1
|
Abdel-Zaher AO, Bakr MH, Gad YH, Abdelhafez AT. Novel mechanistic insights of the potential role of gasotransmitters and autophagy in the protective effect of metformin against hepatic ischemia/reperfusion injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03837-1. [PMID: 39912902 DOI: 10.1007/s00210-025-03837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/19/2025] [Indexed: 02/07/2025]
Abstract
Metformin exerts antidiabetic and pleiotropic effects. This study investigated the function and mechanisms of gasotransmitters and autophagy in the metformin-induced protection against ischemia/reperfusion injury (I/RI). According to measurements of serum hepatic function indicators and histopathological evaluation, metformin protected against hepatic I/RI-induced impairment of liver function and structure. In addition, metformin inhibited hepatic I/RI-induced hepatic oxidative stress, nitrosative stress, inflammation, and apoptosis. Also, it suppressed hepatic I/RI-induced decrease in hepatic heme oxygenase-1 (HO-1) and hydrogen sulfide (H2S) levels and increase in nitric oxide (NO) production. Furthermore, metformin inhibited hepatic I/RI-induced decrease in protein expressions of endothelial NO synthase (eNOS), HO-1, cystathionine γ-lyase (CSE), and Beclin-1 and increase in the protein expression of inducible NO synthase (iNOS) in the liver tissue. Co-administration of the NO biosynthesis inhibitor, L-NAME, carbon monoxide(CO)-releasing molecule-A1 (CORM-A1), the H2S donor, NaHS, or the autophagy stimulator, rapamycin (RAPA), enhanced all effects of metformin. The NO donor, L-arginine, the CO biosynthesis inhibitor, zinc protoporphyrin, the H2S biosynthesis inhibitor, DL-propargylglycine, or the autophagy inhibitor, chloroquine (CQ), antagonized the effects of metformin. These findings reveal, for the first time, that increasing CO, H2S, and autophagy levels with subsequent decreasing NO level play a critical role in metformin's protective action against hepatic I/RI. The ability of L-NAME, CORM-A1, NaHS, and RAPA to boost metformin's protective effect in hepatic I/RI may positively be attributed to their ability to lower hepatic oxidative stress, nitrosative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Ahmed O Abdel-Zaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Basic Medical Science, Badr University, Assiut, Egypt
| | - Yomna H Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Alaa T Abdelhafez
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Lu C, Xu C, Yang J. The Beneficial Effects of GLP-1 Receptor Agonists Other than Their Anti-Diabetic and Anti-Obesity Properties. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:17. [PMID: 39858999 PMCID: PMC11767243 DOI: 10.3390/medicina61010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
As an incretin hormone, Glucagon-like peptide-1 (GLP-1) has obvious effects on blood glucose regulation and weight loss. GLP-1 receptor (GLP-1R) agonists are synthetic products that have similar effects to GLP-1 but are less prone to degradation, and they are widely used in the treatment of type 2 diabetes and obesity. In recent years, different beneficial effects of GLP-1R agonists were discovered, such as reducing ischemia-reperfusion injury, improving the function of various organs, alleviating substance use disorder, affecting tumorigenesis, regulating bone metabolism, changing gut microbiota composition, and prolonging graft survival. Therefore, GLP-1R agonists have great potential for clinical application in various diseases. Here, we briefly summarized the beneficial effects of GLP-1R agonists other than the anti-diabetic and anti-obesity effects.
Collapse
Affiliation(s)
- Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| | - Cong Xu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| |
Collapse
|
3
|
Guo J, Chen X, Wang C, Ruan F, Xiong Y, Wang L, Abdel-Razek O, Meng Q, Shahbazov R, Cooney RN, Wang G. LIRAGLUTIDE ALLEVIATES ACUTE LUNG INJURY AND MORTALITY IN PNEUMONIA-INDUCED SEPSIS THROUGH REGULATING SURFACTANT PROTEIN EXPRESSION AND SECRETION. Shock 2024; 61:601-610. [PMID: 38150354 PMCID: PMC11009087 DOI: 10.1097/shk.0000000000002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT Glucagon-like peptide 1 (GLP-1) analogs are used to treat type 2 diabetes, and they can regulate insulin secretion, energy homeostasis, inflammation, and immune cell function. This study sought to determine whether the GLP-1 analog liraglutide exerts a beneficial action in an acute lung injury model of pneumonia-induced sepsis. Methods: Wild-type FVB/NJ mice (n = 114) were infected by intratracheal injection with Pseudomonas aeruginosa Xen5 (4 × 10 4 CFU/mouse) or an equal volume (50 μL) of saline (control) with or without a subcutaneous injection of liraglutide (2 mg/kg, 30 min after infection). Mice were killed 24 h after infection. Lung tissues and BALF were analyzed. In separate experiments, the dynamic growth of bacteria and animal mortality was monitored using in vivo imaging system within 48 h after infection. In addition, primary lung alveolar type II cells isolated from mice were used to study the mechanism of liraglutide action. Result: Liraglutide improved survival ( P < 0.05), decreased bacterial loads in vivo , and reduced lung injury scores ( P < 0.01) in septic mice. Liraglutide-treated mice showed decreased levels of inflammatory cells ( P < 0.01) and proinflammatory cytokines (TNF-α and IL-6) ( P < 0.01) in the lung compared with septic controls. Liraglutide significantly increased pulmonary surfactant proteins (SP-A and SP-B) expression/secretion ( P < 0.01) and phospholipid secretion ( P < 0.01) in vivo . Primary alveolar type II cells pretreated with liraglutide improved SP-A and SP-B expression after LPS exposure ( P < 0.01). Conclusion: Liraglutide attenuates mortality and lung inflammation/injury in pneumonia-induced sepsis. The increased surfactant expression/secretion and anti-inflammatory effects of liraglutide represent potential mechanisms by GLP-1 agonists potentiate host defense and maintain alveolar respiratory function in acute lung injury.
Collapse
Affiliation(s)
- Junping Guo
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Rainbowfish Rehabilitation & Nursing School, Hangzhou Vocational & Technical College, Hangzhou 310018, China
| | - Xinghua Chen
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Nephrology, Wuhan University, Renmin Hospital, Wuhan 430060, China
| | - Cole Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Feng Ruan
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Yunhe Xiong
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Lijun Wang
- Department of Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China
| | - Osama Abdel-Razek
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Qinghe Meng
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rauf Shahbazov
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Robert N Cooney
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
4
|
Xu C, Lu C, Wang Z, Hu X, Li S, Xie Y, Qiu Y, Cao R, Li Y, Yang J. Liraglutide abrogates nephrotoxic effects of chemotherapies. Pharmacol Res 2023; 189:106680. [PMID: 36746359 DOI: 10.1016/j.phrs.2023.106680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/26/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Acute kidney injury (AKI) is a common clinical complication. Cisplatin (Cis) is an effective chemotherapeutic drug; however, its acute nephrotoxicity often limits its application. The role of liraglutide (Lir), an agonist of the glucagon-like peptide-1 receptor (GLP-1R), has recently attracted increasing attention beyond glycemic regulation. This study showed that Lir significantly ameliorated Cis-induced kidney dysfunction and renal damage. However, this renoprotective effect was partially abolished in GLP-1R knockout (GLP-1R-/-) mice. Furthermore, we synthesized Lir metabolites, GLP-1 (9-37) and GLP-1 (28-37), and found that they also exerted reno-protective effects that were not impaired in GLP-1R-/- mice. We also demonstrated that Lir and its metabolites reduced cisplatin-induced apoptosis in human renal tubular epithelial cells (HK-2). After silencing GLP-1R expression in HK-2 cells with small interfering ribose nucleic acid (siRNA), the protective effect of Lir on HK-2 cells was inhibited, while the protective effects of GLP-1 (9-37) and GLP-1 (28-37) were not affected. Additionally, we demonstrated that Lir and its metabolites inhibited Cis-induced high-mobility group box 1 (HMGB1) nuclear-cytoplasmic translocation and release, and reduced inflammatory cytokines and HMGB1 receptor expression. The exogenous use of recombinant HMGB1 (rHMGB1) dramatically weakened the protective effects of Lir and its metabolites. In conclusion, our study shows that Lir significantly attenuated Cis-induced AKI through GLP-1R dependent and independent pathways, mediated by inhibiting nuclear-cytoplasmic translocation and release of HMGB1. Lir and its metabolites may be effective drugs for treating cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Cong Xu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhimin Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofan Hu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shanglin Li
- Department of General Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yang Qiu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Rui Cao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yakun Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
5
|
Liraglutide attenuates intestinal ischemia/reperfusion injury via NF-κB and PI3K/Akt pathways in mice. Life Sci 2022; 309:121045. [DOI: 10.1016/j.lfs.2022.121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
6
|
Li Y, Xu B, Yang J, Wang L, Tan X, Hu X, Sun L, Chen S, Zhu L, Chen X, Chen G. Liraglutide protects against lethal renal ischemia-reperfusion injury by inhibiting high-mobility group box 1 nuclear-cytoplasmic translocation and release. Pharmacol Res 2021; 173:105867. [PMID: 34481074 DOI: 10.1016/j.phrs.2021.105867] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, has been reported to exert protective effects against myocardial, hepatic, and gastric ischemia-reperfusion injury (IRI), but whether it can protect against renal IRI remains unknown. Here, a lethal renal IRI model was established with a 100% mortality rate in untreated mice. Treatment with liraglutide involving a regimen of multiple doses resulted in 100% survival, remarkable preservation of renal function, a significant reduction in pathological damage, and blunted upregulation of TNF-α, IL-1β, IL-6, MCP-1, TLR-2, TLR-4, and RAGE mRNA. We found that liraglutide treatment dramatically inhibited ischemia-induced nucleocytoplasmic translocation and release of HMGB1. This inhibition was associated with a marked decrease (~ 60%) in nuclear histone acetyltransferase activity. In addition, the protective effects of liraglutide on renal IRI were largely abolished by the administration of exogenous HMGB1. When the GLP-1R antagonist exendin (9-39) was given to mice before each liraglutide administration, or GLP-1R-/- mice were used for the renal IRI experiments, the protective effect of liraglutide on renal IRI was partially reversed. Moreover, liraglutide pretreatment significantly inhibited HMGB1 nucleocytoplasmic translocation during hypoxic culture of HK-2 cells in vitro, but the addition of exendin (9-39) significantly eliminated this inhibition. We demonstrate here that liraglutide can exert a strong protective effect on lethal renal IRI in mice. This protection appears to be related to the inhibition of HMGB1 nuclear-cytoplasmic translocation and release and partially depends on GLP-1R. Thus, liraglutide may be therapeutically useful for the clinical prevention and treatment of organ IRI.
Collapse
Affiliation(s)
- Yakun Li
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyang Xu
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofan Hu
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Sun
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Lan Zhu
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Xiaoping Chen
- Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China.
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
7
|
Degirmentepe RB, Altunrende F, Bozkurt M, Merder E, Otunctemur A, Sonmez K, Yildirim F, Ada S, Isman FK, Cekmen MB. Protective effect of liraglutide on experimental testicular ischaemia reperfusion in rats. Andrologia 2021; 53:e14000. [PMID: 33550644 DOI: 10.1111/and.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/16/2020] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
This study was performed to evaluate the effect of liraglutide on experimental testicular ischaemia reperfusion in rats in terms of biochemistry, histopathology and immunohistochemistry. A total of 28 male Wistar-Albino rats were divided randomly into 4 groups: control (7), sham (7), ischaemia-reperfusion (7) and ischaemia-reperfusion + liraglutide (7). Biochemically, Nitric Oxide, Malondialdehyde, Superoxide dismutase, Glutathione peroxidase and Catalase levels were measured in the testis. Apoptosis protease activating factor-1 and inducible nitric oxide synthase activity were evaluated immunohistochemically as well. Statistical analyses were made via the Kruskal-Wallis and Mann-Whitney U tests. In the reperfusion group, CAT and SOD values were increased (p > .05), NO and MDA values were decreased (p < .05) after administration of liraglutide. In addition, GPx values were significantly increased in ischaemia reperfusion + liraglutide administered group compared to reperfusion group (p < .05). Apaf-1 and iNOS activity were significantly decreased with the addition of liraglutide treatment to the ischaemia-reperfusion group (p < .05). First of all, we would like to say that liraglutide treatment is moderately preventive against I/R injury in testicular torsion. The anti-inflammatory, antioxidant and antiapoptotic properties of liraglutide are create a moderately protective effect as we show in this study.
Collapse
Affiliation(s)
| | - Fatih Altunrende
- Department of Urology, University of Health Sciences Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Muammer Bozkurt
- Department of Urology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Erkan Merder
- Department of Urology, University of Health Sciences Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Alper Otunctemur
- Department of Urology, University of Health Sciences Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Kivilcim Sonmez
- Faculty of Veterinary Medicine, Department of Pathology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Funda Yildirim
- Faculty of Veterinary Medicine, Department of Pathology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Saniye Ada
- Department of Medical Biochemistry, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ferruh K Isman
- Department of Medical Biochemistry, Istanbul Medeniyet University, Istanbul, Turkey
| | - Mustafa B Cekmen
- Department of Medical Biochemistry, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
8
|
Abbas NAT, Awad MM, Nafea OE. Silymarin in combination with chlorogenic acid protects against hepatotoxicity induced by doxorubicin in rats: possible role of adenosine monophosphate-activated protein kinase pathway. Toxicol Res (Camb) 2020; 9:771-777. [PMID: 33447361 DOI: 10.1093/toxres/tfaa080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022] Open
Abstract
Many xenobiotics are known to cause hepatic damage with subsequent significant morbidity and mortality. Doxorubicin (DOX) is a broad-spectrum antineoplastic agent. DOX is reported to cause hepatocellular damage. Previous studies verified the promising role of many natural antioxidant products against various models of hepatic dysfunction. We conducted this study to evaluate the possible hepatoprotective effect of silymarin (SILY) and/or chlorogenic acid (CGA) in a rat model of DOX-induced hepatotoxicity. For this purpose, we randomly divided 30 adult male rats into five equal groups as control, DOX, co-treated DOX with SILY, co-treated DOX with GCA and co-treated DOX with SILY and CGA groups. All treatments were administered every second day for 4 weeks. Our results showed that simultaneous SILY and CGA administration caused a significant decrease in hepatic apoptosis biomarkers (hepatic caspase-3 and nuclear factor-κB levels), a significant improvement in hepatic oxidant/antioxidant status (malondialdehyde and superoxide dismutase) and significant decrease in hepatic pro-inflammatory biomarkers (tumor necrosis factor-alpha and interlukin-1β) compared with DOX treatment. We concluded that adding CGA to SILY acts as a hepatoprotective agent against DOX-induced liver injury through inhibiting apoptosis biomarkers, maintaining antioxidant enzyme levels, decreasing pro-inflammatory cytokines as well as regulating liver adenosine monophosphate-activated protein kinase signaling.
Collapse
Affiliation(s)
- Noha A T Abbas
- Faculty of Medicine, Department of Clinical Pharmacology, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed M Awad
- Endocrinology Division, Faculty of Medicine, Department of Internal Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ola E Nafea
- Faculty of Medicine, Department of Forensic Medicine and Clinical Toxicology, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
9
|
Ghoneim MES, Abdallah DM, Shebl AM, El-Abhar HS. The interrupted cross-talk of inflammatory and oxidative stress trajectories signifies the effect of artesunate against hepatic ischemia/reperfusion-induced inflammasomopathy. Toxicol Appl Pharmacol 2020; 409:115309. [PMID: 33130049 DOI: 10.1016/j.taap.2020.115309] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
The antimalarial drug artesunate (Art) has proven its beneficial effects against ischemia/reperfusion (I/R) injury in diverse organs, but its potential role against hepatic I/R is still obscure. This study, hence, examined whether treatment with Art alone or in combination with rapamycin (Rapa), an mTOR inhibitor, can ameliorate hepatic I/R injury via targeting the NLRP3 inflammasome signaling pathway. Rats were divided into hepatic sham- and I/R-operated rats. The latter were either left untreated (I/R group) or treated with Art, Rapa, or their combination. On the molecular level, all treatment regimens succeeded to hinder inflammasome assembly and activation, assessed as NLRP3, ASC, cleaved caspase-1, caspase-11, N-terminal cleaved gasdermin-D (GSDMD-N), IL-1β, and IL-18. This effect was associated by the inhibition in the harmful signaling pathways HMGB1/RAGE and TLR4/MyD88/TRAF6 to inactivate the transcription factor NF-κB and the production of its pro-inflammatory cytokines IL-1β, IL-18, IL-6, and TNF-α. Additionally, this effect entailed the inhibition of ICAM-1/MPO/ROS cascade, which in turn hampered cell demise induced by apoptosis, manifested as correction of the imbalanced Bcl2/Bax, as well as pyroptosis (LDH, cleaved caspase-1, caspase-11, GSDMD-N, IL-1β, and IL-18), and necrosis. The corrected pathways were reflected on the improved liver function (serum ALT, AST, and LDH) and microscopical hepatic architecture. Noteworthy, the effect of Art on all parameters exceeded significantly that of Rapa and even improved the effect of the latter in the combination group. In conclusion, our results suggest novel roles for Art in abating functional and structural I/R-induced hepatic abnormalities via several traversing cross-talking pathways that succeeded to abate NLRP3 inflammasome and cell death.
Collapse
Affiliation(s)
- Mai El-Sayed Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt.
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562 Cairo, Egypt.
| | | | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), 11835 Cairo, Egypt
| |
Collapse
|
10
|
Milani L, Galindo CM, Turin de Oliveira NM, Corso CR, Adami ER, Stipp MC, Beltrame OC, Acco A. The GLP-1 analog liraglutide attenuates acute liver injury in mice. Ann Hepatol 2020; 18:918-928. [PMID: 31151874 DOI: 10.1016/j.aohep.2019.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Acute liver injury is a current health problem with few effective treatments. The present study investigated the hepatoprotective and curative potential of the glucagon-like peptide-1 analog liraglutide against carbon tetrachloride (CCl4)-induced hepatotoxicity. MATERIALS AND METHODS Male Swiss mice were subjected to two protocols. The first protocol (Pretreatment) consisted of intraperitoneal (i.p.) treatment with liraglutide (0.057 and 0.118mgkg-1) or vehicle (distilled water) once daily for 7 days. On days 6 and 7, the animals were challenged with 2% CCl4 (5mgkg-1, i.p.). The second protocol (Late treatment) began with an injection of 5% CCl4 (5mgkg-1, i.p.) and subsequent treatment with liraglutide (0.057mgkg-1) or vehicle (distilled water) for 1 day. In both protocols, 24h after the last administration, blood and bile were collected from anesthetized animals, followed by euthanasia and liver collection. Plasma and bile underwent biochemical analyses, and histological, oxidative stress, and metabolic parameters were evaluated in the liver. RESULTS Both liraglutide treatment protocols attenuated hepatotoxicity that was induced by CCl4, decreasing plasma levels of hepatic enzymes, stimulating the hepatic antioxidant system, and decreasing centrilobular necrosis, hepatic glycogen, and lipid accumulation. CCl4 tended to reduce bile lipid excretion, but liraglutide did not influence this parameter. CONCLUSIONS The present results demonstrated the hepatoprotective and therapeutic effects of liraglutide, which may be attributable to a decrease in liver oxidative stress and the preservation of metabolism. Liraglutide may have potential as a complementary therapy for acute liver injury.
Collapse
Affiliation(s)
- Letícia Milani
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Claudia M Galindo
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Claudia Rita Corso
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | - Olair Carlos Beltrame
- Department of Veterinary Medicine, Federal University of Paraná, Curitiba, PR, Brazil
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
11
|
Avalos-de León CG, Jiménez-Castro MB, Cornide-Petronio ME, Casillas-Ramírez A, Peralta C. The Role of GLP1 in Rat Steatotic and Non-Steatotic Liver Transplantation from Cardiocirculatory Death Donors. Cells 2019; 8:1599. [PMID: 31835410 PMCID: PMC6953101 DOI: 10.3390/cells8121599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/06/2023] Open
Abstract
In liver transplantation (LT), organ shortage has led to the use of steatotic and non-steatotic grafts from donors after cardiocirculatory death (DCD). However, these grafts, especially those with steatosis, exhibit poor post-operative outcomes. To address this problem, we investigated the roles of gut-derived glucagon-like peptide 1 (GLP1) and dipeptidyl peptidase 4 (DPP4), the serine protease that cleaves it, in steatotic and non-steatotic LT from DCDs. Using Zucker rats, liver grafts from DCDs were cold stored and transplanted to recipients. GLP1 was administered to donors. The levels of GLP1 in intestine and of both GLP1 and DDP4 in circulation were unaltered following cardiocirculatory death (CD). In steatotic livers from DCD, increased GLP1 and decreased DPP4 were recorded, and administration of GLP1 caused a rise in hepatic GLP1 and a reduction in DDP4. This protected against inflammation, damage, and proliferation failure. Conversely, low GLP1 and high DDP4 were observed in non-steatotic livers from DCD. The exogenous GLP1 did not modify hepatic DDP4, and the accumulated GLP1 exerted harmful effects, increasing damage, inflammation, and regeneration failure. Herein, we show that there are differences in GLP1/DDP4 regulation depending on the type of liver implanted, suggesting that GLP1 can be used as a novel and effective therapy in steatotic grafts from DCDs but that it is not appropriate for non-steatotic DCDs.
Collapse
Affiliation(s)
- Cindy G. Avalos-de León
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.)
| | - Mónica B. Jiménez-Castro
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.)
| | - María Eugenia Cornide-Petronio
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.)
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| |
Collapse
|
12
|
Abdelaziz AI, Mantawy EM, Gad AM, Fawzy HM, Azab SS. Activation of pCREB/Nrf-2 signaling mediates re-positioning of liraglutide as hepato-protective for methotrexate -induced liver injury (MILI). Food Chem Toxicol 2019; 132:110719. [PMID: 31362085 DOI: 10.1016/j.fct.2019.110719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 02/08/2023]
Abstract
Methotrexate (MTX) is commonly used to treat several types of cancer and autoimmune diseases. However, there is increasing concern over its organs toxicities particularly liver toxicity. Liraglutide, a glucagon like peptide-1 agonist, possesses antioxidant and anti-inflammatory features. This study aimed to explore the potential protective effect of liraglutide pre-treatment in ameliorating MTX-induced hepatotoxicity and to further investigate the underlying mechanisms. Rats received 1.2 mg/kg liraglutide intraperitoneal twice daily for 7 days before MTX. Results revealed that liraglutide significantly decreased activities of liver enzymes and oxidative stress in hepatocytes. Furthermore, NF-kB expression and related inflammatory markers (TNF-α, COX-2 and IL-6) were reduced in the pre-treatment group of liraglutide. These data validate the advantageous effects of liraglutide in MTX hepatotoxic animals. In addition, liraglutide increased the expression of the antioxidant transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf-2), along with the transcription of downstream phosphorylated cAMP response element-binding protein (pCREB) which increases the activity of Nrf-2. Additionally, caspase-3 expression/activity and BAX/Bcl-2 ratio were decreased following liraglutide pre-treatment. In conclusion, it was confirmed that liraglutide enhanced the antioxidant activity of liver cells by activating the Nrf-2 and pCREB signaling, thereby, reducing liver cell inflammation and apoptosis induced by MTX.
Collapse
Affiliation(s)
- Aya I Abdelaziz
- Department of Pharmacology, National Organization for Drug Control and Research (NODCR), Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCR), Cairo, Egypt
| | - Hala M Fawzy
- Department of Pharmacology, National Organization for Drug Control and Research (NODCR), Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
13
|
Glucagon-like peptide-1 receptor activation alleviates lipopolysaccharide-induced acute lung injury in mice via maintenance of endothelial barrier function. J Transl Med 2019; 99:577-587. [PMID: 30659271 DOI: 10.1038/s41374-018-0170-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1), which is well known for regulating glucose homeostasis, exhibits multiple actions in cardiovascular disorders and renal injury. However, little is known about the effect of GLP-1 receptor (GLP-1R) activation on acute lung injury (ALI). In this study, we investigated the effect of GLP-1R on ALI and the potential underlying mechanisms with the selective agonist liraglutide. Our results show that GLP-1 levels decreased in serum, though they increased in bronchoalveolar lavage fluid (BALF) and lung tissue in a mouse model of lipopolysaccharide (LPS)-induced ALI. Liraglutide prevented LPS-induced polymorphonuclear neutrophil (PMN) extravasation, lung injury, and alveolar-capillary barrier dysfunction. In cultured human pulmonary microvascular endothelial cells (HPMECs), liraglutide protected against LPS-induced endothelial barrier injury by restoring intercellular tight junctions and adherens junctions. Moreover, liraglutide prevented PMN-endothelial adhesion by inhibiting the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and thereafter suppressed PMN transendothelial migration. Furthermore, liraglutide suppressed LPS-induced activation of Rho/NF-κB signaling in HPMECs. In conclusion, our results show that GLP-1R activation protects mice from LPS-induced ALI by maintaining functional endothelial barrier and inhibiting PMN extravasation. These results also suggest that GLP-1R may be a potential therapeutic target for the treatment of ALI.
Collapse
|
14
|
Cimen O, Eken H, Keskin Cimen F, Ozbek Bilgin A, Pehlivanoglu K, Kurnaz E, Gülaboglu M, Suleyman B, Suleyman H. Benidipine can prevent liver ischemia reperfusion injury in rats: a biochemical and histopathological evaluation. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1691467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Orhan Cimen
- Department of General Surgery, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Hüseyin Eken
- Department of General Surgery, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ferda Keskin Cimen
- Department of Pathology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Asli Ozbek Bilgin
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Kamil Pehlivanoglu
- Department of General Surgery, Mengücek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Eray Kurnaz
- Department of General Surgery, Mengücek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Mine Gülaboglu
- Department of Biochemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Bahadir Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| |
Collapse
|
15
|
Tiwari J, Gupta G, Dahiya R, Pabreja K, Kumar Sharma R, Mishra A, Dua K. Recent update on biological activities and pharmacological actions of liraglutide. EXCLI JOURNAL 2017; 16:742-747. [PMID: 28827989 PMCID: PMC5547392 DOI: 10.17179/excli2017-323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/03/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Juhi Tiwari
- School of Pharmacy, Jaipur National University, Jagatpura 302017, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Jaipur National University, Jagatpura 302017, Jaipur, India.,School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| | - Kavita Pabreja
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Rakesh Kumar Sharma
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Jaipur, India
| | - Anurag Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Jaipur, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia.,School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| |
Collapse
|