1
|
Takahashi A. The role of social isolation stress in escalated aggression in rodent models. Neurosci Res 2025; 211:75-84. [PMID: 35917930 DOI: 10.1016/j.neures.2022.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
Anti-social behavior and violence are major public health concerns. Globally, violence contributes to more than 1.6 million deaths each year. Previous studies have reported that social rejection or neglect exacerbates aggression. In rodent models, social isolation stress is used to demonstrate the adverse effects of social deprivation on physiological, endocrinological, immunological, and behavioral parameters, including aggressive behavior. This review summarizes recent rodent studies on the effect of social isolation stress during different developmental periods on aggressive behavior and the underlying neural mechanisms. Social isolation during adulthood affects the levels of neurosteroids and neuropeptides and increases aggressive behavior. These changes are ethologically relevant for the adaptation to changes in local environmental conditions in the natural habitats. Chronic deprivation of social interaction after weaning, especially during the juvenile to adolescent periods, leads to the disruption of the development of appropriate social behavior and the maladaptive escalation of aggressive behavior. The understanding of neurobiological mechanisms underlying social isolation-induced escalated aggression will aid in the development of therapeutic interventions for escalated aggression.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neurobiology, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
2
|
Jefferson SJ, Gregg I, Dibbs M, Liao C, Wu H, Davoudian PA, Woodburn SC, Wehrle PH, Sprouse JS, Sherwood AM, Kaye AP, Pittenger C, Kwan AC. 5-MeO-DMT modifies innate behaviors and promotes structural neural plasticity in mice. Neuropsychopharmacology 2023; 48:1257-1266. [PMID: 37015972 PMCID: PMC10354037 DOI: 10.1038/s41386-023-01572-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
Serotonergic psychedelics are gaining increasing interest as potential therapeutics for a range of mental illnesses. Compounds with short-lived subjective effects may be clinically useful because dosing time would be reduced, which may improve patient access. One short-acting psychedelic is 5-MeO-DMT, which has been associated with improvement in depression and anxiety symptoms in early phase clinical studies. However, relatively little is known about the behavioral and neural mechanisms of 5-MeO-DMT, particularly the durability of its long-term effects. Here we characterized the effects of 5-MeO-DMT on innate behaviors and dendritic architecture in mice. We showed that 5-MeO-DMT induces a dose-dependent increase in head-twitch response that is shorter in duration than that induced by psilocybin at all doses tested. 5-MeO-DMT also substantially suppresses social ultrasonic vocalizations produced during mating behavior. 5-MeO-DMT produces long-lasting increases in dendritic spine density in the mouse medial frontal cortex that are driven by an elevated rate of spine formation. However, unlike psilocybin, 5-MeO-DMT did not affect the size of dendritic spines. These data provide insights into the behavioral and neural consequences underlying the action of 5-MeO-DMT and highlight similarities and differences with those of psilocybin.
Collapse
Affiliation(s)
- Sarah J Jefferson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ian Gregg
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Mark Dibbs
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Clara Liao
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Hao Wu
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Pasha A Davoudian
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Samuel C Woodburn
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Patrick H Wehrle
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | | | | | - Alfred P Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- VA National Center for PTSD Clinical Neuroscience Division, West Haven, CT, 06516, USA
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Alex C Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06511, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Tamang MK, Ali A, Pertile RN, Cui X, Alexander S, Nitert MD, Palmieri C, Eyles D. Developmental vitamin D-deficiency produces autism-relevant behaviours and gut-health associated alterations in a rat model. Transl Psychiatry 2023; 13:204. [PMID: 37316481 PMCID: PMC10267107 DOI: 10.1038/s41398-023-02513-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Developmental vitamin D (DVD)-deficiency is an epidemiologically established risk factor for autism. Emerging studies also highlight the involvement of gut microbiome/gut physiology in autism. The current study aims to examine the effect of DVD-deficiency on a broad range of autism-relevant behavioural phenotypes and gut health. Vitamin D deficient rat dams exhibited altered maternal care, DVD-deficient pups showed increased ultrasonic vocalizations and as adolescents, social behaviour impairments and increased repetitive self-grooming behaviour. There were significant impacts of DVD-deficiency on gut health demonstrated by alterations to the microbiome, decreased villi length and increased ileal propionate levels. Overall, our animal model of this epidemiologically validated risk exposure for autism shows an expanded range of autism-related behavioural phenotypes and now alterations in gut microbiome that correlate with social behavioural deficits raising the possibility that DVD-deficiency induced ASD-like behaviours are due to alterations in gut health.
Collapse
Affiliation(s)
- Man Kumar Tamang
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Asad Ali
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Queensland Centre for Mental Health Research, Wacol, Australia
| | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Queensland Centre for Mental Health Research, Wacol, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Darryl Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
- Queensland Centre for Mental Health Research, Wacol, Australia.
| |
Collapse
|
4
|
Karigo T. Gaining insights into the internal states of the rodent brain through vocal communications. Neurosci Res 2022; 184:1-8. [PMID: 35908736 DOI: 10.1016/j.neures.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 10/31/2022]
Abstract
Animals display various behaviors during social interactions. Social behaviors have been proposed to be driven by the internal states of the animals, reflecting their emotional or motivational states. However, the internal states that drive social behaviors are complex and difficult to interpret. Many animals, including mice, use vocalizations for communication in various social contexts. This review provides an overview of current understandings of mouse vocal communications, its underlying neural circuitry, and the potential to use vocal communications as a readout for the animal's internal states during social interactions.
Collapse
Affiliation(s)
- Tomomi Karigo
- Division of Biology and Biological Engineering 140-18,TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena CA 91125, USA; Present address: Kennedy Krieger Institute, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Shekel I, Giladi S, Raykin E, Weiner M, Chalifa-Caspi V, Lederman D, Kofman O, Golan HM. Isolation-Induced Ultrasonic Vocalization in Environmental and Genetic Mice Models of Autism. Front Neurosci 2021; 15:769670. [PMID: 34880723 PMCID: PMC8645772 DOI: 10.3389/fnins.2021.769670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 11/20/2022] Open
Abstract
Studies in rodent models suggest that calls emitted by isolated pups serve as an early behavioral manifestation of communication deficits and autistic like behavior. Previous studies in our labs showed that gestational exposure to the pesticide chlorpyrifos (CPF) and the Mthfr-knock-out mice are associated with impaired social preference and restricted or repetitive behavior. To extend these studies, we examine how pup communication via ultrasonic vocalizations is altered in these ASD models. We implemented an unsupervised hierarchical clustering method based on the spectral properties of the syllables in order to exploit syllable classification to homogeneous categories while avoiding over-categorization. Comparative exploration of the spectral and temporal aspects of syllables emitted by pups in two ASD models point to the following: (1) Most clusters showed a significant effect of the ASD factor on the start and end frequencies and bandwidth and (2) The highest percent change due to the ASD factor was on the bandwidth and duration. In addition, we found sex differences in the spectral and temporal properties of the calls in both control groups as well as an interaction between sex and the gene/environment factor. Considering the basal differences in the characteristics of syllables emitted by pups of the C57Bl/6 and Balb/c strains used as a background in the two models, we suggest that the above spectral-temporal parameters start frequency, bandwidth, and duration are the most sensitive USV features that may represent developmental changes in ASD models.
Collapse
Affiliation(s)
- Itay Shekel
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Shaked Giladi
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Eynav Raykin
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Psychology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - May Weiner
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Vered Chalifa-Caspi
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Dror Lederman
- Faculty of Engineering, Holon Institute of Technology, Holon, Israel
| | - Ora Kofman
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Psychology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Hava M Golan
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,National Center for Autism Research, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
6
|
Takahashi A. Social Stress and Aggression in Murine Models. Curr Top Behav Neurosci 2021; 54:181-208. [PMID: 34432257 DOI: 10.1007/7854_2021_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Throughout life, animals engage in a variety of social interactions ranging from the affiliative mother-offspring interaction and juvenile play to aggressive conflict. Deprivation of the appropriate social interaction during early development is stressful and disrupts the development of appropriate social behaviors and emotional responses later in life. Additionally, agonistic encounters can induce stress responses in both dominant and subordinate individuals. This review focuses on the social stress that escalates aggressive behavior of animals and discusses the known neurobiological and physiological mechanisms underlying the link between social stress and aggression. Social instigation, a brief exposure to a rival without physical contact, induces aggressive arousal in dominant animals and escalates aggressive behaviors in the following agonistic encounter. Furthermore, the experience of winning an aggressive encounter is known to be as rewarding as addictive drugs, and the experience of repeatedly winning induces addiction-like behavioral and neurobiological changes and leads to abnormal aggressive behaviors. Social isolation stress in early development from neonatal to juvenile and adolescent periods also affects aggressive behavior, but these effects largely depend on the strain, sex, and species as well as the stage of development in which isolation stress is experienced. In conclusion, understanding neurobiological mechanisms underlying the link between social stress and aggression will provide an important insight for the development of more effective and tolerable treatments for maladaptive aggression in humans.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
7
|
Klenova AV, Volodin IA, Volodina EV, Ranneva SV, Amstislavskaya TG, Lipina TV. Vocal and physical phenotypes of calsyntenin2 knockout mouse pups model early-life symptoms of the autism spectrum disorder. Behav Brain Res 2021; 412:113430. [PMID: 34182007 DOI: 10.1016/j.bbr.2021.113430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
This study discovered a novel acoustic phenotype in Calsyntenin2 deficient knockout (Clstn2-KO) pups in the neurodevelopment period of 5-9 postnatal days (PND 5-9). The narrowband ultrasonic calls (nUSVs) were less complex (mostly one-note, shorter in duration and higher in peak frequency) in Clsnt2-KO than in wild-type (WT) C57BL/6 J pups. The wideband ultrasonic calls (wUSVs) were produced substantially more often by Clstn2-KO than WT pups. The clicks were longer in duration and higher in peak frequency and power quartiles in Clstn2-KO pups. The elevated discomfort due to additional two-minute maternal separation coupled with experimenter's touch, resulted in significantly higher call rates of both nUSVs and clicks in pups of both genotypes and sexes compared to the previous two-minute maternal separation, whereas the call rate of wUSVs was not affected. In Clstn2-KO pups, the prevalence of emission of wUSVs retained at both sex and both degrees of discomfort, thus providing a reliable quantitative acoustic indicator for this genetic line. Besides the acoustic differences, we also detected the increased head-to-body ratio in Clstn2-KO pups. Altogether, this study demonstrated that lack of such synaptic adhesion protein as calsyntenin2 affects neurodevelopment of vocalization in a mouse as a model organism.
Collapse
Affiliation(s)
- Anna V Klenova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Ilya A Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia; Department of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Elena V Volodina
- Department of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Svetlana V Ranneva
- Institute of Cytology and Genetics, Department of Genetics, Novosibirsk, Russia.
| | - Tamara G Amstislavskaya
- Federal State Budgetary Scientific Institution «Scientific Research Institute of Neurosciences and Medicine» (SRINM), Novosibirsk, 630117, Russia.
| | - Tatiana V Lipina
- Dementia Research Institute at University College London, London, WC1N 3BG, UK.
| |
Collapse
|
8
|
Hulbert SW, Wang X, Gbadegesin SO, Xu Q, Xu X, Jiang YH. A Novel Chd8 Mutant Mouse Displays Altered Ultrasonic Vocalizations and Enhanced Motor Coordination. Autism Res 2020; 13:1685-1697. [PMID: 32815320 DOI: 10.1002/aur.2353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022]
Abstract
Mutations in CHD8 are among the most common autism-causing genetic defects identified in human genomics studies. Therefore, many labs have attempted to model this disorder by generating mice with mutations in Chd8. Using a gene trap inserted after Exon 31, we created a novel Chd8 mutant mouse (Chd8+/E31T ) and characterized its behavior on several different assays thought to have face validity for the human condition, attempting to model both the core symptoms (repetitive behaviors and social communication impairments) and common comorbidities (motor deficits, anxiety, and intellectual disability). We found that Chd8+/E31T mice showed no difference compared to wild-type mice in amount of self-grooming, reproducing the negative finding most other studies have reported. Unlike some of the other published lines, Chd8+/E31T mice did not show deficits in the three-chamber test for social novelty preference. A few studies have examined ultrasonic vocalizations in Chd8 mutant mice, but we are the first to report an increase in call length for adult mice. Additionally, we found that in contrast to previous published lines, Chd8+/E31T mice displayed no anxiety-like behaviors or learning impairments but showed paradoxically significant improvement in motor function. The inconsistencies in behavioral phenotypes in the Chd8 mutant mice generated by different laboratories poses a challenge for modeling autism spectrum disorder and preclinical studies in mice going forward and warrants further investigation into the molecular consequences of the different mutations in Chd8 and the functional impact on behavior. LAY SUMMARY: Several different mouse models carrying mutations in the Chd8 gene have been created to study the effects of these autism-causing mutations in the laboratory. The current study characterizes a novel Chd8 mutant mouse model as well as summarizes data from previously published Chd8 mutant mice. The inconsistencies between different studies are concerning, but future research into the reasons why these inconsistencies occur may help us understand why patients with various mutations have different degrees of symptom severity. Autism Res 2020, 13: 1685-1697. © 2020 International Society for Autism Research and Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Samuel W Hulbert
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiaoming Wang
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Simisola O Gbadegesin
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Qiong Xu
- The Children's Hospital of Fudan University, Shanghai, China
| | - Xiu Xu
- The Children's Hospital of Fudan University, Shanghai, China
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
9
|
Colucci P, De Castro V, Peloso A, Splendori M, Trezza V, Campolongo P. Perinatal exposure to omega-3 fatty acid imbalance leads to early behavioral alterations in rat pups. Behav Brain Res 2020; 392:112723. [DOI: 10.1016/j.bbr.2020.112723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023]
|
10
|
The Role of the N-Methyl-D-Aspartate Receptors in Social Behavior in Rodents. Int J Mol Sci 2019; 20:ijms20225599. [PMID: 31717513 PMCID: PMC6887971 DOI: 10.3390/ijms20225599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/09/2023] Open
Abstract
The appropriate display of social behaviors is essential for the well-being, reproductive success and survival of an individual. Deficits in social behavior are associated with impaired N-methyl-D-aspartate (NMDA) receptor-mediated neurotransmission. In this review, we describe recent studies using genetically modified mice and pharmacological approaches which link the impaired functioning of the NMDA receptors, especially of the receptor subunits GluN1, GluN2A and GluN2B, to abnormal social behavior. This abnormal social behavior is expressed as impaired social interaction and communication, deficits in social memory, deficits in sexual and maternal behavior, as well as abnormal or heightened aggression. We also describe the positive effects of pharmacological stimulation of the NMDA receptors on these social deficits. Indeed, pharmacological stimulation of the glycine-binding site either by direct stimulation or by elevating the synaptic glycine levels represents a promising strategy for the normalization of genetically-induced, pharmacologically-induced or innate deficits in social behavior. We emphasize on the importance of future studies investigating the role of subunit-selective NMDA receptor ligands on different types of social behavior to provide a better understanding of the underlying mechanisms, which might support the development of selective tools for the optimized treatment of disorders associated with social deficits.
Collapse
|
11
|
Salmi M, Del Gallo F, Minlebaev M, Zakharov A, Pauly V, Perron P, Pons‐Bennaceur A, Corby‐Pellegrino S, Aniksztejn L, Lenck‐Santini P, Epsztein J, Khazipov R, Burnashev N, Bertini G, Szepetowski P. Impaired vocal communication, sleep‐related discharges, and transient alteration of slow‐wave sleep in developing mice lacking the GluN2A subunit of
N
‐methyl‐
d
‐aspartate receptors. Epilepsia 2019; 60:1424-1437. [DOI: 10.1111/epi.16060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Manal Salmi
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Federico Del Gallo
- Department of Neurosciences, Biomedicine, and Movement Sciences University of Verona Verona Italy
| | - Marat Minlebaev
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
- Laboratory of Neurobiology Kazan Federal University Kazan Russia
| | - Andrey Zakharov
- Laboratory of Neurobiology Kazan Federal University Kazan Russia
| | - Vanessa Pauly
- Public Health Laboratory, Recognized Team (EA) 3279 Associate Center for Drug Dependency and Addictovigilance Faculty of Medicine Aix‐Marseille University Marseille France
| | - Pauline Perron
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Alexandre Pons‐Bennaceur
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Séverine Corby‐Pellegrino
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Laurent Aniksztejn
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Pierre‐Pascal Lenck‐Santini
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Jérôme Epsztein
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Rustem Khazipov
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
- Laboratory of Neurobiology Kazan Federal University Kazan Russia
| | - Nail Burnashev
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Giuseppe Bertini
- Department of Neurosciences, Biomedicine, and Movement Sciences University of Verona Verona Italy
| | - Pierre Szepetowski
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| |
Collapse
|
12
|
Ali A, Vasileva S, Langguth M, Alexander S, Cui X, Whitehouse A, McGrath JJ, Eyles D. Developmental Vitamin D Deficiency Produces Behavioral Phenotypes of Relevance to Autism in an Animal Model. Nutrients 2019; 11:1187. [PMID: 31137843 PMCID: PMC6566814 DOI: 10.3390/nu11051187] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/11/2023] Open
Abstract
Emerging evidence suggests that gestational or developmental vitamin D (DVD) deficiency is associated with an increased risk of autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder characterized by impairments in social interaction, lack of verbal and non-verbal communications, stereotyped repetitive behaviors and hyper-activities. There are several other clinical features that are commonly comorbid with ASD, including olfactory impairments, anxiety and delays in motor development. Here we investigate these features in an animal model related to ASD-the DVD-deficient rat. Compared to controls, both DVD-deficient male and female pups show altered ultrasonic vocalizations and stereotyped repetitive behavior. Further, the DVD-deficient animals had delayed motor development and impaired motor control. Adolescent DVD-deficient animals had impaired reciprocal social interaction, while as adults, these animals were hyperactive. The DVD-deficient model is associated with a range of behavioral features of interest to ASD.
Collapse
Affiliation(s)
- Asad Ali
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4076, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD 4076, Australia.
| | - Svetlina Vasileva
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4076, Australia.
| | - Mia Langguth
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia.
| | - Suzanne Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4076, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD 4076, Australia.
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4076, Australia.
| | - Andrew Whitehouse
- Telethon Kids Institute, The University of Western Australia, Perth, WA 6009, Australia.
| | - John J McGrath
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4076, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD 4076, Australia.
- NCRR-National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus C 8000, Denmark.
| | - Darryl Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4076, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD 4076, Australia.
| |
Collapse
|
13
|
Caulfield JI, Caruso MJ, Bourne RA, Chirichella NR, Klein LC, Craig T, Bonneau RH, August A, Cavigelli SA. Asthma Induction During Development and Adult Lung Function, Behavior and Brain Gene Expression. Front Behav Neurosci 2018; 12:188. [PMID: 30214402 PMCID: PMC6125297 DOI: 10.3389/fnbeh.2018.00188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
In developing youth, allergic asthma is the most common chronic condition, with 9%–10% of youth affected. Asthma onset during childhood and adolescence is further associated with other health issues, particularly psychiatric conditions. To understand causal mechanisms by which developmental asthma may lead to altered behavior, brain and health trajectories, we developed a mouse model of developmental allergic asthma. In the current study, we tested for potential long-term effects of developmental asthma on adult lung function and behavior and brain gene expression associated with emotion and stress regulation. We manipulated airway inflammation (AI) and methacholine (MCH)-induced bronchospasm (resulting in labored breathing, LB) in young male and female BALB/cJ mice and measured adult outcomes 3 months after final asthma manipulations. Results indicated that allergen exposure, used to cause AI, and which ended on post-natal day 56 (P56), led to persistent lung AI, mucus buildup and gene expression related to allergic asthma 3 months after final allergen exposure. In addition, at this same age, early allergen exposure led to altered brain gene expression related to stress regulation (prefrontal corticotropin releasing hormone receptor 1, Crhr1 and hippocampal glucocorticoid receptor, GR) and serotonin function (brainstem serotonin transporter, SERT). On the other hand, LB events during development led to altered anxiety-related behavior. Importantly, sex and pre-asthma fear-related behavior (ultrasonic vocalization, USV rates) modulated these adult outcomes. Asthma that develops during childhood/adolescence may have long-term impacts on emotion and stress regulation mechanisms, and these influences may be moderated by sex and pre-asthma temperament.
Collapse
Affiliation(s)
- Jasmine I Caulfield
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States.,The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA, United States
| | - Michael J Caruso
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States.,Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA, United States
| | - Rebecca A Bourne
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States
| | - Nicole R Chirichella
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States
| | - Laura C Klein
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States
| | - Timothy Craig
- Allergy, Asthma & Immunology Section, Departments of Medicine and Pediatrics, Penn State University, Hershey, PA, United States
| | - Robert H Bonneau
- Departments of Microbiology and Immunology and Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| | - Sonia A Cavigelli
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States.,The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
14
|
Lrfn2-Mutant Mice Display Suppressed Synaptic Plasticity and Inhibitory Synapse Development and Abnormal Social Communication and Startle Response. J Neurosci 2018; 38:5872-5887. [PMID: 29798891 DOI: 10.1523/jneurosci.3321-17.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/03/2018] [Accepted: 05/16/2018] [Indexed: 11/21/2022] Open
Abstract
SALM1 (SALM (synaptic adhesion-like molecule), also known as LRFN2 (leucine rich repeat and fibronectin type III domain containing), is a postsynaptic density (PSD)-95-interacting synaptic adhesion molecule implicated in the regulation of NMDA receptor (NMDAR) clustering largely based on in vitro data, although its in vivo functions remain unclear. Here, we found that mice lacking SALM1/LRFN2 (Lrfn2-/- mice) show a normal density of excitatory synapses but altered excitatory synaptic function, including enhanced NMDAR-dependent synaptic transmission but suppressed NMDAR-dependent synaptic plasticity in the hippocampal CA1 region. Unexpectedly, SALM1 expression was detected in both glutamatergic and GABAergic neurons and Lrfn2-/- CA1 pyramidal neurons showed decreases in the density of inhibitory synapses and the frequency of spontaneous inhibitory synaptic transmission. Behaviorally, ultrasonic vocalization was suppressed in Lrfn2-/- pups separated from their mothers and acoustic startle was enhanced, but locomotion, anxiety-like behavior, social interaction, repetitive behaviors, and learning and memory were largely normal in adult male Lrfn2-/- mice. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, and social communication and startle behaviors in mice.SIGNIFICANCE STATEMENT Synaptic adhesion molecules regulate synapse development and function, which govern neural circuit and brain functions. The SALM/LRFN (synaptic adhesion-like molecule/leucine rich repeat and fibronectin type III domain containing) family of synaptic adhesion proteins consists of five known members for which the in vivo functions are largely unknown. Here, we characterized mice lacking SALM1/LRFN2 (SALM1 KO) known to associate with NMDA receptors (NMDARs) and found that these mice showed altered NMDAR-dependent synaptic transmission and plasticity, as expected, but unexpectedly also exhibited suppressed inhibitory synapse development and synaptic transmission. Behaviorally, SALM1 KO pups showed suppressed ultrasonic vocalization upon separation from their mothers and SALM1 KO adults showed enhanced responses to loud acoustic stimuli. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, social communication, and acoustic startle behavior.
Collapse
|
15
|
Attenuated Chemosensory Responsiveness of the Grueneberg Ganglion in Mouse Pups at Warm Temperatures. Neuroscience 2017; 366:149-161. [PMID: 29037596 DOI: 10.1016/j.neuroscience.2017.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
Abstract
Neurons of the Grueneberg ganglion (GG) in the anterior nasal region of mice respond to a small set of odorous compounds, including given dimethylpyrazines present in mouse urine. Consequently, mouse pups living in murine colonies are presumably commonly exposed to such GG-activating substances. Since stimulation of the GG elicits alarm and stress reactions in mice, the question arises whether such a GG activation potentially inducing stress could be reduced when pups might rather feel secure in the presence of their mother. Being together with their warmth-giving dam, mouse pups experience a nest temperature of ∼35 °C. Therefore, we hypothesized that such a warm temperature may attenuate the responses of GG neurons to dimethylpyrazines. Monitoring the expression of the activity marker c-Fos, GG responses to dimethylpyrazines were significantly lower in pups exposed to these substances at 35 °C compared to exposure at 30 °C. By contrast, dimethylpyrazine-induced responses of neurons in the main olfactory epithelium were not diminished at 35 °C in comparison to 30 °C. The attenuated chemosensory responses of GG neurons at 35 °C coincided with a reduced dimethylpyrazine-evoked activation of the glomeruli in the olfactory bulb innervated by GG neurons. The reduction in dimethylpyrazine-evoked GG responses by warm temperatures was positively correlated with exposure time, suggesting that warm temperatures might enhance desensitization processes in GG neurons. In summary, the findings indicate that warm temperatures similar to those in mouse nests in the presence of the dam attenuate GG activation by colony-derived odorants.
Collapse
|
16
|
Kishimoto K, Nomura J, Ellegood J, Fukumoto K, Lerch JP, Moreno-De-Luca D, Bourgeron T, Tamada K, Takumi T. Behavioral and neuroanatomical analyses in a genetic mouse model of 2q13 duplication. Genes Cells 2017; 22:436-451. [PMID: 28370817 DOI: 10.1111/gtc.12487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
Abstract
Duplications of human chromosome 2q13 have been reported in patients with neurodevelopmental disorder including autism spectrum disorder. Nephronophthisis-1 (NPHP1) was identified as a causative gene in the minimal deletion on chromosome 2q13 for familial juvenile type 1 nephronophthisis and Joubert syndrome, an autosomal recessive neurodevelopmental disorder characterized by a cerebellar and brain stem malformation, hypotonia, developmental delay, ataxia, and sometimes associated with cognitive impairment. NPHP1 encodes a ciliary protein, nephrocystin-1, which is expressed in the brain, yet its function in the brain remains largely unknown. In this study, we generated bacterial artificial chromosome-based transgenic mice, called 2q13 dup, that recapitulate human chromosome 2q13 duplication and contain one extra copy of the Nphp1 transgene. To analyze any behavioral alterations in 2q13 dup mice, we conducted a battery of behavioral tests. Although 2q13 dup mice show no significant differences in social behavior, they show deficits in spontaneous alternation behavior and fear memory. We also carried out magnetic resonance imaging to confirm whether copy number gain in this locus affects the neuroanatomy. There was a trend toward a decrease in the cerebellar paraflocculus of 2q13 dup mice. This is the first report of a genetic mouse model for human 2q13 duplication.
Collapse
Affiliation(s)
- Keiko Kishimoto
- RIKEN Brain Science Institute (BSI), Wako, Saitama, 351-0198, Japan.,Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, 734-8553, Japan
| | - Jun Nomura
- RIKEN Brain Science Institute (BSI), Wako, Saitama, 351-0198, Japan
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
| | - Keita Fukumoto
- RIKEN Brain Science Institute (BSI), Wako, Saitama, 351-0198, Japan.,Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, 734-8553, Japan
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Daniel Moreno-De-Luca
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Human Behavior, Brown University, Providence, RI, 02908, USA
| | | | - Kota Tamada
- RIKEN Brain Science Institute (BSI), Wako, Saitama, 351-0198, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute (BSI), Wako, Saitama, 351-0198, Japan.,Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, 734-8553, Japan
| |
Collapse
|
17
|
Balázsfi D, Farkas L, Csikota P, Fodor A, Zsebők S, Haller J, Zelena D. Sex-dependent role of vesicular glutamate transporter 3 in stress-regulation and related anxiety phenotype during the early postnatal period. Stress 2016; 19:434-8. [PMID: 27442776 DOI: 10.1080/10253890.2016.1203413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Stress and related disorders are in the focus of interest and glutamate is one of the most important neurotransmitters that can affect these processes. Glutamatergic neurons are characterized by vesicular glutamate transporters (VGluT1-3) among which vGluT3 is unique contributing to the non-canonical, neuromodulatory effect of glutamate. We aimed to study the role of vGluT3 in stress axis regulation and related anxiety during the early postnatal period using knockout (KO) mice with special focus on sex differences. Anxiety was explored on postnatal day (PND) 7-8 by maternal separation-induced ultrasonic vocalization (USV). Stress-hormone levels were detected 60 min after intraperitoneal lipopolysaccharide (LPS) injection 7 days later. Both genotypes gained weight, but on PND 14-15 KO mice pups had smaller body weight compared to wild type (WT). vGluT3 KO mice reacted to an immune stressor with enhanced adrenocorticotropin (ACTH) and corticosterone secretion compared to WT. Although there was a tendency for enhanced anxiety measured by more emitted USV, this did not reach the level of significance. The only sex-related effect was the enhanced corticosterone reactivity in male pups. For the HPA axis regulation in neonates vGluT3 expression seems to be dispensable under basal conditions, but is required for optimal response to immune stressors, most probably through an interaction with other neurotransmitters. Disturbance of the fine balance between these systems may result in a borderline enhanced anxiety-like behavior in vGluT3 KO pups.
Collapse
Affiliation(s)
- Diána Balázsfi
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
- b János Szentágothai School of Neurosciences, Semmelweis University , Budapest , Hungary
| | - Lívia Farkas
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| | - Péter Csikota
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| | - Anna Fodor
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
- b János Szentágothai School of Neurosciences, Semmelweis University , Budapest , Hungary
| | - Sándor Zsebők
- c Behaviuor Ecology Research Group, Department of Systematic Zoology and Ecology , Eötvös Loránd University , Budapest , Hungary
| | - József Haller
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| | - Dóra Zelena
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| |
Collapse
|
18
|
Kelm-Nelson CA, Stevenson SA, Ciucci MR. Atp13a2 expression in the periaqueductal gray is decreased in the Pink1 -/- rat model of Parkinson disease. Neurosci Lett 2016; 621:75-82. [PMID: 27057733 PMCID: PMC4869981 DOI: 10.1016/j.neulet.2016.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 12/11/2022]
Abstract
Vocal communication deficits are common in Parkinson disease (PD). Widespread alpha-synuclein pathology is a common link between familial and sporadic PD, and recent genetic rat models based on familial genetic links increase the opportunity to explore vocalization deficits and their associated neuropathologies. Specifically, the Pink1 knockout (-/-) rat presents with early, progressive motor deficits, including significant vocal deficits, at 8 months of age. Moreover, this rat model exhibits alpha-synuclein pathology compared to age-matched non-affected wildtype (WT) controls. Aggregations are specifically dense within the periaqueductal gray (PAG), a brainstem region involved in the coordination of emotional and volitional control of vocalizations. Here, we investigated changes in gene expression within the PAG at 8 months of age in Pink1 -/- rats compared to WT. Our data demonstrate that Pink1 -/- rat mRNA expression levels of alpha-synuclein are comparable to WT. However, Pink1 -/- rats show significantly decreased levels of Atp13a2, a transmembrane lysosomal P5-type ATPase suggesting a potential mechanism for the observed abnormal aggregation. We found no difference in the expression of glucocerebrosidase (Gba) or the CASP8 and FADD-like apoptosis regulator (Cflar). Further, we show that mRNA expression levels of dopaminergic markers including Th, D1 and D2 receptor as well as GABA signaling markers including Gaba-A and glutamate decarboxylase 2 (Gad2) do not differ between genotypes. However, we found that glutamate decarboxylase 1 (Gad1) is significantly reduced in this PD model suggesting possible disruption of neurotransmission within the PAG. These results are the first to suggest the hypothesis that alpha-synuclein aggregation in this model is not a result of increased transcription, but rather a deficit in the breakdown and clearance, and that the observed vocal deficits may be related to impaired neural transmission. Altogether, these findings are consistent with the hypothesis that differences in neural substrate sensitivity contribute to the early pathogenesis of vocalizations and motivation to communicate in the Pink1 -/- rat model of PD. Our results suggest novel therapeutic pathways, including the lysosomal degradation pathway, which can be used in to further study the pathogenesis and treatment of vocal dysfunction PD.
Collapse
Affiliation(s)
- Cynthia A Kelm-Nelson
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Sharon A Stevenson
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle R Ciucci
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Guedj F, Pennings JLA, Ferres MA, Graham LC, Wick HC, Miczek KA, Slonim DK, Bianchi DW. The fetal brain transcriptome and neonatal behavioral phenotype in the Ts1Cje mouse model of Down syndrome. Am J Med Genet A 2015; 167A:1993-2008. [PMID: 25975229 DOI: 10.1002/ajmg.a.37156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/27/2015] [Indexed: 11/07/2022]
Abstract
Human fetuses with Down syndrome demonstrate abnormal brain growth and reduced neurogenesis. Despite the prenatal onset of the phenotype, most therapeutic trials have been conducted in adults. Here, we present evidence for fetal brain molecular and neonatal behavioral alterations in the Ts1Cje mouse model of Down syndrome. Embryonic day 15.5 brain hemisphere RNA from Ts1Cje embryos (n = 5) and wild type littermates (n = 5) was processed and hybridized to mouse gene 1.0 ST arrays. Bioinformatic analyses were implemented to identify differential gene and pathway regulation during Ts1Cje fetal brain development. In separate experiments, the Fox scale, ultrasonic vocalization and homing tests were used to investigate behavioral deficits in Ts1Cje pups (n = 29) versus WT littermates (n = 64) at postnatal days 3-21. Ts1Cje fetal brains displayed more differentially regulated genes (n = 71) than adult (n = 31) when compared to their age-matched euploid brains. Ts1Cje embryonic brains showed up-regulation of cell cycle markers and down-regulation of the solute-carrier amino acid transporters. Several cellular processes were dysregulated at both stages, including apoptosis, inflammation, Jak/Stat signaling, G-protein signaling, and oxidoreductase activity. In addition, early behavioral deficits in surface righting, cliff aversion, negative geotaxis, forelimb grasp, ultrasonic vocalization, and the homing tests were observed. The Ts1Cje mouse model exhibits abnormal gene expression during fetal brain development, and significant neonatal behavioral deficits in the pre-weaning period. In combination with human studies, this suggests that the Down syndrome phenotype manifests prenatally and provides a rationale for prenatal therapy to improve perinatal brain development and postnatal neurocognition.
Collapse
Affiliation(s)
- Faycal Guedj
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| | - Jeroen L A Pennings
- Center for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Millie A Ferres
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| | - Leah C Graham
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| | - Heather C Wick
- Department of Computer Science, Tufts University, Medford, Massachusetts
| | - Klaus A Miczek
- Department of Psychology, Tufts University, Medford, Massachusetts
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, Massachusetts
| | - Diana W Bianchi
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| |
Collapse
|
20
|
Wöhr M. Effect of social odor context on the emission of isolation-induced ultrasonic vocalizations in the BTBR T+tf/J mouse model for autism. Front Neurosci 2015; 9:73. [PMID: 25852455 PMCID: PMC4364166 DOI: 10.3389/fnins.2015.00073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/19/2015] [Indexed: 11/24/2022] Open
Abstract
An important diagnostic criterion for social communication deficits in autism spectrum disorders (ASD) are difficulties in adjusting behavior to suit different social contexts. While the BTBR T+tf/J (BTBR) inbred strain of mice is one of the most commonly used mouse models for ASD, little is known about whether BTBR mice display deficits in detecting changes in social context and their ability to adjust to them. Here, it was tested therefore whether the emission of isolation-induced ultrasonic vocalizations (USV) in BTBR mouse pups is affected by the social odor context, in comparison to the standard control strain with high sociability, C57BL/6J (B6). It is known that the presence of odors from mothers and littermates leads to a calming of the isolated mouse pup, and hence to a reduction in isolation-induced USV emission. In accordance with their behavioral phenotypes with relevance to all diagnostic core symptoms of ASD, it was predicted that BTBR mouse pups would not display a calming response when tested under soiled bedding conditions with home cage bedding material containing maternal odors, and that similar isolation-induced USV emission rates would be seen in BTBR mice tested under clean and soiled bedding conditions. Unexpectedly, however, the present findings show that BTBR mouse pups display such a calming response and emit fewer isolation-induced USV when tested under soiled as compared to clean bedding conditions, similar to B6 mouse pups. Yet, in contrast to B6 mouse pups, which emitted isolation-induced USV with shorter call durations and lower levels of frequency modulation under soiled bedding conditions, social odor context had no effect on acoustic call features in BTBR mouse pups. This indicates that the BTBR mouse model for ASD does not display deficits in detecting changes in social context, but has a limited ability and/or reduced motivation to adjust to them.
Collapse
Affiliation(s)
- Markus Wöhr
- Behavioral Neuroscience, Experimental and Physiological Psychology, Philipps-University of Marburg Marburg, Germany
| |
Collapse
|
21
|
Sachs BD, Rodriguiz RM, Tran HL, Iyer A, Wetsel WC, Caron MG. Serotonin deficiency alters susceptibility to the long-term consequences of adverse early life experience. Psychoneuroendocrinology 2015; 53:69-81. [PMID: 25602134 PMCID: PMC4344834 DOI: 10.1016/j.psyneuen.2014.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/26/2014] [Accepted: 12/29/2014] [Indexed: 12/22/2022]
Abstract
Brain 5-HT deficiency has long been implicated in psychiatric disease, but the effects of 5-HT deficiency on stress susceptibility remain largely unknown. Early life stress (ELS) has been suggested to contribute to adult psychopathology, but efforts to study the long-term consequences of ELS have been limited by a lack of appropriate preclinical models. Here, we evaluated the effects of 5-HT deficiency on several long-term cellular, molecular, and behavioral responses of mice to a new model of ELS that combines early-life maternal separation (MS) of pups and postpartum learned helplessness (LH) training in dams. Our data demonstrate that this paradigm (LH/MS) induces depressive-like behavior and impairs pup retrieval in dams. In addition, we show that brain 5-HT deficiency exacerbates anxiety-like behavior induced by LH/MS and blunts the effects of LH/MS on acoustic startle responses in adult offspring. Although the mechanisms underlying these effects remain unclear, following LH/MS, 5-HT-deficient animals had significantly less mRNA expression of the mineralocorticoid receptor in the amygdala than wild-type animals. In addition, 5-HT-deficient mice exhibited reduced mRNA levels of the 5-HT2a receptor and p11 in the hippocampus regardless of stress. LH/MS decreased the number of doublecortin+ immature neurons in the hippocampus in both wild-type (WT) and 5-HT-deficient animals. Our data emphasize the importance of complex interactions between genetic factors and early life experience in mediating long-term changes in emotional behavior. These findings may have important implications for our understanding of the combinatorial roles of 5-HT deficiency, ELS, and postpartum depression in the development of neuropsychiatric disorders.
Collapse
MESH Headings
- Amygdala/metabolism
- Animals
- Animals, Newborn
- Behavior, Animal
- Depression, Postpartum/metabolism
- Depression, Postpartum/psychology
- Disease Models, Animal
- Disease Susceptibility
- Female
- Gene Knock-In Techniques
- Helplessness, Learned
- Hippocampus/metabolism
- Maternal Deprivation
- Mice
- Mutation
- Neurogenesis/genetics
- RNA, Messenger/metabolism
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Reflex, Abnormal
- Reflex, Startle
- Serotonin/deficiency
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
- Tryptophan Hydroxylase/genetics
Collapse
Affiliation(s)
- Benjamin D Sachs
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States; Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, United States
| | - Ha L Tran
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States
| | - Akshita Iyer
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States
| | - William C Wetsel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States; Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Marc G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
22
|
Wang Y, Ma Y, Cheng W, Jiang H, Zhang X, Li M, Ren J, Zhang X, Li X. Sexual differences in long‐term effects of prenatal chronic mild stress on anxiety‐like behavior and stress‐induced regional glutamate receptor expression in rat offspring. Int J Dev Neurosci 2015; 41:80-91. [DOI: 10.1016/j.ijdevneu.2015.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yan Wang
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Yuchao Ma
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Wenwen Cheng
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Han Jiang
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyang110001China
| | - Xinxin Zhang
- The Research Center for Medical GenomicsKey Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of EducationChina Medical UniversityShenyang110001China
| | - Min Li
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Jintao Ren
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Xiaosong Zhang
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Xiaobai Li
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyang110001China
| |
Collapse
|
23
|
Effects of neonatal oxytocin manipulation on development of social behaviors in mice. Physiol Behav 2014; 133:68-75. [DOI: 10.1016/j.physbeh.2014.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/23/2014] [Accepted: 05/14/2014] [Indexed: 12/16/2022]
|
24
|
Wöhr M. Ultrasonic vocalizations in Shank mouse models for autism spectrum disorders: Detailed spectrographic analyses and developmental profiles. Neurosci Biobehav Rev 2014; 43:199-212. [DOI: 10.1016/j.neubiorev.2014.03.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/25/2014] [Accepted: 03/31/2014] [Indexed: 12/31/2022]
|
25
|
Abstract
PURPOSE OF REVIEW Down syndrome affects more than 5 million people globally. During the last 10 years, there has been a dramatic increase in the research efforts focused on therapeutic interventions to improve learning and memory in Down syndrome. RECENT FINDINGS This review summarizes the different functional abnormalities targeted by researchers in mouse models of Down syndrome. Three main strategies have been used: neural stem cell implantation; environmental enrichment and physical exercise; and pharmacotherapy. Pharmacological targets include the choline pathway, GABA and NMDA receptors, DYRK1A protein, oxidative stress and pathways involved in development and neurogenesis. Many strategies have improved learning and memory as well as electrophysiological and molecular alterations in affected animals. To date, eight molecules have been tested in human adult clinical trials. No studies have yet been performed on infants. However, compelling studies reveal that permanent brain alterations originate during fetal life in Down syndrome. Early prenatal diagnosis offers a 28 weeks window to positively impact brain development and improve postnatal cognitive outcome in affected individuals. Only a few approaches (Epigallocatechine gallate, NAP/SAL, fluoxetine, and apigenin) have been used to treat mice in utero; these showed therapeutic effects that persisted to adulthood. SUMMARY In this article, we discuss the challenges, recent progress, and lessons learned that pave the way for new therapeutic approaches in Down syndrome.
Collapse
Affiliation(s)
- Fayçal Guedj
- aMother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts, USA bUniv Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, Adaptive Functional Biology, Paris, France
| | | | | |
Collapse
|
26
|
Temporal and spectral differences in the ultrasonic vocalizations of fragile X knock out mice during postnatal development. Behav Brain Res 2014; 259:119-30. [DOI: 10.1016/j.bbr.2013.10.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 12/26/2022]
|
27
|
Vignisse J, Steinbusch HWM, Grigoriev V, Bolkunov A, Proshin A, Bettendorff L, Bachurin S, Strekalova T. Concomitant manipulation of murine NMDA- and AMPA-receptors to produce pro-cognitive drug effects in mice. Eur Neuropsychopharmacol 2014; 24:309-20. [PMID: 23993168 DOI: 10.1016/j.euroneuro.2013.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 06/18/2013] [Accepted: 06/23/2013] [Indexed: 02/07/2023]
Abstract
Bifunctional drug therapy targeting distinct receptor signalling systems can generate increased efficacy at lower concentrations compared to monofunctional therapy. Non-competitive blockade of the NMDA receptors or the potentiation of AMPA receptors is well documented to result in memory enhancement. Here, we compared the efficacy of the low-affinity NMDA receptor blocker memantine or the positive modulator of AMPA receptor QXX (in C57BL/6J at 1 or 5mg/kg, ip) with new derivatives of isothiourea (0.5-1 mg/kg, ip) that have bifunctional efficacy. Low-affinity NMDA blockade by these derivatives was achieved by introducing greater flexibility into the molecule, and AMPA receptor stimulation was produced by a sulfamide-containing derivative of isothiourea. Contextual learning was examined in a step-down avoidance task and extinction of contextual memory was studied in a fear-conditioning paradigm. Memantine enhanced contextual learning while QXX facilitated memory extinction; both drugs were effective at 5 mg/kg. The new derivative IPAC-5 elevated memory scores in both tasks at the dose 0.5 mg/kg and exhibited the lowest IC₅₀ values of NMDA receptor blockade and highest potency of AMPA receptor stimulation. Thus, among the new drugs tested, IPAC-5 replicated the properties of memantine and QXX in one administration with increased potency. Our data suggest that a concomitant manipulation of NMDA- and AMPA-receptors results in pro-cognitive effects and supports the concept bifunctional drug therapy as a promising strategy to replace monofunctional therapies with greater efficacy and improved compliance.
Collapse
Affiliation(s)
- Julie Vignisse
- School for Mental Health and Neuroscience, Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER Maastricht, Netherlands; GIGA Neuroscience, University of Liege, Avenu de l'Hopital 1, B36 4000 Liege, Belgium
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience, Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER Maastricht, Netherlands
| | - Vladimir Grigoriev
- Institute of Physiologically Active Compounds, Laboratory of Neurochemistry, Russian Academy of Sciences, Chernogolovka, Severnii proesd 1, 142432 Moscow Region, Russia
| | - Alexei Bolkunov
- Institute of Physiologically Active Compounds, Laboratory of Neurochemistry, Russian Academy of Sciences, Chernogolovka, Severnii proesd 1, 142432 Moscow Region, Russia
| | - Alexey Proshin
- Institute of Physiologically Active Compounds, Laboratory of Neurochemistry, Russian Academy of Sciences, Chernogolovka, Severnii proesd 1, 142432 Moscow Region, Russia
| | - Lucien Bettendorff
- GIGA Neuroscience, University of Liege, Avenu de l'Hopital 1, B36 4000 Liege, Belgium
| | - Sergey Bachurin
- Institute of Physiologically Active Compounds, Laboratory of Neurochemistry, Russian Academy of Sciences, Chernogolovka, Severnii proesd 1, 142432 Moscow Region, Russia.
| | - Tatyana Strekalova
- School for Mental Health and Neuroscience, Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER Maastricht, Netherlands
| |
Collapse
|
28
|
Behavioural methods used in rodent models of autism spectrum disorders: Current standards and new developments. Behav Brain Res 2013; 251:5-17. [DOI: 10.1016/j.bbr.2013.05.047] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 12/14/2022]
|
29
|
Grivas V, Markou A, Pitsikas N. The metabotropic glutamate 2/3 receptor agonist LY379268 induces anxiety-like behavior at the highest dose tested in two rat models of anxiety. Eur J Pharmacol 2013; 715:105-10. [PMID: 23769742 DOI: 10.1016/j.ejphar.2013.05.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 11/19/2022]
Abstract
The activation of Group II metabotropic glutamate 2/3 (mGlu2/3) receptors reduces the excessive glutamate release that is hypothesized to be associated with neurodegenerative and psychiatric disorders. LY379268 is a highly potent mGlu2/3 receptor agonist that has shown efficacy in several animal models of stroke, epilepsy, drug abuse, schizophrenia, and pain. The present study investigated the effects of LY379268 on anxiety-like behavior in rats assessed in the light/dark and open field tests. The effects of LY379268 on motility in a locomotor activity chamber were also investigated in rats. Administration of the two lower doses of LY379268 used (0.3 and 1mg/kg) did not influence rats' performance either in the light/dark or in the open field test. Importantly, the administration of a higher LY379268 dose (3mg/kg) induced decrease in the number of transitions between the light and dark chambers and time spent in the light chamber compared to the vehicle-treated animals in the light/dark test. In the open field test, rats that received 3mg/kg LY379268 made fewer entries and spent less time in the central zone of the apparatus, exhibited a decrease of rearing episodes, but displayed higher grooming activity compared to controls. Nevertheless, the 3mg/kg dose did not alter locomotor activity compared with vehicle-treated rats in a motility test. The present results indicate that the highest LY379268 dose used in this study induced an anxiety-like effect in the light/dark and open field tests that cannot be attributed to changes in locomotor activity, while lower doses had no effect.
Collapse
Affiliation(s)
- Vasilios Grivas
- Department of Pharmacology, School of Medicine, University of Thessaly, Mezourlo, P.O. Box 1400, 411-10 Larissa, Greece
| | | | | |
Collapse
|
30
|
Wöhr M, Schwarting RKW. Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation. Cell Tissue Res 2013; 354:81-97. [DOI: 10.1007/s00441-013-1607-9] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
31
|
Pringle A, Parsons E, Cowen LG, McTavish SF, Cowen PJ, Harmer CJ. Using an experimental medicine model to understand the antidepressant potential of the N-Methyl-D-aspartic acid (NMDA) receptor antagonist memantine. J Psychopharmacol 2012; 26:1417-23. [PMID: 22596208 PMCID: PMC3546643 DOI: 10.1177/0269881112446535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is growing interest in the role of the glutamatergic system both in depression and as a novel target for treatments. Preclinical studies suggested that the non-competitive N-Methyl-D-aspartic acid (NMDA) receptor antagonist memantine might have antidepressant properties, but a randomised controlled trial failed to support this. A healthy volunteer model of emotional processing was used to assess the neuropsychological profile of action of memantine. Healthy volunteers (n=32) were randomised to receive a single dose of memantine (10 mg) or placebo, and subsequently completed a battery of tasks measuring emotional processing, including facial expression recognition, emotional memory, dot-probe and emotion-potentiated startle tasks, as well as working and verbal memory. Memantine treated volunteers showed an increased emotion-potentiated startle, and a reduced bias for negative items in emotional recognition memory. There were no effects of the drug on any other aspect of emotional or non-emotional information processing. These results suggest that a single dose of memantine produces an early anxiogenic response in the emotion-potentiated startle similar to that seen following a single dose of the selective serotonin reuptake inhibitor, citalopram. However, the overall profile of effects is more limited than that which might be expected in response to a conventional antidepressant.
Collapse
Affiliation(s)
- A Pringle
- Department of Psychiatry, University of Oxford, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Anxiety-like behaviour and associated neurochemical and endocrinological alterations in male pups exposed to prenatal stress. Psychoneuroendocrinology 2012; 37:1646-58. [PMID: 22444623 DOI: 10.1016/j.psyneuen.2012.02.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 11/22/2022]
Abstract
Epidemiological studies suggest that emotional liability in infancy could be a predictor of anxiety-related disorders in the adulthood. Rats exposed to prenatal restraint stress ("PRS rats") represent a valuable model for the study of the interplay between environmental triggers and neurodevelopment in the pathogenesis of anxious/depressive like behaviours. Repeated episodes of restraint stress were delivered to female Sprague-Dawley rats during pregnancy and male offspring were studied. Ultrasonic vocalization (USV) was assessed in pups under different behavioural paradigms. After weaning, anxiety was measured by conventional tests. Expression of GABA(A) receptor subunits and metabotropic glutamate (mGlu) receptors was assessed by immunoblotting. Plasma leptin levels were measured using a LINCOplex bead assay kit. The offspring of stressed dams emitted more USVs in response to isolation from their mothers and showed a later suppression of USV production when exposed to an unfamiliar male odour, indicating a pronounced anxiety-like profile. Anxiety like behaviour in PRS pups persisted one day after weaning. PRS pups did not show the plasma peak in leptin levels that is otherwise seen at PND14. In addition, PRS pups showed a reduced expression of the γ2 subunit of GABA(A) receptors in the amygdala at PND14 and PND22, an increased expression of mGlu5 receptors in the amygdala at PND22, a reduced expression of mGlu5 receptors in the hippocampus at PND14 and PND22, and a reduced expression of mGlu2/3 receptors in the hippocampus at PND22. These data offer a clear-cut demonstration that the early programming triggered by PRS could be already translated into anxiety-like behaviour during early postnatal life.
Collapse
|
33
|
Wöhr M, Silverman JL, Scattoni ML, Turner SM, Harris MJ, Saxena R, Crawley JN. Developmental delays and reduced pup ultrasonic vocalizations but normal sociability in mice lacking the postsynaptic cell adhesion protein neuroligin2. Behav Brain Res 2012; 251:50-64. [PMID: 22820233 DOI: 10.1016/j.bbr.2012.07.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/12/2022]
Abstract
Mutations in neurexin and neuroligin genes have been associated with neurodevelopmental disabilities including autism. Autism spectrum disorder is diagnosed by aberrant reciprocal social interactions, deficits in social communication, and repetitive, stereotyped patterns of behaviors, along with narrow restricted interests. Mouse models have been successfully used to study physiological and behavioral outcomes of mutations in the trans-synaptic neurexin-neuroligin complex. To further understand the behavioral consequences of Neuroligin2 (NLGN2) mutations, we assessed several behavioral phenotypes relevant to autism in neuroligin2 null (Nlgn2(-/-)), heterozygote (Nlgn2(+/-)), and wildtype (Nlgn2(+/+)) littermate control mice. Reduced breeding efficiency and high reactivity to handling was observed in Nlgn2(-/-) mice, resulting in low numbers of adult mice available for behavioral assessment. Consistent with previous findings, Nlgn2(-/-) mice displayed normal social behaviors, concomitant with reduced exploratory activity, impaired rotarod performance, and delays on several developmental milestones. No spontaneous stereotypies or repetitive behaviors were detected. Acoustic, tactile, and olfactory sensory information processing as well as sensorimotor gating were not affected. Nlgn2(-/-) pups isolated from mother and littermates emitted fewer ultrasonic vocalizations and spent less time calling than Nlgn2(+/+) littermate controls. The present findings add to the growing literature on the role of neurexins and neuroligins in physiology and behavior relevant to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Markus Wöhr
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Harvey BH, Shahid M. Metabotropic and ionotropic glutamate receptors as neurobiological targets in anxiety and stress-related disorders: Focus on pharmacology and preclinical translational models. Pharmacol Biochem Behav 2012; 100:775-800. [DOI: 10.1016/j.pbb.2011.06.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/24/2011] [Accepted: 06/09/2011] [Indexed: 11/29/2022]
|
35
|
Wöhr M, Roullet FI, Hung AY, Sheng M, Crawley JN. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior. PLoS One 2011; 6:e20631. [PMID: 21695253 PMCID: PMC3111434 DOI: 10.1371/journal.pone.0020631] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/06/2011] [Indexed: 11/19/2022] Open
Abstract
Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1(-/-) null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1(-/-) mice as compared to wildtype Shank1(+/+) littermate controls. Shank1(-/-) pups emitted fewer vocalizations than Shank1(+/+) pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1(-/-) males deposited fewer scent marks in proximity to female urine than Shank1(+/+) males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1(+/+) mice changed their calling pattern dependent on previous female interactions, while Shank1(-/-) mice were unaffected, indicating a failure of Shank1(-/-) males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1(-/-) mice are consistent with a phenotype relevant to social communication deficits in autism.
Collapse
Affiliation(s)
- Markus Wöhr
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, Maryland, United States of America
| | - Florence I. Roullet
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, Maryland, United States of America
| | - Albert Y. Hung
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Morgan Sheng
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jacqueline N. Crawley
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, Maryland, United States of America
| |
Collapse
|
36
|
Wöhr M, Moles A, Schwarting RKW, D'Amato FR. Lack of social exploratory activation in male μ-opioid receptor KO mice in response to playback of female ultrasonic vocalizations. Soc Neurosci 2011; 6:76-87. [DOI: 10.1080/17470911003765560] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Wöhr M, Roullet FI, Crawley JN. Reduced scent marking and ultrasonic vocalizations in the BTBR T+tf/J mouse model of autism. GENES, BRAIN, AND BEHAVIOR 2011; 10:35-43. [PMID: 20345893 PMCID: PMC2903641 DOI: 10.1111/j.1601-183x.2010.00582.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Qualitative impairments in communication, such as delayed language and poor interactive communication skills, are fundamental to the diagnosis of autism. Investigations into social communication in adult BTBR T+tf/J (BTBR) mice are needed to determine whether this inbred strain incorporates phenotypes relevant to the second diagnostic symptom of autism, communication deficits, along with its strong behavioral phenotypes relevant to the first and third diagnostic symptoms, impairments in social interactions and high levels of repetitive behavior. The aim of the present study was to simultaneously measure female urine-elicited scent marking and ultrasonic vocalizations in adult male BTBR mice, in comparison with a standard control strain with high sociability, C57BL/6J (B6), for the assessment of a potential communication deficit in BTBR. Adult male BTBR mice displayed lower scent marking and minimal ultrasonic vocalization responses to female urine obtained from both B6 and BTBR females. Lower scent marking and ultrasonic vocalizations in a social setting by BTBR, as compared with B6, are consistent with the well-replicated social deficits in this inbred mouse strain. Our findings support the interpretation that BTBR incorporate communication deficits, and suggest that scent marking and ultrasonic vocalizations offer promising measures of interest in social cues that may be widely applicable to investigations of mouse models of autism.
Collapse
Affiliation(s)
- M Wöhr
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Porter Neuroscience Research Center, Bethesda, MD, USA.
| | | | | |
Collapse
|
38
|
Giusi G, Crudo M, Di Vito A, Facciolo RM, Garofalo F, Chew SF, Ip YK, Canonaco M. Lungfish aestivating activities are locked in distinct encephalic γ-aminobutyric acid type A receptor α subunits. J Neurosci Res 2011; 89:418-28. [PMID: 21259328 DOI: 10.1002/jnr.22553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/06/2010] [Accepted: 10/20/2010] [Indexed: 01/12/2023]
Abstract
Ammonia in dipnoans plays a crucial role on neuronal homeostasis, especially for those brain areas that maintain torpor and awakening states in equilibrium. In the present study, specific α subunits of the major neuroreceptor inhibitory complex (GABA(A) R), which predominated during some phases of aestivation of the lungfish Protopterus annectens, turned out to be key adaptive factors of this species. From the isolation, for the first time, of the encoding sequence for GABA(A) R α₁, α₄ , and α₅ subunits in Protopterus annectens, qPCR and in situ hybridization levels of α₄ transcript in thalamic (P < 0.001) and mesencephalic (P < 0.01) areas proved to be significantly higher during long aestivating maintenance states. Very evident α₅ mRNA levels were detected in diencephalon during short inductive aestivating states, whereas an α₄ /α₁ turnover characterized the arousal state. Contextually, the recovery of physiological activities appeared to be tightly related to an evident up-regulation of α₁ transcripts in telencephalic and cerebellar sites. Surprisingly, TUNEL and amino cupric silver methods corroborated apoptotic and neurodegenerative cellular events, respectively, above all in telencephalon and cerebellum of lungfish exposed to long maintenance aestivating conditions. Overall, these results tend to underlie a novel GABAergic-related ON/OFF molecular switch operating during aestivation of the lungfish, which might have a bearing on sleeping disorders.
Collapse
Affiliation(s)
- Giuseppina Giusi
- Comparative Neuroanatomy Laboratory, University of Calabria, Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kurz A, Wöhr M, Walter M, Bonin M, Auburger G, Gispert S, Schwarting R. Alpha-synuclein deficiency affects brain Foxp1 expression and ultrasonic vocalization. Neuroscience 2010; 166:785-95. [DOI: 10.1016/j.neuroscience.2009.12.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 12/17/2022]
|