1
|
Wang Z, Xu C, Wang Q, Wang Y. Repurposing of nervous system drugs for cancer treatment: recent advances, challenges, and future perspectives. Discov Oncol 2025; 16:396. [PMID: 40133751 PMCID: PMC11936871 DOI: 10.1007/s12672-025-02067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
The nervous system plays a critical role in developmental biology and oncology, influencing processes from ontogeny to the complex dynamics of cancer progression. Interactions between the nervous system and cancer significantly affect oncogenesis, tumor growth, invasion, metastasis, treatment resistance, inflammation that promotes tumors, and the immune response. A comprehensive understanding of the signal transduction pathways involved in cancer biology is essential for devising effective anti-cancer strategies and overcoming resistance to existing therapies. Recent advances in cancer neuroscience promise to establish a new cornerstone of cancer therapy. Repurposing drugs originally developed for modulating nerve signal transduction represent a promising approach to target oncogenic signaling pathways in cancer treatment. This review endeavors to investigate the potential of repurposing neurological drugs, which target neurotransmitters and neural pathways, for oncological applications. In this context, it aims to bridge the interdisciplinary gap between neurology, psychiatry, internal medicine, and oncology. By leveraging already approved drugs, researchers can utilize existing extensive safety and efficacy data, thereby reducing both the time and financial resources necessary for the development of new cancer therapies. This strategy not only promises to enhance patient outcomes but also to expand the array of available treatments, thereby enriching the therapeutic landscape in oncology.
Collapse
Affiliation(s)
- Zixun Wang
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Chen Xu
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Qi Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Yudong Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
2
|
Xu E, Zhang E, Park K, Ayub M, Zhao C, Huh JW, King JM, Paltin I, Shah AC, Storm PB, Tucker A, Madsen PJ, Lang SS. Medical management of cerebellar mutism syndrome at a quaternary children's hospital. Childs Nerv Syst 2025; 41:100. [PMID: 39899116 PMCID: PMC11790773 DOI: 10.1007/s00381-025-06759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE We aimed to evaluate the efficacy of selective serotonin reuptake inhibitors (SSRIs) in treating cerebellar mutism syndrome (CMS). METHODS We retrospectively reviewed all pediatric patients who underwent a posterior fossa tumor resection between May 2007 to September 2022 at a single quaternary pediatric hospital. We evaluated clinical presentation and hospital course, including imaging findings, pathology, and surgical approaches. Propensity score matching was used to compare the symptom duration of patients who received SSRIs versus those who did not. RESULTS A total of 292 patients met the criteria with 25% (n = 73) being diagnosed with CMS. Several factors were significantly associated with a CMS diagnosis, such as pre-operative hydrocephalus (p = 0.002), a vermis-splitting approach (p = 0.007), tumor in the fourth ventricle (p = 0.010), medulloblastoma diagnosis (p = 0.009), and postoperative complication (p < 0.001). Of the patients diagnosed with CMS, 32.9% (n = 24) received SSRI treatment, specifically fluoxetine (n = 18) and sertraline (n = 6). Overall, treatment did not decrease the duration of CMS symptoms or shorten the inpatient rehab course compared to matched controls. However, within the cohort of fluoxetine-treated patients, earlier initiation of medication was significantly correlated with a shorter duration of mutism (p = 0.007). CONCLUSIONS We report the largest cohort of CMS patients treated with SSRIs. The lack of overall clinical benefit when compared to untreated patients in our study may be due to the length of delay in starting an SSRI, since early initiation of fluoxetine correlated with shorter CMS symptoms. These results support the importance of early clinical detection of CMS and potentially treating CMS early in the patient's postoperative course.
Collapse
Affiliation(s)
- Emily Xu
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA.
| | - Emily Zhang
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Kristen Park
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Mahaa Ayub
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Chao Zhao
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - J Michael King
- Division of Rehabilitation Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Iris Paltin
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amish C Shah
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Phillip B Storm
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Alexander Tucker
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Peter J Madsen
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Shih-Shan Lang
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| |
Collapse
|
3
|
Lu CL, Ren J, Cao X. An Astroglial Basis of Major Depressive Disorder: Molecular, Cellular, and Circuit Features. Biol Psychiatry 2025; 97:217-226. [PMID: 39084500 DOI: 10.1016/j.biopsych.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Major depressive disorder is a common psychiatric disorder and a leading cause of disability worldwide. Astrocytes play a role in the maintenance of the function of the central nervous system, both physiologically and pathologically. Accumulated evidence indicates that the astrocyte is an important contributor to the pathophysiology of major depressive disorder including blood-brain barrier integrity, gap junctions, gliotransmission, glutamate homeostasis, and energy metabolism. Here, we comprehensively summarize an astroglial basis for major depressive disorder based on molecular, cellular, and circuit properties, suggesting that astrocytes appear to be highly sensitive to stress and are likely to be uniquely positioned to integrate peripheral and central stress responses.
Collapse
Affiliation(s)
- Cheng-Lin Lu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Snijders GJLJ, Gigase FAJ. Neuroglia in mood disorders. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:287-302. [PMID: 40148049 DOI: 10.1016/b978-0-443-19102-2.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Multiple lines of evidence indicate that mood disorders, such as major depressive and bipolar disorder, are associated with abnormalities in neuroglial cells. This chapter discusses the existing literature investigating the potential role of astrocytes, oligodendrocytes, and microglia in mood pathology. We will describe evidence from in vivo imaging, postmortem, animal models based on (stress) paradigms that mimic depressive-like behavior, and biomarker studies in blood and cerebrospinal fluid in patients with mood disorders. The effect of medication used in the treatment of mood disorders, such as antidepressants and lithium, on glial function is discussed. Lastly, we highlight the most relevant findings about potential deficiencies in glia-glia crosstalk in mood disorders. Overall, decreased astrocyte and oligodendrocyte density and expression and microglial changes in homeostatic functions have frequently been put forward in MDD pathology. Studies of BD report similar findings to some extent; however, the evidence is less well established. Together, these findings are suggestive of reduced glial cell function leading to potential white matter abnormalities, glutamate dysregulation, disrupted neuronal functioning, and neurotransmission. However, more research is required to better understand the exact mechanisms underlying glial cell contributions to mood disorder development.
Collapse
Affiliation(s)
- Gijsje J L J Snijders
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Frederieke A J Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Wang Y, Li P, Xu Y, Feng L, Fang Y, Song G, Xu L, Zhu Z, Wang W, Mei Q, Xie M. Lactate metabolism and histone lactylation in the central nervous system disorders: impacts and molecular mechanisms. J Neuroinflammation 2024; 21:308. [PMID: 39609834 PMCID: PMC11605911 DOI: 10.1186/s12974-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Brain takes up approximately 20% of the total body oxygen and glucose consumption due to its relatively high energy demand. Glucose is one of the major sources to generate ATP, the process of which can be realized via glycolysis, oxidative phosphorylation, pentose phosphate pathways and others. Lactate serves as a hub molecule amid these metabolic pathways, as it may function as product of glycolysis, substrate of a variety of enzymes and signal molecule. Thus, the roles of lactate in central nervous system (CNS) diseases need to be comprehensively elucidated. Histone lactylation is a novel lactate-dependent epigenetic modification that plays an important role in immune regulation and maintaining homeostasis. However, there's still a lack of studies unveiling the functions of histone lactylation in the CNS. In this review, we first comprehensively reviewed the roles lactate plays in the CNS under both physiological and pathological conditions. Subsequently, we've further discussed the functions of histone lactylation in various neurological diseases. Furthermore, future perspectives regarding histone lactylation and its therapeutic potentials in stroke are also elucidated, which may possess potential clinical applications.
Collapse
Affiliation(s)
- Yao Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ping Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yuan Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Linyu Feng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Li Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
6
|
Dadkhah M, Afshari S, Samizadegan T, Shirmard LR, Barin S. Pegylated chitosan nanoparticles of fluoxetine enhance cognitive performance and hippocampal brain derived neurotrophic factor levels in a rat model of local demyelination. Exp Gerontol 2024; 195:112533. [PMID: 39134215 DOI: 10.1016/j.exger.2024.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Cognitive impairment is a common feature in neurodegenerative diseases such as multiple sclerosis (MS). This study aims to explore the potential of enhancing the beneficial effects of fluoxetine (FLX), a neuroprotective agent known for its ability to increase neural plasticity by utilizing nanoparticles. The study specifically focuses on the synthesis and evaluation of PEGylated chitosan nanoparticles of FLX and its effect on demyelination and the subsequent cognitive impairment (CI) in the hippocampus of rats induced by local injection of lysophosphatidylcholine (LPC). Chitosan/polyethylene glycol nanoparticles were synthesized, and their properties were analyzed. Demyelination was induced in rats via hippocampal injections of lysolecithin. Behavioral assessments included open field maze, elevated plus maze, and novel object recognition memory (NORM) tests. Hippocampal levels of insulin-like growth factor (IGF-1) and brain-derived neurotrophic factor (BDNF) were measured using enzyme-linked immunoassay (ELISA). The extent of remyelination was quantified using Luxol fast blue staining. Nanoparticle size measured 240.2 nm with 53 % encapsulation efficacy. Drug release exhibited a slow pattern, with 76 % released within 4 h. Nanoparticle-treated rats displayed reduced anxiety-like behavior, improved memory, increased BDNF levels, and a reduced extent of demyelination, with no change in IGF- levels. In addition, FLX -loaded chitosan nanoparticles had better effect on cognitive improvement, BDNF levels in the hippocampus that FLX. Altering pharmacokinetics and possibly pharmacodynamics. These findings highlight the potential of innovative drug delivery systems, encouraging further research in this direction.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Tara Samizadegan
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Sajjad Barin
- Department of Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
7
|
Liu S, Zhou S. Lactate: A New Target for Brain Disorders. Neuroscience 2024; 552:100-111. [PMID: 38936457 DOI: 10.1016/j.neuroscience.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Lactate in the brain is produced endogenously and exogenously. The primary functional cells that produce lactate in the brain are astrocytes. Astrocytes release lactate to act on neurons, thereby affecting neuronal function, through a process known as the astrocyte-neuron shuttle. Lactate affects microglial function as well and inhibits microglia-mediated neuroinflammation. Lactate also provides energy, acts as a signaling molecule, and promotes neurogenesis. This article summarizes the role of lactate in cells, animals, and humans. Lactate is a protective molecule against stress in healthy organisms and in the early stages of brain disorders. Thus, lactate may be a potential therapeutic target for brain disorders. Further research on the role of lactate in microglia may have great prospects. This article provides a new perspective and research direction for the study of lacate in brain disorders.
Collapse
Affiliation(s)
- Shunfeng Liu
- College of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Basic Medical College, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
8
|
Yin C, Luo K, Zhu X, Zheng R, Wang Y, Yu G, Wang X, She F, Chen X, Li T, Chen J, Bian B, Su Y, Niu J, Wang Y. Fluoxetine Rescues Excessive Myelin Formation and Psychological Behaviors in a Murine PTSD Model. Neurosci Bull 2024; 40:1037-1052. [PMID: 39014176 PMCID: PMC11306862 DOI: 10.1007/s12264-024-01249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/04/2024] [Indexed: 07/18/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex mental disorder notable for traumatic experience memory. Although current first-line treatments are linked with clinically important symptom reduction, a large proportion of patients retained to experience considerable residual symptoms, indicating pathogenic mechanism should be illustrated further. Recent studies reported that newly formed myelin could shape neural circuit function and be implicated in fear memory preservation. However, its role in PTSD remains to be elucidated. In this study, we adopted a restraint stress-induced PTSD mouse model and found that PTSD-related neuropsychiatric symptoms were accompanied by increased myelination in the posterior parietal cortex and hippocampus. Fluoxetine, but not risperidone or sertraline, has a more profound rescue effect on neuropsychological behaviors and myelin abnormalities. Further mechanistic experiments revealed that fluoxetine could directly interfere with oligodendroglial differentiation by upregulating Wnt signaling. Our data demonstrated the correlation between PTSD and abnormal myelination, suggesting that the oligodendroglial lineage could be a target for PTSD treatment.
Collapse
Affiliation(s)
- Chenrui Yin
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Kefei Luo
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Xinyue Zhu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Ronghang Zheng
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Yu Wang
- Department of Respiratory Diseases, Central Medical Branch of PLA General Hospital, Beijing, 100853, China
| | - Guangdan Yu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaorui Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Fei She
- Department of Emergency, the Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100142, China
| | - Xiaoying Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Tao Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Jingfei Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Baduojie Bian
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China.
| | - Yuxin Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China.
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China.
| |
Collapse
|
9
|
Tan W, Ikoma Y, Takahashi Y, Konno A, Hirai H, Hirase H, Matsui K. Anxiety control by astrocytes in the lateral habenula. Neurosci Res 2024; 205:1-15. [PMID: 38311032 DOI: 10.1016/j.neures.2024.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/06/2024]
Abstract
The potential role of astrocytes in lateral habenula (LHb) in modulating anxiety was explored in this study. The habenula are a pair of small nuclei located above the thalamus, known for their involvement in punishment avoidance and anxiety. Herein, we observed an increase in theta-band oscillations of local field potentials (LFPs) in the LHb when mice were exposed to anxiety-inducing environments. Electrical stimulation of LHb at theta-band frequency promoted anxiety-like behavior. Calcium (Ca2+) levels and pH in the cytosol of astrocytes and local brain blood volume changes were studied in mice expressing either a Ca2+ or a pH sensor protein specifically in astrocytes and mScarlet fluorescent protein in the blood plasma using fiber photometry. An acidification response to anxiety was observed. Photoactivation of archaerhopsin-T (ArchT), an optogenetic tool that acts as an outward proton pump, results in intracellular alkalinization. Photostimulation of LHb in astrocyte-specific ArchT-expressing mice resulted in dissipation of theta-band LFP oscillation in an anxiogenic environment and suppression of anxiety-like behavior. These findings provide evidence that LHb astrocytes modulate anxiety and may offer a new target for treatment of anxiety disorders.
Collapse
Affiliation(s)
- Wanqin Tan
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan
| | - Yusuke Takahashi
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan; Systems Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579 Japan
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan; Viral Vector Core, Gunma University Initiative for Advanced Research, Maebashi 371-8511, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan; Viral Vector Core, Gunma University Initiative for Advanced Research, Maebashi 371-8511, Gunma, Japan
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan.
| |
Collapse
|
10
|
Bansal Y, Codeluppi SA, Banasr M. Astroglial Dysfunctions in Mood Disorders and Rodent Stress Models: Consequences on Behavior and Potential as Treatment Target. Int J Mol Sci 2024; 25:6357. [PMID: 38928062 PMCID: PMC11204179 DOI: 10.3390/ijms25126357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Astrocyte dysfunctions have been consistently observed in patients affected with depression and other psychiatric illnesses. Although over the years our understanding of these changes, their origin, and their consequences on behavior and neuronal function has deepened, many aspects of the role of astroglial dysfunction in major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) remain unknown. In this review, we summarize the known astroglial dysfunctions associated with MDD and PTSD, highlight the impact of chronic stress on specific astroglial functions, and how astroglial dysfunctions are implicated in the expression of depressive- and anxiety-like behaviors, focusing on behavioral consequences of astroglial manipulation on emotion-related and fear-learning behaviors. We also offer a glance at potential astroglial functions that can be targeted for potential antidepressant treatment.
Collapse
Affiliation(s)
- Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Sierra A. Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M2J 4A6, Canada
| |
Collapse
|
11
|
Liu Y, Chen L, Lin L, Xu C, Xiong Y, Qiu H, Li X, Li S, Cao H. Unveiling the hidden pathways: Exploring astrocytes as a key target for depression therapy. J Psychiatr Res 2024; 174:101-113. [PMID: 38626560 DOI: 10.1016/j.jpsychires.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Depressive disorders are widely debilitating psychiatric disease. Despite the considerable progress in the field of depression therapy, extensive research spanning many decades has failed to uncover pathogenic pathways that might aid in the creation of long-acting and rapid-acting antidepressants. Consequently, it is imperative to reconsider existing approaches and explore other targets to improve this area of study. In contemporary times, several scholarly investigations have unveiled that persons who have received a diagnosis of depression, as well as animal models employed to study depression, demonstrate a decrease in both the quantity as well as density of astrocytes, accompanied by alterations in gene expression and morphological attributes. Astrocytes rely on a diverse array of channels and receptors to facilitate their neurotransmitter transmission inside tripartite synapses. This study aimed to investigate the potential processes behind the development of depression, specifically focusing on astrocyte-associated neuroinflammation and the involvement of several molecular components such as connexin 43, potassium channel Kir4.1, aquaporin 4, glutamatergic aspartic acid transporter protein, SLC1A2 or GLT-1, glucocorticoid receptors, 5-hydroxytryptamine receptor 2B, and autophagy, that localized on the surface of astrocytes. The study also explores novel approaches in the treatment of depression, with a focus on astrocytes, offering innovative perspectives on potential antidepressant medications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Gastroenterology, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Lin Lin
- Scientific Research Management Department, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Caijuan Xu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Yifan Xiong
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Sixin Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Hui Cao
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| |
Collapse
|
12
|
Chamaa F, Magistretti PJ, Fiumelli H. Astrocyte-derived lactate in stress disorders. Neurobiol Dis 2024; 192:106417. [PMID: 38296112 DOI: 10.1016/j.nbd.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Stress disorders are psychiatric disorders arising following stressful or traumatic events. They could deleteriously affect an individual's health because they often co-occur with mental illnesses. Considerable attention has been focused on neurons when considering the neurobiology of stress disorders. However, like other mental health conditions, recent studies have highlighted the importance of astrocytes in the pathophysiology of stress-related disorders. In addition to their structural and homeostatic support role, astrocytes actively serve several functions in regulating synaptic transmission and plasticity, protecting neurons from toxic compounds, and providing metabolic support for neurons. The astrocyte-neuron lactate shuttle model sets forth the importance of astrocytes in providing lactate for the metabolic supply of neurons under intense activity. Lactate also plays a role as a signaling molecule and has been recently studied regarding its antidepressant activity. This review discusses the involvement of astrocytes and brain energy metabolism in stress and further reflects on the importance of lactate as an energy supply in the brain and its emerging antidepressant role in stress-related disorders.
Collapse
Affiliation(s)
- Farah Chamaa
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Pierre J Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
13
|
Jing D, Hou X, Guo X, Zhao X, Zhang K, Zhang J, Kan C, Han F, Liu J, Sun X. Astrocytes in Post-Stroke Depression: Roles in Inflammation, Neurotransmission, and Neurotrophin Signaling. Cell Mol Neurobiol 2023; 43:3301-3313. [PMID: 37470888 PMCID: PMC11409983 DOI: 10.1007/s10571-023-01386-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
Post-stroke depression (PSD) is a frequent and disabling complication of stroke that affects up to one-third of stroke survivors. The pathophysiology of PSD involves multiple mechanisms, including neurochemical, neuroinflammatory, neurotrophic, and neuroplastic changes. Astrocytes are a type of glial cell that is plentiful and adaptable in the central nervous system. They play key roles in various mechanisms by modulating neurotransmission, inflammation, neurogenesis, and synaptic plasticity. This review summarizes the latest evidence of astrocyte involvement in PSD from human and animal studies, focusing on the alterations of astrocyte markers and functions in relation to monoamine neurotransmitters, inflammatory cytokines, brain-derived neurotrophic factor, and glutamate excitotoxicity. We also discuss the potential therapeutic implications of targeting astrocytes for PSD prevention and treatment. Astrocytes could be new candidates for antidepressant medications and other interventions that aim to restore astrocyte homeostasis and function in PSD. Astrocytes could be new candidates for antidepressant medications and other interventions that aim to restore astrocyte homeostasis and function in PSD.
Collapse
Affiliation(s)
- Dongqing Jing
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaoli Hou
- Department of General Practice, Weifang Sixth People's Hospital, Weifang, China
| | - Xiao Guo
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xin Zhao
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Jingwen Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Chengxia Kan
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junling Liu
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China.
| |
Collapse
|
14
|
Cure of Alzheimer's Dementia Requires Addressing All of the Affected Brain Cell Types. J Clin Med 2023; 12:jcm12052049. [PMID: 36902833 PMCID: PMC10004473 DOI: 10.3390/jcm12052049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple genetic, metabolic, and environmental abnormalities are known to contribute to the pathogenesis of Alzheimer's dementia (AD). If all of those abnormalities were addressed it should be possible to reverse the dementia; however, that would require a suffocating volume of drugs. Nevertheless, the problem may be simplified by using available data to address, instead, the brain cells whose functions become changed as a result of the abnormalities, because at least eleven drugs are available from which to formulate a rational therapy to correct those changes. The affected brain cell types are astrocytes, oligodendrocytes, neurons, endothelial cells/pericytes, and microglia. The available drugs include clemastine, dantrolene, erythropoietin, fingolimod, fluoxetine, lithium, memantine, minocycline, pioglitazone, piracetam, and riluzole. This article describes the ways by which the individual cell types contribute to AD's pathogenesis and how each of the drugs corrects the changes in the cell types. All five of the cell types may be involved in the pathogenesis of AD; of the 11 drugs, fingolimod, fluoxetine, lithium, memantine, and pioglitazone, each address all five of the cell types. Fingolimod only slightly addresses endothelial cells, and memantine is the weakest of the remaining four. Low doses of either two or three drugs are suggested in order to minimize the likelihood of toxicity and drug-drug interactions (including drugs used for co-morbidities). Suggested two-drug combinations are pioglitazone plus lithium and pioglitazone plus fluoxetine; a three-drug combination could add either clemastine or memantine. Clinical trials are required to validate that the suggest combinations may reverse AD.
Collapse
|
15
|
Fessel J. Supplementary Pharmacotherapy for the Behavioral Abnormalities Caused by Stressors in Humans, Focused on Post-Traumatic Stress Disorder (PTSD). J Clin Med 2023; 12:1680. [PMID: 36836215 PMCID: PMC9967886 DOI: 10.3390/jcm12041680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Used as a supplement to psychotherapy, pharmacotherapy that addresses all of the known metabolic and genetic contributions to the pathogenesis of psychiatric conditions caused by stressors would require an inordinate number of drugs. Far simpler is to address the abnormalities caused by those metabolic and genetic changes in the cell types of the brain that mediate the behavioral abnormality. Relevant data regarding the changed brain cell types are described in this article and are derived from subjects with the paradigmatic behavioral abnormality of PTSD and from subjects with traumatic brain injury or chronic traumatic encephalopathy. If this analysis is correct, then therapy is required that benefits all of the affected brain cell types; those are astrocytes, oligodendrocytes, synapses and neurons, endothelial cells, and microglia (the pro-inflammatory (M1) subtype requires switching to the anti-inflammatory (M2) subtype). Combinations are advocated using several drugs, erythropoietin, fluoxetine, lithium, and pioglitazone, that benefit all of the five cell types, and that should be used to form a two-drug combination, suggested as pioglitazone with either fluoxetine or lithium. Clemastine, fingolimod, and memantine benefit four of the cell types, and one chosen from those could be added to the two-drug combination to form a three-drug combination. Using low doses of chosen drugs will limit both toxicity and drug-drug interactions. A clinical trial is required to validate both the advocated concept and the choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
16
|
Yao S, Xu MD, Wang Y, Zhao ST, Wang J, Chen GF, Chen WB, Liu J, Huang GB, Sun WJ, Zhang YY, Hou HL, Li L, Sun XD. Astrocytic lactate dehydrogenase A regulates neuronal excitability and depressive-like behaviors through lactate homeostasis in mice. Nat Commun 2023; 14:729. [PMID: 36759610 PMCID: PMC9911790 DOI: 10.1038/s41467-023-36209-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Alterations in energy metabolism are associated with depression. However, the role of glycolysis in the pathogenesis of depression and the underlying molecular mechanisms remain unexplored. Through an unbiased proteomic screen coupled with biochemical verifications, we show that the levels of glycolysis and lactate dehydrogenase A (LDHA), a glycolytic enzyme that catalyzes L-lactate production, are reduced in the dorsomedial prefrontal cortex (dmPFC) of stress-susceptible mice in chronic social defeat stress (CSDS) model. Conditional knockout of LDHA from the brain promotes depressive-like behaviors in both male and female mice, accompanied with reduced L-lactate levels and decreased neuronal excitability in the dmPFC. Moreover, these phenotypes could be duplicated by knockdown of LDHA in the dmPFC or specifically in astrocytes. In contrast, overexpression of LDHA reverses these phenotypic changes in CSDS-susceptible mice. Mechanistic studies demonstrate that L-lactate promotes neuronal excitability through monocarboxylic acid transporter 2 (MCT2) and by inhibiting large-conductance Ca2+-activated potassium (BK) channel. Together, these results reveal a role of LDHA in maintaining neuronal excitability to prevent depressive-like behaviors.
Collapse
Affiliation(s)
- Shan Yao
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Min-Dong Xu
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Ying Wang
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shen-Ting Zhao
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jin Wang
- Department of Physiology, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Gui-Fu Chen
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Wen-Bing Chen
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jian Liu
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Guo-Bin Huang
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Wen-Juan Sun
- Department of Physiology, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yan-Yan Zhang
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Huan-Li Hou
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiang-Dong Sun
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
17
|
Fessel J. Formulating treatment of major psychiatric disorders: algorithm targets the dominantly affected brain cell-types. DISCOVER MENTAL HEALTH 2023; 3:3. [PMID: 37861813 PMCID: PMC10501034 DOI: 10.1007/s44192-022-00029-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 10/21/2023]
Abstract
BACKGROUND Pharmacotherapy for most psychiatric conditions was developed from serendipitous observations of benefit from drugs prescribed for different reasons. An algorithmic approach to formulating pharmacotherapy is proposed, based upon which combination of changed activities by brain cell-types is dominant for any particular condition, because those cell-types contain and surrogate for genetic, metabolic and environmental information, that has affected their function. The algorithm performs because functions of some or all the affected cell-types benefit from several available drugs: clemastine, dantrolene, erythropoietin, fingolimod, fluoxetine, lithium, memantine, minocycline, pioglitazone, piracetam, and riluzole PROCEDURES/FINDINGS: Bipolar disorder, major depressive disorder, schizophrenia, Alzheimer's disease, and post-traumatic stress disorder, illustrate the algorithm; for them, literature reviews show that no single combination of altered cell-types accounts for all cases; but they identify, for each condition, which combination occurs most frequently, i.e., dominates, as compared with other possible combinations. Knowing the dominant combination of altered cell-types in a particular condition, permits formulation of therapy with combinations of drugs taken from the above list. The percentage of patients who might benefit from that therapy, depends upon the frequency with which the dominant combination occurs in patients with that particular condition. CONCLUSIONS Knowing the dominant combination of changed cell types in psychiatric conditions, permits an algorithmically formulated, rationally-based treatment. Different studies of the same condition often produce discrepant results; all might be correct, because identical clinical phenotypes result from different combinations of impaired cell-types, thus producing different results. Clinical trials would validate both the proposed concept and choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA, 94123, USA.
| |
Collapse
|
18
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Glial Cell Modulation of Dendritic Spine Structure and Synaptic Function. ADVANCES IN NEUROBIOLOGY 2023; 34:255-310. [PMID: 37962798 DOI: 10.1007/978-3-031-36159-3_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glia comprise a heterogeneous group of cells involved in the structure and function of the central and peripheral nervous system. Glial cells are found from invertebrates to humans with morphological specializations related to the neural circuits in which they are embedded. Glial cells modulate neuronal functions, brain wiring and myelination, and information processing. For example, astrocytes send processes to the synaptic cleft, actively participate in the metabolism of neurotransmitters, and release gliotransmitters, whose multiple effects depend on the targeting cells. Human astrocytes are larger and more complex than their mice and rats counterparts. Astrocytes and microglia participate in the development and plasticity of neural circuits by modulating dendritic spines. Spines enhance neuronal connectivity, integrate most postsynaptic excitatory potentials, and balance the strength of each input. Not all central synapses are engulfed by astrocytic processes. When that relationship occurs, a different pattern for thin and large spines reflects an activity-dependent remodeling of motile astrocytic processes around presynaptic and postsynaptic elements. Microglia are equally relevant for synaptic processing, and both glial cells modulate the switch of neuroendocrine secretion and behavioral display needed for reproduction. In this chapter, we provide an overview of the structure, function, and plasticity of glial cells and relate them to synaptic maturation and modulation, also involving neurotrophic factors. Together, neurons and glia coordinate synaptic transmission in both normal and abnormal conditions. Neglected over decades, this exciting research field can unravel the complexity of species-specific neural cytoarchitecture as well as the dynamic region-specific functional interactions between diverse neurons and glial subtypes.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
19
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
20
|
Lages YV, Balthazar L, Krahe TE, Landeira-Fernandez J. Pharmacological and Physiological Correlates of the Bidirectional Fear Phenotype of the Carioca Rats and Other Bidirectionally Selected Lines. Curr Neuropharmacol 2023; 21:1864-1883. [PMID: 36237160 PMCID: PMC10514533 DOI: 10.2174/1570159x20666221012121534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
The Carioca rat lines originated from the selective bidirectional breeding of mates displaying extreme defense responses to contextual conditioned fear. After three generations, two distinct populations could be distinguished: the Carioca High- and Low-conditioned Freezing rats, CHF, and CLF, respectively. Later studies identified strong anxiety-like behaviors in the CHF line, while indications of impulsivity and hyperactivity were prominent in the CLF animals. The present review details the physiological and pharmacological-related findings obtained from these lines. The results discussed here point towards a dysfunctional fear circuitry in CHF rats, including alterations in key brain structures and the serotoninergic system. Moreover, data from these animals highlight important alterations in the stress-processing machinery and its associated systems, such as energy metabolism and antioxidative defense. Finally, evidence of an alteration in the dopaminergic pathway in CLF rats is also debated. Thus, accumulating data gathered over the years, place the Carioca lines as significant animal models for the study of psychiatric disorders, especially fear-related ones like anxiety.
Collapse
Affiliation(s)
- Yury V. Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Balthazar
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiological Sciences, Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas. E. Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Pan SM, Zhou YF, Zuo N, Jiao RQ, Kong LD, Pan Y. Fluoxetine increases astrocytic glucose uptake and glycolysis in corticosterone-induced depression through restricting GR-TXNIP-GLUT1 Pathway. Front Pharmacol 2022; 13:872375. [PMID: 36105196 PMCID: PMC9465171 DOI: 10.3389/fphar.2022.872375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Antidepressant fluoxetine can affect cerebral glucose metabolism in clinic, but the underlying molecular mechanism remains poorly understood. Here, we examined the effect of fluoxetine on brain regional glucose metabolism in a rat model of depression induced by repeated corticosterone injection, and explored the molecular mechanism. Fluoxetine was found to recover the decrease of 18F-fluorodeoxyglucose (18F-FDG) signal in prefrontal cortex (PFC), and increased 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG, a fluorescent glucose analog) uptake in an astrocyte-specific manner in ex vivo cultured PFC slices from corticosterone-induced depressive rats, which were consistent with its improvement of animal depressive behaviors. Furthermore, fluoxetine restricted nuclear translocation of glucocorticoid receptor (GR) to suppress the transcription of thioredoxin interacting protein (TXNIP). Subsequently, it promoted glucose transporter 1 (GLUT1)-mediated glucose uptake and glycolysis of PFC astrocytes through suppressing TXNIP expression under corticosterone-induced depressive state. More importantly, fluoxetine could improve glucose metabolism of corticosterone-stimulated astrocytes via TXNIP-GLUT1 pathway. These results demonstrated that fluoxetine increased astrocytic glucose uptake and glycolysis in corticosterone-induced depression via restricting GR-TXNIP-GLUT1 pathway. The modulation of astrocytic glucose metabolism by fluoxetine was suggested as a novel mechanism of its antidepressant action.
Collapse
Affiliation(s)
- Shu-Man Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yi-Fan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Na Zuo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Ling-Dong Kong, ; Ying Pan,
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Ling-Dong Kong, ; Ying Pan,
| |
Collapse
|
22
|
Ye Q, Zhang Y, Zhang Y, Chen Z, Yu C, Zheng C, Yu H, Zhou D, Li X. Low VGF is associated with executive dysfunction in patients with major depressive disorder. J Psychiatr Res 2022; 152:182-186. [PMID: 35738161 DOI: 10.1016/j.jpsychires.2022.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Executive dysfunction is considered to be one of the cognitive impairment dimensions that are easily observed in depression, but its underlying molecular mechanism is still unclear. Study have shown that the neuropeptide VGF (non-acronymic) plays an important role in the regulation of hippocampal neurogenesis and neuroplasticity. Previous studies have shown that VGF may be related to the psychopathology of depression and cognitive impairment. However, the correlation between VGF and executive dysfunction in MDD has not been investigated. METHODS A total of 35 MDD patients and 31 healthy control patients were enrolled in this study. The 17-item Hamilton Depression Rating Scale (HDRS) was used to measure the severity of depression, and the Wisconsin Card Sorting Test (WCST) was used to assess executive dysfunction. Double antibody sandwich enzyme-linked immunosorbent assay (ELISA) was used to determine serum VGF in peripheral blood. RESULTS The level of serum VGF in MDD patients was significantly lower compared to that in the healthy control group (p < 0.001). Moreover, Response Administered (RA) scores, Response preservative errors (RPE), and Non-response preservative errors (NRPE) were all higher in the MDD group (all p < 0.05). In contrast, Categories Completed (CC) and Response Correct (RC) scores were lower (all p < 0.05). Further results showed a significant correlation between serum VGF with RA (r = -0.372, p = 0.028) and RPE scores (r = 0.507, p = 0.002) in patients with depression, while serum VGF showed no correlation with the severity of depression in either group. CONCLUSIONS VGF may play an important role in executive function dysfunction in MDD patients, and VGF levels may become a new marker for predicting executive function dysfunction in depression.
Collapse
Affiliation(s)
- Qianwen Ye
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Yuanyuan Zhang
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Yan Zhang
- The Second People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Zan Chen
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Chang Yu
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Chao Zheng
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Haihang Yu
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China.
| | - Dongsheng Zhou
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China.
| | - Xingxing Li
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
23
|
Rani T, Behl T, Sharma N, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bhatia S, Bungau SG. Exploring the role of biologics in depression. Cell Signal 2022; 98:110409. [PMID: 35843573 DOI: 10.1016/j.cellsig.2022.110409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
Abstract
Depression is a chronic and prevalent neuropsychiatric disorder; clinical symptoms include excessive sad mood, anhedonia, increased anxiety, disturbed sleep, and cognitive deficits. The exact etiopathogenesis of depression is not well understood. Studies have suggested that tumor necrosis factor-alpha (TNF-α) and interleukins (ILs) perform vital roles in the pathogenesis and treatment of depression. Increasing evidence suggests the upregulation of TNF-α and ILs expression in patients with depression. Therefore, biologics like TNF inhibitors (etanercept, infliximab, adalimumab) and IL inhibitors (ustekinumab) have become key compounds in the treatment of depression. Interestingly, treatment with an antidepressant has been found to decrease the TNF-α level and improve depression-like behaviors in several preclinical and clinical studies. In the current article, we have reviewed the recent findings linking TNF-α and the pathogenesis of depression proving TNF-α inhibitors as potential new therapeutic agents. Animal models and clinical studies further support that TNF-α inhibitors are effective in ameliorating depression-like behaviors. Moreover, studies showed that peripheral injection of TNF-α exhibits depressive symptoms. These symptoms have been improved by treatment with TNF-α inhibitors. Hence suggesting TNF-α inhibitors as potential new antidepressants for the management of depressive disorder.
Collapse
Affiliation(s)
- Tarapati Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Parctice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
24
|
Olude MA, Mouihate A, Mustapha OA, Farina C, Quintana FJ, Olopade JO. Astrocytes and Microglia in Stress-Induced Neuroinflammation: The African Perspective. Front Immunol 2022; 13:795089. [PMID: 35707531 PMCID: PMC9190229 DOI: 10.3389/fimmu.2022.795089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Africa is laden with a youthful population, vast mineral resources and rich fauna. However, decades of unfortunate historical, sociocultural and leadership challenges make the continent a hotspot for poverty, indoor and outdoor pollutants with attendant stress factors such as violence, malnutrition, infectious outbreaks and psychological perturbations. The burden of these stressors initiate neuroinflammatory responses but the pattern and mechanisms of glial activation in these scenarios are yet to be properly elucidated. Africa is therefore most vulnerable to neurological stressors when placed against a backdrop of demographics that favor explosive childbearing, a vast population of unemployed youths making up a projected 42% of global youth population by 2030, repressive sociocultural policies towards women, poor access to healthcare, malnutrition, rapid urbanization, climate change and pollution. Early life stress, whether physical or psychological, induces neuroinflammatory response in developing nervous system and consequently leads to the emergence of mental health problems during adulthood. Brain inflammatory response is driven largely by inflammatory mediators released by glial cells; namely astrocytes and microglia. These inflammatory mediators alter the developmental trajectory of fetal and neonatal brain and results in long-lasting maladaptive behaviors and cognitive deficits. This review seeks to highlight the patterns and mechanisms of stressors such as poverty, developmental stress, environmental pollutions as well as malnutrition stress on astrocytes and microglia in neuroinflammation within the African context.
Collapse
Affiliation(s)
- Matthew Ayokunle Olude
- Vertebrate Morphology, Environmental Toxicology and Neuroscience Unit, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
- *Correspondence: Matthew Ayokunle Olude,
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Oluwaseun Ahmed Mustapha
- Vertebrate Morphology, Environmental Toxicology and Neuroscience Unit, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Cinthia Farina
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) San Raffaele Scientific Institute, Institute of Experimental Neurology (INSPE) and Division of Neuroscience, Milan, Italy
| | - Francisco Javier Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - James Olukayode Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
25
|
Dolotov OV, Inozemtseva LS, Myasoedov NF, Grivennikov IA. Stress-Induced Depression and Alzheimer's Disease: Focus on Astrocytes. Int J Mol Sci 2022; 23:4999. [PMID: 35563389 PMCID: PMC9104432 DOI: 10.3390/ijms23094999] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases and depression are multifactorial disorders with a complex and poorly understood physiopathology. Astrocytes play a key role in the functioning of neurons in norm and pathology. Stress is an important factor for the development of brain disorders. Here, we review data on the effects of stress on astrocyte function and evidence of the involvement of astrocyte dysfunction in depression and Alzheimer's disease (AD). Stressful life events are an important risk factor for depression; meanwhile, depression is an important risk factor for AD. Clinical data indicate atrophic changes in the same areas of the brain, the hippocampus and prefrontal cortex (PFC), in both pathologies. These brain regions play a key role in regulating the stress response and are most vulnerable to the action of glucocorticoids. PFC astrocytes are critically involved in the development of depression. Stress alters astrocyte function and can result in pyroptotic death of not only neurons, but also astrocytes. BDNF-TrkB system not only plays a key role in depression and in normalizing the stress response, but also appears to be an important factor in the functioning of astrocytes. Astrocytes, being a target for stress and glucocorticoids, are a promising target for the treatment of stress-dependent depression and AD.
Collapse
Affiliation(s)
- Oleg V. Dolotov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Ludmila S. Inozemtseva
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Nikolay F. Myasoedov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Igor A. Grivennikov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| |
Collapse
|
26
|
Recent behavioral findings of pathophysiological involvement of lactate in the central nervous system. Biochim Biophys Acta Gen Subj 2022; 1866:130137. [DOI: 10.1016/j.bbagen.2022.130137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
|
27
|
Modifying the maternal microbiota alters the gut-brain metabolome and prevents emotional dysfunction in the adult offspring of obese dams. Proc Natl Acad Sci U S A 2022; 119:2108581119. [PMID: 35197280 PMCID: PMC8892342 DOI: 10.1073/pnas.2108581119] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity disturbs brain-gut-microbiota interactions and induces negative affect in the offspring, but its impact on gut and brain metabolism in the offspring (F1) are unknown. Here, we tested whether perinatal intake of a multispecies probiotic could mitigate the abnormal emotional behavior in the juvenile and adult offspring of obese dams. Untargeted NMR-based metabolomic profiling and gene-expression analysis throughout the gut-brain axis were then used to investigate the biology underpinning behavioral changes in the dams and their offspring. Prolonged high-fat diet feeding reduced maternal gut short-chain fatty acid abundance, increased markers of peripheral inflammation, and decreased the abundance of neuroactive metabolites in maternal milk during nursing. Both juvenile (postnatal day [PND] 21) and adult (PND112) offspring of obese dams exhibited increased anxiety-like behavior, which were prevented by perinatal probiotic exposure. Maternal probiotic treatment increased gut butyrate and brain lactate in the juvenile and adult offspring and increased the expression of prefrontal cortex PFKFB3, a marker of glycolytic metabolism in astrocytes. PFKFB3 expression correlated with the increase in gut butyrate in the juvenile and adult offspring. Maternal obesity reduced synaptophysin expression in the adult offspring, while perinatal probiotic exposure increased expression of brain-derived neurotrophic factor. Finally, we showed that the resilience of juvenile and adult offspring to anxiety-like behavior was most prominently associated with increased brain lactate abundance, independent of maternal group. Taken together, we show that maternal probiotic supplementation exerts a long-lasting effect on offspring neuroplasticity and the offspring gut-liver-brain metabolome, increasing resilience to emotional dysfunction induced by maternal obesity.
Collapse
|
28
|
Ohira K. Change of hypothalamic adult neurogenesis in mice by chronic treatment of fluoxetine. BMC Res Notes 2022; 15:60. [PMID: 35172883 PMCID: PMC8848793 DOI: 10.1186/s13104-022-05954-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE More than half of patients with depression display eating disorders, such as bulimia nervosa and anorexia nervosa. Feeding centers are located in the hypothalamus, and hypothalamic adult neurogenesis has an important role in feeding and energy balance. Antidepressants, which can regulate adult neurogenesis in the hippocampus, olfactory bulb, and neocortex, are used for eating disorders, but it is unclear whether antidepressants change hypothalamic adult neurogenesis. In this study, we used immunohistological analysis to assess effects of the antidepressant fluoxetine (FLX) on hypothalamic adult neurogenesis of adult mice. RESULTS Expressions of the proliferating cell marker, Ki67, and the neural stem cell marker, nestin, were significantly decreased in the hypothalamus by FLX. As regard to postmitotic cells, the number of the neural marker, NeuN, positive cells was significantly upregulated by FLX, but that of the astrocytic marker, S100B, positive cells was significantly reduced by FLX. The number of the oligodendrocyte marker, Olig2, positive cells was not changed by FLX. Interestingly, FLX treatment did not affect the total number of newly generated cells in the hypothalamus, comparing that in controls. These results suggest that FLX treatment influence hypothalamic adult neurogenesis and shift the balance between the numbers of neurons and astrocytes under studied conditions.
Collapse
Affiliation(s)
- Koji Ohira
- Laboratory of Nutritional Brain Science, Department of Food Science and Nutrition, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo, 663-8558, Japan.
| |
Collapse
|
29
|
Kamma E, Lasisi W, Libner C, Ng HS, Plemel JR. Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics. J Neuroinflammation 2022; 19:45. [PMID: 35144628 PMCID: PMC8830034 DOI: 10.1186/s12974-022-02408-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
There are over 15 disease-modifying drugs that have been approved over the last 20 years for the treatment of relapsing–remitting multiple sclerosis (MS), but there are limited treatment options available for progressive MS. The development of new drugs for the treatment of progressive MS remains challenging as the pathophysiology of progressive MS is poorly understood. The progressive phase of MS is dominated by neurodegeneration and a heightened innate immune response with trapped immune cells behind a closed blood–brain barrier in the central nervous system. Here we review microglia and border-associated macrophages, which include perivascular, meningeal, and choroid plexus macrophages, during the progressive phase of MS. These cells are vital and are largely the basis to define lesion types in MS. We will review the evidence that reactive microglia and macrophages upregulate pro-inflammatory genes and downregulate homeostatic genes, that may promote neurodegeneration in progressive MS. We will also review the factors that regulate microglia and macrophage function during progressive MS, as well as potential toxic functions of these cells. Disease-modifying drugs that solely target microglia and macrophage in progressive MS are lacking. The recent treatment successes for progressive MS include include B-cell depletion therapies and sphingosine-1-phosphate receptor modulators. We will describe several therapies being evaluated as a potential treatment option for progressive MS, such as immunomodulatory therapies that can target myeloid cells or as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Emily Kamma
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wendy Lasisi
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, NL, Canada
| | - Cole Libner
- Department of Health Sciences and the Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Huah Shin Ng
- Division of Neurology and the Djavad Mowafaghian Centre for Brain Health, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jason R Plemel
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada. .,University of Alberta, 5-64 Heritage Medical Research Centre, Edmonton, AB, T6G2S2, Canada.
| |
Collapse
|
30
|
Porter GA, O’Connor JC. Brain-derived neurotrophic factor and inflammation in depression: Pathogenic partners in crime? World J Psychiatry 2022; 12:77-97. [PMID: 35111580 PMCID: PMC8783167 DOI: 10.5498/wjp.v12.i1.77] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/21/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder is a debilitating disorder affecting millions of people each year. Brain-derived neurotrophic factor (BDNF) and inflammation are two prominent biologic risk factors in the pathogenesis of depression that have received considerable attention. Many clinical and animal studies have highlighted associations between low levels of BDNF or high levels of inflammatory markers and the development of behavioral symptoms of depression. However, less is known about potential interaction between BDNF and inflammation, particularly within the central nervous system. Emerging evidence suggests that there is bidirectional regulation between these factors with important implications for the development of depressive symptoms and anti-depressant response. Elevated levels of inflammatory mediators have been shown to reduce expression of BDNF, and BDNF may play an important negative regulatory role on inflammation within the brain. Understanding this interaction more fully within the context of neuropsychiatric disease is important for both developing a fuller understanding of biological pathogenesis of depression and for identifying novel therapeutic opportunities. Here we review these two prominent risk factors for depression with a particular focus on pathogenic implications of their interaction.
Collapse
Affiliation(s)
- Grace A Porter
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX 78229, United States
| | - Jason C O’Connor
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX 78229, United States
- Audie L. Murphy VA Hospital, South Texas Veterans Health System, San Antonio, TX 78229, United States
| |
Collapse
|
31
|
Stenovec M, Li B, Verkhratsky A, Zorec R. Ketamine Action on Astrocytes Provides New Insights into Rapid Antidepressant Mechanisms. ADVANCES IN NEUROBIOLOGY 2021; 26:349-365. [PMID: 34888841 DOI: 10.1007/978-3-030-77375-5_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, exerts rapid, potent and long-lasting antidepressant effect already after a single administration of a low dose into depressed individuals. Apart from targeting neuronal NMDARs essential for synaptic transmission, ketamine also interacts with astrocytes, the principal homoeostatic cells of the central nervous system. The cellular mechanisms underlying astrocyte-based rapid antidepressant effect are incompletely understood. Here we overview recent data that describe ketamine-dependent changes in astrocyte cytosolic cAMP activity ([cAMP]i) and ketamine-induced modifications of stimulus-evoked Ca2+ signalling. The latter regulates exocytotic release of gliosignalling molecules and stabilizes the vesicle fusion pore in a narrow configuration that obstructs cargo discharge or vesicle membrane recycling. Ketamine also instigates rapid redistribution of cholesterol in the astrocyte plasmalemma that may alter flux of cholesterol to neurones, where it is required for changes in synaptic plasticity. Finally, ketamine attenuates mobility of vesicles carrying the inward rectifying potassium channel (Kir4.1) and reduces the surface density of Kir4.1 channels that control extracellular K+ concentration, which tunes the pattern of action potential firing in neurones of lateral habenula as demonstrated in a rat model of depression. Thus, diverse, but not mutually exclusive, mechanisms act synergistically to evoke changes in synaptic plasticity leading to sustained strengthening of excitatory synapses necessary for rapid antidepressant effect of ketamine.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, China.,Department of Poison Analysis, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Alexei Verkhratsky
- Celica BIOMEDICAL, Ljubljana, Slovenia.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
| | - Robert Zorec
- Celica BIOMEDICAL, Ljubljana, Slovenia. .,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
32
|
Astroglial Serotonin Receptors as the Central Target of Classic Antidepressants. ADVANCES IN NEUROBIOLOGY 2021; 26:317-347. [PMID: 34888840 DOI: 10.1007/978-3-030-77375-5_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Major depressive disorder (MDD) presents multiple clinical phenotypes and has complex underlying pathological mechanisms. Existing theories cannot completely explain the pathophysiological mechanism(s) of MDD, while the pharmacology of current antidepressants is far from being fully understood. Astrocytes, the homeostatic and defensive cells of the central nervous system, contribute to shaping behaviors, and regulating mood and emotions. A detailed introduction on the role of astrocytes in depressive disorders is thus required, to which this chapter is dedicated. We also focus on the interactions between classic antidepressants and serotonin receptors, overview the role of astrocytes in the pharmacological mechanisms of various antidepressants, and present astrocytes as targets for the treatment of bipolar disorder. We provide a foundation of knowledge on the role of astrocytes in depressive disorders and astroglial 5-HT2B receptors as targets for selective serotonin reuptake inhibitors in vivo and in vitro.
Collapse
|
33
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
34
|
Taheri Zadeh Z, Rahmani S, Alidadi F, Joushi S, Esmaeilpour K. Depresssion, anxiety and other cognitive consequences of social isolation: Drug and non-drug treatments. Int J Clin Pract 2021; 75:e14949. [PMID: 34614276 DOI: 10.1111/ijcp.14949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE During the COVID-19 pandemic, quarantine and staying at home is advised. The social relationship between people has become deficient, and human social isolation (SI) has become the consequence of this situation. It was shown that SI has made changes in hippocampal neuroplasticity, which will lead to poor cognitive function and behavioural abnormalities. There is a connection between SI, learning, and memory impairments. In addition, anxiety-like behaviour and increased aggressive mood in long-term isolation have been revealed during the COVID-19 outbreak. METHODS Term searches was done in Google Scholar, Scopus, ScienceDirect, Web of Science and PubMed databases as well as hand searching in key resource journals from 1979 to 2020. RESULTS Studies have shown that some drug administrations may positively affect or even prevent social isolation consequences in animal models. These drug treatments have included opioid drugs, anti-depressants, Antioxidants, and herbal medications. In addition to drug interventions, there are non-drug treatments that include an enriched environment, regular exercise, and music. CONCLUSION This manuscript aims to review improved cognitive impairments induced by SI during COVID-19.
Collapse
Affiliation(s)
- Zahra Taheri Zadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
| |
Collapse
|
35
|
Thompson WA, Vijayan MM. Venlafaxine deposition in the zygote disrupts the endocrine control of growth in juvenile zebrafish. ENVIRONMENTAL RESEARCH 2021; 202:111665. [PMID: 34252433 DOI: 10.1016/j.envres.2021.111665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The antidepressant venlafaxine can be found at levels nearing μg/L in waterways receiving municipal wastewater effluent, exposing non-target organisms, such as fish, to this chemical. We showed previously that zygotic exposure to venlafaxine alters neurodevelopment and behaviour in zebrafish (Danio rerio) larvae. Here, we tested the hypothesis that the zygotic deposition of venlafaxine disrupts endocrine pathways related to growth in zebrafish. This was carried out by microinjecting embryos (1-4 cell stage) with either 0, 1, or 10 ng venlafaxine. Zygotic venlafaxine deposition reduced the growth of fish after 30 days post-fertilization. Specific growth rate was particularly impacted by 1 ng venlafaxine. This growth retardation corresponded with the disruption of endocrine pathways involved in growth and metabolism. Venlafaxine exposed embryos displayed reduced transcript abundance of key genes involved in anabolic hormone action. Early-life venlafaxine exposure also reduced whole-body insulin and glucose content in juveniles. Target-tissue glucose uptake measurements indicated that high venlafaxine deposition preferentially increased glucose uptake to the brain. Zygotic venlafaxine did not affect feed intake nor altered the transcript abundance of key feeding-related peptides. Taken together, zygotic venlafaxine deposition compromises zebrafish growth by disrupting multiple endocrine pathways, and this study has identified key markers for potential use in risk assessment.
Collapse
Affiliation(s)
- W Andrew Thompson
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
36
|
Chen B, Zhang M, Ji M, Gong W, Chen B, Zorec R, Stenovec M, Verkhratsky A, Li B. The Association Between Antidepressant Effect of SSRIs and Astrocytes: Conceptual Overview and Meta-analysis of the Literature. Neurochem Res 2021; 46:2731-2745. [PMID: 33527219 DOI: 10.1007/s11064-020-03225-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
Major depressive disorders (MDD) a worldwide psychiatric disease, is yet to be adequately controlled by therapies; while the mechanisms of action of antidepressants are yet to be fully characterised. In the last two decades, an increasing number of studies have demonstrated the role of astrocytes in the pathophysiology and therapy of MDD. Selective serotonin reuptake inhibitors (SSRIs) are the most widely used antidepressants. It is generally acknowledged that SSRIs increase serotonin levels in the central nervous system by inhibiting serotonin transporters, although the SSRIs action is not ideal. The SSRIs antidepressant effect develops with considerable delay; their efficacy is low and frequent relapses are common. Neither cellular nor molecular pharmacological mechanisms of SSRIs are fully characterised; in particular their action on astrocytes remain underappreciated. In this paper we overview potential therapeutic mechanisms of SSRIs associated with astroglia and report the results of meta-analysis of studies dedicated to MDD, SSRIs and astrocytes. In particular, we argue that fluoxetine, the representative SSRI, improves depressive-like behaviours in animals treated with chronic mild stress and reverses depression-associated decrease in astrocytic glial fibrillary acidic protein (GFAP) expression. In addition, fluoxetine upregulates astrocytic mRNA expression of 5-hydroxytriptamin/serotonin2B receptors (5-HT2BR). In summary, we infer that SSRIs exert their anti-depressant effect by regulating several molecular and signalling pathways in astrocytes.
Collapse
Affiliation(s)
- Beina Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Manman Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Ming Ji
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Wenliang Gong
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Binjie Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Robert Zorec
- Celica BIOMEDICAL, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Matjaž Stenovec
- Celica BIOMEDICAL, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
37
|
Yu JZ, Wang J, Sheridan SD, Perlis RH, Rasenick MM. N-3 polyunsaturated fatty acids promote astrocyte differentiation and neurotrophin production independent of cAMP in patient-derived neural stem cells. Mol Psychiatry 2021; 26:4605-4615. [PMID: 32504049 PMCID: PMC10034857 DOI: 10.1038/s41380-020-0786-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022]
Abstract
Evidence from epidemiological and laboratory studies, as well as randomized placebo-controlled trials, suggests supplementation with n-3 polyunsaturated fatty acids (PUFAs) may be efficacious for treatment of major depressive disorder (MDD). The mechanisms underlying n-3 PUFAs potential therapeutic properties remain unknown. There are suggestions in the literature that glial hypofunction is associated with depressive symptoms and that antidepressants may normalize glial function. In this study, induced pluripotent stem cells (iPSC)-derived neuronal stem cell lines were generated from individuals with MDD. Astrocytes differentiated from patient-derived neuronal stem cells (iNSCs) were verified by GFAP. Cells were treated with eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or stearic acid (SA). During astrocyte differentiation, we found that n-3 PUFAs increased GFAP expression and GFAP positive cell formation. BDNF and GDNF production were increased in the astrocytes derived from patients subsequent to n-3 PUFA treatment. Stearic Acid (SA) treatment did not have this effect. CREB activity (phosphorylated CREB) was also increased by DHA and EPA but not by SA. Furthermore, when these astrocytes were treated with n-3 PUFAs, the cAMP antagonist, RP-cAMPs did not block n-3 PUFA CREB activation. However, the CREB specific inhibitor (666-15) diminished BDNF and GDNF production induced by n-3 PUFA, suggesting CREB dependence. Together, these results suggested that n-3 PUFAs facilitate astrocyte differentiation, and may mimic effects of some antidepressants by increasing production of neurotrophic factors. The CREB-dependence and cAMP independence of this process suggests a manner in which n-3 PUFA could augment antidepressant effects. These data also suggest a role for astrocytes in both MDD and antidepressant action.
Collapse
Affiliation(s)
- Jiang-Zhou Yu
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Jennifer Wang
- Center for Experimental Drugs and Diagnostics and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Steven D Sheridan
- Center for Experimental Drugs and Diagnostics and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Roy H Perlis
- Center for Experimental Drugs and Diagnostics and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Division of Clinical Research, Massachusetts General Hospital, Boston, 02114, USA
| | - Mark M Rasenick
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
- Pax Neuroscience, Glenview, IL, 60025, USA.
| |
Collapse
|
38
|
Vezzoli E, Calì C, De Roo M, Ponzoni L, Sogne E, Gagnon N, Francolini M, Braida D, Sala M, Muller D, Falqui A, Magistretti PJ. Ultrastructural Evidence for a Role of Astrocytes and Glycogen-Derived Lactate in Learning-Dependent Synaptic Stabilization. Cereb Cortex 2021; 30:2114-2127. [PMID: 31807747 PMCID: PMC7174989 DOI: 10.1093/cercor/bhz226] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Long-term memory formation (LTM) is a process accompanied by energy-demanding structural changes at synapses and increased spine density. Concomitant increases in both spine volume and postsynaptic density (PSD) surface area have been suggested but never quantified in vivo by clear-cut experimental evidence. Using novel object recognition in mice as a learning task followed by 3D electron microscopy analysis, we demonstrate that LTM induced all aforementioned synaptic changes, together with an increase in the size of astrocytic glycogen granules, which are a source of lactate for neurons. The selective inhibition of glycogen metabolism in astrocytes impaired learning, affecting all the related synaptic changes. Intrahippocampal administration of l-lactate rescued the behavioral phenotype, along with spine density within 24 hours. Spine dynamics in hippocampal organotypic slices undergoing theta burst-induced long-term potentiation was similarly affected by inhibition of glycogen metabolism and rescued by l-lactate. These results suggest that learning primes astrocytic energy stores and signaling to sustain synaptic plasticity via l-lactate.
Collapse
Affiliation(s)
- E Vezzoli
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.,Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy.,Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20133 Milano, Italy
| | - C Calì
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - M De Roo
- Department of Basic Neuroscience, University of Geneva Medical School, 1206 Geneva, Switzerland
| | - L Ponzoni
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20133 Milano, Italy
| | - E Sogne
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - N Gagnon
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - M Francolini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20133 Milano, Italy
| | - D Braida
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20133 Milano, Italy
| | - M Sala
- CNR, Institute of Neuroscience, 20129 Milano, Italy
| | - D Muller
- Department of Basic Neuroscience, University of Geneva Medical School, 1206 Geneva, Switzerland
| | - A Falqui
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - P J Magistretti
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
39
|
Oraby M, Ahmed AS, Abdel-Lateef MA, Mostafa MA, Hassan AI. Employ FTIR spectroscopic method for determination of certain multiple sclerosis medications in plasma and pharmaceutical formulations. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Ketamine Alters Functional Plasticity of Astroglia: An Implication for Antidepressant Effect. Life (Basel) 2021; 11:life11060573. [PMID: 34204579 PMCID: PMC8234122 DOI: 10.3390/life11060573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Ketamine, a non-competitive N–methyl–d–aspartate receptor (NMDAR) antagonist, exerts a rapid, potent and long-lasting antidepressant effect, although the cellular and molecular mechanisms of this action are yet to be clarified. In addition to targeting neuronal NMDARs fundamental for synaptic transmission, ketamine also affects the function of astrocytes, the key homeostatic cells of the central nervous system that contribute to pathophysiology of major depressive disorder. Here, I review studies revealing that (sub)anesthetic doses of ketamine elevate intracellular cAMP concentration ([cAMP]i) in astrocytes, attenuate stimulus-evoked astrocyte calcium signaling, which regulates exocytotic secretion of gliosignaling molecules, and stabilize the vesicle fusion pore in a narrow configuration, possibly hindering cargo discharge or vesicle recycling. Next, I discuss how ketamine affects astrocyte capacity to control extracellular K+ by reducing vesicular delivery of the inward rectifying potassium channel (Kir4.1) to the plasmalemma that reduces the surface density of Kir4.1. Modified astroglial K+ buffering impacts upon neuronal firing pattern as demonstrated in lateral habenula in a rat model of depression. Finally, I highlight the discovery that ketamine rapidly redistributes cholesterol in the astrocyte plasmalemma, which may alter the flux of cholesterol to neurons. This structural modification may further modulate a host of processes that synergistically contribute to ketamine’s rapid antidepressant action.
Collapse
|
41
|
Failed, Interrupted, or Inconclusive Trials on Neuroprotective and Neuroregenerative Treatment Strategies in Multiple Sclerosis: Update 2015-2020. Drugs 2021; 81:1031-1063. [PMID: 34086251 PMCID: PMC8217012 DOI: 10.1007/s40265-021-01526-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
In the recent past, a plethora of drugs have been approved for the treatment of multiple sclerosis (MS). These therapeutics are mainly confined to immunomodulatory or immunosuppressive strategies but do not sufficiently address remyelination and neuroprotection. However, several neuroregenerative agents have shown potential in pre-clinical research and entered Phase I to III clinical trials. Although none of these compounds have yet proceeded to approval, understanding the causes of failure can broaden our knowledge about neuroprotection and neuroregeneration in MS. Moreover, most of the investigated approaches are characterised by consistent mechanisms of action and proved convincing efficacy in animal studies. Therefore, learning from their failure will help us to enforce the translation of findings acquired in pre-clinical studies into clinical application. Here, we summarise trials on MS treatment published since 2015 that have either failed or were interrupted due to a lack of efficacy, adverse events, or for other reasons. We further outline the rationale underlying these drugs and analyse the background of failure to gather new insights into MS pathophysiology and optimise future study designs. For conciseness, this review focuses on agents promoting remyelination and medications with primarily neuroprotective properties or unconventional approaches. Failed clinical trials that pursue immunomodulation are presented in a separate article.
Collapse
|
42
|
Głombik K, Budziszewska B, Basta-Kaim A. Mitochondria-targeting therapeutic strategies in the treatment of depression. Mitochondrion 2021; 58:169-178. [PMID: 33766747 DOI: 10.1016/j.mito.2021.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Depression is an affective disease with a complex clinical picture that is characterized by mood and emotional disturbances. It is known that several factors contribute to the risk of developing depression. The concept that mitochondrial dysfunction is one of the causes of depression is supported by a wide range of studies on cell cultures, animal models, and clinical research. An understanding the relationship between mitochondrial processes and central nervous system abnormalities that occur in the course of depression can guide the development of novel mitochondrial targeted therapeutic strategies as well as the usage of currently available antidepressants in a new context. This brief review aims to summarize recent findings on mitochondria dysfunction in depression, provide insight into therapeutic strategies targeting mitochondrial pathways, allude to future promising therapies, and discuss factors that can be used to improve treatment outcomes. The main focus is on new aspects (the effects of nutraceuticals and physical activity on brain metabolism), which can be combined with the available treatment options [monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs) and atypical drugs] to enhance their therapeutic effects.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland.
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland
| |
Collapse
|
43
|
Zhao F, Zhang T, Shen Q, Yin K, Wang Y, Zhang G. Tak1 in the astrocytes of mediobasal hypothalamus regulates anxiety-like behavior in mice. Glia 2021; 69:609-618. [PMID: 32979244 DOI: 10.1002/glia.23916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Anxiety disorder is characterized by excessive fear, anxiety, and avoidance of perceived threats in internal to oneself or the environment, however, the underlying mechanisms are less well understood. Here, we show that transforming growth factor-β-activated kinase 1 (Tak1) expressed in the astrocytes of mediobasal hypothalamus (MBH) plays a crucial role in anxiety-like behavior in mice. Our data demonstrate that deficiency of Tak1 in astrocytes increased anxiety level, but did not impact locomotor activity in mice. Astrocytic activation of Tak1 in the MBH mitigated the anxiety-like behavior, whereas suppression of Tak1 in MBH astrocytes promoted the anxiety-like behavior in mice. Collectively, these data suggest that Tak1 expressed in the MBH astrocytes could modulate the anxiety-like behavior in mice.
Collapse
Affiliation(s)
- Faming Zhao
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Wuhan, Hubei, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Zhang
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Wuhan, Hubei, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Shen
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Wuhan, Hubei, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kaili Yin
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Wuhan, Hubei, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Wang
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Wuhan, Hubei, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guo Zhang
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Wuhan, Hubei, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
44
|
López‐Gambero AJ, Rodríguez de Fonseca F, Suárez J. Energy sensors in drug addiction: A potential therapeutic target. Addict Biol 2021; 26:e12936. [PMID: 32638485 DOI: 10.1111/adb.12936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023]
Abstract
Addiction is defined as the repeated exposure and compulsive seek of psychotropic drugs that, despite the harmful effects, generate relapse after the abstinence period. The psychophysiological processes associated with drug addiction (acquisition/expression, withdrawal, and relapse) imply important alterations in neurotransmission and changes in presynaptic and postsynaptic plasticity and cellular structure (neuroadaptations) in neurons of the reward circuits (dopaminergic neuronal activity) and other corticolimbic regions. These neuroadaptation mechanisms imply important changes in neuronal energy balance and protein synthesis machinery. Scientific literature links drug-induced stimulation of dopaminergic and glutamatergic pathways along with presence of neurotrophic factors with alterations in synaptic plasticity and membrane excitability driven by metabolic sensors. Here, we provide current knowledge of the role of molecular targets that constitute true metabolic/energy sensors such as AMPK, mTOR, ERK, or KATP in the development of the different phases of addiction standing out the main brain regions (ventral tegmental area, nucleus accumbens, hippocampus, and amygdala) constituting the hubs in the development of addiction. Because the available treatments show very limited effectiveness, evaluating the drug efficacy of AMPK and mTOR specific modulators opens up the possibility of testing novel pharmacotherapies for an individualized approach in drug abuse.
Collapse
Affiliation(s)
- Antonio Jesús López‐Gambero
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga Universidad de Málaga Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| |
Collapse
|
45
|
Petit JM, Eren-Koçak E, Karatas H, Magistretti P, Dalkara T. Brain glycogen metabolism: A possible link between sleep disturbances, headache and depression. Sleep Med Rev 2021; 59:101449. [PMID: 33618186 DOI: 10.1016/j.smrv.2021.101449] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022]
Abstract
The functions of sleep and its links with neuropsychiatric diseases have long been questioned. Among the numerous hypotheses on sleep function, early studies proposed that sleep helps to replenish glycogen stores consumed during waking. Later studies found increased brain glycogen after sleep deprivation, leading to "glycogenetic" hypothesis, which states that there is a parallel increase in synthesis and utilization of glycogen during wakefulness, whereas decrease in the excitatory transmission creates an imbalance causing accumulation of glycogen during sleep. Glycogen is a vital energy reservoir to match the synaptic demand particularly for re-uptake of potassium and glutamate during intense glutamatergic transmission. Therefore, sleep deprivation-induced transcriptional changes may trigger migraine by reducing glycogen availability, which slows clearance of extracellular potassium and glutamate, hence, creates susceptibility to cortical spreading depolarization, the electrophysiological correlate of migraine aura. Interestingly, chronic stress accompanied by increased glucocorticoid levels and locus coeruleus activity and leading to mood disorders in which sleep disturbances are prevalent, also affects brain glycogen turnover via glucocorticoids, noradrenaline, serotonin and adenosine. These observations altogether suggest that inadequate astrocytic glycogen turnover may be one of the mechanisms linking migraine, mood disorders and sleep.
Collapse
Affiliation(s)
- J-M Petit
- Lausanne University Hospital, Center for Psychiatric Neuroscience, Prilly, Switzerland.
| | - E Eren-Koçak
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, and Faculty of Medicine, Department of Psychiatry, Ankara, Turkey.
| | - H Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey.
| | - P Magistretti
- King Abdullah University of Science and Technology, Saudi Arabia.
| | - T Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey.
| |
Collapse
|
46
|
Charvériat M, Guiard BP. Serotonergic neurons in the treatment of mood disorders: The dialogue with astrocytes. PROGRESS IN BRAIN RESEARCH 2021; 259:197-228. [PMID: 33541677 DOI: 10.1016/bs.pbr.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Astrocytes were traditionally regarded as cells important to neuronal activity, providing both metabolic and structural supports. Recent evidence suggests that they may also play a crucial role in the control of higher brain functions. In keeping with this hypothesis, it is now well accepted that astrocytes contribute to stress but also react to antidepressant drugs as they express serotonergic transporters and receptors. However, the downstream mechanisms leading to the fine-tuned regulation of mood are still unknown. This chapter pays attention to the role of astrocytes in the regulation of emotional behavior and related serotonergic neurotransmission. In particular, it gives a current state of the clinical and preclinical evidence showing that astrocytes respond to environmental conditions and antidepressant drugs through the release of gliotransmitters and neurotrophic factors which in turn, influence serotonergic tone in discrete brain areas. This state-of-the-art review aims at demonstrating the remarkable potential for novel therapeutic antidepressant strategies targeting these glial cells.
Collapse
Affiliation(s)
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
47
|
Sleep improvement is associated with the antidepressant efficacy of repeated-dose ketamine and serum BDNF levels: a post-hoc analysis. Pharmacol Rep 2021; 73:594-603. [PMID: 33387333 DOI: 10.1007/s43440-020-00203-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022]
Abstract
RATIONALE Recently, the effects of ketamine on the circadian rhythm have suggested that ketamine's rapid antidepressant effects are associated with and without sleep disturbance improvement. OBJECTIVES Here, we evaluated the antidepressant efficacy of repeated ketamine infusions in patients with sleep disturbances. METHODS This study included 127 patients with major depressive disorder or bipolar disorder who received ketamine treatments during a 12-day period. Sleep quality was assessed by the 17-item Hamilton Depression Rating Scale sleep disturbance factor (SDF) (items 4, 5 and 6). Serum brain-derived neurotrophic factor (BDNF) was measured at baseline, day 13 and day 26. This study was a post-hoc analysis. RESULTS Significant differences were found in the HAMD-17 score at 13 post-infusion time points compared to baseline, as well as the scores in SDF score at each of the 7 post-infusion (4 h after each infusion excluded) time points among all patients. Logistic regression and linear correlation analyses revealed that a greater reduction in the SDF after 24 h of the first ketamine infusion resulted in a better antidepressant effect in the last two follow-up visits. Moreover, BDNF levels were significantly higher in sleep responders than in non-responders. CONCLUSIONS In the 127 patients, six ketamine infusions induced better therapeutic effects in sleep responders than in sleep non-responders and patients without sleep disturbances. The sleep response after repeated ketamine infusions was positively associated with high serum BDNF levels. Early sleep disturbance improvement (as early as 24 h after the first ketamine injection) may predict the antidepressant effect of repeated-dose ketamine.
Collapse
|
48
|
Role of adult hippocampal neurogenesis in the antidepressant actions of lactate. Mol Psychiatry 2021; 26:6723-6735. [PMID: 33990772 PMCID: PMC8760055 DOI: 10.1038/s41380-021-01122-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023]
Abstract
In addition to its role as a neuronal energy substrate and signaling molecule involved in synaptic plasticity and memory consolidation, recent evidence shows that lactate produces antidepressant effects in animal models. However, the mechanisms underpinning lactate's antidepressant actions remain largely unknown. In this study, we report that lactate reverses the effects of corticosterone on depressive-like behavior, as well as on the inhibition of both the survival and proliferation of new neurons in the adult hippocampus. Furthermore, the inhibition of adult hippocampal neurogenesis prevents the antidepressant-like effects of lactate. Pyruvate, the oxidized form of lactate, did not mimic the effects of lactate on adult hippocampal neurogenesis and depression-like behavior. Finally, our data suggest that conversion of lactate to pyruvate with the concomitant production of NADH is necessary for the neurogenic and antidepressant effects of lactate.
Collapse
|
49
|
A unique insight for energy metabolism disorders in depression based on chronic unpredictable mild stress rats using stable isotope-resolved metabolomics. J Pharm Biomed Anal 2020; 191:113588. [DOI: 10.1016/j.jpba.2020.113588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
|
50
|
Park SJ, Choi JW. Brain energy metabolism and multiple sclerosis: progress and prospects. Arch Pharm Res 2020; 43:1017-1030. [PMID: 33119885 DOI: 10.1007/s12272-020-01278-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease accompanied with nerve pain and paralysis. Although various pathogenic causes of MS have been suggested, including genetic and environmental factors, how MS occurs remains unclear. Moreover, MS should be diagnosed based on clinical experiences because of no disease-specific biomarker and currently available treatments for MS just can reduce relapsing frequency or severity with little effects on disease disability. Therefore, more efforts are required to identify pathophysiology of MS and diagnosis markers. Recent evidence indicates another aspect of MS pathogenesis, energy failure in the central nervous system (CNS). For instance, inflammation that is a characteristic MS symptom and occurs frequently in the CNS of MS patients can result into energy failure in mitochondria and cytosol. Indeed, metabolomics studies for MS have reported energy failure in oxidative phosphorylation and alteration of aerobic glycolysis. Therefore, studies on the metabolism in the CNS may provide another insight for understanding complexity of MS and pathogenesis, which would facilitate the discovery of promising strategies for developing therapeutics to treat MS. This review will provide an overview on recent progress of metabolomic studies for MS, with a focus on the fluctuation of energy metabolism in MS.
Collapse
Affiliation(s)
- Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Korea.
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Korea.
| |
Collapse
|