog Dis 2016; 74:ftw024. [PMID: 27044305 DOI: 10.1093/femspd/ftw024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2016] [Indexed: 01/13/2023] Open
Abstract
The glucosyltransferase domain ofClostridium difficiletoxins modifies guanine nucleotide-binding proteins of Rho family. It is the major virulent domain of the holotoxins. Various pathogenic effects ofC. difficiletoxins in response to Rho glucosylation have been investigated including cytoskeleton damage, cell death and inflammation. The most recent studies have revealed some significant characteristics of the holotoxins that are independent of glucosylating activity. These findings arouse discussion about the role of glucosyltransferase activity in toxin pathogenesis and open up new insights for toxin mechanism study. In this review, we summarize the pathogenic effects of glucosyltransferase domain of the toxins in the past years.
Collapse
Affiliation(s)
- Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Chumbler NM, Rutherford SA, Zhang Z, Farrow MA, Lisher JP, Farquhar E, Giedroc DP, Spiller BW, Melnyk RA, Lacy DB. Crystal structure of Clostridium difficile toxin A. Nat Microbiol 2016; 1:15002. [PMID: 27571750 PMCID: PMC4976693 DOI: 10.1038/nmicrobiol.2015.2] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/18/2015] [Indexed: 02/04/2023]
Abstract
Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics.
Collapse
Affiliation(s)
- Nicole M. Chumbler
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Stacey A. Rutherford
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Zhifen Zhang
- Department of Biochemistry, University of Toronto and the Molecular Structure & Function Research Institute at The Hospital for Sick Children, Toronto, Ontario M5S 1A8, Canada
| | - Melissa A. Farrow
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - John P. Lisher
- Interdisciplinary Graduate Program in Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Erik Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source, Building 725, Brookhaven National Laboratory, New York 11973, USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Benjamin W. Spiller
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Roman A. Melnyk
- Department of Biochemistry, University of Toronto and the Molecular Structure & Function Research Institute at The Hospital for Sick Children, Toronto, Ontario M5S 1A8, Canada
| | - D. Borden Lacy
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37205, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212, USA
| |
Collapse
|
19
|
Chen S, Sun C, Wang H, Wang J. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins. Toxins (Basel) 2015; 7:5254-67. [PMID: 26633511 PMCID: PMC4690124 DOI: 10.3390/toxins7124874] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile (C. difficile) is the main cause of antibiotic-associated diarrhea prevailing in hospital settings. In the past decade, the morbidity and mortality of C. difficile infection (CDI) has increased significantly due to the emergence of hypervirulent strains. Toxin A (TcdA) and toxin B (TcdB), the two exotoxins of C. difficile, are the major virulence factors of CDI. The common mode of action of TcdA and TcdB is elicited by specific glucosylation of Rho-GTPase proteins in the host cytosol using UDP-glucose as a co-substrate, resulting in the inactivation of Rho proteins. Rho proteins are the key members in many biological processes and signaling pathways, inactivation of which leads to cytopathic and cytotoxic effects and immune responses of the host cells. It is supposed that Rho GTPases play an important role in the toxicity of C. difficile toxins. This review focuses on recent progresses in the understanding of functional consequences of Rho GTPases glucosylation induced by C. difficile toxins and the role of Rho GTPases in the toxicity of TcdA and TcdB.
Collapse
Affiliation(s)
- Shuyi Chen
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou 510006, China.
| | - Chunli Sun
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou 510006, China.
| | - Haiying Wang
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou 510006, China.
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou 510006, China.
| |
Collapse
|
20
|
Clostridium sordellii Lethal-Toxin Autoprocessing and Membrane Localization Activities Drive GTPase Glucosylation Profiles in Endothelial Cells. mSphere 2015; 1:mSphere00012-15. [PMID: 27303685 PMCID: PMC4863631 DOI: 10.1128/msphere.00012-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022] Open
Abstract
Clostridium sordellii is a bacterium that can infect humans and cause serious disease and death. The principle virulence factor associated with clinical symptoms is a large protein toxin known as lethal toxin. The mechanism of lethal-toxin intoxication is assumed to be similar to that of the homologous toxins from C. difficile, but very few studies have been done in the context of endothelial cells, a relevant target in C. sordellii infections. This study was designed to test the role of the lethal-toxin enzymatic activities and membrane localization in endothelial cell toxicity and host substrate modification. Clostridium sordellii infections cause gangrene and edema in humans and gastrointestinal infections in livestock. One of the principle virulence factors is TcsL, a large protein toxin which glucosylates host GTPases to cause cytopathic and cytotoxic effects. TcsL has two enzymatic domains, an N-terminal glucosyltransferase domain (GTD) and an autoprocessing domain responsible for release of the GTD within the cell. The GTD can then use its N-terminal membrane localization domain (MLD) for orientation on membranes and modification of GTPases. This study describes the use of conditionally immortalized murine pulmonary microvascular endothelial cells as a model for the study of TcsL functional activities. Point mutations that disrupt the glucosyltransferase, autoprocessing, or membrane localization activities were introduced into a recombinant version of TcsL, and the activities of these mutants were compared to those of wild-type toxin. We observed that all mutants are defective or impaired in cytotoxicity but differ in their modification of Rac1 and Ras. The data suggest a model where differences in GTPase localization dictate cellular responses to intoxication and highlight the importance of autoprocessing in the function of TcsL. IMPORTANCEClostridium sordellii is a bacterium that can infect humans and cause serious disease and death. The principle virulence factor associated with clinical symptoms is a large protein toxin known as lethal toxin. The mechanism of lethal-toxin intoxication is assumed to be similar to that of the homologous toxins from C. difficile, but very few studies have been done in the context of endothelial cells, a relevant target in C. sordellii infections. This study was designed to test the role of the lethal-toxin enzymatic activities and membrane localization in endothelial cell toxicity and host substrate modification.
Collapse
|
21
|
Bender KO, Garland M, Ferreyra JA, Hryckowian AJ, Child MA, Puri AW, Solow-Cordero DE, Higginbottom SK, Segal E, Banaei N, Shen A, Sonnenburg JL, Bogyo M. A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med 2015; 7:306ra148. [PMID: 26400909 DOI: 10.1126/scitranslmed.aac9103] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/04/2015] [Indexed: 12/22/2022]
Abstract
Clostridium difficile infection (CDI) is a worldwide health threat that is typically triggered by the use of broad-spectrum antibiotics, which disrupt the natural gut microbiota and allow this Gram-positive anaerobic pathogen to thrive. The increased incidence and severity of disease coupled with decreased response, high recurrence rates, and emergence of multiple antibiotic-resistant strains have created an urgent need for new therapies. We describe pharmacological targeting of the cysteine protease domain (CPD) within the C. difficile major virulence factor toxin B (TcdB). Through a targeted screen with an activity-based probe for this protease domain, we identified a number of potent CPD inhibitors, including one bioactive compound, ebselen, which is currently in human clinical trials for a clinically unrelated indication. This drug showed activity against both major virulence factors, TcdA and TcdB, in biochemical and cell-based studies. Treatment in a mouse model of CDI that closely resembles the human infection confirmed a therapeutic benefit in the form of reduced disease pathology in host tissues that correlated with inhibition of the release of the toxic glucosyltransferase domain (GTD). Our results show that this non-antibiotic drug can modulate the pathology of disease and therefore could potentially be developed as a therapeutic for the treatment of CDI.
Collapse
Affiliation(s)
- Kristina Oresic Bender
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Megan Garland
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Jessica A Ferreyra
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Andrew J Hryckowian
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Matthew A Child
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Aaron W Puri
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - David E Solow-Cordero
- Stanford University High-Throughput Bioscience Center, 1291 Welch Road, Stanford, CA 94305-5174, USA
| | - Steven K Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Ehud Segal
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA. Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305-5107, USA
| | - Aimee Shen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA. Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA.
| |
Collapse
|
22
|
Zhang Y, Hamza T, Gao S, Feng H. Masking autoprocessing of Clostridium difficile toxin A by the C-terminus combined repetitive oligo peptides. Biochem Biophys Res Commun 2015; 459:259-263. [PMID: 25725153 DOI: 10.1016/j.bbrc.2015.02.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Clostridium difficile toxin A and B (TcdA and TcdB) are the major virulence factors of the bacterium, both of which consist of two enzymatic domains: an effector glucosyltransferase domain (GTD) and a cysteine protease domain (CPD) responsible for autocleavage and release of GTD. Although the CPDs from both toxins share a similar structure and mechanism of hexakisphosphate (InsP6)-induced activation, TcdA is substantially less sensitive to the autocleavage as compared with TcdB. In this study, we provided evidence of inter-domain regulation of CPD activity of TcdA and its autoprocessing. The C-terminus combined repetitive oligo peptides (CROPs) of TcdA reduced the accessibility of TcdB CPD to its substrate in a chimeric toxin TxB-Ar, consequently blocking autoprocessing. Moreover, interference of antibodies with the CROPs of full-length TcdA efficiently enhanced its GTD release. In conclusion, by utilizing chimeric toxins and specific antibodies, we identified that the CROPs of TcdA plays a crucial role in controlling the InsP6-mediated activation of CPD and autocleavage of GTD. Our data provides insights on the molecular mode of action of the C. difficile toxins.
Collapse
Affiliation(s)
- Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Therwa Hamza
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Si Gao
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21201, USA.
| |
Collapse
|
23
|
Tam J, Beilhartz GL, Auger A, Gupta P, Therien AG, Melnyk RA. Small molecule inhibitors of Clostridium difficile toxin B-induced cellular damage. ACTA ACUST UNITED AC 2015; 22:175-85. [PMID: 25619932 DOI: 10.1016/j.chembiol.2014.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/25/2014] [Accepted: 12/06/2014] [Indexed: 02/04/2023]
Abstract
Clostridium difficile causes life-threatening diarrhea through the actions of its homologous toxins TcdA and TcdB on human colonocytes. Therapeutic agents that block toxin-induced damage are urgently needed to prevent the harmful consequences of toxin action that are not addressed with current antibiotic-based treatments. Here, we developed an imaging-based phenotypic screen to identify small molecules that protected human cells from TcdB-induced cell rounding. A series of structurally diverse compounds with antitoxin activity were identified and found to act through one of a small subset of mechanisms, including direct binding and sequestration of TcdB, inhibition of endosomal maturation, and noncompetitive inhibition of the toxin glucosyltransferase activity. Distinct classes of inhibitors were used further to dissect the determinants of the toxin-mediated necrosis phenotype occurring at higher doses of toxin. These findings validate and inform novel targeting strategies for discovering small molecule agents to treat C. difficile infection.
Collapse
Affiliation(s)
- John Tam
- Molecular Structure & Function, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Greg L Beilhartz
- Molecular Structure & Function, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Anick Auger
- Molecular Structure & Function, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Pulkit Gupta
- Merck & Co. Inc., 2000 Galloping Hill Road, K15, Kenilworth, NJ 07033, USA
| | - Alex G Therien
- Merck & Co. Inc., 2000 Galloping Hill Road, K15, Kenilworth, NJ 07033, USA
| | - Roman A Melnyk
- Molecular Structure & Function, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
24
|
Critical roles of Clostridium difficile toxin B enzymatic activities in pathogenesis. Infect Immun 2014; 83:502-13. [PMID: 25404023 DOI: 10.1128/iai.02316-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
TcdB is one of the key virulence factors of Clostridium difficile that is responsible for causing serious and potentially fatal colitis. The toxin contains at least two enzymatic domains: an effector glucosyltransferase domain for inactivating host Rho GTPases and a cysteine protease domain for the delivery of the effector domain into host cytosol. Here, we describe a novel intrabody approach to examine the role of these enzymes of TcdB in cellular intoxication. By screening a single-domain heavy chain (V(H)H) library raised against TcdB, we identified two V(H)H antibodies, 7F and E3, that specifically inhibit TcdB cysteine protease and glucosyltransferase activities, respectively. Cytoplasmic expression of 7F intrabody in Vero cells inhibited TcdB autoprocessing and delayed cellular intoxication, whereas E3 intrabody completely blocked the cytopathic effects of TcdB holotoxin. These data also demonstrate for the first time that toxin autoprocessing occurs after cysteine protease and glucosyltransferase domains translocate into the cytosol of target cells. We further determined the role of the enzymatic activities of TcdB in in vivo toxicity using a sensitive systemic challenge model in mice. Consistent with these in vitro results, a cysteine protease noncleavable mutant, TcdB-L543A, delayed toxicity in mice, whereas glycosyltransferase-deficient TcdB demonstrated no toxicity up to 500-fold of the 50% lethal dose (LD50) when it was injected systemically. Thus, glucosyltransferase but not cysteine protease activity is critical for TcdB-mediated cytopathic effects and TcdB systemic toxicity, highlighting the importance of targeting toxin glucosyltransferase activity for future therapy.
Collapse
|
25
|
Sun X, Hirota SA. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol Immunol 2014; 63:193-202. [PMID: 25242213 DOI: 10.1016/j.molimm.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 02/08/2023]
Abstract
Clostridium difficile (C. difficile) is the most common cause of nosocomial antibiotic-associated diarrhea and the etiologic agent of pseudomembranous colitis. The clinical manifestation of C. difficile infection (CDI) is highly variable, from asymptomatic carriage, to mild self-limiting diarrhea, to the more severe pseudomembranous colitis. Furthermore, in extreme cases, colonic inflammation and tissue damage can lead to toxic megacolon, a condition requiring surgical intervention. C. difficile expresses two key virulence factors; the exotoxins, toxin A (TcdA) and toxin B (TcdB), which are glucosyltransferases that target host-cell monomeric GTPases. In addition, some hypervirulent strains produce a third toxin, binary toxin or C. difficile transferase (CDT), which may contribute to the pathogenesis of CDI. More recently, other factors such as surface layer proteins (SLPs) and flagellin have also been linked to the inflammatory responses observed in CDI. Although the adaptive immune response can influence the severity of CDI, the innate immune responses to C. difficile and its toxins play crucial roles in CDI onset, progression, and overall prognosis. Despite this, the innate immune responses in CDI have drawn relatively little attention from clinical researchers. Targeting these responses may prove useful clinically as adjuvant therapies, especially in refractory and/or recurrent CDI. This review will focus on recent advances in our understanding of how C. difficile and its toxins modulate innate immune responses that contribute to CDI pathogenesis.
Collapse
Affiliation(s)
- Xingmin Sun
- Tufts University Cummings School of Veterinary Medicine, Department of Infectious Diseases and Global Health, North Grafton, MA 01536, USA; Tufts University, Clinical and Translational Science Institute, Boston, MA 02111, USA.
| | - Simon A Hirota
- University of Calgary, Snyder Institute for Chronic Diseases, Departments of Physiology & Pharmacology and Microbiology, Immunology & Infectious Diseases, Calgary, AB T2N4N1, Canada
| |
Collapse
|
26
|
Olling A, Hüls C, Goy S, Müller M, Krooss S, Rudolf I, Tatge H, Gerhard R. The combined repetitive oligopeptides of clostridium difficile toxin A counteract premature cleavage of the glucosyl-transferase domain by stabilizing protein conformation. Toxins (Basel) 2014; 6:2162-76. [PMID: 25054784 PMCID: PMC4113749 DOI: 10.3390/toxins6072162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 11/25/2022] Open
Abstract
Toxin A (TcdA) and B (TcdB) from Clostridium difficile enter host cells by receptor-mediated endocytosis. A prerequisite for proper toxin action is the intracellular release of the glucosyltransferase domain by an inherent cysteine protease, which is allosterically activated by inositol hexaphosphate (IP6). We found that in in vitro assays, the C-terminally-truncated TcdA1–1065 was more efficient at IP6-induced cleavage compared with full-length TcdA. We hypothesized that the C-terminally-located combined repetitive oligopeptides (CROPs) interact with the N-terminal part of the toxin, thereby preventing autoproteolysis. Glutathione-S-transferase (GST) pull-down assays and microscale thermophoresis confirmed binding between the CROPs and the glucosyltransferase (TcdA1–542) or intermediate (TcdA1102–1847) domain of TcdA, respectively. This interaction between the N- and C-terminus was not found for TcdB. Functional assays revealed that TcdB was more susceptible to inactivation by extracellular IP6-induced cleavage. In vitro autoprocessing and inactivation of TcdA, however, significantly increased, either by acidification of the surrounding milieu or following exchange of its CROP domain by the homologous CROP domain of TcdB. Thus, TcdA CROPs contribute to the stabilization and protection of toxin conformation in addition to function as the main receptor binding domain.
Collapse
Affiliation(s)
- Alexandra Olling
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Corinna Hüls
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Sebastian Goy
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Mirco Müller
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Simon Krooss
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Isa Rudolf
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
27
|
Translocation domain mutations affecting cellular toxicity identify the Clostridium difficile toxin B pore. Proc Natl Acad Sci U S A 2014; 111:3721-6. [PMID: 24567384 DOI: 10.1073/pnas.1400680111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disease associated with Clostridium difficile infection is caused by the actions of the homologous toxins TcdA and TcdB on colonic epithelial cells. Binding to target cells triggers toxin internalization into acidified vesicles, whereupon cryptic segments from within the 1,050-aa translocation domain unfurl and insert into the bounding membrane, creating a transmembrane passageway to the cytosol. Our current understanding of the mechanisms underlying pore formation and the subsequent translocation of the upstream cytotoxic domain to the cytosol is limited by the lack of information available regarding the identity and architecture of the transmembrane pore. Here, through systematic perturbation of conserved sites within predicted membrane-insertion elements of the translocation domain, we uncovered highly sensitive residues--clustered between amino acids 1,035 and 1,107--that when individually mutated, reduced cellular toxicity by as much as >1,000-fold. We demonstrate that defective variants are defined by impaired pore formation in planar lipid bilayers and biological membranes, resulting in an inability to intoxicate cells through either apoptotic or necrotic pathways. These findings along with the unexpected similarities uncovered between the pore-forming "hotspots" of TcdB and the well-characterized α-helical diphtheria toxin translocation domain provide insights into the structure and mechanism of formation of the translocation pore for this important class of pathogenic toxins.
Collapse
|
28
|
Li S, Shi L, Yang Z, Feng H. Cytotoxicity of Clostridium difficile toxin B does not require cysteine protease-mediated autocleavage and release of the glucosyltransferase domain into the host cell cytosol. Pathog Dis 2013; 67:11-8. [PMID: 23620115 DOI: 10.1111/2049-632x.12016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile virulence requires secretion of two exotoxins: TcdA and TcdB. The precise mechanism of toxin uptake and delivery is undefined, but current models predict that the cysteine protease domain (CPD)-mediated autocleavage and release of glucosyltransferase domain (GTD) are crucial for intoxication. To determine the importance of CPD-mediated cleavage to TcdB cytotoxicity, we generated two mutant toxins--TcdB-C698S and TcdB-H653A--and assayed their abilities to intoxicate cells. The CPD mutants include an intact GTD but lack the cysteine protease activity. The mutants had reduced potency in that their effect on cells was delayed and required higher concentrations than wild-type TcdB. They did eventually cause cell rounding, glucosylation of Rho GTPases, and apoptosis that was indistinguishable from that caused by TcdB. Although the mutant toxins caused a complete cell rounding, they failed to release their GTD into cytosol, whereas wild-type TcdB displayed significant autocleavage and release of GTD. We conclude that the cysteine protease-mediated autocleavage and release of GTD is not a prerequisite for the cytotoxic activity of TcdB, but rather limits the potency and speed of Rho GTPase glucosylation. Our findings revise and refine the current model for the mode of the action and cellular trafficking of TcdB.
Collapse
Affiliation(s)
- Shan Li
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
29
|
Chumbler NM, Farrow MA, Lapierre LA, Franklin JL, Haslam D, Goldenring JR, Lacy DB. Clostridium difficile Toxin B causes epithelial cell necrosis through an autoprocessing-independent mechanism. PLoS Pathog 2012; 8:e1003072. [PMID: 23236283 PMCID: PMC3516567 DOI: 10.1371/journal.ppat.1003072] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/22/2012] [Indexed: 01/21/2023] Open
Abstract
Clostridium difficile is the most common cause of antibiotic-associated nosocomial infection in the United States. C. difficile secretes two homologous toxins, TcdA and TcdB, which are responsible for the symptoms of C. difficile associated disease. The mechanism of toxin action includes an autoprocessing event where a cysteine protease domain (CPD) releases a glucosyltransferase domain (GTD) into the cytosol. The GTD acts to modify and inactivate Rho-family GTPases. The presumed importance of autoprocessing in toxicity, and the apparent specificity of the CPD active site make it, potentially, an attractive target for small molecule drug discovery. In the course of exploring this potential, we have discovered that both wild-type TcdB and TcdB mutants with impaired autoprocessing or glucosyltransferase activities are able to induce rapid, necrotic cell death in HeLa and Caco-2 epithelial cell lines. The concentrations required to induce this phenotype correlate with pathology in a porcine colonic explant model of epithelial damage. We conclude that autoprocessing and GTD release is not required for epithelial cell necrosis and that targeting the autoprocessing activity of TcdB for the development of novel therapeutics will not prevent the colonic tissue damage that occurs in C. difficile – associated disease. Clostridium difficile is an anaerobic spore-forming bacterium that infects the human colon and causes diarrhea, pseudomembranous colitis, and toxic megacolon. Most people that develop disease symptoms have undergone antibiotic treatment, which alters the normal gut flora and allows C. difficile to flourish. C. difficile secretes two toxins, TcdA and TcdB, that are responsible for the fluid secretion, inflammation, and colonic tissue damage associated with disease. The emergence of hypervirulent strains of C. difficile that are linked to increased morbidity and mortality highlights the need for new therapeutic strategies. One strategy is to inhibit the function of the toxins, thereby decreasing damage to the colon while the patient clears the infection with antibiotics. Toxin function is thought to depend on an autoprocessing event that releases a catalytic ‘effector’ portion of the toxin into the host cell. In the course of trying to identify small molecules that would inhibit such a function, we found that TcdB induces a rapid necrosis in epithelial cells that is not dependent on autoprocessing. The physiological relevance of this observation is confirmed in colonic explants and suggests that inhibiting TcdB autoprocessing will not prevent the colonic tissue damage observed in C. difficile associated diseases.
Collapse
Affiliation(s)
- Nicole M. Chumbler
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Melissa A. Farrow
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Lynne A. Lapierre
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jeffrey L. Franklin
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - David Haslam
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James R. Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
30
|
Pruitt RN, Lacy DB. Toward a structural understanding of Clostridium difficile toxins A and B. Front Cell Infect Microbiol 2012; 2:28. [PMID: 22919620 PMCID: PMC3417631 DOI: 10.3389/fcimb.2012.00028] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/27/2012] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile is a toxin-producing bacterium that is a frequent cause of hospital-acquired and antibiotic-associated diarrhea. The incidence, severity, and costs associated with C. difficile associated disease are substantial and increasing, making C. difficile a significant public health concern. The two primary toxins, TcdA and TcdB, disrupt host cell function by inactivating small GTPases that regulate the actin cytoskeleton. This review will discuss the role of these two toxins in pathogenesis and the structural and molecular mechanisms by which they intoxicate cells. A focus will be placed on recent publications highlighting mechanistic similarities and differences between TcdA, TcdB, and different TcdB variants.
Collapse
Affiliation(s)
- Rory N Pruitt
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville TN, USA
| | | |
Collapse
|
31
|
Pruitt RN, Chumbler NM, Rutherford SA, Farrow MA, Friedman DB, Spiller B, Lacy DB. Structural determinants of Clostridium difficile toxin A glucosyltransferase activity. J Biol Chem 2012; 287:8013-20. [PMID: 22267739 DOI: 10.1074/jbc.m111.298414] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The principle virulence factors in Clostridium difficile pathogenesis are TcdA and TcdB, homologous glucosyltransferases capable of inactivating small GTPases within the host cell. We present crystal structures of the TcdA glucosyltransferase domain in the presence and absence of the co-substrate UDP-glucose. Although the enzymatic core is similar to that of TcdB, the proposed GTPase-binding surface differs significantly. We show that TcdA is comparable with TcdB in its modification of Rho family substrates and that, unlike TcdB, TcdA is also capable of modifying Rap family GTPases both in vitro and in cells. The glucosyltransferase activities of both toxins are reduced in the context of the holotoxin but can be restored with autoproteolytic activation and glucosyltransferase domain release. These studies highlight the importance of cellular activation in determining the array of substrates available to the toxins once delivered into the cell.
Collapse
Affiliation(s)
- Rory N Pruitt
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Shen A. Clostridium difficile toxins: mediators of inflammation. J Innate Immun 2012; 4:149-58. [PMID: 22237401 DOI: 10.1159/000332946] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/06/2011] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a significant problem in hospital settings as the most common cause of nosocomial diarrhea worldwide. C. difficile infections (CDIs) are characterized by an acute intestinal inflammatory response with neutrophil infiltration. These symptoms are primarily caused by the glucosylating toxins, TcdA and TcdB. In the past decade, the frequency and severity of CDIs have increased markedly due to the emergence of so-called hypervirulent strains that overproduce cytotoxic glucosylating toxins relative to historical strains. In addition, these strains produce a third toxin, binary toxin or C. difficile transferase (CDT), that may contribute to hypervirulence. Both the glucosylating toxins and CDT covalently modify target cell proteins to cause disassembly of the actin cytoskeleton and induce severe inflammation. This review summarizes our current knowledge of the mechanisms by which glucosylating toxins and CDT disrupt target cell function, alter host physiology and stimulate immune responses.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vt. 05401, USA.
| |
Collapse
|
33
|
Oezguen N, Power TD, Urvil P, Feng H, Pothoulakis C, Stamler JS, Braun W, Savidge TC. Clostridial toxins: sensing a target in a hostile gut environment. Gut Microbes 2012; 3:35-41. [PMID: 22356854 PMCID: PMC3337123 DOI: 10.4161/gmic.19250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The current global outbreak of Clostridium difficile infection exemplifies the major public health threat posed by clostridial glucosylating toxins. In the western world, C. difficile infection is one of the most prolific causes of bacterial-induced diarrhea and potentially fatal colitis. Two pathogenic enterotoxins, TcdA and TcdB, cause the disease. Vancomycin and metronidazole remain readily available treatment options for C. difficile infection, but neither is fully effective as is evident by high clinical relapse and fatality rates. Thus, there is an urgent need to find an alternative therapy that preferentially targets the toxins and not the drug-resistant pathogen. Recently, we addressed these critical issues in a Nature Medicine letter, describing a novel host defense mechanism for subverting toxin virulence that we translated into prototypic allosteric therapy for C. difficile infection. In this addendum article, we provide a continued perspective of this antitoxin mechanism and consider the broader implications of therapeutic allostery in combating gut microbial pathogenesis.
Collapse
Affiliation(s)
- Numan Oezguen
- Department of Internal Medicine; University of Texas Medical Branch; Galveston, TX USA
| | - Trevor D. Power
- Department of Biochemistry & Molecular Biology; University of Texas Medical Branch; Galveston, TX USA
| | - Petri Urvil
- Department of Internal Medicine; University of Texas Medical Branch; Galveston, TX USA
| | - Hanping Feng
- Department of Microbial Pathogenesis; University of Maryland Dental School; Baltimore, MD USA
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease; Division of Digestive Diseases; University of California at Los Angeles; Los Angeles, CA USA
| | - Jonathan S. Stamler
- Institute for Transformative Molecular Medicine; Department of Medicine; University Hospitals; Case Western Reserve University; Cleveland, OH USA
| | - Werner Braun
- Department of Biochemistry & Molecular Biology; University of Texas Medical Branch; Galveston, TX USA
| | - Tor C. Savidge
- Department of Internal Medicine; University of Texas Medical Branch; Galveston, TX USA,Correspondence to: Tor C. Savidge;
| |
Collapse
|
34
|
Savidge TC, Urvil P, Oezguen N, Ali K, Choudhury A, Acharya V, Pinchuk I, Torres AG, English RD, Wiktorowicz JE, Loeffelholz M, Kumar R, Shi L, Nie W, Braun W, Herman B, Hausladen A, Feng H, Stamler JS, Pothoulakis C. Host S-nitrosylation inhibits clostridial small molecule-activated glucosylating toxins. Nat Med 2011; 17:1136-41. [PMID: 21857653 DOI: 10.1038/nm.2405] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/20/2011] [Indexed: 02/06/2023]
Abstract
The global prevalence of severe Clostridium difficile infection highlights the profound clinical significance of clostridial glucosylating toxins. Virulence is dependent on the autoactivation of a toxin cysteine protease, which is promoted by the allosteric cofactor inositol hexakisphosphate (InsP(6)). Host mechanisms that protect against such exotoxins are poorly understood. It is increasingly appreciated that the pleiotropic functions attributed to nitric oxide (NO), including host immunity, are in large part mediated by S-nitrosylation of proteins. Here we show that C. difficile toxins are S-nitrosylated by the infected host and that S-nitrosylation attenuates virulence by inhibiting toxin self-cleavage and cell entry. Notably, InsP(6)- and inositol pyrophosphate (InsP(7))-induced conformational changes in the toxin enabled host S-nitrosothiols to transnitrosylate the toxin catalytic cysteine, which forms part of a structurally conserved nitrosylation motif. Moreover, treatment with exogenous InsP(6) enhanced the therapeutic actions of oral S-nitrosothiols in mouse models of C. difficile infection. Allostery in bacterial proteins has thus been successfully exploited in the evolutionary development of nitrosothiol-based innate immunity and may provide an avenue to new therapeutic approaches.
Collapse
Affiliation(s)
- Tor C Savidge
- Department of Gastroenterology & Hepatology, University of Texas Medical Branch, Galveston, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Super toxins from a super bug: structure and function of Clostridium difficile toxins. Biochem J 2011; 436:517-26. [DOI: 10.1042/bj20110106] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile, a highly infectious bacterium, is the leading cause of antibiotic-associated pseudomembranous colitis. In 2009, the number of death certificates mentioning C. difficile infection in the U.K. was estimated at 3933 with 44% of certificates recording infection as the underlying cause of death. A number of virulence factors facilitate its pathogenicity, among which are two potent exotoxins; Toxins A and B. Both are large monoglucosyltransferases that catalyse the glucosylation, and hence inactivation, of Rho-GTPases (small regulatory proteins of the eukaryote actin cell cytoskeleton), leading to disorganization of the cytoskeleton and cell death. The roles of Toxins A and B in the context of C. difficile infection is unknown. In addition to these exotoxins, some strains of C. difficile produce an unrelated ADP-ribosylating binary toxin. This toxin consists of two independently produced components: an enzymatic component (CDTa) and the other, the transport component (CDTb) which facilitates translocation of CDTa into target cells. CDTa irreversibly ADP-ribosylates G-actin in target cells, which disrupts the F-actin:G-actin equilibrium leading to cell rounding and cell death. In the present review we provide a summary of the current structural understanding of these toxins and discuss how it may be used to identify potential targets for specific drug design.
Collapse
|
36
|
Guttenberg G, Papatheodorou P, Genisyuerek S, Lü W, Jank T, Einsle O, Aktories K. Inositol hexakisphosphate-dependent processing of Clostridium sordellii lethal toxin and Clostridium novyi alpha-toxin. J Biol Chem 2011; 286:14779-86. [PMID: 21385871 DOI: 10.1074/jbc.m110.200691] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clostridium sordellii lethal toxin and Clostridium novyi α-toxin, which are virulence factors involved in the toxic shock and gas gangrene syndromes, are members of the family of clostridial glucosylating toxins. The toxins inactivate Rho/Ras proteins by glucosylation or attachment of GlcNAc (α-toxin). Here, we studied the activation of the autoproteolytic processing of the toxins by inositol hexakisphosphate (InsP(6)) and compared it with the processing of Clostridium difficile toxin B. In the presence of low concentrations of InsP(6) (<1 μM), toxin fragments consisting of the N-terminal glucosyltransferase (or GlcNAc-transferase) domains and the cysteine protease domains (CPDs) of C. sordellii lethal toxin, C. novyi α-toxin, and C. difficile toxin B were autocatalytically processed. The cleavage sites of lethal toxin (Leu-543) and α-toxin (Leu-548) and the catalytic cysteine residues (Cys-698 of lethal toxin and Cys-707 of α-toxin) were identified. Affinity of the CPDs for binding InsP(6) was determined by isothermal titration calorimetry. In contrast to full-length toxin B and α-toxin, autocatalytic cleavage and InsP(6) binding of full-length lethal toxin depended on low pH (pH 5) conditions. The data indicate that C. sordellii lethal toxin and C. novyi α-toxin are InsP(6)-dependently processed. However, full-length lethal toxin, but not its short toxin fragments consisting of the glucosyltransferase domain and the CPD, requires a pH-sensitive conformational change to allow binding of InsP(6) and subsequent processing of the toxin.
Collapse
Affiliation(s)
- Gregor Guttenberg
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|