1
|
Montemarano A, Fox LD, Alkhaleel FA, Ostman AE, Sohail H, Pandey S, Murdaugh LB, Fox ME. A Drd1-cre mouse line with nucleus accumbens gene dysregulation exhibits blunted fentanyl seeking. Neuropsychopharmacology 2025:10.1038/s41386-025-02116-0. [PMID: 40316698 DOI: 10.1038/s41386-025-02116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025]
Abstract
The synthetic opioid fentanyl remains abundant in the illicit drug supply, contributing to tens of thousands of overdose deaths every year. Despite this, the neurobiological effects of fentanyl use remain largely understudied. The nucleus accumbens (NAc) is a central locus promoting persistent drug use and relapse, largely dependent on activity of dopamine D1 receptors. NAc D1 receptor-expressing medium spiny neurons (D1-MSNs) undergo molecular and physiological neuroadaptations in response to chronic fentanyl that may promote relapse. Here, we obtained Drd1-cre120Mxu mice to investigate D1-dependent mechanisms of fentanyl relapse. We serendipitously discovered this mouse line has reduced fentanyl seeking, despite similar intravenous fentanyl self-administration, similar sucrose self-administration and seeking, and greater fentanyl-induced locomotion compared to wildtype counterparts. We found drug-naïve Drd1-cre120Mxu mice have elevated D1 receptor expression in NAc and increased sensitivity to the D1 receptor agonist SKF-38393. After fentanyl self-administration, Drd1-cre120Mxu mice exhibit divergent expression of MSN markers, opioid receptors, glutamate receptor subunits, and TrkB which may underly their blunted fentanyl seeking. Finally, we show fentanyl-related behavior is unaltered by chemogenetic manipulation of NAc core D1-MSNs in Drd1-cre120Mxu mice. Conversely, chemogenetic stimulation of ventral mesencephalon-projecting NAc core MSNs (putative D1-MSNs) in wildtype mice recapitulated the blunted fentanyl seeking of Drd1-cre120Mxu mice, supporting a role for aberrant D1-MSN signaling in this behavior. Together, our data uncover alterations in NAc gene expression and function with implications for susceptibility and resistance to developing fentanyl use disorder.
Collapse
Affiliation(s)
- Annalisa Montemarano
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Logan D Fox
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Farrah A Alkhaleel
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Alexandria E Ostman
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hajra Sohail
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Samiksha Pandey
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Laura B Murdaugh
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Megan E Fox
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
- Department of Neuroscience and Experimental Therapeutics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
2
|
Wang Y, Liu J, Yue S, Chen L, Singh A, Yu T, Calipari ES, Wang ZJ. Prefrontal cortex excitatory neurons show distinct response to heroin-associated cue and social stimulus after prolonged heroin abstinence in mice. Neuropsychopharmacology 2025:10.1038/s41386-025-02102-6. [PMID: 40223131 DOI: 10.1038/s41386-025-02102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Substance use disorder (SUD) has been linked with social impairments. The social cognitive dysfunctions can further increase the risk of the development of SUD or relapse. Therefore, understanding the neural mechanism of substance exposure-associated social impairments is beneficial for the development of novel prevention or treatment strategies for SUD. The prefrontal cortex (PFC) is a key brain region involved in both social cognition and drug addiction. Specifically, the prelimbic part of PFC (PrL) regulates social interaction and heroin-seeking behavior. Therefore, in this study, we explored how PFC excitatory neurons respond to social stimuli after prolonged abstinence from heroin self-administration (SA). Using fiber photometry calcium imaging, we monitored calcium-dependent fluorescent signals in PrL CaMKII-expressing neurons during drug seeking and social interaction tests following 14 days of abstinence from heroin SA. We found that GCaMP6f signals in PrL CaMKII-expressing neurons were increased when heroin-associated cues were presented during drug-seeking tests in both male and female mice after prolonged heroin abstinence, although the baseline neuronal activity in home cage is lower in the heroin group. Conversely, the calcium signals in PrL CaMKII-expressing neurons during social investigation were decreased after heroin abstinence in both sexes, along with reduced total social interaction time. In addition, drug-seeking behavior is partially negatively correlated with social investigation time. These findings provide direct evidence showing that opioid exposure impairs the PFC functional response to social stimuli, which may potentially increase the risk for opioid relapse.
Collapse
Affiliation(s)
- Yunwanbin Wang
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Junting Liu
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Shuwen Yue
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Lu Chen
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Archana Singh
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Tianshi Yu
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Zi-Jun Wang
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA.
- Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
3
|
Rakowski EA, King CP, Thompson BM, Santos G, Holmes E, Solberg Woods LC, Polesskaya O, Palmer AA, Meyer PJ. Dissociation of intake and incentive sensitization during intermittent- and continuous-access heroin self-administration in rats. Psychopharmacology (Berl) 2025; 242:867-883. [PMID: 39979648 PMCID: PMC11890364 DOI: 10.1007/s00213-025-06762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
RATIONALE Opioid misuse is a prominent public health concern, although patterns of use may confer different vulnerability to relapse. Continuous-access (ContA) self-administration has traditionally been used in preclinical models to study drug-motivated behaviors and produces robust escalation of intake and tolerance development. Alternatively, studies using intermittent access (IntA), where self-administration occurs in discrete drug-available periods, suggest that overall intake may be dissociable from subsequent increases in motivation (i.e., incentive sensitization). However, IntA paradigms have focused primarily on psychostimulants like cocaine and methamphetamine and have not been as comprehensively studied with opioids. OBJECTIVE We compared two paradigms of heroin self-administration, ContA and IntA, to assess their effect on heroin intake and motivation. METHODS Male and female rats were trained to self-administer heroin, then were transitioned to either ContA or IntA paradigms. Following self-administration, rats were tested in progressive-ratio, behavioral economics threshold probe, and conditioned reinforcement tests to measure motivation-related behaviors. RESULTS Both patterns of intake evoked similar heroin-directed motivation during progressive-ratio and conditioned reinforcement tests, despite lower overall intake throughout IntA for male rats. Females had similar responding between treatments in self-administration and progressive-ratio even though IntA rats had less time to earn infusions. During threshold probe, IntA-trained subjects showed more inelastic responding (lower α values), suggesting a greater degree of dependence-like behavior. CONCLUSIONS These results suggest the importance of dissociating heroin intake from incentive sensitization and emphasize the significance of sex differences as a modifier of heroin consumption and motivation.
Collapse
Affiliation(s)
| | - Christopher P King
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Brady M Thompson
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Gabriel Santos
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Esther Holmes
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| |
Collapse
|
4
|
Negishi K, Duan Y, Batista A, Pishgar MS, Tsai PJ, Caldwell KE, Claypool SM, Reiner DJ, Madangopal R, Bossert JM, Yang Y, Shaham Y, Fredriksson I. The Role of Claustrum in Incubation of Opioid Seeking after Electric Barrier-Induced Voluntary Abstinence in Male and Female Rats. J Neurosci 2025; 45:e0561242025. [PMID: 39933931 PMCID: PMC11949475 DOI: 10.1523/jneurosci.0561-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
We previously reported that ventral subiculum (vSub) activity is critical to incubation of oxycodone seeking after abstinence induced by adverse consequences of drug seeking. Here, we studied the role of claustrum, a key vSub input, in this incubation. We trained male and female rats to self-administer oxycodone for 2 weeks and then induced abstinence by exposing them to an electric barrier for 2 weeks. We used retrograde tracing (cholera toxin B subunit) plus the activity marker Fos to identify projections to vSub cactivated during "incubated" relapse (Abstinence Day 15). We then used pharmacological reversible inactivation to determine the causal role of claustrum in incubation and the behavioral and anatomical specificity of this role. We also used an anatomical disconnection procedure to determine the causal role of claustrum-vSub connections in incubation. Finally, we analyzed an existing functional MRI dataset to determine if functional connectivity changes in claustrum-related circuits predict incubation of oxycodone seeking. Claustrum neurons projecting to vSub were activated during relapse tests after electric barrier-induced abstinence. Inactivation of claustrum but not areas dorsolateral to claustrum decreased incubation of oxycodone seeking after electric barrier-induced abstinence; claustrum inactivation had no effect on incubation after food choice-induced abstinence. Both ipsilateral and contralateral inactivation of claustrum-vSub projections decreased incubation after electric barrier-induced abstinence. Functional connectivity changes in claustrum-cortical circuits during electric barrier-induced abstinence predicted incubated oxycodone relapse. Our study identified a novel role of claustrum in relapse to opioid drugs after abstinence induced by adverse consequences of drug seeking.
Collapse
Affiliation(s)
- Kenichiro Negishi
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Ying Duan
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Ashley Batista
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Mona S Pishgar
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Pei-Jung Tsai
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Kiera E Caldwell
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Sarah M Claypool
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - David J Reiner
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | | | | | - Yihong Yang
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Ida Fredriksson
- Center for Social and Affective Neuroscience, Linköping University, Linköping 58183, Sweden
| |
Collapse
|
5
|
Mitra S, Werner CT, Shwani T, Lopez AG, Federico D, Higdon K, Li X, Gobira PH, Thomas SA, Martin JA, An C, Chandra R, Maze I, Neve R, Lobo MK, Gancarz AM, Dietz DM. A Novel Role for the Histone Demethylase JMJD3 in Mediating Heroin-Induced Relapse-Like Behaviors. Biol Psychiatry 2025; 97:602-613. [PMID: 39019389 DOI: 10.1016/j.biopsych.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Epigenetic changes that lead to long-term neuroadaptations following opioid exposure are not well understood. We examined how histone demethylase JMJD3 in the nucleus accumbens (NAc) influences heroin seeking after abstinence from self-administration. METHODS Male Sprague Dawley rats were trained to self-administer heroin. Western blotting and quantitative polymerase chain reaction were performed to quantify JMJD3 and bone morphogenetic protein (BMP) pathway expression in the NAc (n = 7-11/group). Pharmacological inhibitors or viral expression vectors were microinfused into the NAc to manipulate JMJD3 or the BMP pathway member SMAD1 (n = 9-11/group). The RiboTag capture method (n = 3-5/group) and viral vectors (n = 7-8/group) were used in male transgenic rats to identify the contributions of D1- and D2-expressing medium spiny neurons in the NAc. Drug seeking was tested by cue-induced response previously paired with drug infusion. RESULTS Levels of JMJD3 and phosphorylated SMAD1/5 in the NAc were increased after 14 days of abstinence from heroin self-administration. Pharmacological and virus-mediated inhibition of JMJD3 or the BMP pathway attenuated cue-induced seeking. Pharmacological inhibition of BMP signaling reduced JMJD3 expression and H3K27me3 levels. JMJD3 bidirectionally affected seeking: expression of the wild-type increased cue-induced seeking whereas expression of a catalytic dead mutant decreased it. JMJD3 expression was increased in D2+ but not D1+ medium spiny neurons. Expression of the mutant JMJD3 in D2+ neurons was sufficient to decrease cue-induced heroin seeking. CONCLUSIONS JMJD3 mediates persistent cellular and behavioral adaptations that underlie heroin relapse, and this activity is regulated by the BMP pathway.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Craig T Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Treefa Shwani
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ana Garcia Lopez
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Dale Federico
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Kate Higdon
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Xiaofang Li
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Pedro H Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Shruthi A Thomas
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Chunna An
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Neve
- Gene Technology Core, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, California
| | - David M Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York.
| |
Collapse
|
6
|
Thibeault KC, Leonard MZ, Kondev V, Emerson SD, Bethi R, Lopez AJ, Sens JP, Nabit BP, Elam HB, Winder DG, Patel S, Kiraly DD, Grueter BA, Calipari ES. A Cocaine-Activated Ensemble Exerts Increased Control Over Behavior While Decreasing in Size. Biol Psychiatry 2025; 97:590-601. [PMID: 38901723 PMCID: PMC11995305 DOI: 10.1016/j.biopsych.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Substance use disorder is characterized by long-lasting changes in reward-related brain regions, such as the nucleus accumbens. Previous work has shown that cocaine exposure induces plasticity in broad, genetically defined cell types in the nucleus accumbens; however, in response to a stimulus, only a small percentage of neurons are transcriptionally active-termed an ensemble. Here, we identify an Arc-expressing neuronal ensemble that has a unique trajectory of recruitment and causally controls drug self-administration after repeated, but not acute, cocaine exposure. METHODS Using Arc-CreERT2 transgenic mice, we expressed transgenes in Arc+ ensembles activated by cocaine exposure (either acute [1 × 10 mg/kg intraperitoneally] or repeated [10 × 10 mg/kg intraperitoneally]). Using genetic, optical, and physiological recording and manipulation strategies, we assessed the contribution of these ensembles to behaviors associated with substance use disorder. RESULTS Repeated cocaine exposure reduced the size of the ensemble while simultaneously increasing its control over behavior. Neurons within the repeated cocaine ensemble were hyperexcitable, and their optogenetic excitation was sufficient for reinforcement. Finally, lesioning the repeated cocaine, but not the acute cocaine, ensemble blunted cocaine self-administration. Thus, repeated cocaine exposure reduced the size of the ensemble while simultaneously increasing its contributions to drug reinforcement. CONCLUSIONS We showed that repeated, but not acute, cocaine exposure induced a physiologically distinct ensemble characterized by the expression of the immediate early gene Arc, which was uniquely capable of modulating reinforcement behavior.
Collapse
Affiliation(s)
- Kimberly C Thibeault
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Michael Z Leonard
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Soren D Emerson
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Rishik Bethi
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Alberto J Lopez
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Jonathon P Sens
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Brett P Nabit
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Hannah B Elam
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt JF Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sachin Patel
- Department of Psychiatry, Northwestern University, Chicago, Illinois
| | - Drew D Kiraly
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Erin S Calipari
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt JF Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
7
|
Chow JJ, Pitts KM, Negishi K, Madangopal R, Dong Y, Wolf ME, Shaham Y. Neurobiology of the incubation of drug craving: An update. Pharmacol Rev 2025; 77:100022. [PMID: 40148031 PMCID: PMC11964951 DOI: 10.1016/j.pharmr.2024.100022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/21/2024] [Indexed: 03/29/2025] Open
Abstract
Relapse to drug use is often preceded by drug craving. Clinical observations in the 1980s led clinical investigators to postulate that cue-induced cocaine craving may increase during abstinence. Over 2 decades ago, investigators identified an analogous phenomenon in rats of time-dependent increases in drug-seeking behavior during homecage abstinence and termed it incubation of cocaine craving. In 2011, we reviewed the first decade of studies on brain mechanisms of incubation of drug craving. In this review, we provide an update on incubation-related brain mechanisms from studies published since 2011. We first review studies using the standard method of incubation after homecage-forced abstinence from cocaine, methamphetamine, opioid drugs, and nicotine. Next, we review studies using newer methods to study incubation after voluntary abstinence in the drug environment. In these studies, abstinence is achieved by either providing rats alternative nondrug rewards in a choice setting or introducing rats to adverse consequences to drug seeking or taking. We then discuss translational human studies on incubation of cue-induced drug craving. We conclude by discussing several emerging topics, including sex differences in incubation of drug craving, role of sleep patterns, and similarities and differences in mechanisms of incubation of craving across drug classes and abstinence conditions. Our 2 main conclusions are as follows: (1) across drug classes, there are both similarities and differences in mechanisms of incubation of drug craving after forced abstinence, and (2) the method used to achieve abstinence (forced or voluntary) can influence the mechanisms controlling incubation of drug craving or its expression. SIGNIFICANCE STATEMENT: This article reviews results from preclinical and clinical studies published since 2011 on neurobiological mechanisms of incubation of drug craving after homecage-forced abstinence or voluntary abstinence in the drug environment. This article also reviews translational human studies on incubation of cue-induced subjective drug craving and brain response during abstinence. The results of the studies reviewed indicate that multiple brain mechanisms control incubation of drug craving after homecage-forced abstinence or voluntary abstinence.
Collapse
Affiliation(s)
- Jonathan J Chow
- Behavioral Neuroscience Research Branch, IRP/NIDA/NIH, Baltimore, Maryland.
| | - Kayla M Pitts
- Behavioral Neuroscience Research Branch, IRP/NIDA/NIH, Baltimore, Maryland
| | - Kenichiro Negishi
- Behavioral Neuroscience Research Branch, IRP/NIDA/NIH, Baltimore, Maryland
| | | | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Yavin Shaham
- Behavioral Neuroscience Research Branch, IRP/NIDA/NIH, Baltimore, Maryland.
| |
Collapse
|
8
|
Bossert JM, Caldwell KE, Korah H, Batista A, Bonbrest H, Fredriksson I, Jackson SN, Sulima A, Rice KC, Zaveri NT, Shaham Y. Effect of chronic delivery of the NOP/MOR partial agonist AT-201 and NOP antagonist J-113397 on heroin relapse in a rat model of opioid maintenance. Psychopharmacology (Berl) 2024; 241:2497-2511. [PMID: 39269500 PMCID: PMC11569015 DOI: 10.1007/s00213-024-06678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
RATIONALE The opioid crisis persists despite availability of effective opioid agonist maintenance treatments (methadone and buprenorphine). Thus, there is a need to advance novel medications for the treatment of opioid use and relapse. OBJECTIVES We recently modeled maintenance treatment in rats and found that chronic delivery of buprenorphine and the mu opioid receptor (MOR) partial agonist TRV130 decreases relapse to oxycodone seeking and taking. In contrast, chronic delivery of the buprenorphine analog BU08028 had mixed effects on different heroin relapse-related measures. Here, we tested the effect of the mixed nociceptin (NOP) receptor/MOR partial agonist AT-201 and the NOP receptor antagonist J-113397 on different heroin relapse-related measures. METHODS We trained male and female rats to self-administer heroin (6-h/d, 14-d) in context A and then implanted osmotic minipumps containing AT-201 (0, 3.8, or 12 mg/kg/d) or J-113397 (0, 12.6, or 40 mg/kg/d). Next, we tested the effect of chronic delivery of the compounds on (1) incubation of heroin seeking in a non-drug context B, (2) extinction responding reinforced by heroin-associated discrete cues in context B, (3) context A-induced reinstatement of heroin seeking, and (4) reacquisition of heroin self-administration in context A. RESULTS In females, AT-201 modestly increased reacquisition of heroin self-administration and J-113397 modestly decreased incubation of heroin seeking. The compounds had no effect on the other relapse-related measures in females, and no effect on any of the measures in males. CONCLUSION The NOP/MOR partial agonist AT-201 and the NOP antagonist J-113397 did not mimic buprenorphine's inhibitory effects on relapse in a rat model of opioid maintenance treatment.
Collapse
MESH Headings
- Animals
- Male
- Female
- Rats
- Nociceptin Receptor
- Self Administration
- Receptors, Opioid/metabolism
- Receptors, Opioid/agonists
- Receptors, Opioid, mu/agonists
- Heroin/administration & dosage
- Recurrence
- Heroin Dependence/drug therapy
- Narcotic Antagonists/pharmacology
- Narcotic Antagonists/administration & dosage
- Piperidines/pharmacology
- Piperidines/administration & dosage
- Disease Models, Animal
- Rats, Sprague-Dawley
- Drug-Seeking Behavior/drug effects
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Pyrimidines/pharmacology
- Pyrimidines/administration & dosage
- Extinction, Psychological/drug effects
- Dose-Response Relationship, Drug
- Benzimidazoles
Collapse
Affiliation(s)
| | - Kiera E Caldwell
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | - Hannah Korah
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | - Ashley Batista
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | - Hannah Bonbrest
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | - Ida Fredriksson
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | | | - Agnieszka Sulima
- Molecular Targets and Medications Discovery Branch, IRP/NIDA, NIAAA/NIH, Baltimore, MD, U.S.A
| | - Kenner C Rice
- Molecular Targets and Medications Discovery Branch, IRP/NIDA, NIAAA/NIH, Baltimore, MD, U.S.A
| | | | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| |
Collapse
|
9
|
Ma Z, Duan Y, Fredriksson I, Tsai PJ, Batista A, Lu H, Shaham Y, Yang Y. Role of dorsal striatum circuits in relapse to opioid seeking after voluntary abstinence. Neuropsychopharmacology 2024; 50:452-460. [PMID: 39300270 PMCID: PMC11632082 DOI: 10.1038/s41386-024-01990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
High relapse rate during abstinence is a defining characteristic of drug addiction. We previously found that opioid seeking progressively increases after voluntary abstinence induced by adverse consequences of oxycodone seeking (crossing an electric barrier). Functional MRI revealed that this effect is associated with changes in functional connectivity within medial orbitofrontal cortex (mOFC)- and dorsomedial striatum (DMS)-related circuits. Here, we used a pharmacological manipulation and fMRI to determine the causal role of mOFC and DMS in oxycodone seeking after electric barrier-induced abstinence. We trained rats to self-administer oxycodone (6 h/day, 14 days). Next, we induced voluntary abstinence by exposing them to an electric barrier for 2 weeks. We inactivated the mOFC and DMS with muscimol+baclofen (GABAa and GABAb receptor agonists) and then tested them for relapse to oxycodone seeking on abstinence days 1 or 15 without the electric barrier or oxycodone. Inactivation of DMS (p < 0.001) but not mOFC decreased oxycodone seeking before or after electric barrier-induced abstinence. Functional MRI data revealed that DMS inactivation decreased cerebral blood volume levels in DMS and several distant cortical and subcortical regions (corrected p < 0.05). Furthermore, functional connectivity of DMS with several frontal, sensorimotor, and auditory regions significantly increased after DMS inactivation (corrected p < 0.05). Finally, an exploratory analysis of an existing functional MRI dataset showed that DMS inactivation restored voluntary abstinence-induced longitudinal changes in DMS functional connectivity with these brain regions (p < 0.05). Results indicate a role of DMS and related brain circuits in oxycodone seeking after voluntary abstinence, suggesting potential targets for intervention.
Collapse
Affiliation(s)
- Zilu Ma
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD, USA
| | - Ying Duan
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD, USA
| | - Ida Fredriksson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD, USA
| | - Pei-Jung Tsai
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD, USA
| | - Ashley Batista
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD, USA
| | - Yavin Shaham
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD, USA.
| | - Yihong Yang
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
Towers EB, Hsu KA, Qillawala EI, Fraser SD, Lynch WJ. Sex Differences in the Development of an Opioid Addiction-Like Phenotype: A Focus on the Telescoping Effect. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100373. [PMID: 39309210 PMCID: PMC11416664 DOI: 10.1016/j.bpsgos.2024.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Background Women develop addiction and drug-related health consequences after fewer years of drug use than men; this accelerated time course, or telescoping effect, has been observed clinically for multiple drugs, including opioids. Preclinical studies indicate that this is a biologically based phenomenon; however, these studies have focused exclusively on cocaine, and none have considered health effects. Methods In this study, we used a rat (Sprague Dawley) model to determine sex differences in the time course for the development of an opioid addiction-like phenotype, as defined by the development of physical dependence (withdrawal-induced weight loss) and an increase in motivation for fentanyl (under a progressive-ratio schedule). Effects were determined following either 10 days (optimized, experiment 1) or 3 days (threshold, experiment 2) of extended-access fentanyl self-administration (24 hours/day, fixed ratio 1, 2- to 5-minute trials/hour) or following short-access fentanyl self-administration (subthreshold, experiment 3; fixed ratio 1, up to 40 infusions/day). Opioid-related adverse health effects were also determined (experiment 4). Results Motivation for fentanyl was similarly increased in males and females following 10 days of extended-access self-administration (experiment 1), was transiently increased in females, but not males, following 3 days of extended-access self-administration (experiment 2) and was not increased in either sex following short-access self-administration (experiment 3). Females developed fentanyl-associated adverse health effects more readily than males (experiment 4), with particularly robust differences during extended-access self-administration and withdrawal. Conclusions As with findings in humans, female rats developed opioid addiction-like features and adverse health consequences more readily than male rats. These data provide support for a biologically based telescoping effect in females for opioids, particularly for opioid-related adverse health consequences.
Collapse
Affiliation(s)
- Eleanor Blair Towers
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
- Medical Scientist Training Program, University of Virginia, Charlottesville, Virginia
| | - Kyle A. Hsu
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Emaan I. Qillawala
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Shaniece D. Fraser
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Wendy J. Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
11
|
McGregor MS, Cosme CV, LaLumiere RT. Insular cortex subregions have distinct roles in cued heroin seeking after extinction learning and prolonged withdrawal in rats. Neuropsychopharmacology 2024; 49:1540-1549. [PMID: 38499719 PMCID: PMC11319627 DOI: 10.1038/s41386-024-01846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Evidence indicates that the anterior (aIC), but not posterior (pIC), insular cortex promotes cued reinstatement of cocaine seeking after extinction in rats. It is unknown whether these subregions also regulate heroin seeking and whether such involvement depends on prior extinction learning. To address these questions, we used baclofen and muscimol (BM) to inactivate the aIC or pIC bilaterally during a seeking test after extinction or prolonged withdrawal from heroin. Male Sprague-Dawley rats in the extinction groups underwent 10+ days of heroin self-administration, followed by 6+ days of extinction sessions, and subsequent cued or heroin-primed reinstatement. Results indicate that aIC inactivation increased cued reinstatement of heroin seeking after extinction, whereas pIC inactivation prevented cued reinstatement. To determine whether these effects were extinction-dependent, we conducted a subsequent study using both sexes with prolonged withdrawal. Male and female rats in the withdrawal groups underwent 10+ days of heroin self-administration, followed by cued seeking tests after 1 and 14 days of homecage withdrawal to measure incubation of heroin craving. In this case, the findings indicate that aIC inactivation had no effect on incubation of heroin craving after withdrawal in either sex, whereas pIC inactivation decreased heroin craving only in males. These findings suggest that the aIC and pIC have opposing roles in suppressing vs promoting cued heroin seeking after extinction and that these roles are distinct from those in cocaine seeking. Moreover, the incubation of craving results suggest that new contingency learning is necessary to recruit the aIC in cued heroin seeking.
Collapse
Affiliation(s)
- Matthew S McGregor
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, 52242, USA.
| | - Caitlin V Cosme
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Ryan T LaLumiere
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, 52242, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
12
|
Sarka BC, Liu S, Banerjee A, Stucky CL, Liu Q, Olsen CM. Neuropathic pain has sex-specific effects on oxycodone-seeking and non-drug-seeking ensemble neurons in the dorsomedial prefrontal cortex of mice. Addict Biol 2024; 29:e13430. [PMID: 39121884 PMCID: PMC11315577 DOI: 10.1111/adb.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Approximately 50 million Americans suffer from chronic pain, and nearly a quarter of chronic pain patients have reported misusing opioid prescriptions. Repeated drug seeking is associated with reactivation of an ensemble of neurons sparsely scattered throughout the dorsomedial prefrontal cortex (dmPFC). Prior research has demonstrated that chronic pain increases intrinsic excitability of dmPFC neurons, which may increase the likelihood of reactivation during drug seeking. We tested the hypothesis that chronic pain would increase oxycodone-seeking behaviour and that the pain state would differentially increase intrinsic excitability in dmPFC drug-seeking ensemble neurons. TetTag mice self-administered intravenous oxycodone. After 7 days of forced abstinence, a drug-seeking session was performed, and the ensemble was tagged. Mice received spared nerve injury (SNI) to induce chronic pain during the period between the first and second seeking session. Following the second seeking session, we performed electrophysiology on individual neurons within the dmPFC to assess intrinsic excitability of the drug-seeking ensemble and non-ensemble neurons. SNI had no impact on sucrose seeking or intrinsic excitability of dmPFC neurons from these mice. In females, SNI increased oxycodone seeking and intrinsic excitability of non-ensemble neurons. In males, SNI had no impact on oxycodone seeking or neuron excitability. Data from females are consistent with clinical reports that chronic pain can promote drug craving and relapse and support the hypothesis that chronic pain itself may lead to neuroadaptations which promote opioid seeking.
Collapse
Affiliation(s)
- Bailey C. Sarka
- Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Shuai Liu
- Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Anjishnu Banerjee
- Division of BiostatisticsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Cheryl L. Stucky
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Qing‐song Liu
- Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Christopher M. Olsen
- Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
13
|
Ruiz NA, Eckardt D, Briand LA, Wimmer M, Murty VP. Connecting self-report and instrumental behavior during incubation of food craving in humans. Learn Mem 2024; 31:a053869. [PMID: 39084866 PMCID: PMC11369634 DOI: 10.1101/lm.053869.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 06/14/2024] [Indexed: 08/02/2024]
Abstract
Incubation of craving is a phenomenon describing the intensification of craving for a reward over extended periods of abstinence from reinforcement. Animal models use instrumental markers of craving to reward cues to examine incubation, while human paradigms rely on subjective self-reports. Here, we characterize an animal-inspired, novel human paradigm that showed strong positive relationships between self-reports and instrumental markers of craving for favored palatable foods. Further, we found consistent nonlinear relationships with time since last consumption and self-reports, and preliminary patterns between time and instrumental responses. These findings provide a novel approach to establishing an animal-inspired human model of incubation.
Collapse
Affiliation(s)
- Nicholas A Ruiz
- Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Devlin Eckardt
- Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Lisa A Briand
- Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Mathieu Wimmer
- Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
14
|
Negishi K, Fredriksson I, Bossert JM, Zangen A, Shaham Y. Relapse after electric barrier-induced voluntary abstinence: A review. Curr Opin Neurobiol 2024; 86:102856. [PMID: 38508102 PMCID: PMC11162942 DOI: 10.1016/j.conb.2024.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Relapse to drug use during abstinence is a defining feature of addiction. To date, however, results from studies using rat relapse/reinstatement models have yet to result in FDA-approved medications for relapse prevention. To address this translational gap, we and others have developed rat models of relapse after voluntary abstinence from drug self-administration. One of these models is the electric barrier conflict model. Here, we introduce the model, and then review studies on behavioral and neuropharmacological mechanisms of cue-induced relapse and incubation of drug seeking (time-dependent increase in drug seeking during abstinence) after electric barrier-induced abstinence. We also briefly discuss future directions and potential clinical implications. One major conclusion of our review is that the brain mechanisms controlling drug relapse after electrical barrier-induced voluntary abstinence are likely distinct from those controlling relapse after homecage forced abstinence.
Collapse
Affiliation(s)
| | - Ida Fredriksson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | | | - Abraham Zangen
- Department of Life Science and the Zelman Neuroscience Center, Ben-Gurion University, Beer Sheba, Israel
| | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA.
| |
Collapse
|
15
|
García-Jácome D, Martínez-Mota L, Páez-Martínez N. Effects of housing condition on the development and persistence of addictive-like behavior induced by toluene. Neurotoxicology 2024; 103:9-15. [PMID: 38801998 DOI: 10.1016/j.neuro.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Environmental factors can modify addictive responses induced by drugs of abuse; however, little is known about the impact of environmental conditions on behavioral responses induced by inhalants. In this study, we analyzed the effects of housing conditions, considering environmental enrichment (EE; n = 10), social isolation (SI; n = 10), and standard housing (STD; n = 10), as positive, negative, and control environments, respectively, on the development and persistence of behavioral sensitization induced by toluene. Mice exposed to air were used as a comparative control groups for each housing condition (EE: n = 11, SI: n = 10 and STD: n = 11). Results showed that a history of toluene exposure induced the development of locomotor sensitization in mice, independent of their housing conditions. However, SI increased the expression of behavioral sensitization to toluene after a drug-free period.
Collapse
Affiliation(s)
- David García-Jácome
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Casco de Santo Tomas, Miguel Hidalgo, 11340, Ciudad de México, México
| | - Lucía Martínez-Mota
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, México
| | - Nayeli Páez-Martínez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Casco de Santo Tomas, Miguel Hidalgo, 11340, Ciudad de México, México; Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, México.
| |
Collapse
|
16
|
Bergeria CL, Gipson CD, Smith KE, Stoops WW, Strickland JC. Opioid craving does not incubate over time in inpatient or outpatient treatment studies: Is the preclinical incubation of craving model lost in translation? Neurosci Biobehav Rev 2024; 160:105618. [PMID: 38492446 PMCID: PMC11046527 DOI: 10.1016/j.neubiorev.2024.105618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Within addiction science, incubation of craving is an operational label used to describe time-dependent increases in drug seeking during periods of drug deprivation. The purpose of this systematic review was to describe the preclinical literature on incubation of craving and the clinical literature on craving measured over extended periods of abstinence to document this translational homology and factors impacting correspondence. Across the 44 preclinical studies that met inclusion criteria, 31 reported evidence of greater lever pressing, nose pokes, spout licks, or time spent in drug-paired compartments (i.e., drug seeking) relative to neutral compartments after longer periods of abstinence relative to shorter periods of abstinence, labelled as "incubation of craving." In contrast, no clinical studies (n = 20) identified an increase in opioid craving during longer abstinence periods. The lack of clinical evidence for increases in craving in clinical populations weakens the translational utility of operationalizing the time-dependent increase in drug-seeking behavior observed in preclinical models as models of incubation of "craving".
Collapse
Affiliation(s)
- Cecilia L Bergeria
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, United States.
| | - Cassandra D Gipson
- University of Kentucky College of Medicine, Department of Pharmacology and Nutritional Sciences, Lexington, KY, United States
| | - Kirsten E Smith
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, United States
| | - William W Stoops
- University of Kentucky College of Medicine, Department of Behavioral Science, Lexington, KY, United States
| | - Justin C Strickland
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, United States
| |
Collapse
|
17
|
Fort TD, Cain ME. Inefficacy of N-acetylcysteine in mitigating cue-induced amphetamine-seeking. ADDICTION NEUROSCIENCE 2023; 8:100119. [PMID: 38213396 PMCID: PMC10783794 DOI: 10.1016/j.addicn.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Glutamatergic imbalances are characteristic of SUDs. Astrocytic and neuronal transporters help regulate glutamate homeostasis and disruptions in this homeostasis engender SUD. The cysteine-glutamate exchanger (xCT) is primarily localized on astrocytes and maintains glutamate concentrations. This process is disrupted by cocaine use, and the therapeutic N-acetylcysteine (NAC) lowers cue-induced relapse to cocaine by restoring xCT function. However, little research has shown how these effects extend to other psychostimulants, such as amphetamine (AMP). Here, we assessed xCT expression following relapse to AMP cues, and if NAC can attenuate relapse via changes to astrocyte and xCT expression. We administered NAC (100 mg/kg ip) daily during a 14-day abstinence period following AMP (0.1 mg/kg/infusion; 2 h sessions) self-administration. Relapse was tested following one (WD 1) or 14 days (WD 14) of withdrawal. The overall number of astrocytes was also quantified within the medial prefrontal cortex (mPFC) and nucleus accumbens (ACb). NAC failed to lower cue-induced AMP craving via cue-induced relapse and reinstatement testing. Cue-induced craving did not increase from WD 1 to WD 14. AMP-exposed rats had greater astrocyte counts in the mPFC and ACb when compared AMP-naïve rats. Repeated injection with NAC decreased xCT expression within the mPFC and ACb. Overall, these results suggest that NAC may be an ineffective treatment option for lowering cue-induced relapse to AMP. Further, the results suggest that stimulating xCT via NAC may not be an effective therapeutic approach for decreasing cue-seeking for AMP.
Collapse
|
18
|
Kaplan GB, Thompson BL. Neuroplasticity of the extended amygdala in opioid withdrawal and prolonged opioid abstinence. Front Pharmacol 2023; 14:1253736. [PMID: 38044942 PMCID: PMC10690374 DOI: 10.3389/fphar.2023.1253736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Opioid use disorder is characterized by excessive use of opioids, inability to control its use, a withdrawal syndrome upon discontinuation of opioids, and long-term likelihood of relapse. The behavioral stages of opioid addiction correspond with affective experiences that characterize the opponent process view of motivation. In this framework, active involvement is accompanied by positive affective experiences which gives rise to "reward craving," whereas the opponent process, abstinence, is associated with the negative affective experiences that produce "relief craving." Relief craving develops along with a hypersensitization to the negatively reinforcing aspects of withdrawal during abstinence from opioids. These negative affective experiences are hypothesized to stem from neuroadaptations to a network of affective processing called the "extended amygdala." This negative valence network includes the three core structures of the central nucleus of the amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the nucleus accumbens shell (NAc shell), in addition to major inputs from the basolateral amygdala (BLA). To better understand the major components of this system, we have reviewed their functions, inputs and outputs, along with the associated neural plasticity in animal models of opioid withdrawal. These models demonstrate the somatic, motivational, affective, and learning related models of opioid withdrawal and abstinence. Neuroadaptations in these stress and motivational systems are accompanied by negative affective and aversive experiences that commonly give rise to relapse. CeA neuroplasticity accounts for many of the aversive and fear-related effects of opioid withdrawal via glutamatergic plasticity and changes to corticotrophin-releasing factor (CRF)-containing neurons. Neuroadaptations in BNST pre-and post-synaptic GABA-containing neurons, as well as their noradrenergic modulation, may be responsible for a variety of aversive affective experiences and maladaptive behaviors. Opioid withdrawal yields a hypodopaminergic and amotivational state and results in neuroadaptive increases in excitability of the NAc shell, both of which are associated with increased vulnerability to relapse. Finally, BLA transmission to hippocampal and cortical regions impacts the perception of conditioned aversive effects of opioid withdrawal by higher executive systems. The prevention or reversal of these varied neuroadaptations in the extended amygdala during opioid withdrawal could lead to promising new interventions for this life-threatening condition.
Collapse
Affiliation(s)
- Gary B Kaplan
- Mental Health Service, VA Boston Healthcare System, Boston, MA, United States
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | | |
Collapse
|
19
|
Méndez SB, Matus-Ortega M, Miramontes RH, Salazar-Juárez A. The effect of chronic stress on the immunogenicity and immunoprotection of the M 6-TT vaccine in female mice. Physiol Behav 2023; 271:114345. [PMID: 37704173 DOI: 10.1016/j.physbeh.2023.114345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 09/15/2023]
Abstract
Active vaccination is an effective therapeutic option to reduce the reinforcing effects of opioids. Several studies showed that chronic stress affects the immune system decreasing the efficiency of some vaccines. Heroin withdrawal is a stressor and it is a stage in which the patient who abuses heroin is vulnerable to stress affects the immune response and consequently its immunoprotective capacity, then, the objective was to determine the effect of heroin-withdrawal and heroin-withdrawal plus immobilization, on the immune (immunogenicity) and protective response (behavioral response) of morphine-6-hemisuccinate-tetanus toxoid (M6-TT) vaccine in animals of two inbred mice strains with different sensitivity to drug-opioid and stress. Female BALB/c and C57Bl/6 inbred mice were immunized with the M6-TT. A solid-phase antibody-capture ELISA was used to monitor antibody titer responses after each booster dose in vaccinated animals. During the vaccination period, the animals were subjected to two different stress conditions: drug-withdrawal (DW) and immobilization (IMM). The study used tail-flick testing to evaluate the heroin-induced antinociceptive effects. Additionally, heroin-induced locomotor activity was evaluated. Stress decreased the heroin-specific antibody titer generated by the M6-TT vaccine in the two inbred mouse strains evaluated. In the two stress conditions, the antibody titer was not able to decrease the heroin-induced antinociceptive effects and locomotor activity. These findings suggest that stress decreases the production of antibodies and the immunoprotective capacity of the M6-TT vaccine. This observation is important to determine the efficacy of active vaccination as a potential therapy for patients with opioid drug use disorder, since these patients during drug-withdrawal present stress disorders, which could affect the efficacy of therapy such as active vaccination.
Collapse
Affiliation(s)
- Susana Barbosa Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, México
| | - Maura Matus-Ortega
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, México
| | - Ricardo Hernández Miramontes
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, México
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, México.
| |
Collapse
|
20
|
Sedki F, D'Cunha TM, Rizzo D, Mayers L, Cohen J, Chao ST, Shalev U. Modulation of cue value and the augmentation of heroin seeking in chronically food-restricted male rats under withdrawal. Pharmacol Biochem Behav 2023; 231:173636. [PMID: 37714221 DOI: 10.1016/j.pbb.2023.173636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Food restriction augments drug seeking in abstinent rats. The underlying motivational mechanisms, however, remain unclear. We hypothesized that caloric restriction enhances the incentive value attributed to drug-associated cues and, in turn, augments drug seeking. Male rats were trained to lever-press for heroin, and then moved to the animal colony for a forced-abstinence period. Rats were maintained on free access to food (Sated) or subjected to 14 days of food restriction (FDR). In a series of experiments, we assessed the effect of food-restriction on the incentive value of heroin-associated cues. Tests included performance under a progressive ratio (PR) schedule of reinforcement maintained by heroin-associated cues, acquisition of a novel operant response reinforced by drug-associated cues, effect of food-restriction on operant response reinforced by neutral cues, acquisition of a novel operant response reinforced by drug-associated or neutral cues, and the effect of food-restriction on operant response reinforced by drug-associated or neutral cues, under a discrete choice procedure. Food-restriction did not change breakpoints in PR maintained by heroin-associated cues. FDR rats acquired the novel response at a greater level compared to the Sated group. Food-restriction-induced increase in novel-response rate was observed for both heroin-paired and the neutral cue. Responding for a heroin-associated cue was greater than for the neutral cue in both Sated and FDR groups. Response rate for the neutral cue, however, was greater in the FDR versus Sated group. Our findings suggest that food restriction increases the conditioned motivational properties of environmental stimuli, including, but not exclusive to, heroin-paired cues.
Collapse
Affiliation(s)
- Firas Sedki
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Tracey M D'Cunha
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Damaris Rizzo
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Leon Mayers
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Jennifer Cohen
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Suzanne Trieu Chao
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Uri Shalev
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Zanda MT, Saikali L, Morris P, Daws SE. MicroRNA-mediated translational pathways are regulated in the orbitofrontal cortex and peripheral blood samples during acute abstinence from heroin self-administration. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11668. [PMID: 38389822 PMCID: PMC10880771 DOI: 10.3389/adar.2023.11668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/28/2023] [Indexed: 02/24/2024]
Abstract
Opioid misuse in the United States contributes to >70% of annual overdose deaths. To develop additional therapeutics that may prevent opioid misuse, further studies on the neurobiological consequences of opioid exposure are needed. Here we sought to characterize molecular neuroadaptations involving microRNA (miRNA) pathways in the brain and blood of adult male rats that self-administered the opioid heroin. miRNAs are ∼18-24 nucleotide RNAs that regulate protein expression by preventing mRNA translation into proteins. Manipulation of miRNAs and their downstream pathways can critically regulate drug seeking behavior. We performed small-RNA sequencing of miRNAs and proteomics profiling on tissue from the orbitofrontal cortex (OFC), a brain region associated with heroin seeking, following 2 days of forced abstinence from self-administration of 0.03 mg/kg/infusion heroin or sucrose. Heroin self-administration resulted in a robust shift of the OFC miRNA profile, regulating 77 miRNAs, while sucrose self-administration only regulated 9 miRNAs that did not overlap with the heroin-induced profile. Conversely, proteomics revealed dual regulation of seven proteins by both heroin and sucrose in the OFC. Pathway analysis determined that heroin-associated miRNA pathways are predicted to target genes associated with the term "prion disease," a term that was also enriched in the heroin-induced protein expression dataset. Lastly, we confirmed that a subset of heroin-induced miRNA expression changes in the OFC are regulated in peripheral serum and correlate with heroin infusions. These findings demonstrate that peripheral blood samples may have biomarker utility for assessment of drug-induced miRNA pathway alterations that occur in the brain following chronic drug exposure.
Collapse
Affiliation(s)
- Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Temple University, Philadelphia, PA, United States
| | - Leila Saikali
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, United States
- College of Liberal Arts, Temple University, Philadelphia, PA, United States
| | - Paige Morris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Temple University, Philadelphia, PA, United States
| | - Stephanie E. Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Temple University, Philadelphia, PA, United States
| |
Collapse
|
22
|
Ozdemir D, Allain F, Kieffer BL, Darcq E. Advances in the characterization of negative affect caused by acute and protracted opioid withdrawal using animal models. Neuropharmacology 2023; 232:109524. [PMID: 37003572 PMCID: PMC10844657 DOI: 10.1016/j.neuropharm.2023.109524] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/03/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Opioid use disorder (OUD) is a chronic brain disease which originates from long-term neuroadaptations that develop after repeated opioid consumption and withdrawal episodes. These neuroadaptations lead among other things to the development of a negative affect, which includes loss of motivation for natural rewards, higher anxiety, social deficits, heightened stress reactivity, an inability to identify and describe emotions, physical and/or emotional pain, malaise, dysphoria, sleep disorders and chronic irritability. The urge for relief from this negative affect is one of major causes of relapse, and thus represents a critical challenge for treatment and relapse prevention. Animal models of negative affect induced by opioid withdrawal have recapitulated the development of a negative emotional state with signs such as anhedonia, increased anxiety responses, increased despair-like behaviour and deficits in social interaction. This research has been critical to determine neurocircuitry adaptations during chronic opioid administration or upon withdrawal. In this review, we summarize the recent literature of rodent models of (i) acute withdrawal, (ii) protracted abstinence from passive administration of opioids, (iii) withdrawal or protracted abstinence from opioid self-administration. Finally, we describe neurocircuitry involved in acute withdrawal and protracted abstinence. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Dersu Ozdemir
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, France
| | - Florence Allain
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, France
| | - Brigitte L Kieffer
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, France
| | - Emmanuel Darcq
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, France.
| |
Collapse
|
23
|
Browne CJ, Futamura R, Minier-Toribio A, Hicks EM, Ramakrishnan A, Martínez-Rivera FJ, Estill M, Godino A, Parise EM, Torres-Berrío A, Cunningham AM, Hamilton PJ, Walker DM, Huckins LM, Hurd YL, Shen L, Nestler EJ. Transcriptional signatures of heroin intake and relapse throughout the brain reward circuitry in male mice. SCIENCE ADVANCES 2023; 9:eadg8558. [PMID: 37294757 PMCID: PMC10256172 DOI: 10.1126/sciadv.adg8558] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/05/2023] [Indexed: 06/11/2023]
Abstract
Opioid use disorder (OUD) looms as one of the most severe medical crises facing society. More effective therapeutics will require a deeper understanding of molecular changes supporting drug-taking and relapse. Here, we develop a brain reward circuit-wide atlas of opioid-induced transcriptional regulation by combining RNA sequencing (RNA-seq) and heroin self-administration in male mice modeling multiple OUD-relevant conditions: acute heroin exposure, chronic heroin intake, context-induced drug-seeking following abstinence, and relapse. Bioinformatics analysis of this rich dataset identified numerous patterns of transcriptional regulation, with both region-specific and pan-circuit biological domains affected by heroin. Integration of RNA-seq data with OUD-relevant behavioral outcomes uncovered region-specific molecular changes and biological processes that predispose to OUD vulnerability. Comparisons with human OUD RNA-seq and genome-wide association study data revealed convergent molecular abnormalities and gene candidates with high therapeutic potential. These studies outline molecular reprogramming underlying OUD and provide a foundational resource for future investigations into mechanisms and treatment strategies.
Collapse
Affiliation(s)
- Caleb J. Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angélica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily M. Hicks
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Freddyson J. Martínez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M. Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley M. Cunningham
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter J. Hamilton
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Deena M. Walker
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Laura M. Huckins
- Department of Psychiatry, Yale Center for Genomic Health, Yale School of Medicine, New Haven, CT, USA
| | - Yasmin L. Hurd
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
24
|
D'Ottavio G, Reverte I, Ragozzino D, Meringolo M, Milella MS, Boix F, Venniro M, Badiani A, Caprioli D. Increased heroin intake and relapse vulnerability in intermittent relative to continuous self-administration: Sex differences in rats. Br J Pharmacol 2023; 180:910-926. [PMID: 34986504 PMCID: PMC9253203 DOI: 10.1111/bph.15791] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/02/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Studies using intermittent-access drug self-administration show increased motivation to take and seek cocaine and fentanyl, relative to continuous access. In this study, we examined the effects of intermittent- and continuous-access self-administration on heroin intake, patterns of self-administration and cue-induced heroin-seeking, after forced or voluntary abstinence, in male and female rats. We also modelled brain levels of heroin and its active metabolites. EXPERIMENTAL APPROACH Rats were trained to self-administer a palatable solution and then heroin (0.075 mg·kg-1 per inf) either continuously (6 h·day-1 ; 10 days) or intermittently (6 h·day-1 ; 5-min access every 30-min; 10 days). Brain levels of heroin and its metabolites were modelled using a pharmacokinetic software. Next, heroin-seeking was assessed after 1 or 21 abstinence days. Between tests, rats underwent either forced or voluntary abstinence. The oestrous cycle was measured using a vaginal smear test. KEY RESULTS Intermittent access exacerbated heroin self-administration and was characterized by a burst-like intake, yielding higher brain peaks of heroin and 6-monoacetylmorphine concentrations. Moreover, intermittent access increased cue-induced heroin-seeking during early, but not late abstinence. Heroin-seeking was higher in females after intermittent, but not continuous access, and this effect was independent of the oestrous cycle. CONCLUSIONS AND IMPLICATIONS Intermittent heroin access in rats resembles critical features of heroin use disorder: a self-administration pattern characterized by repeated large doses of heroin and higher relapse vulnerability during early abstinence. This has significant implications for refining animal models of substance use disorder and for better understanding of the neuroadaptations responsible for this disorder. LINKED ARTICLES This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Ginevra D'Ottavio
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Ingrid Reverte
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Davide Ragozzino
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Maria Meringolo
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Michele Stanislaw Milella
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Toxicology Unit, Policlinico Umberto I University Hospital, Rome, Italy
| | - Fernando Boix
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Marco Venniro
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aldo Badiani
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Sussex Addiction Research and Intervention Centre (SARIC) and School of Psychology, University of Sussex, Brighton, UK
| | - Daniele Caprioli
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
25
|
Wang Y, Singh A, Li G, Yue S, Hertel K, Wang ZJ. Opioid induces increased DNA damage in prefrontal cortex and nucleus accumbens. Pharmacol Biochem Behav 2023; 224:173535. [PMID: 36907467 DOI: 10.1016/j.pbb.2023.173535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
Opioid use disorder (OUD) is a chronic disease characterized by compulsive opioid taking and seeking, affecting millions of people worldwide. The high relapse rate is one of the biggest challenges in treating opioid addiction. However, the cellular and molecular mechanisms underlying relapse to opioid seeking are still unclear. Recent studies have shown that DNA damage and repair processes are implicated in a broad spectrum of neurodegenerative diseases as well as in substance use disorders. In the present study, we hypothesized that DNA damage is related to relapse to heroin seeking. To test our hypothesis, we aim to examine the overall DNA damage level in prefrontal cortex (PFC) and nucleus accumbens (NAc) after heroin exposure, as well as whether manipulating DNA damage levels can alter heroin seeking. First, we observed increased DNA damage in postmortem PFC and NAc tissues from OUD individuals compared to healthy controls. Next, we found significantly increased levels of DNA damage in the dorsomedial PFC (dmPFC) and NAc from mice that underwent heroin self-administration. Moreover, increased accumulation of DNA damage persisted after prolonged abstinence in mouse dmPFC, but not in NAc. This persistent DNA damage was ameliorated by the treatment of reactive oxygen species (ROS) scavenger N-acetylcysteine, along with attenuated heroin-seeking behavior. Furthermore, intra-PFC infusions of topotecan and etoposide during abstinence, which trigger DNA single-strand breaks and double-strand breaks respectively, potentiated heroin-seeking behavior. These findings provide direct evidence that OUD is associated with the accumulation of DNA damage in the brain (especially in the PFC), which may lead to opioid relapse.
Collapse
Affiliation(s)
- Yunwanbin Wang
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Archana Singh
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Guohui Li
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuwen Yue
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Kegan Hertel
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Zi-Jun Wang
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
26
|
Borges C, Inigo F, Quteishat N, Charles J, Ah-Yen E, U S. Acute food deprivation-induced relapse to heroin seeking after short and long punishment-imposed abstinence in male rats. Psychopharmacology (Berl) 2023; 240:595-607. [PMID: 35951079 DOI: 10.1007/s00213-022-06207-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022]
Abstract
RATIONAL Stress is a major trigger for drug relapse in humans and animal models, even after prolonged abstinence. However, animal models for stress-induced relapse were criticized for the lack of predictive and face validity. OBJECTIVES Here we investigated the effect of acute food deprivation stress in a novel stress-induced relapse model using voluntary, punishment-imposed abstinence from heroin. We also performed a detailed characterization of the development of punishment-imposed abstinence. METHODS Male rats were trained to self-administered heroin (0.1 mg/kg/infusion) for 2 weeks, using the seeking-taking chained schedule. Pressing the 'seeking' lever led to the insertion of the 'taking' lever and pressing the take lever resulted in heroin infusion. Following self-administration training, rats were exposed to 8 or 21 days of heroin-seeking punishment. During punishment, 30% of the completed seek links resulted in a mild escalating footshock instead of take lever presentation. Next, rats were tested for heroin seeking under extinction conditions after 24 h of food deprivation and sated conditions. RESULTS Probabilistic punishment of seeking lever responses resulted in gradual suppression of heroin seeking and taking. Exposure to food-deprivation stress induced a robust relapse to heroin seeking after short and long punishment-imposed abstinence periods, without significant effects of time, i.e., no incubation of heroin seeking. Individual differences were observed in the development of punishment-induced abstinence and stress-induced relapse. CONCLUSIONS These results suggest that stress is a reliable trigger to relapse even after a prolonged period of punishment-induced, voluntary abstinence.
Collapse
Affiliation(s)
- C Borges
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - F Inigo
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - N Quteishat
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - J Charles
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - E Ah-Yen
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - Shalev U
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada.
| |
Collapse
|
27
|
Barrera ED, Timken PD, Lee E, Persaud KRS, Goldstein H, Parasram DN, Vashisht A, Ranaldi R. Environmental enrichment facilitates electric barrier induced heroin abstinence after incubation of craving in male and female rats. Drug Alcohol Depend 2023; 244:109799. [PMID: 36774806 PMCID: PMC9982754 DOI: 10.1016/j.drugalcdep.2023.109799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Treatment strategies that aim to promote abstinence to heroin use and reduce vulnerability to drug-use resumption are limited in sustainability and long-term efficacy. We have previously shown that environmental enrichment (EE), when implemented after drug self-administration, reduces drug-seeking and promotes abstinence to cocaine and heroin in male rats. Here, we tested the effects of EE on abstinence in an animal conflict model in males and females, and after periods where incubation of craving may occur. METHODS Male and female rats were trained to self-administer heroin followed by 3 or 21 days of a no-event-interval (NEI). Following NEI, rats were permanently moved to environmental enrichment (EE) or new standard (nEE) housing 3 days prior to resuming self-administration in the presence of an electric barrier adjacent to the drug access lever. Electric barrier current was increased daily until rats ceased self-administration. RESULTS We found that 21 days of NEI led to significantly greater heroin self-administration and a trend toward shorter latencies to emit the first active lever press in the first abstinence session compared to 3 days of NEI. EE, when compared to nEE, led to longer latencies in the first abstinence session. Also, EE groups of both sexes and in both NEIs achieved abstinence criteria in significantly fewer numbers of sessions. CONCLUSIONS EE facilitates abstinence in males and females and after periods where incubation of craving may occur. This suggests that EE may benefit individuals attempting to abstain from heroin use and may aid in the development of long term treatment strategies.
Collapse
Affiliation(s)
- Eddy D Barrera
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States; The Graduate Center, City University of New York, New York, NY 10016, United States.
| | - Patrick D Timken
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| | - Elaine Lee
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| | - Kirk R S Persaud
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| | - Hindy Goldstein
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| | - Daleya N Parasram
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| | - Apoorva Vashisht
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States; The Graduate Center, City University of New York, New York, NY 10016, United States.
| | - Robert Ranaldi
- Psychology Department, Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, United States; The Graduate Center, City University of New York, New York, NY 10016, United States.
| |
Collapse
|
28
|
Chiariello R, McCarthy C, Glaeser BL, Shah AS, Budde MD, Stemper BD, Olsen CM. Chronicity of repeated blast traumatic brain injury associated increase in oxycodone seeking in rats. Behav Brain Res 2023; 438:114181. [PMID: 36330906 PMCID: PMC9993345 DOI: 10.1016/j.bbr.2022.114181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Numerous epidemiological studies have found co-morbidity between non-severe traumatic brain injury (TBI) and substance misuse in both civilian and military populations. Preclinical studies have also identified this relationship for some misused substances. We have previously demonstrated that repeated blast traumatic brain injury (rbTBI) increased oxycodone seeking without increasing oxycodone self-administration, suggesting that the neurological sequelae of traumatic brain injury can elevate opioid misuse liability. Here, we determined the chronicity of this effect by testing different durations of time between injury and oxycodone self-administration and durations of abstinence. We found that the subchronic (four weeks), but not the acute (three days) or chronic (four months) duration between injury and oxycodone self-administration was associated with increased drug seeking and re-acquisition of self-administration following a 10-day abstinence. Examination of other abstinence durations (two days, four weeks, or four months) revealed no effect of rbTBI on drug seeking at any of the abstinence durations tested. Together, these data indicate that there is a window of vulnerability after TBI when oxycodone self-administration is associated with elevated drug seeking and relapse-related behaviors.
Collapse
Affiliation(s)
- Rachel Chiariello
- Department of Neurosurgery, Medical College of Wisconsin, United States; Clement J. Zablocki Veterans Affairs Medical Center, United States
| | - Cassandra McCarthy
- Department of Neurosurgery, Medical College of Wisconsin, United States; Clement J. Zablocki Veterans Affairs Medical Center, United States
| | - Breanna L Glaeser
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, United States; Neuroscience Research Center, Medical College of Wisconsin, United States
| | - Alok S Shah
- Department of Neurosurgery, Medical College of Wisconsin, United States; Clement J. Zablocki Veterans Affairs Medical Center, United States
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, United States; Clement J. Zablocki Veterans Affairs Medical Center, United States; Neuroscience Research Center, Medical College of Wisconsin, United States
| | - Brian D Stemper
- Clement J. Zablocki Veterans Affairs Medical Center, United States; Neuroscience Research Center, Medical College of Wisconsin, United States; Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, United States
| | - Christopher M Olsen
- Department of Neurosurgery, Medical College of Wisconsin, United States; Department of Pharmacology and Toxicology, Medical College of Wisconsin, United States; Neuroscience Research Center, Medical College of Wisconsin, United States.
| |
Collapse
|
29
|
Preventing incubation of drug craving to treat drug relapse: from bench to bedside. Mol Psychiatry 2023; 28:1415-1429. [PMID: 36646901 DOI: 10.1038/s41380-023-01942-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023]
Abstract
In 1986, Gawin and Kleber reported a progressive increase in cue-induced drug craving in individuals with cocaine use disorders during prolonged abstinence. After years of controversy, as of 2001, this phenomenon was confirmed in rodent studies using self-administration model, and defined as the incubation of drug craving. The intensification of cue-induced drug craving after withdrawal exposes abstinent individuals to a high risk of relapse, which urged us to develop effective interventions to prevent incubated craving. Substantial achievements have been made in deciphering the neural mechanisms, with potential implications for reducing drug craving and preventing the relapse. The present review discusses promising drug targets that have been well investigated in animal studies, including some neurotransmitters, neuropeptides, neurotrophic factors, and epigenetic markers. We also discuss translational exploitation and challenges in the field of the incubation of drug craving, providing insights into future investigations and highlighting the potential of pharmacological interventions, environment-based interventions, and neuromodulation techniques.
Collapse
|
30
|
Fredriksson I, Tsai PJ, Shekara A, Duan Y, Applebey SV, Minier-Toribio A, Batista A, Chow JJ, Altidor L, Barbier E, Cifani C, Li X, Reiner DJ, Rubio FJ, Hope BT, Yang Y, Bossert JM, Shaham Y. Role of ventral subiculum neuronal ensembles in incubation of oxycodone craving after electric barrier-induced voluntary abstinence. SCIENCE ADVANCES 2023; 9:eadd8687. [PMID: 36630511 PMCID: PMC9833671 DOI: 10.1126/sciadv.add8687] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
High relapse rate is a key feature of opioid addiction. In humans, abstinence is often voluntary due to negative consequences of opioid seeking. To mimic this human condition, we recently introduced a rat model of incubation of oxycodone craving after electric barrier-induced voluntary abstinence. Incubation of drug craving refers to time-dependent increases in drug seeking after cessation of drug self-administration. Here, we used the activity marker Fos, muscimol-baclofen (GABAa + GABAb receptor agonists) global inactivation, Daun02-selective inactivation of putative relapse-associated neuronal ensembles, and fluorescence-activated cell sorting of Fos-positive cells and quantitative polymerase chain reaction to demonstrate a key role of vSub neuronal ensembles in incubation of oxycodone craving after voluntary abstinence, but not homecage forced abstinence. We also used a longitudinal functional magnetic resonance imaging method and showed that functional connectivity changes in vSub-related circuits predict opioid relapse after abstinence induced by adverse consequences of opioid seeking.
Collapse
Affiliation(s)
- Ida Fredriksson
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Pei-Jung Tsai
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | | | - Ying Duan
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | | | | | - Ashley Batista
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | - Jonathan J. Chow
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | - Lindsay Altidor
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | - Estelle Barbier
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Xuan Li
- Department of Psychology, University of Maryland College Park, College Park, MD, USA
| | - David J. Reiner
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | - F. Javier Rubio
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | - Bruce T. Hope
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | - Yihong Yang
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | | | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| |
Collapse
|
31
|
Browne CJ, Futamura R, Minier-Toribio A, Hicks EM, Ramakrishnan A, Martínez-Rivera F, Estill M, Godino A, Parise EM, Torres-Berrío A, Cunningham AM, Hamilton PJ, Walker DM, Huckins LM, Hurd YL, Shen L, Nestler EJ. Transcriptional signatures of heroin intake and seeking throughout the brain reward circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523688. [PMID: 36711574 PMCID: PMC9882165 DOI: 10.1101/2023.01.11.523688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Opioid use disorder (OUD) looms as one of the most severe medical crises currently facing society. More effective therapeutics for OUD requires in-depth understanding of molecular changes supporting drug-taking and relapse. Recent efforts have helped advance these aims, but studies have been limited in number and scope. Here, we develop a brain reward circuit-wide atlas of opioid-induced transcriptional regulation by combining RNA sequencing (RNAseq) and heroin self-administration in male mice modeling multiple OUD-relevant conditions: acute heroin exposure, chronic heroin intake, context-induced drug-seeking following prolonged abstinence, and heroin-primed drug-seeking (i.e., "relapse"). Bioinformatics analysis of this rich dataset identified numerous patterns of molecular changes, transcriptional regulation, brain-region-specific involvement in various aspects of OUD, and both region-specific and pan-circuit biological domains affected by heroin. Integrating RNAseq data with behavioral outcomes using factor analysis to generate an "addiction index" uncovered novel roles for particular brain regions in promoting addiction-relevant behavior, and implicated multi-regional changes in affected genes and biological processes. Comparisons with RNAseq and genome-wide association studies from humans with OUD reveal convergent molecular regulation that are implicated in drug-taking and relapse, and point to novel gene candidates with high therapeutic potential for OUD. These results outline broad molecular reprogramming that may directly promote the development and maintenance of OUD, and provide a foundational resource to the field for future research into OUD mechanisms and treatment strategies.
Collapse
Affiliation(s)
- Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Angélica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emily M Hicks
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Freddyson Martínez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peter J Hamilton
- Dept. of Anatomy & Neurobiology, Virginia Commonwealth University School of Medicine
| | - Deena M Walker
- Dept. of Behavioral Neuroscience, Oregon Health and Science University
| | - Laura M. Huckins
- Dept. of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai
| | - Yasmin L Hurd
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Anatomy & Neurobiology, Virginia Commonwealth University School of Medicine
- Dept. of Behavioral Neuroscience, Oregon Health and Science University
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Anatomy & Neurobiology, Virginia Commonwealth University School of Medicine
- Dept. of Behavioral Neuroscience, Oregon Health and Science University
| |
Collapse
|
32
|
Mantsch JR. Corticotropin releasing factor and drug seeking in substance use disorders: Preclinical evidence and translational limitations. ADDICTION NEUROSCIENCE 2022; 4:100038. [PMID: 36531188 PMCID: PMC9757758 DOI: 10.1016/j.addicn.2022.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the development of medications aimed at treating stress-related disorders. Despite a large body of evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting that CRF signaling is involved in stressor-induced relapse. The scientific literature that has defined the receptors, mechanisms and neurocircuits through which CRF contributes to stressor-induced reinstatement of drug seeking following self-administration and conditioned place preference in rodents is reviewed. Evidence that CRF signaling is recruited with repeated drug use in a manner that heightens susceptibility to stressor-induced drug seeking in rodents is presented. Factors that may determine the influence of CRF signaling in substance use disorders, including developmental windows, biological sex, and genetics are examined. Finally, we discuss the translational failure of medications targeting CRF signaling as interventions for substance use disorders and other stress-related conditions. We conclude that new perspectives and research directions are needed to unravel the mysterious role of CRF in substance use disorders.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
33
|
Carroll ME, Dougen B, Zlebnik NE, Fess L, Smethells J. Reducing short- and long-term cocaine craving with voluntary exercise in male rats. Psychopharmacology (Berl) 2022; 239:3819-3831. [PMID: 36331585 PMCID: PMC11601154 DOI: 10.1007/s00213-022-06251-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND In a previous study in female rats, voluntary wheel running attenuated incubation of cocaine craving after 30 but not 3 days (Zlebnik and Carroll Zlebnik and Carroll, Psychopharmacology 232:3507-3413, 2015). The present study in male rats, using the same procedure, showed that wheel running reduced incubated craving after both 30 and 3 days of abstinence. METHODS Male rats self-administered i.v. cocaine (0.4 mg/kg) during 6-h sessions for 10 days. They were then moved from the operant chamber to a home cage with an attached running wheel or stationary wheel, for 6 h daily for a 3- or 30-day period when cocaine craving was hypothesized to incubate. Rats were then returned to the operant chamber for a 30-min test of cocaine seeking, or "craving," indicated by responses on the former "drug" lever was formerly associated with drug stimulus lights and responses (vs. no drug stimuli), and lever responding was compared to responses on the "inactive" that was illuminated and counted lever pressing. RESULTS Mean wheel revolutions were similar across the 3- and 30-day incubation groups, when both groups of rats were given access to wheel running vs. access to a stationary wheel in controls. Subsequently, when rats were tested in the operant chamber for "relapse" responding (drug-lever responding) on the lever formerly associated with drug access, cocaine craving was reduced by recent running wheel access (vs. stationary wheel access) in both the 3- and 30-day wheel exposure groups. CONCLUSION Voluntary, self-initiated, and self-sustained physical exercise reduced cocaine craving after short- (3 days) and long-term (30 days) abstinence periods in male rats that previously self-administered cocaine. This was contrasted with reduction of cocaine seeking in females after 30-day, but not 3-day, incubation periods under the wheel running vs. stationary wheel conditions in a previous study (Zlebnik and Carroll Zlebnik and Carroll, Psychopharmacology 232:3507-3413, 2015). These initial findings suggest males may be more sensitive to incubated craving for cocaine than females.
Collapse
Affiliation(s)
- Marilyn E Carroll
- Department of Psychiatry, University of Minnesota, MMC 392, Minneapolis, MN, 55455, USA.
| | - Ben Dougen
- Department of Psychiatry, University of Minnesota, MMC 392, Minneapolis, MN, 55455, USA
| | - Natalie E Zlebnik
- Department of Psychiatry, University of Minnesota, MMC 392, Minneapolis, MN, 55455, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II, Room S216, 20 Penn St, Baltimore, MD, 21201, USA
| | - Lydia Fess
- Department of Psychiatry, University of Minnesota, MMC 392, Minneapolis, MN, 55455, USA
| | - John Smethells
- Hennepin Healthcare Research Institute, 701 Park Avenue, Minneapolis, MN, 55415, USA
| |
Collapse
|
34
|
Guha SK, Alonso-Caraballo Y, Driscoll GS, Babb JA, Neal M, Constantino NJ, Lintz T, Kinard E, Chartoff EH. Ranking the contribution of behavioral measures comprising oxycodone self-administration to reinstatement of drug-seeking in male and female rats. Front Behav Neurosci 2022; 16:1035350. [PMID: 36505730 PMCID: PMC9731098 DOI: 10.3389/fnbeh.2022.1035350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Rates of relapse to drug use during abstinence are among the highest for opioid use disorder (OUD). In preclinical studies, reinstatement to drug-seeking has been extensively studied as a model of relapse-but the work has been primarily in males. We asked whether biological sex contributes to behaviors comprising self-administration of the prescription opioid oxycodone in rats, and we calculated the relative contribution of these behavioral measures to reinstatement in male and female rats. Materials and methods Rats were trained to self-administer oxycodone (8 days, training phase), after which we examined oxycodone self-administration behaviors for an additional 14 days under three conditions in male and female rats: short access (ShA, 1 h/d), long access (LgA, 6 h/d), and saline self-administration. All rats were then tested for cue-induced reinstatement of drug-seeking after a 14-d forced abstinence period. We quantified the # of infusions, front-loading of drug intake, non-reinforced lever pressing, inter-infusion intervals, escalation of intake, and reinstatement responding on the active lever. Results Both male and female rats in LgA and ShA conditions escalated oxycodone intake to a similar extent. However, males had higher levels of non-reinforced responding than females under LgA conditions, and females had greater levels of reinstatement responding than males. We then correlated each addiction-related measure listed above with reinstatement responding in males and females and ranked their respective relative contributions. Although the majority of behavioral measures associated with oxycodone self-administration did not show sex differences on their own, when analyzed together using partial least squares regression, their relative contributions to reinstatement were sex-dependent. Front-loading behavior was calculated to have the highest relative contribution to reinstatement in both sexes, with long and short inter-infusion intervals having the second greatest contribution in females and males, respectively. Discussion Our results demonstrate sex differences in some oxycodone self-administration measures. More importantly, we demonstrate that a sex- dependent constellation of self-administration behaviors can predict the magnitude of reinstatement, which holds great promise for relapse prevention in people.
Collapse
Affiliation(s)
- Suman K. Guha
- Basic Neuroscience Division, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States
| | - Yanaira Alonso-Caraballo
- Basic Neuroscience Division, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States
| | - Gillian S. Driscoll
- Basic Neuroscience Division, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States
| | - Jessica A. Babb
- Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Megan Neal
- Basic Neuroscience Division, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States
| | - Nicholas J. Constantino
- Basic Neuroscience Division, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States
| | - Tania Lintz
- Basic Neuroscience Division, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States
| | - Elizabeth Kinard
- Basic Neuroscience Division, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States
| | - Elena H. Chartoff
- Basic Neuroscience Division, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States,*Correspondence: Elena H. Chartoff,
| |
Collapse
|
35
|
Samson KR, Xu W, Kortagere S, España RA. Intermittent access to oxycodone decreases dopamine uptake in the nucleus accumbens core during abstinence. Addict Biol 2022; 27:e13241. [PMID: 36301217 PMCID: PMC10262085 DOI: 10.1111/adb.13241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023]
Abstract
A major obstacle in treating opioid use disorder is the persistence of drug seeking or craving during periods of abstinence, which is believed to contribute to relapse. Dopamine transmission in the mesolimbic pathway is posited to contribute to opioid reinforcement, but the processes by which dopamine influences drug seeking have not been completely elucidated. To examine whether opioid seeking during abstinence is associated with alterations in dopamine transmission, female and male rats self-administered oxycodone under an intermittent access schedule of reinforcement. Following self-administration, rats underwent a forced abstinence period, and cue-induced seeking tests were conducted to assess oxycodone seeking. One day following the final seeking test, rats were sacrificed to perform ex vivo fast scan cyclic voltammetry and western blotting in the nucleus accumbens. Rats displayed reduced dopamine uptake rate on abstinence day 2 and abstinence day 15, compared to oxycodone-naïve rats. Further, on abstinence day 15, rats had reduced phosphorylation of the dopamine transporter. Additionally, local application of oxycodone to the nucleus accumbens reduced dopamine uptake in oxycodone-naïve rats and in rats during oxycodone abstinence, on abstinence day 2 and abstinence day 15. These observations suggest that abstinence from oxycodone results in dysfunctional dopamine transmission, which may contribute to sustained oxycodone seeking during abstinence.
Collapse
Affiliation(s)
- Kyle R. Samson
- Drexel University College of Medicine, Department of Neurobiology and Anatomy
| | - Wei Xu
- Drexel University College of Medicine, Department of Microbiology and Immunology
| | - Sandhya Kortagere
- Drexel University College of Medicine, Department of Microbiology and Immunology
| | - Rodrigo A. España
- Drexel University College of Medicine, Department of Neurobiology and Anatomy
| |
Collapse
|
36
|
Tian G, Hui M, Macchia D, Derdeyn P, Rogers A, Hubbard E, Liu C, Vasquez JJ, Taniguchi L, Bartas K, Carroll S, Beier KT. An extended amygdala-midbrain circuit controlling cocaine withdrawal-induced anxiety and reinstatement. Cell Rep 2022; 39:110775. [PMID: 35508124 PMCID: PMC9225486 DOI: 10.1016/j.celrep.2022.110775] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/29/2021] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Although midbrain dopamine (DA) circuits are central to motivated behaviors, our knowledge of how experience modifies these circuits to facilitate subsequent behavioral adaptations is limited. Here we demonstrate the selective role of a ventral tegmental area DA projection to the amygdala (VTADA→amygdala) for cocaine-induced anxiety but not cocaine reward or sensitization. Our rabies virus-mediated circuit mapping approach reveals a persistent elevation in spontaneous and task-related activity of inhibitory GABAergic cells from the bed nucleus of the stria terminalis (BNST) and downstream VTADA→amygdala cells that can be detected even after a single cocaine exposure. Activity in BNSTGABA→midbrain cells is related to cocaine-induced anxiety but not reward or sensitization, and silencing this projection prevents development of anxiety during protracted withdrawal after cocaine administration. Finally, we observe that VTADA→amygdala cells are strongly activated after a challenge exposure to cocaine and that activity in these cells is necessary and sufficient for reinstatement of cocaine place preference.
Collapse
Affiliation(s)
- Guilian Tian
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - May Hui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - Desiree Macchia
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - Pieter Derdeyn
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, Irvine, CA 92617, USA
| | - Alexandra Rogers
- Interdepartmental Neuroscience Program, University of California, Irvine, Irvine, CA 92617, USA
| | - Elizabeth Hubbard
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - Chengfeng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - Jose J Vasquez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - Lara Taniguchi
- Interdepartmental Neuroscience Program, University of California, Irvine, Irvine, CA 92617, USA
| | - Katrina Bartas
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, Irvine, CA 92617, USA
| | - Sean Carroll
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92617, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA; Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92617, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92617, USA; UCI Mind, University of California, Irvine, Irvine, CA 92617, USA.
| |
Collapse
|
37
|
Singh A, Xie Y, Davis A, Wang ZJ. Early social isolation stress increases addiction vulnerability to heroin and alters c-Fos expression in the mesocorticolimbic system. Psychopharmacology (Berl) 2022; 239:1081-1095. [PMID: 34997861 DOI: 10.1007/s00213-021-06024-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023]
Abstract
RATIONALE Adverse psychosocial factors during early childhood or adolescence compromise neural structure and brain function, inducing susceptibility for many psychiatric disorders such as substance use disorder. Nevertheless, the mechanisms underlying early life stress-induced addiction vulnerability is still unclear, especially for opioids. OBJECTIVES To address this, we used a mouse heroin self-administration model to examine how chronic early social isolation (ESI) stress (5 weeks, beginning at weaning) affects the behavioral and neural responses to heroin during adulthood. RESULTS We found that ESI stress did not alter the acquisition for sucrose or heroin self-administration, nor change the motivation for sucrose on a progressive ratio schedule. However, ESI stress induced an upward shift of heroin dose-response curve in female mice and increased motivation and seeking for heroin in both sexes. Furthermore, we examined the neuronal activity (measured by c-Fos expression) within the key brain regions of the mesocorticolimbic system, including the prelimbic cortex (PrL), infralimbic cortex (IL), nucleus accumbens (NAc) core and shell, caudate putamen, and ventral tegmental area (VTA). We found that ESI stress dampened c-Fos expression in the PrL, IL, and VTA after 14-day forced abstinence, while augmented the neuronal responses to heroin-predictive context and cue in the IL and NAc core. Moreover, ESI stress disrupted the association between c-Fos expression and attempted infusions during heroin-seeking test in the PrL. CONCLUSIONS These data indicate that ESI stress leads to increased seeking and motivation for heroin, and this may be associated with distinct changes in neuronal activities in different subregions of the mesocorticolimbic system.
Collapse
Affiliation(s)
- Archana Singh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Yang Xie
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Ashton Davis
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Zi-Jun Wang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA.
| |
Collapse
|
38
|
Effects of heroin self-administration and forced withdrawal on the expression of genes related to the mTOR network in the basolateral complex of the amygdala of male Lewis rats. Psychopharmacology (Berl) 2022; 239:2559-2571. [PMID: 35467104 PMCID: PMC9293846 DOI: 10.1007/s00213-022-06144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/11/2022] [Indexed: 10/26/2022]
Abstract
RATIONALE The development of substance use disorders involves long-lasting adaptations in specific brain areas that result in an elevated risk of relapse. Some of these adaptations are regulated by the mTOR network, a signalling system that integrates extracellular and intracellular stimuli and modulates several processes related to plasticity. While the role of the mTOR network in cocaine- and alcohol-related disorders is well established, little is known about its participation in opiate use disorders. OBJECTIVES To use a heroin self-administration and a withdrawal protocol that induce incubation of heroin-seeking in male rats and study the associated effects on the expression of several genes related to the mTOR system and, in the specific case of Rictor, its respective translated protein and phosphorylation. RESULTS We found that heroin self-administration elicited an increase in the expression of the genes Igf1r, Igf2r, Akt2 and Gsk3a in the basolateral complex of the amygdala, which was not as evident at 30 days of withdrawal. We also found an increase in the expression of Rictor (a protein of the mTOR complex 2) after heroin self-administration compared to the saline group, which was occluded at the 30-day withdrawal period. The activation levels of Rictor, measured by the phosphorylation rate, were also reduced after heroin self-administration, an effect that seemed more apparent in the protracted withdrawal group. CONCLUSIONS These results suggest that heroin self-administration under extended access conditions modifies the expression profile of activators and components of the mTOR complexes and show a putative irresponsive mTOR complex 2 after withdrawal from heroin use.
Collapse
|
39
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
40
|
Venniro M, Reverte I, Ramsey LA, Papastrat KM, D'Ottavio G, Milella MS, Li X, Grimm JW, Caprioli D. Factors modulating the incubation of drug and non-drug craving and their clinical implications. Neurosci Biobehav Rev 2021; 131:847-864. [PMID: 34597716 PMCID: PMC8931548 DOI: 10.1016/j.neubiorev.2021.09.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/28/2022]
Abstract
It was suggested in 1986 that cue-induced cocaine craving increases progressively during early abstinence and remains high during extended periods of time. Clinical evidence now supports this hypothesis and that this increase is not specific to cocaine but rather generalize across several drugs of abuse. Investigators have identified an analogous incubation phenomenon in rodents, in which time-dependent increases in cue-induced drug seeking are observed after abstinence from intravenous drug or palatable food self-administration. Incubation of craving is susceptible to variation in magnitude as a function of biological and/or the environmental circumstances surrounding the individual. During the last decade, the neurobiological correlates of the modulatory role of biological (sex, age, genetic factors) and environmental factors (environmental enrichment and physical exercise, sleep architecture, acute and chronic stress, abstinence reinforcement procedures) on incubation of drug craving has been investigated. In this review, we summarized the behavioral procedures adopted, the key underlying neurobiological correlates and clinical implications of these studies.
Collapse
Affiliation(s)
- Marco Venniro
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, USA.
| | - Ingrid Reverte
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Leslie A Ramsey
- Behavioral Neuroscience Research Branch, Intramural Research Program, Baltimore NIDA, NIH, USA
| | - Kimberly M Papastrat
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, USA
| | - Ginevra D'Ottavio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Xuan Li
- Department of Psychology, University of Maryland College Park, College Park, USA.
| | - Jeffrey W Grimm
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, USA.
| | - Daniele Caprioli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| |
Collapse
|
41
|
Fredriksson I, Tsai PJ, Shekara A, Duan Y, Applebey SV, Lu H, Bossert JM, Shaham Y, Yang Y. Orbitofrontal cortex and dorsal striatum functional connectivity predicts incubation of opioid craving after voluntary abstinence. Proc Natl Acad Sci U S A 2021; 118:e2106624118. [PMID: 34675078 PMCID: PMC8639358 DOI: 10.1073/pnas.2106624118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
We recently introduced a rat model of incubation of opioid craving after voluntary abstinence induced by negative consequences of drug seeking. Here, we used resting-state functional MRI to determine whether longitudinal functional connectivity changes in orbitofrontal cortex (OFC) circuits predict incubation of opioid craving after voluntary abstinence. We trained rats to self-administer for 14 d either intravenous oxycodone or palatable food. After 3 d, we introduced an electric barrier for 12 d that caused cessation of reward self-administration. We tested the rats for oxycodone or food seeking under extinction conditions immediately after self-administration training (early abstinence) and after electric barrier exposure (late abstinence). We imaged their brains before self-administration and during early and late abstinence. We analyzed changes in OFC functional connectivity induced by reward self-administration and electric barrier-induced abstinence. Oxycodone seeking was greater during late than early abstinence (incubation of oxycodone craving). Oxycodone self-administration experience increased OFC functional connectivity with dorsal striatum and related circuits that was positively correlated with incubated oxycodone seeking. In contrast, electric barrier-induced abstinence decreased OFC functional connectivity with dorsal striatum and related circuits that was negatively correlated with incubated oxycodone seeking. Food seeking was greater during early than late abstinence (abatement of food craving). Food self-administration experience and electric barrier-induced abstinence decreased or maintained functional connectivity in these circuits that were not correlated with abated food seeking. Opposing functional connectivity changes in OFC with dorsal striatum and related circuits induced by opioid self-administration versus voluntary abstinence predicted individual differences in incubation of opioid craving.
Collapse
Affiliation(s)
- Ida Fredriksson
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
- Center for Social and Affective Neuroscience, Linköping University, Linköping 581 83, Sweden
| | - Pei-Jung Tsai
- Neuroimaging Research Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Aniruddha Shekara
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Ying Duan
- Neuroimaging Research Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Sarah V Applebey
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Hanbing Lu
- Neuroimaging Research Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Jennifer M Bossert
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Yavin Shaham
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224;
| | - Yihong Yang
- Neuroimaging Research Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| |
Collapse
|
42
|
Garcia EJ, Cain ME. Isolation housing elevates amphetamine seeking independent of nucleus accumbens glutamate receptor adaptations. Eur J Neurosci 2021; 54:6382-6396. [PMID: 34481424 PMCID: PMC9869284 DOI: 10.1111/ejn.15441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/26/2023]
Abstract
Overdose death rates caused by psychostimulants have increased by 22.3% annually from 2008 to 2017. Cue-evoked drug craving progressively increases and contributes to perpetual relapse. Preclinical models have determined that glutamate receptor plasticity within the nucleus accumbens (NAc) drives amplified cue-evoked drug seeking after prolonged abstinence (>40 days). Isolated condition (IC) rearing increases cocaine and amphetamine (AMP) self-administration and cue-induced reinstatement. We tested the hypothesis that housing in the IC will augment AMP seeking after short and prolonged abstinence from AMP self-administration when compared with rats reared in the enrichment condition (EC). EC and IC male rats acquired stable AMP or SAL self-administration and were tested in a cue-induced AMP-seeking test after 1 and 40 days of abstinence. After the seeking test, the whole NAc was extracted and prepared for western blot analysis. Results indicate that IC rats had more active lever presses during a brief extinction interval and during the cue-induced seeking test. After 40 days of abstinence, IC rats had more active lever presses than EC rats during the cue-induced seeking test. Western blots indicated that the expression ratio between GluA1:mGlur5 was reduced only in IC-AMP-trained rats and the ratio between GluA1:mGlur1 was positively correlated with AMP seeking after prolonged abstinence in IC-AMP rats. These results indicate that IC housing engenders a vulnerable phenotype prone to persistent AMP seeking. The behavioural momentum of this vulnerable phenotype is further revealed when AMP-associated cues are presented following prolonged abstinence.
Collapse
Affiliation(s)
- Erik J. Garcia
- Department of Psychological Sciences Kansas State University Manhattan Kansas USA
| | - Mary E. Cain
- Department of Psychological Sciences Kansas State University Manhattan Kansas USA
| |
Collapse
|
43
|
Bossert JM, Townsend EA, Altidor LKP, Fredriksson I, Shekara A, Husbands S, Sulima A, Rice KC, Banks ML, Shaham Y. Sex differences in the effect of chronic delivery of the buprenorphine analogue BU08028 on heroin relapse and choice in a rat model of opioid maintenance. Br J Pharmacol 2021; 179:227-241. [PMID: 34505281 DOI: 10.1111/bph.15679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Maintenance treatment with opioid agonists (buprenorphine, methadone) decreases opioid use and relapse. We recently modelled maintenance treatment in rats and found that chronic delivery of buprenorphine or the μ opioid receptor partial agonist TRV130 decreased relapse to oxycodone seeking and taking. Here, we tested the buprenorphine analogue BU08028 on different heroin relapse-related measures and heroin versus food choice. EXPERIMENTAL APPROACH For relapse assessment, we trained male and female rats to self-administer heroin (6 h·day-1 , 14 days) in Context A and then implanted osmotic minipumps containing BU08028 (0, 0.03 or 0.1 mg·kg-1 ·d-1 ). Effects of chronic BU08028 delivery were tested on (1) incubation of heroin-seeking in a non-drug Context B, (2) extinction responding reinforced by heroin-associated discrete cues in Context B, (3) reinstatement of heroin-seeking induced by re-exposure to Context A and (4) re-acquisition of heroin self-administration in Context A. For choice assessment, we tested the effect of chronic BU08028 delivery on heroin versus food choice. KEY RESULTS Chronic BU08028 delivery decreased incubation of heroin seeking. Unexpectedly, BU08028 increased re-acquisition of heroin self-administration selectively in females. Chronic BU08028 had minimal effects on context-induced reinstatement and heroin versus food choice in both sexes. Finally, exploratory post hoc analyses suggest that BU08028 decreased extinction responding selectively in males. CONCLUSIONS AND IMPLICATIONS Chronic BU08028 delivery had both beneficial and detrimental, sex-dependent, effects on different triggers of heroin relapse and minimal effects on heroin choice in both sexes. Results suggest that BU08028 would not be an effective opioid maintenance treatment in humans.
Collapse
Affiliation(s)
| | - E Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Ida Fredriksson
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland, USA
| | - Aniruddha Shekara
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland, USA
| | - Stephen Husbands
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Agnieszka Sulima
- Molecular Targets and Medications Discovery Branch, IRP/NIDA/NIH, Baltimore, Maryland, USA.,Chemical Biology Research Branch, IRP/NIAAA/NIH, Rockville, Maryland, USA
| | - Kenner C Rice
- Molecular Targets and Medications Discovery Branch, IRP/NIDA/NIH, Baltimore, Maryland, USA.,Chemical Biology Research Branch, IRP/NIAAA/NIH, Rockville, Maryland, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Barrera ED, Loughlin L, Greenberger S, Ewing S, Ranaldi R, Ranaldi R. Environmental enrichment reduces heroin seeking following incubation of craving in both male and female rats. Drug Alcohol Depend 2021; 226:108852. [PMID: 34225225 PMCID: PMC8355213 DOI: 10.1016/j.drugalcdep.2021.108852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/24/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Contemporary treatments for heroin use disorder demonstrate only limited efficacy when the goals are long term abstinence and prevention of relapse. We have demonstrated that environmental enrichment (EE) reduces cue-induced heroin reinstatement in male rats. The present study is an attempt to extend the "anti-relapse" effects of EE to female rats and to periods where incubation of craving is hypothesized to occur. METHODS This experiment implemented a 3-phase procedure. In Phase 1, male and female rats were trained to self-administer heroin for 15 days. Phase 2 consisted of a 3- or 15-day forced abstinence (FA) period. In Phase 3 half of the rats were placed into EE and the other half in non-EE housing and subsequently tested for responding in extinction (no heroin or cues) for 15 days followed by a cue-induced reinstatement test. RESULTS We found that rats in the 15 days FA condition showed significantly enhanced drug seeking during extinction, irrespective of sex. We also found that EE significantly reduced this effect. During reinstatement, EE significantly reduced drug seeking in male and female rats and in both 3- and 15-day FA groups. CONCLUSIONS EE, with or without prolonged FA, effectively reduced heroin seeking in male and female rats. These findings indicate that EE can reduce drug-seeking in males and females and when putative incubation of craving (i.e., prolonged abstinence period) has occurred and suggest that it may aid in the development of future long-term behavioral treatments for individuals at risk for heroin relapse.
Collapse
Affiliation(s)
| | | | | | | | - Robert Ranaldi
- Department of Psychology, Queens College, the City University of New York, Flushing, NY, United States.
| | - Robert Ranaldi
- Department of Psychology, Queens College, the City University of New York, Flushing, NY, United States.
| |
Collapse
|
45
|
Zhu H, Zhuang D, Lou Z, Lai M, Fu D, Hong Q, Liu H, Zhou W. Akt and its phosphorylation in nucleus accumbens mediate heroin-seeking behavior induced by cues in rats. Addict Biol 2021; 26:e13013. [PMID: 33619816 PMCID: PMC8459226 DOI: 10.1111/adb.13013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023]
Abstract
Akt is initially identified as one of the downstream targets of phosphatidylinositol-3 kinase (PI3K) and is involved in morphine reward and tolerance. However, whether phospholyration of Akt (p-Akt) mediates heroin relapse remains unclear. Here, we aimed to explore the role of p-Akt in the nucleus accumbens (NAc) in cue-induced heroin-seeking behaviors after withdrawal. First, rats were trained to self-administer heroin for 14 days, after which we assessed heroin-seeking behaviors induced by a context cue (CC) or by discrete conditioned cues (CS) after 1 day or 14 days of withdrawal. We found that the active responses induced by CC or CS after 14 days of withdrawal were higher than those after 1 day of withdrawal. Meanwhile, the expression of p-Akt in the NAc was also greatest when rats were exposed to the CS after 14 days of withdrawal. Additionally, a microinjection of LY294002, an inhibitor of PI3K, into the NAc inhibited the CS-induced heroin-seeking behaviors after 14 days of withdrawal, paralleling the decreased levels of p-Akt in the NAc. Finally, Akt1 or β-arrestin 2 was downregulated via a lentiviral injection to assess the effect on heroin seeking after 14 days of withdrawal. CS-induced heroin-seeking behavior was inhibited by downregulation of Akt1, but not β-arrestin 2, in the NAc. These data demonstrate that Akt phosphorylation in the NAc may play an important role in the incubation of heroin-seeking behavior, suggesting that the PI3K/Akt pathways may be involved in the process of heroin relapse and addiction.
Collapse
Affiliation(s)
- Huaqiang Zhu
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, School of Medicine Ningbo University China
| | - Dingding Zhuang
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, School of Medicine Ningbo University China
| | - Zhongze Lou
- Department of Psychosomatic Medicine, Ningbo First Hospital Ningbo Hospital of Zhejiang University China
| | - Miaojun Lai
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, School of Medicine Ningbo University China
| | - Dan Fu
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, School of Medicine Ningbo University China
| | - Qingxiao Hong
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, School of Medicine Ningbo University China
| | - Huifen Liu
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, School of Medicine Ningbo University China
| | - Wenhua Zhou
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, School of Medicine Ningbo University China
| |
Collapse
|
46
|
Xu W, Hong Q, Lin Z, Ma H, Chen W, Zhuang D, Zhu H, Lai M, Fu D, Zhou W, Liu H. Role of nucleus accumbens microRNA-181a and MeCP2 in incubation of heroin craving in male rats. Psychopharmacology (Berl) 2021; 238:2313-2324. [PMID: 33932163 DOI: 10.1007/s00213-021-05854-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
RATIONALE Epigenetic regulation has been implicated in the incubation of drug craving (the time-dependent increase in drug seeking after prolonged withdrawal from drug self-administration). There is little information available on the role of microRNAs in incubation of heroin craving. OBJECTIVE This study aimed to investigate the roles and mechanisms of miR-181a and methyl CpG binding protein 2 (MeCP2) in the nucleus accumbens (NAc) in incubation of heroin seeking. METHODS MiRNA sequencing was used to predict potential miRNAs, and miRNA profiles were performed in the NAc after 1 day or 14 days after withdrawal from heroin self-administration. Following 14 days of heroin self-administration, rats were injected of lentiviral vectors into the NAc and evaluated for the effects of overexpression of miR-181a or knockdown of MeCP2 on non-reinforced heroin seeking after 14 withdrawal days. RESULTS Lever presses during the heroin-seeking tests were higher after 14 withdrawal days than after 1 day (incubation of heroin craving). miR-181a expression in NAc was lower after 14 withdrawal days than after 1 day, and meCP2 expression in NAc was higher after 14 days than after 1 day. Luciferase activity assay showed that the 3'UTR of MeCP2 is directly regulated by miR-181a. Overexpression of miR-181a in NAc decreased heroin seeking after 14 withdrawal days and decreased MeCP2 mRNA and protein expression. Knockdown of MeCP2 expression in NAc by LV-siRNA-MeCP2 also decreased heroin seeking after 14 withdrawal days. CONCLUSIONS Results indicate that incubation of heroin craving is mediated in part by time-dependent decreases in NAc miR181a expression that leads to time-dependent increases in MeCP2 expression. Our data suggest that NAc miR-181a and MeCP2 contribute to incubation of heroin craving.
Collapse
Affiliation(s)
- Wenjin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Qingxiao Hong
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Zi Lin
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Hong Ma
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, People's Republic of China
| | - Weisheng Chen
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Dingding Zhuang
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Huaqiang Zhu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Miaojun Lai
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Dan Fu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China.
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, 315010, Zhejiang, People's Republic of China.
| | - Huifen Liu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China.
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, 315010, Zhejiang, People's Republic of China.
| |
Collapse
|
47
|
Zanda MT, Floris G, Daws SE. Drug-associated cues and drug dosage contribute to increased opioid seeking after abstinence. Sci Rep 2021; 11:14825. [PMID: 34290298 PMCID: PMC8295307 DOI: 10.1038/s41598-021-94214-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with opioid use disorder experience high rates of relapse during recovery, despite successful completion of rehabilitation programs. A key factor contributing to this problem is the long-lasting nature of drug-seeking behavior associated with opioid use. We modeled this behavior in a rat drug self-administration paradigm in which drug-seeking is higher after extended abstinence than during the acute abstinence phase. The goal of this study was to determine the contribution of discrete or discriminative drug cues and drug dosage to time-dependent increases in drug-seeking. We examined heroin-seeking after 2 or 21 days of abstinence from two different self-administration cue-context environments using high or low doses of heroin and matched animals for their drug intake history. When lower dosages of heroin are used in discriminative or discrete cue protocols, drug intake history contributed to drug-seeking after abstinence, regardless of abstinence length. Incubation of opioid craving at higher dosages paired with discrete drug cues was not dependent on drug intake. Thus, interactions between drug cues and drug dosage uniquely determined conditions permissible for incubation of heroin craving. Understanding factors that contribute to long-lasting opioid-seeking can provide essential insight into environmental stimuli and drug-taking patterns that promote relapse after periods of successful abstinence.
Collapse
Affiliation(s)
- Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, 3500 N Broad St, MERB/ Rm 847, Philadelphia, PA, 19140, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Gabriele Floris
- Center for Substance Abuse Research, Temple University, 3500 N Broad St, MERB/ Rm 847, Philadelphia, PA, 19140, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, 3500 N Broad St, MERB/ Rm 847, Philadelphia, PA, 19140, USA.
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Fredriksson I, Venniro M, Reiner DJ, Chow JJ, Bossert JM, Shaham Y. Animal Models of Drug Relapse and Craving after Voluntary Abstinence: A Review. Pharmacol Rev 2021; 73:1050-1083. [PMID: 34257149 PMCID: PMC11060480 DOI: 10.1124/pharmrev.120.000191] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Relapse to drug use during abstinence is a defining feature of addiction. During the last several decades, this clinical scenario has been studied at the preclinical level using classic relapse/reinstatement models in which drug seeking is assessed after experimenter-imposed home-cage forced abstinence or extinction of the drug-reinforced responding in the self-administration chambers. To date, however, results from studies using rat relapse/reinstatement models have yet to result in Food and Drug Administration-approved medications for relapse prevention. The reasons for this state of affairs are complex and multifaceted, but one potential reason is that, in humans, abstinence is often self-imposed or voluntary and occurs either because the negative consequences of drug use outweigh the drug's rewarding effects or because of the availability of nondrug alternative rewards that are chosen over the drug. Based on these considerations, we and others have recently developed rat models of relapse after voluntary abstinence, achieved either by introducing adverse consequences to drug taking (punishment) or seeking (electric barrier) or by providing mutually exclusive choices between the self-administered drug and nondrug rewards (palatable food or social interaction). In this review, we provide an overview of these translationally relevant relapse models and discuss recent neuropharmacological findings from studies using these models. We also discuss sex as a biological variable, future directions, and clinical implications of results from relapse studies using voluntary abstinence models. Our main conclusion is that the neuropharmacological mechanisms controlling relapse to drug seeking after voluntary abstinence are often different from the mechanisms controlling relapse after home-cage forced abstinence or reinstatement after extinction. SIGNIFICANCE STATEMENT: This review describes recently developed rat models of relapse after voluntary abstinence, achieved either by introducing adverse consequences to drug taking or seeking or by providing mutually exclusive choices between the self-administered drug and nondrug rewards. This review discusses recent neuropharmacological findings from studies using these models and discusses future directions and clinical implications.
Collapse
Affiliation(s)
- Ida Fredriksson
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Marco Venniro
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - David J Reiner
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Jonathan J Chow
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Jennifer M Bossert
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Yavin Shaham
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| |
Collapse
|
49
|
Altshuler RD, Garcia KT, Li X. Incubation of Oxycodone Craving Following Adult-Onset and Adolescent-Onset Oxycodone Self-Administration in Male Rats. Front Behav Neurosci 2021; 15:697509. [PMID: 34248518 PMCID: PMC8262493 DOI: 10.3389/fnbeh.2021.697509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Relapse is a major obstacle to curb the ongoing epidemic of prescription opioid abuse. We and others previously demonstrated that oxycodone seeking in adult rats progressively increases after abstinence from oxycodone self-administration (incubation of oxycodone craving). In humans, the onset of oxycodone use in adolescents may increase individuals' vulnerability to later opioid addiction. However, little is known about incubation of oxycodone craving after adolescent-onset oxycodone self-administration in rats. In the first study, we trained single-housed adolescent (postnatal day 35 at start) and adult (postnatal day 77 at start) male Sprague-Dawley rats to self-administer oxycodone (0.1 mg/kg/infusion, 6 h/day for 10 days) and then tested oxycodone relapse on both abstinence day 1 and day 15. Given that social experience is critical for neurobehavioral development in adolescents, we performed the second study using group-housed adolescent and adult rats. In both studies, we observed no age differences in oxycodone self-administration and incubated oxycodone seeking on abstinence day 15. However, on abstinence day 1, we observed decreased oxycodone seeking in adolescents compared with adults. This pattern of data led to elevated incubation slopes in adolescent rats compared with adult rats. Finally, group-housed rats exhibited attenuated oxycodone seeking compared with single-housed rats on abstinence day 15, but not on day 1. Taken together, these data suggest that adolescents may be resistant to oxycodone relapse during early abstinence, but this resistance dissipates quickly during the transition between adolescent and young adulthood. In addition, group-housing plays a protective role against incubated oxycodone craving.
Collapse
Affiliation(s)
| | | | - Xuan Li
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
50
|
Nall RW, Heinsbroek JA, Nentwig TB, Kalivas PW, Bobadilla AC. Circuit selectivity in drug versus natural reward seeking behaviors. J Neurochem 2021; 157:1450-1472. [PMID: 33420731 PMCID: PMC8178159 DOI: 10.1111/jnc.15297] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 12/23/2022]
Abstract
Substance use disorder (SUD) is characterized, in part by behavior biased toward drug use and away from natural sources of reward (e.g., social interaction, food, sex). The neurobiological underpinnings of SUDs reveal distinct brain regions where neuronal activity is necessary for the manifestation of SUD-characteristic behaviors. Studies that specifically examine how these regions are involved in behaviors motivated by drug versus natural reward allow determinations of which regions are necessary for regulating seeking of both reward types, and appraisals of novel SUD therapies for off-target effects on behaviors motivated by natural reward. Here, we evaluate studies directly comparing regulatory roles for specific brain regions in drug versus natural reward. While it is clear that many regions drive behaviors motivated by all reward types, based on the literature reviewed we propose a set of interconnected regions that become necessary for behaviors motivated by drug, but not natural rewards. The circuitry is selectively necessary for drug seeking includes an Action/Reward subcircuit, comprising nucleus accumbens, ventral pallidum, and ventral tegmental area, a Prefrontal subcircuit comprising prelimbic, infralimbic, and insular cortices, a Stress subcircuit comprising the central nucleus of the amygdala and the bed nucleus of the stria terminalis, and a Diencephalon circuit including lateral hypothalamus. Evidence was mixed for nucleus accumbens shell, insular cortex, and ventral pallidum. Studies for all other brain nuclei reviewed supported a necessary role in regulating both drug and natural reward seeking. Finally, we discuss emerging strategies to further disambiguate the necessity of brain regions in drug- versus natural reward-associated behaviors.
Collapse
Affiliation(s)
- Rusty W. Nall
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Todd B. Nentwig
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- These authors share senior authorship
| | - Ana-Clara Bobadilla
- School of Pharmacy, University of Wyoming, Laramie, WY, USA
- These authors share senior authorship
| |
Collapse
|