1
|
Rockel SP, Marks RGH, Kerpen K, Jochmann MA, Schmidt TC. Two-Dimensional Liquid Chromatography-Isotope Ratio Mass Spectrometry Opens New Possibilities in the Field of Compound-Specific Stable Isotope Analysis. Anal Chem 2025; 97:2991-2997. [PMID: 39869097 DOI: 10.1021/acs.analchem.4c05956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible. In our study, we developed a two-dimensional (2D) LC-IRMS method that, for the first time, enables the use of organic-containing eluents in an LC-IRMS setting. Initial experiments with caffeine were performed using a sample loop modulator with 20% methanol in the mobile phase of the first dimension, while separating the organic fraction from the analyte in the second dimension. Comparing results with one-dimensional (1D) LC-IRMS methods showed high precision with δ13C values in 2D measurements (-34.98 ± 0.04 ‰) closely matching 1D results (-34.95 ± 0.12 ‰). In the next step, incorporation of an at-column dilution (ACD) modulator allowed for the successful use of methanol concentrations up to 40% in the first dimension, with the ACD modulator effectively mitigating both peak fronting and carbon background interference, without losing any precision or accuracy of the measurements (δ13CCaffeine = -34.92 ± 0.03 ‰). All developed methods showed a method detection limit lower than 5 mg of carbon L-1 (mgC L-1), which is a major improvement compared with previous studies on caffeine analysis with LC-IRMS. This proof-of-concept study on 2D-LC-IRMS opens vast new possibilities for future CSIA research across diverse fields, including environmental science, pharmaceuticals, and food chemistry.
Collapse
Affiliation(s)
- Sarah P Rockel
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| | - Robert G H Marks
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Klaus Kerpen
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| | - Maik A Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| |
Collapse
|
2
|
Arshad Z, Shin KH, Hur J. Utilization and applications of stable isotope analysis for wastewater treatment systems: A review. ENVIRONMENTAL RESEARCH 2025; 264:120347. [PMID: 39528035 DOI: 10.1016/j.envres.2024.120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Stable isotopic analysis (SIA), traditionally crucial in ecological and geochemical studies, has recently expanded its applications to include wastewater management among other fields. This method is instrumental in verifying natural attenuation processes and deepening understanding of operations within engineering systems, such as groundwater, drinking water, and wastewater treatment. This review explores recent advancements in SIA, emphasizing its significance and potential applications in wastewater treatment. We highlight how this analysis can trace various sources within wastewater treatment processes, elucidate the mechanisms responsible for organic matter and nutrient removal in biological treatments, and facilitate the analysis of microbial communities. The review discusses a wide range of isotopic analytical methods, from bulk analysis and compound-specific approaches, covering sample preparation and extraction techniques. We also examine advanced tools like gas chromatography - isotope ratio mass spectrometer (IRMS) and liquid chromatography-IRMS which enhance the accuracy of source identification and address the limitations of bulk analysis. Literature shows a positive correlation between δ15N assimilation in activated sludge and nitrogen removal performance in reactors. Additionally, the review assesses the role of SIA in identifying active microbes involved in the degradation of specific pollutants in biological wastewater treatment. Finally, we discuss current limitations of SIA in wastewater treatment and propose potential research directions to broaden its applicability.
Collapse
Affiliation(s)
- Zeshan Arshad
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
3
|
Weiwei Z, Songsong C, Yongzhi W, Ru Z, Chengcheng B, Jinpeng Y, Limin M. The soil-air interfacial migration process of volatile PFAS at the contaminated sites: Evidence from stable carbon isotopes with CSIA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125111. [PMID: 39419467 DOI: 10.1016/j.envpol.2024.125111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Volatile per- and polyfluoroalkyl substances (PFAS) are prone to transport among various environmental media, with the soil-air interfacial migration process being an important pathway that significantly influences their environmental fate. To assess the migration and transformations of target volatile PFAS at contaminated site using compound-specific stable isotope analysis (CSIA), it is necessary to understand the isotopic fractionation that occurs during their transfer from soil to air. We have established methods for pre-treatment and GC/CSIA analysis methods of target volatile PFAS in soil and air samples and ensured the accuracy of carbon isotope analysis. GC/IRMS δ13C measurements showed optimal precision at instrumental response above 1.35-2.75 Vs, with recommended minimum on-column C levels of 1.67-5.00 nmol for target volatile PFAS. Stable carbon isotope fractionation factors related to the soil-air interfacial migration process for target volatile PFAS were determined by performing laboratory simulations. The observed εsoil-air values are all negative, suggesting that the soil-air interfacial migration process for target volatile PFAS is kinetic fractionation, the removal of molecules containing lighter isotopes. By comparing the simulated and experimentally observed δ13C (‰) values of target volatile PFAS, we found consistent trends in the soil and inverse trends in the air. These δ13C (‰) values and the related isotope fractionation model provide valuable insights into the isotopic behavior of target volatile PFAS during soil-air interfacial migration process, aiding in the assessment of their environmental fate.
Collapse
Affiliation(s)
- Zhang Weiwei
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Chen Songsong
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Zhejiang Marine Fisheries Research Institute, Zhejiang Ocean University, Zhejiang 316022, PR China
| | - Wang Yongzhi
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Zhang Ru
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Bu Chengcheng
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yu Jinpeng
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Ma Limin
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
4
|
Badalge NDK, Choi NE, Shin KH, Cho Y, Kim S, Oh NH, Hur J. Utilizing fluorescence indicators to apportion organic sources in estuarine/coastal sediments: A comparison with a stable isotopic model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177086. [PMID: 39461524 DOI: 10.1016/j.scitotenv.2024.177086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Coastal sediments accumulate organic matter (OM) from diverse sources, including local anthropogenic pollution. Effective source tracking of sediment OM is crucial for pollution source management. This study compares fluorescence proxies and stable isotopic ratios as tracers for sediment OM in Gangu Port, Korea. An optimized extraction method using distilled water for 0.5 h yielded distinct fluorescence signatures. The humification index (HIX) and protein-like component (C3%) showed ideal mixing behavior with two end-members (fishery market sediment and algae). A Bayesian end-member mixing analysis model revealed that agricultural soil is the prevalent contributor to sediments, aligning with land use patterns. The fluorescence-based model showed higher sensitivity to anthropogenic influences compared to traditional stable isotope ratios. The results strongly agreed with isotope ratio-based predictions, exhibiting a positive correlation (p < 0.05) at 8 out of 14 sites. This study highlights the potential of fluorescence-based tracking to complement or replace conventional stable isotope methods.
Collapse
Affiliation(s)
| | - Na Eun Choi
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, South Korea.
| | - Yusang Cho
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, South Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Neung-Hwan Oh
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul 08826, South Korea; Environmental Planning Institute, Seoul National University, Seoul 08826, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
5
|
Nassery HR, Shahsavari AA, Vogt C, Kümmel S, Kuntze K, Khodaei K, Nikpeyman Y, Richnow HH. Source differentiation of BTEX compounds in groundwater contaminated due to refinery activities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121893. [PMID: 39025004 DOI: 10.1016/j.jenvman.2024.121893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/22/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
This study aims to identify sources of groundwater contamination in a refinery area using integrated compound-specific stable isotope analysis (CSIA), oil fingerprinting techniques, hydrogeological data, and distillation analysis. The investigations focused on determination of the origin of benzene, toluene, ethylbenzene, and xylenes (BTEX), and aliphatic hydrocarbons as well. Groundwater and floating oil samples were collected from extraction wells for analysis. Results indicate presence of active leaks in both the northern and southern zones. In the northern zone, toluene was found to primarily originate from oil products like aviation turbine kerosene (ATK or aviation fuel), kerosene, regular gasoline, and diesel fuel. Additionally, stable isotope ratios of carbon and hydrogen for ethylbenzene, o-xylene (ortho xylene) and p-xylene (para xylene) in zone A suggested the pollution originated from gasoline within the northern zone. The origin of super gasoline (with higher octane) identified in southern zone using δ13C and δ2H values of toluene in the floating oil and groundwater samples. Further, biodegradation of toluene likely occurred in southern zone according to δ13C and δ2H. The findings underscore the critical importance of integrating CSIA and fingerprinting techniques to effectively address the challenges of source identification and relying solely on each method independently is insufficient. Accordingly, comparing the GC-MS results of floating oil samples with ATK and jet fuel (JP4) standards can be effectively utilized for source differentiation. However, this method showed no practical application to distinguish different types of diesel or gasoline. The accuracy and reliability of source identification of BTEX compounds may significantly improve when hydrogeological data incorporates with stable isotopes analysis. Additionally, the results of this study will elevate the procedures for fuel-related contaminants source identification of the polluted groundwater that is crucial to develop effective remediation strategies.
Collapse
Affiliation(s)
- Hamid Reza Nassery
- Department of Minerals and Groundwater Resources, School of Earth Sciences, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Shahsavari
- Research Institute of Applied Sciences (RIAS), ACECR, Shahid Beheshti University, Tehran, Iran.
| | - Carsten Vogt
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15 04318, Leipzig, Germany
| | - Steffen Kümmel
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15 04318, Leipzig, Germany
| | - Kevin Kuntze
- Isodetect GmbH, Deutscher Platz 5b, 04103, Leipzig, Germany
| | - Kamal Khodaei
- Research Institute of Applied Sciences (RIAS), ACECR, Shahid Beheshti University, Tehran, Iran
| | - Yaser Nikpeyman
- Department of Minerals and Groundwater Resources, School of Earth Sciences, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
6
|
van der Waals MJ, Thornton SF, Rolfe SA, Rock L, Smith JWN, Bosma TNP, Gerritse J. Potential of stable isotope analysis to deduce anaerobic biodegradation of ethyl tert-butyl ether (ETBE) and tert-butyl alcohol (TBA) in groundwater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16150-16163. [PMID: 38319419 PMCID: PMC10894111 DOI: 10.1007/s11356-024-32109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Understanding anaerobic biodegradation of ether oxygenates beyond MTBE in groundwater is important, given that it is replaced by ETBE as a gasoline additive in several regions. The lack of studies demonstrating anaerobic biodegradation of ETBE, and its product TBA, reflects the relative resistance of ethers and alcohols with a tertiary carbon atom to enzymatic attack under anoxic conditions. Anaerobic ETBE- or TBA-degrading microorganisms have not been characterized. Only one field study suggested anaerobic ETBE biodegradation. Anaerobic (co)metabolism of ETBE or TBA was reported in anoxic microcosms, indicating their biodegradation potential in anoxic groundwater systems. Non-isotopic methods, such as the detection of contaminant loss, metabolites, or ETBE- and TBA-degrading bacteria are not sufficiently sensitive to track anaerobic biodegradation in situ. Compound- and position-specific stable isotope analysis provides a means to study MTBE biodegradation, but isotopic fractionation of ETBE has only been studied with a few aerobic bacteria (εC -0.7 to -1.7‰, εH -11 to -73‰) and at one anoxic field site (δ2H-ETBE +14‰). Similarly, stable carbon isotope enrichment (δ13C-TBA +6.5‰) indicated TBA biodegradation at an anoxic field site. CSIA and PSIA are promising methods to detect anaerobic ETBE and TBA biodegradation but need to be investigated further to assess their full potential at field scale.
Collapse
Affiliation(s)
- Marcelle J van der Waals
- Unit Subsurface and Groundwater Systems, Deltares, Daltonlaan 600, Utrecht, 3484 BK, The Netherlands
- Present address: KWR Water Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, The Netherlands
| | - Steven F Thornton
- Department of Civil and Structural Engineering, University of Sheffield, Mappin St, Sheffield, S1 3JD, UK
| | - Stephen A Rolfe
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Luc Rock
- Shell Global Solutions International BV, Carel van Bylandtlaan 30, The Hague, 2596 HR, The Netherlands
- Present address: Shell Global Solutions (Canada) Inc, 4000 - 500 Centre Street SE, Calgary, AB, T2G 1A6, Canada
| | - Jonathan W N Smith
- Shell Global Solutions (UK) Ltd, Shell Centre, York Road, London, SE1 7NA, UK
| | - Tom N P Bosma
- Unit Subsurface and Groundwater Systems, Deltares, Daltonlaan 600, Utrecht, 3484 BK, The Netherlands
| | - Jan Gerritse
- Unit Subsurface and Groundwater Systems, Deltares, Daltonlaan 600, Utrecht, 3484 BK, The Netherlands.
| |
Collapse
|
7
|
Lan Y, Gao X, Xu H, Li M. 20 years of polybrominated diphenyl ethers on toxicity assessments. WATER RESEARCH 2024; 249:121007. [PMID: 38096726 DOI: 10.1016/j.watres.2023.121007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) serve as brominated flame retardants which continue to receive considerable attention because of their persistence, bioaccumulation, and potential toxicity. Although PBDEs have been restricted and phased out, large amounts of commercial products containing PBDEs are still in use and discarded annually. Consequently, PBDEs added to products can be released into our surrounding environments, particularly in aquatic systems, thus posing great risks to human health. Many studies and reviews have described the possible toxic effects of PBDEs, while few studies have comprehensively summarized and analyzed the global trends of their toxicity assessment. Therefore, this study utilizes bibliometrics to evaluate the worldwide scientific output of PBDE toxicity and analyze the hotspots and future trends of this field. Firstly, the basic information including the most contributing countries/institutions, journals, co-citations, influential authors, and keywords involved in PBDE toxicity assessment will be visualized. Subsequently, the potential toxicity of PBDE exposure to diverse systems, such as endocrine, reproductive, neural, and gastrointestinal tract systems, and related toxic mechanisms will be discussed. Finally, we conclude this review by outlining the current challenges and future perspectives in environmentally relevant PBDE exposure, potential carriers for PBDE transport, the fate of PBDEs in the environment and human bodies, advanced stem cell-derived organoid models for toxicity assessment, and promising omics technologies for obtaining toxic mechanisms. This review is expected to offer systematical insights into PBDE toxicity assessments and facilitate the development of PBDE-based research.
Collapse
Affiliation(s)
- Yingying Lan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xue Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
8
|
Kim N, Jo J, Lee J, Lee GH, Yu BY, Pyo H, Lee J, Choi J. Environmental forensics using stable and radioactive isotopes in naturally attenuated soil after phenol-leakage accidents. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132007. [PMID: 37527592 DOI: 10.1016/j.jhazmat.2023.132007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023]
Abstract
Phenol is a carcinogenic and hazardous chemical used in multiple industries and poses a high risk of chemical spills into the environment. To date, environmental forensic research has not focused on chemically remediated soils. In this study, an advanced environmental forensic analysis was performed on microbial communities and breakdown products of phenol, carbon stable isotopes, and radioactive isotopes in phenol-contaminated soil. As indicators of phenol-spill accidents after natural attenuation, higher δ13C levels and lower 14C/12C ratios were observed in phenol-contaminated soil compared with uncontaminated soil. In addition, 16s rRNA gene analysis revealed that phenol-breakdown products identified by gas chromatography-mass spectrometry and the presence of soil bacteria, such as Nocardioides, Faecalibacterium, and Bacteroides, were indicators of phenol-leakage accidents. Therefore, the proposed environmental forensic strategy is a valuable tool for identifying the location of previously occurring chemical accidents and estimating the ecological impact after the natural attenuation of contaminated soils.
Collapse
Affiliation(s)
- Naeun Kim
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea
| | - Jungman Jo
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jinkyung Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Gwan-Ho Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Byung-Yong Yu
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Heesoo Pyo
- International Advanced Analysis Institute, B-339, 140 Tongil-ro, Deogyang-gu, Goyang-si, Gyeonggi-do 10594, Republic of Korea
| | - Jeongae Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Jaeyoung Choi
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Junginger T, Payraudeau S, Imfeld G. Emissions of the Urban Biocide Terbutryn from Facades: The Contribution of Transformation Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14319-14329. [PMID: 37712441 DOI: 10.1021/acs.est.2c08192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Biocides are added to facade paints and renders to prevent algal and fungal growth. The emissions of biocides and their transformation products from building facades during wind-driven rain can contaminate surface waters, soil, and groundwater. Although the emissions of biocide transformation products may be higher than those of the parent biocide, knowledge of the emissions of transformation products over time is scarce. Combining field- and lab-scale experiments, we showed that solar irradiation on facades controls the formation of transformation products and can be used with runoff volume to estimate the long-term emissions of terbutryn transformation products from facades. The slow (t1/2 > 90 d) photodegradation of terbutryn in paint under environmental conditions was associated with insignificant carbon isotope fractionation (Δδ13C < 2 ‰) and caused 20% higher emission of terbutryn-sulfoxide than terbutryn in leachates from facades. This indicated continuous terbutryn diffusion toward the paint surface, which favored terbutryn photodegradation and the concomitant formation of transformation products over time. The emissions of terbutryn transformation products (77 mg m-2) in facade leachates, modeled based on irradiation and facade runoff, were predicted to exceed those of terbutryn (42 mg m-2) by nearly 2-fold after eight years. Overall, this study provides a framework to estimate and account for the long-term emissions of biocide transformation products from building facades to improve the assessment of environmental risks.
Collapse
Affiliation(s)
- Tobias Junginger
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| | - Sylvain Payraudeau
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| |
Collapse
|
10
|
San-Emeterio L, Zavala LM, Jiménez-Morillo NT, Pérez-Ramos IM, González-Pérez JA. Effects of Climate Change on Soil Organic Matter C and H Isotope Composition in a Mediterranean Savannah ( Dehesa): An Assessment Using Py-CSIA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13851-13862. [PMID: 37682017 PMCID: PMC10515479 DOI: 10.1021/acs.est.3c01816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/09/2023]
Abstract
Dehesas are Mediterranean agro-sylvo-pastoral systems sensitive to climate change. Extreme climate conditions forecasted for Mediterranean areas may change soil C turnover, which is of relevance for soil biogeochemistry modeling. The effect of climate change on soil organic matter (SOM) is investigated in a field experiment mimicking environmental conditions of global change scenarios (soil temperature increase, +2-3 °C, W; rainfall exclusion, 30%, D; a combination of both, W+D). Pyrolysis-compound-specific isotope analysis (Py-CSIA) is used for C and H isotope characterization of SOM compounds and to forecast trends exerted by the induced climate shift. After 2.5 years, significant δ13C and δ2H isotopic enrichments were detected. Observed short- and mid-chain n-alkane δ13C shifts point to an increased microbial SOM reworking in the W treatment; a 2H enrichment of up to 40‰ of lignin methoxyphenols was found when combining W+D treatments under the tree canopy, probably related to H fractionation due to increased soil water evapotranspiration. Our findings indicate that the effect of the tree canopy drives SOM dynamics in dehesas and that, in the short term, foreseen climate change scenarios will exert changes in the SOM dynamics comprising the biogeochemical C and H cycles.
Collapse
Affiliation(s)
- Layla
M. San-Emeterio
- Instituto
de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas
(IRNAS-CSIC), Av. Reina
Mercedes 10, 41012 Sevilla, Spain
- Universidad
de Sevilla, MED Soil Res. Group,
Dpt. Cristalografía, Mineralogía y Química Agrícola,
Facultad de Química, C/Prof Garcia Gonzalez 1, 41012 Sevilla, Spain
| | - Lorena M. Zavala
- Universidad
de Sevilla, MED Soil Res. Group,
Dpt. Cristalografía, Mineralogía y Química Agrícola,
Facultad de Química, C/Prof Garcia Gonzalez 1, 41012 Sevilla, Spain
| | - Nicasio T. Jiménez-Morillo
- Instituto
de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas
(IRNAS-CSIC), Av. Reina
Mercedes 10, 41012 Sevilla, Spain
- University
of Évora, Instituto Mediterrâneo
para a Agricultura, Ambiente e Desenvolvimento (MED), Núcleo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Ignacio M. Pérez-Ramos
- Instituto
de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas
(IRNAS-CSIC), Av. Reina
Mercedes 10, 41012 Sevilla, Spain
| | - José A. González-Pérez
- Instituto
de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas
(IRNAS-CSIC), Av. Reina
Mercedes 10, 41012 Sevilla, Spain
| |
Collapse
|
11
|
Liu W, Li Y, Jiang W, Xiong Y. Determination of intermolecular and intramolecular isotopic compositions of low-abundance gaseous hydrocarbons using an online hydrocarbon gas concentration method. J Chromatogr A 2023; 1706:464250. [PMID: 37541057 DOI: 10.1016/j.chroma.2023.464250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
The stable isotopic composition of natural gas can be used to identify its origin and source. However, low concentrations of gaseous hydrocarbons in high-mature natural and shale gases hinder accurate determination of their compound- and position-specific isotopic compositions. In this study, an online C2+ hydrocarbon gas concentration system combined with gas chromatography-isotope ratio mass spectrometry (GC-IRMS) or gas chromatography-pyrolysis-gas chromatography-isotope ratio mass spectrometry (GC-Py-GC-IRMS) was developed to determine compound- and position-specific isotopic compositions of low-abundance gaseous hydrocarbons. The lower limit of the gas concentration required for isotope ratio determination using the online concentration system is 0.001% (0.003%) for compound-specific carbon (hydrogen) isotopes and 0.005% for position-specific carbon isotopes and is thus applicable to most natural gas samples. The online concentration technique does not cause significant isotopic fractionation effects, and the combination with GC-IRMS and GC-Py-GC-IRMS can accurately and precisely determine the compound-specific δ13C and δD values of low-content C2+ gaseous hydrocarbons and the position-specific δ13C values (δ13Ca, δ13Cb, and SP values) of propane in low-content propane samples, respectively. The application of our method to two natural gas samples from the Ordos and Sichuan basins further confirms that the online concentration method allows simple and rapid determination of the compound- and position-specific isotopic compositions of low-abundance gaseous hydrocarbons.
Collapse
Affiliation(s)
- Wen Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Wenmin Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Yongqiang Xiong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
12
|
Kuzmin A, Grigoryeva T, Gorshkov A. Assessment of stable carbon isotope 13С/ 12С ratio in phthalates from surface waters using HPLC-HRMS-TOF approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87734-87742. [PMID: 37430082 DOI: 10.1007/s11356-023-28494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
A method for estimating the ratio of stable carbon isotopes 13С/12С in the composition of phthalates from surface water at a trace concentration level is proposed. It is based on the concentration of hydrophobic components of water using an analytical reversed phase HPLC column followed by their gradient separation and detection of eluted phthalates using a high-resolution time-of-flight mass spectrometer (ESI-HRMS-TOF) in the form of molecular ions. The ratio of stable carbon isotopes 13С/12C in phthalates is calculated as a ratio of integrals under the monoisotopic [M+1+H]+ and [M+H]+ peaks. The Δ13C value is calculated relatively to the 13C/12C ratio in commercial DnBP and DEHP phthalates used as standards. The minimal concentration of DnBP and DEHP in water required for a reliable determination of Δ13C value is estimated by the level of ca. 0.2 μg L-1. The technique has been verified during the monitoring of priority phthalates in the waters of Lake Baikal.
Collapse
Affiliation(s)
- Anton Kuzmin
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str, 664033, Irkutsk, Russia.
| | - Tatyana Grigoryeva
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str, 664033, Irkutsk, Russia
| | - Alexander Gorshkov
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str, 664033, Irkutsk, Russia
| |
Collapse
|
13
|
Ejenavi O, Teng T, Huang W, Wang X, Zhang W, Zhang D. Online detection of alkanes by a biological-phase microextraction and biosensing (BPME-BS) device. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131316. [PMID: 37003003 DOI: 10.1016/j.jhazmat.2023.131316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Oil spill incidents occur frequently and threaten ecosystems and human health. Solid-phase microextraction allows direct alkane extraction from environmental matrices to improve the limit of detection but is unable to measure alkanes on site. A biological-phase microextraction and biosensing (BPME-BS) device was developed by immobilising an alkane chemotactic Acinetobacter bioreporter ADPWH_alk in agarose gel to achieve online alkane quantification with the aid of a photomultiplier. The BPME-BS device had a high enrichment factor (average 7.07) and a satisfactory limit of detection (0.075 mg/L) for alkanes. The quantification range was 0.1-100 mg/L, comparable to a gas chromatography flame ionisation detector and better than a bioreporter without immobilisation. ADPWH_alk cells in the BPME-BS device maintained good sensitivity under a wide range of environmental conditions, including pH (4.0-9.0), temperature (20-40 °C), and salinity (0.0-3.0%), and its response remained stable within 30 days at 4 °C. In a 7-day continual measurement, the BPME-BS device successfully visualised the dynamic concentration of alkanes, and a 7-day field test successfully captured an oil spill event, helping in source apportionment and on-scene law enforcement. Our work proved that the BPME-BS device is a powerful tool for online alkane measurement, showing substantial potential for fast detection and rapid response to oil spills on site and in situ.
Collapse
Affiliation(s)
- Odafe Ejenavi
- Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK
| | - Tingting Teng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China; College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Wenxin Huang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China; College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China; College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China; College of New Energy and Environment, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
14
|
Identification of endogenous and exogenous semicarbazide (SEM) in crustacea aquatic products using compound-specific nitrogen stable isotope ratio analysis (NSIRA). J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
15
|
Guimbaud C, Colombano S, Noel C, Verardo E, Grossel A, Jourdain L, Jégou F, Hu Z, Jacob J, Ignatiadis I, Blessing M, Gourry JC. Quantification of biodegradation rate of hydrocarbons in a contaminated aquifer by CO 2 δ 13C monitoring at ground surface. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 256:104168. [PMID: 36948021 DOI: 10.1016/j.jconhyd.2023.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/09/2023]
Abstract
Ground surface analysis of CO2 emissions with δ13C determination is experimentally demonstrated to be a potential methodology to monitor, on line, the dynamics of petroleum-hydrocarbon biodegradation in soil aquifers, thanks to the improvement of the Isotopic Ratio Infra Red Spectroscopy technique. Biodegradation rate of remaining hydrocarbon substrates in groundwater can be quantified using basic application of the Rayleigh equations, by δ13CCO2 analysis released at ground surface above the pollution plume instead of usual approaches based on groundwater hydrocarbons δ13C analysis, when physical and chemical properties for the contaminated site meet appropriate conditions. The validation approach for that gasoline contaminated specific site is discussed and verified by comparison of first order attenuation rate constant determined from δ13CCO2 analysis emitted at ground surface and from δ13CTOLUENE analysis in ground water. A kinetic fractionation factor α of 0.9979 (or ε value of -2.1 ± 0.5‰) is estimated for the biodegradation of the most reactive hydrocarbon substrates (TEX). The treatment of this Rayleigh equations by linear regression of δ13CCO2 values along the predominant direction of groundwater flow leads to the following results and conclusions for that site: (i) first order biodegradation rate constants (and annual variation) are maximum after the activation of a Permeable Reactive Barrier (PRB) in May 2014: 0.92(+0.29-0.17) year-1, and during July and October: 0.46(+0.14-0.09) year-1 and minimum in mid-winter in February 2015: 0.17(+0.05-0.03) year-1, given by the estimation range for ε. These results are in the lower range with reported in literature for similar contaminated sites (1.6-18 year-1) considering natural attenuation under sulfate reducing conditions and (ii) the seasonal variation of the first order biodegradation rate constant is mainly correlated with the seasonal variation of the CO2 flux, where maximum values are in summers and minimum values in winters. Both seasonal variations are mainly due to the annual cycle of the natural biodegradation activity at the scale of the pollution plume, rather than the activation of the PRB. This work demonstrates that δ13CCO2 analysis released at ground surface from biodegradation of groundwater hydrocarbons could provide, under characterized and appropriate conditions, a non-intrusive (without soil samplings), fast, and low-cost online method to monitor and therefore to optimize soil remediation processes in real time. (Monitored Natural Attenuation or Enhanced Bioremediation).
Collapse
Affiliation(s)
- Christophe Guimbaud
- Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace (LPC2E), CNRS et Université d'Orléans (UMR 7328), 3A av. de la recherche scientifique, 45071 Orléans cedex 2, France.
| | - Stéfan Colombano
- Bureau de Recherches Géologiques et Minières (BRGM), 3 av. Claude Guillemin, 45060 Orléans cedex 2, France
| | - Cécile Noel
- Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace (LPC2E), CNRS et Université d'Orléans (UMR 7328), 3A av. de la recherche scientifique, 45071 Orléans cedex 2, France; Bureau de Recherches Géologiques et Minières (BRGM), 3 av. Claude Guillemin, 45060 Orléans cedex 2, France
| | - Elicia Verardo
- Ecole Nationale Supérieure en Environnement, Géoressources et Ingénierie du Développement durable (ENSEGID), Université Bordeaux III, France
| | - Agnès Grossel
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UR 0272 Science du sol, Centre de recherche d'Orléans, CS 40001 Ardon, 45075 Orléans cedex, France
| | - Line Jourdain
- Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace (LPC2E), CNRS et Université d'Orléans (UMR 7328), 3A av. de la recherche scientifique, 45071 Orléans cedex 2, France
| | - Fabrice Jégou
- Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace (LPC2E), CNRS et Université d'Orléans (UMR 7328), 3A av. de la recherche scientifique, 45071 Orléans cedex 2, France
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jérémy Jacob
- Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212 CNRS-CEA-UVSQ, Domaine du CNRS, 91198 Gif sur Yvette, France
| | - Ioannis Ignatiadis
- Bureau de Recherches Géologiques et Minières (BRGM), 3 av. Claude Guillemin, 45060 Orléans cedex 2, France
| | - Michaela Blessing
- Bureau de Recherches Géologiques et Minières (BRGM), 3 av. Claude Guillemin, 45060 Orléans cedex 2, France
| | - Jean Christophe Gourry
- Bureau de Recherches Géologiques et Minières (BRGM), 3 av. Claude Guillemin, 45060 Orléans cedex 2, France
| |
Collapse
|
16
|
Wang P, Meng W, Zhang W, Fu M, Li Y, Yang R, Zhang Q, Jiang G. Source identification of PCBs in Antarctic air by compound-specific isotope analysis of chlorine (CSIA-Cl) using HRGC/HRMS. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130907. [PMID: 36764260 DOI: 10.1016/j.jhazmat.2023.130907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Occurrence of persistent organic pollutants (POPs) in the Polar Regions has received great concern in the past several decades due to their long-term adverse effect on biological health in such a fragile environment. However, there is still argument over their source and fate in these pristine areas. Here we attempted to use a novel approach (compound-specific isotope analysis of chlorine, CSIA-Cl) to identify the source of POPs in Antarctic air by comparison with the source area. The results showed that the relative isotope-ratio variation of Cl (δ37Cl') values showed a large variation from - 137 to 9.04 ‰ in the gas-phase samples, and a significantly negative correlation (p < 0.01) was obtained against the logKoa values of PCBs. There were no significant correlations (p > 0.05) observed between the δ37Cl' values and meteorological parameters except for PCB-28 which showed temperature dependence. By contrast, the δ37Cl' values in the urban (Beijing) air ranged from - 12.8 to 2.03 ‰. The larger variation of δ37Cl' in Antarctic air indicated evidently influence of long-range atmospheric transport (LRAT) on isotopologue fractionation of PCBs. This study may shed light on the application of CSIA-Cl for source identification of chlorinated POPs on a large scale.
Collapse
Affiliation(s)
- Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Wenying Meng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiwei Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Fu
- Key Laboratory of Research on Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Beijing 100081, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghua Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Illy VD, Cohen GJV, Verardo E, Höhener P, Guiserix N, Atteia O. Chlorinated solvents source identification by nonlinear optimization method. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:531. [PMID: 37004632 DOI: 10.1007/s10661-023-11107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
In this work, chloride ions were used as conservative tracers and supplemented with conservative amounts of chloroethenes (PCE, TCE, Cis-DCE, 1,1-DCE), chloroethanes (1,1,1-TCA, 1,1-DCA), and the carbon isotope ratios of certain compounds, the most representative on the sites studied, which is a novelty compared to the optimization methods developed in the scientific literature so far. A location of the potential missing sources is then proposed in view of the balances of the calculated mixing fractions. A test of the influence of measurement errors on the results shows that the uncertainties in the calculation of the mixture fractions are less than 11%, indicating that the source identification method developed is a robust tool for identifying sources of chlorinated solvents in groundwater.
Collapse
Affiliation(s)
- Valeureux D Illy
- EA 4592, Géoressources Et Environnement, Bordeaux INP, Université Bordeaux Montaigne, 1 Avenue Dr Schweitzer, 33400, Talence, France.
- 1 Allée du Golf, Renault SAS, 78 280, Guyancourt, France.
| | - Gregory J V Cohen
- EA 4592, Géoressources Et Environnement, Bordeaux INP, Université Bordeaux Montaigne, 1 Avenue Dr Schweitzer, 33400, Talence, France
| | - Elicia Verardo
- EA 4592, Géoressources Et Environnement, Bordeaux INP, Université Bordeaux Montaigne, 1 Avenue Dr Schweitzer, 33400, Talence, France
| | - Patrick Höhener
- Laboratoire de Chimie Environnementale-UMR 7376, Aix-Marseille Université-CNRS, 3 Place Victor Hugo - Case 29, 13331, Marseille Cedex 3, France
| | | | - Olivier Atteia
- EA 4592, Géoressources Et Environnement, Bordeaux INP, Université Bordeaux Montaigne, 1 Avenue Dr Schweitzer, 33400, Talence, France
| |
Collapse
|
18
|
Zhang M, Ning Z, Guo C, Shi C, Zhang S, Sheng Y, Chen Z. Using Compound Specific Isotope Analysis to decipher the 1,2,3-trichloropropane-to-Allyl chloride transformation by groundwater microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120577. [PMID: 36336183 DOI: 10.1016/j.envpol.2022.120577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
1,2,3-trichloropropane (TCP), a refractory contaminant, can be reductive dehalogenated to allyl chloride (AC) by microorganisms, which has been shown a potential in situ bioremediation (ISB) strategy for TCP remediation in groundwater. In practice, however, it is hard to monitor the bioreduction extent because the TCP concentrations may also be decreased by non-biodegradation processes. Compound specific isotope analysis (CSIA) can be promising in determining the extent of degradation by quantifying the isotope enrichment factors (ε) of relevant degradation mechanisms. To date, no CSIA study has been reported on TCP degradation. In this study, a novel TCP-to-AC transformation enrichment culture (dominated by Azotobacter, Parabacteroides, Fusibacter, Hydrogenophaga, Trichococcus Desulfovibrio, etc) in the absence of the already identified TCP anaerobic reductive dechlorinating microorganisms (e.g., Dehalogenimonas) was derived from a chlorinated hydrocarbon-contaminated aquifer. A TCP degradation experiment was carried out by adding yeast extract to produce hydrogen as an electron donor. The TCP-to-AC transformation was found to conform to zero-order conversion kinetics with the rate constant 11 ± 0.34 μmol L-1 d-1 during the main biodegradation stage. The bulk carbon isotope enrichment factor (εbulk) of the TCP-to-AC transformation was firstly evaluated as -5.2 ± 0.1‰. This study for the first time characterized the carbon isotope fractionations during TCP biodegradation using a novel enrichment culture, which would provide a promising tool for the incorporation of ISB for TCP removal in the future.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, Hebei, 050083, China
| | - Zhuo Ning
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, Hebei, 050083, China
| | - Caijuan Guo
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, Hebei, 050083, China
| | - Chan Shi
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, Hebei, 050083, China; Suzhou Guanfu Environmental Science & Technology Co., Ltd, Suzhou, Jiangsu, 215163, China
| | - Sha Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, Hebei, 050083, China; Suzhou Guanfu Environmental Science & Technology Co., Ltd, Suzhou, Jiangsu, 215163, China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Zongyu Chen
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, Hebei, 050083, China.
| |
Collapse
|
19
|
Yun HY, Won EJ, Choi J, Cho Y, Lim DJ, Kim IS, Shin KH. Stable Isotope Analysis of Residual Pesticides via High Performance Liquid Chromatography and Elemental Analyzer-Isotope Ratio Mass Spectrometry. Molecules 2022; 27:molecules27238587. [PMID: 36500680 PMCID: PMC9736523 DOI: 10.3390/molecules27238587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
To broaden the range of measurable pesticides for stable isotope analysis (SIA), we tested whether SIA of the anthranilic diamides cyantraniliprole (CYN) and chlorantraniliprole (CHL) can be achieved under elemental analyzer/isotope ratio mass spectrometry with compound purification in high-performance liquid chromatography (HPLC). Using this method, carbon isotope compositions were measured in pesticide residues extracted from plants (lettuce) grown indoors in potting soil that were treated with 500 mg/kg CHL and 250 mg/kg CYN and were followed up for 45 days. Our results show that the CYN and CHL standard materials did not have significant isotope differences before and after clean-up processing in HPLC. Further, when applied to the CYN product and CHL product in soil, stable isotope differences between the soil and plant were observed at <1.0‱ throughout the incubation period. There was a slight increase in the variability of pesticide isotope ratio detected with longer-term incubation (CHL, on average 1.5‱). Overall, we measured the carbon isotope ratio of target pesticides from HPLC fraction as the purification and pre-concentration step for environmental and biological samples. Such negligible isotopic differences in pesticide residues in soils and plants 45 days after application confirmed the potential of CSIA to quantify pesticide behavior in environments.
Collapse
Affiliation(s)
- Hee Young Yun
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Ji Won
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Jisoo Choi
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Yusang Cho
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Da-Jung Lim
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Seon Kim
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyung-Hoon Shin
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
- Correspondence: ; Tel.: +82-31-400-5536
| |
Collapse
|
20
|
Blessing M, Baran N. A review on environmental isotope analysis of aquatic micropollutants: Recent advances, pitfalls and perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Ouma EA, Huszár H, Horváth L, Szabó G, Janáky C, Bozóki Z. Development of a Near-Infrared Photoacoustic System for Selective, Fast, and Fully Automatized Detection of Isotopically Labeled Ammonia. Anal Chem 2022; 94:14118-14125. [PMID: 36190777 PMCID: PMC9583071 DOI: 10.1021/acs.analchem.2c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Different environmental
and industrial technologies seek
for fast
and automatic ammonia detection systems, capable of the selective
measurement of the concentration of its isotopes at sub-ppm levels,
without any interference with the common contaminants. In this work,
we report the quasi-simultaneous measurement of 14NH3 and 15NH3 concentrations based on a
near-infrared diode laser-based photoacoustic system. Using a widely
tunable external cavity diode laser, four nearby wavelengths within
the range of 1531.3–1531.8 nm were optimal circumstances for
sensitive detection, while avoiding interference with water vapor.
Subsequently, a more robust distributed feedback diode laser was employed
to tune the laser wavelength on the sub-second timescale by varying
its driving current rather than using much slower temperature tuning.
The detection limit of our system is 0.15 and 0.73 ppm for 14NH3 and 15NH3 (with an accuracy
below 0.1%), respectively, and the response time is 3.5 s.
Collapse
Affiliation(s)
- Emily Awuor Ouma
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - Helga Huszár
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - László Horváth
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - Gábor Szabó
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - Zoltán Bozóki
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| |
Collapse
|
22
|
Junginger T, Payraudeau S, Imfeld G. Transformation and stable isotope fractionation of the urban biocide terbutryn during biodegradation, photodegradation and abiotic hydrolysis. CHEMOSPHERE 2022; 305:135329. [PMID: 35709839 DOI: 10.1016/j.chemosphere.2022.135329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Terbutryn is a widely used biocide in construction materials like paint and render to prevent the growth of microorganisms, algae and fungi. Terbutryn is released from the facades into the environment during rainfall, contaminating surface waters, soil and groundwater. Knowledge of terbutryn dissipation from the facades to aquatic ecosystems is scarce. Here, we examined in laboratory microcosms degradation half-lives, formation of transformation products and carbon and nitrogen isotope fractionation during terbutryn direct (UV light with λ = 254 nm and simulated sunlight) and indirect (simulated sunlight with nitrate) photodegradation, abiotic hydrolysis (pH = 1, 7 and 13), and aerobic biodegradation (stormwater pond sediment, soil and activated sludge). Biodegradation half-lives of terbutryn were high (>80 d). Photodegradation under simulated sunlight and hydrolysis at extreme pH values indicated slow degradability and accumulation in the environment. Photodegradation resulted in a variety of transformation products, whereas abiotic hydrolysis lead solely to terbutryn-2-hydroxy in acidic and basic conditions. Biodegradation indicates degradation to terbutryn-2-hydroxy through terbutryn-sulfoxide. Compound-specific isotope analysis (CSIA) of terbutryn holds potential to differentiate degradation pathways. Carbon isotope fractionation values (εC) ranged from -3.4 ± 0.3‰ (hydrolysis pH 1) to +0.8 ± 0.1‰ (photodegradation under UV light), while nitrogen isotope fractionation values ranged from -1.0 ± 0.4‰ (simulated sunlight photodegradation with nitrate) to +3.4 ± 0.2‰ (hydrolysis at pH 1). In contrast, isotope fractionation during biodegradation was insignificant. ΛN/C values ranged from -1.0 ± 0.1 (hydrolysis at pH 1) to 2.8 ± 0.3 (photodegradation under UV light), allowing to differentiate degradation pathways. Combining the formation of transformation products and stable isotope fractionation enabled identifying distinct degradation pathways. Altogether, this study highlights the potential of CSIA to follow terbutryn degradation in situ and differentiate prevailing degradation pathways, which may help to monitor urban biocide remediation and mitigation strategies.
Collapse
Affiliation(s)
- Tobias Junginger
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/ EOST/ ENGEES, CNRS, UMR 7063, F-67084, Strasbourg, France
| | - Sylvain Payraudeau
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/ EOST/ ENGEES, CNRS, UMR 7063, F-67084, Strasbourg, France
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/ EOST/ ENGEES, CNRS, UMR 7063, F-67084, Strasbourg, France.
| |
Collapse
|
23
|
Kawashima H. Stable Carbon Isotope Ratio of Volatile Organic Compounds in Air Using Solid-Phase Microextraction Coupled with Chromatography, Combustion, and Isotope Ratio Mass Spectrometry. Chromatographia 2022. [DOI: 10.1007/s10337-022-04203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Marks RGH, Jochmann MA, Brand WA, Schmidt TC. How to Couple LC-IRMS with HRMS─A Proof-of-Concept Study. Anal Chem 2022; 94:2981-2987. [PMID: 35107978 DOI: 10.1021/acs.analchem.1c05226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compound-specific stable isotope analysis (CSIA) is a unique analytical technique for determining small variations in isotope ratios of light isotopes in analytes from complex mixtures. A problem of CSIA using gas chromatography (GC) and liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is that any structural information of the analytes is lost due to the processes involved in determining the isotope ratio. To obtain the isotopic composition of, for example, carbon from organic compounds, all carbon in each analyte is quantitatively converted to CO2. For GC-IRMS, open split GC-IRMS-MS couplings have been described that allow additional acquisition of structural information of analytes and interferences. Structural analysis using LC-IRMS is more difficult and requires additional technical and instrumental efforts. In this study, LC was combined for the first time with simultaneous analysis by IRMS and high-resolution mass spectrometry (HRMS), enabling the direct identification of unknown or coeluting species. We have thoroughly investigated and optimized the coupling and showed how technical problems, arising from instrumental conditions, can be overcome. To this end, it was successfully demonstrated that a consistent split ratio between IRMS and HRMS could be obtained using a variable postcolumn flow splitter. This coupling provided reproducible results in terms of resulting peak areas, isotope values, and retention time differences for the two mass spectrometer systems. To demonstrate the applicability of the coupling, we chose to address an important question regarding the purity of international isotope standards. In this context, we were able to confirm that the USGS41 reference material indeed contains substantial amounts of pyroglutamic acid as suggested previously in the literature. Moreover, the replacement material, USGS41a, still has significant amounts of pyroglutamic acid as impurity, rendering some caution necessary when using this material for isotopic calibration.
Collapse
Affiliation(s)
- Robert G H Marks
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Maik A Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Willi A Brand
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, 07745 Jena, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.,Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| |
Collapse
|
25
|
Rostkowski M, Schürner HKV, Sowińska A, Vasquez L, Przydacz M, Elsner M, Dybala-Defratyka A. Isotope Effects on the Vaporization of Organic Compounds from an Aqueous Solution-Insight from Experiment and Computations. J Phys Chem B 2021; 125:13868-13885. [PMID: 34908428 PMCID: PMC8724799 DOI: 10.1021/acs.jpcb.1c05574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
An isotope fractionation
analysis of organic groundwater pollutants
can assess the remediation at contaminated sites yet needs to consider
physical processes as potentially confounding factors. This study
explores the predictability of water–air partitioning isotope
effects from experiments and computational predictions for benzene
and trimethylamine (both H-bond acceptors) as well as chloroform (H-bond
donor). A small, but significant, isotope fractionation of different
direction and magnitude was measured with ε = −0.12‰
± 0.07‰ (benzene), εC = 0.49‰
± 0.23‰ (triethylamine), and εH = 1.79‰
± 0.54‰ (chloroform) demonstrating that effects do not
correlate with expected hydrogen-bond functionalities. Computations
revealed that the overall isotope effect arises from contributions
of different nature and extent: a weakening of intramolecular vibrations
in the condensed phase plus additional vibrational modes from a complexation
with surrounding water molecules. Subtle changes in benzene contrast
with a stronger coupling between intra- and intermolecular modes in
the chloroform–water system and a very local vibrational response
with few atoms involved in a specific mode of triethylamine. An energy
decomposition analysis revealed that each system was affected differently
by electrostatics and dispersion, where dispersion was dominant for
benzene and electrostatics dominated for chloroform and triethylamine.
Interestingly, overall stabilization patterns in all studied systems
originated from contributions of dispersion rather than other energy
terms.
Collapse
Affiliation(s)
- Michał Rostkowski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Heide K V Schürner
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Munich, Germany
| | - Agata Sowińska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Luis Vasquez
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Martyna Przydacz
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Munich, Germany
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
26
|
Zhang H, Zheng Y, Wang XC, Wang Y, Dzakpasu M. Characterization and biogeochemical implications of dissolved organic matter in aquatic environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113041. [PMID: 34126535 DOI: 10.1016/j.jenvman.2021.113041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) is viewed as one of the most chemically active organic substances on earth. It plays vital roles in the fate, bioavailability and toxicity of aquatic exogenous chemical species (e.g., heavy metals, organic pollutants, and nanomaterials). The characteristics of DOM such low concentrations, salt interference and complexity in aquatic environments and limitations of pretreatment for sample preparation and application of characterization techniques severely limit understanding of its nature and environmental roles. This review provides a characterization continuum of aquatic DOM, and demonstrate its biogeochemical implications, enabling in-depth insight into its nature and environmental roles. A synthesis of the effective DOM pretreatment strategies, comprising extraction and fractionation methods, and characterization techniques is presented. Additionally, the biogeochemical dynamics of aquatic DOM and its environmental implications are discussed. The findings indicate the collection of representative DOM samples from water as the first and critical step for characterizing its properties, dynamics, and environmental implications. However, various pretreatment procedures may alter DOM composition and structure, producing highly variable recoveries and even influencing its subsequent characterization. Therefore, complimentary use of various characterization techniques is highly recommended to obtain as much information on DOM as possible, as each characterization technique exhibits various advantages and limitations. Moreover, DOM could markedly change the physical and chemical properties of exogenous chemical species, influencing their transformation and mobility, and finally altering their potential bioavailability and toxicity. Several research gaps to be addressed include the impact of pretreatment on the composition and structure of aquatic DOM, molecular-level structural elucidation for DOM, and assessment of the effects of DOM dynamics on the fate, bioavailability and toxicity of exogenous chemical species.
Collapse
Affiliation(s)
- Hengfeng Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yongkun Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| |
Collapse
|
27
|
Laboratory Experiments to Evaluate the Effectiveness of Persulfate to Oxidize BTEX in Saline Environment and at Elevated Temperature Using Stable Isotopes. HYDROLOGY 2021. [DOI: 10.3390/hydrology8030139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, batch experiments were carried out to investigate the effectiveness of persulfate (PS) as an oxidant agent to remediate benzene, toluene, ethylbenzene, and xylenes (BTEX) in saline environments and at high water temperatures (30 °C). This hydrological setting is quite common in contaminated groundwater aquifers in Middle Eastern countries. In general, increasing the system temperature from 10 to 30 °C greatly enhanced the effectiveness of PS, and resulted in a faster oxidation rate for the target contaminants. When PS was added to the reactor at 30 °C, the targeted contaminants were almost completely oxidized over a 98-day reaction period. During the chemical oxidation of the BTEX, carbon and hydrogen isotope fractionations were monitored and utilized as potential proof of contaminant degradation. The calculated carbon-enrichment values were −1.9‰ for benzene, −1.5‰ for ethylbenzene and toluene, −0.4‰ for ρ,m-xylene, and −1.4‰ for o-xylene, while the hydrogen enrichment values were −9.5‰, −6.8‰, −2.1‰, −6.9‰, and −9.1‰, respectively. In comparison with other processes, the hydrogen and carbon isotope fractionations during the chemical oxidation by PS were smaller than the isotope fractionations resulting from sulfate reduction and denitrification. This observation demonstrates the differences in the transformation pathways and isotope fractionations when compounds undergo chemical oxidation or biodegradation. The distinct trend observed on the dual isotope plot (Δδ13C vs. Δδ2H) suggests that compound-specific isotope analysis can be utilized to monitor the chemical oxidation of BTEX by PS, and to distinguish treatment zones where PS and biodegradation technologies are applied simultaneously.
Collapse
|
28
|
Won EJ, Yun HY, Lee DH, Shin KH. Application of Compound-Specific Isotope Analysis in Environmental Forensic and Strategic Management Avenue for Pesticide Residues. Molecules 2021; 26:4412. [PMID: 34361564 PMCID: PMC8348328 DOI: 10.3390/molecules26154412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Unintended pesticide pollution in soil, crops, and adjacent environments has caused several issues for both pesticide users and consumers. For users, pesticides utilized should provide higher yield and lower persistence while considering both the environment and agricultural products. Most people are concerned that agricultural products expose humans to pesticides accumulating in vegetation. Thus, many countries have guidelines for assessing and managing pesticide pollution, for farming in diverse environments, as all life forms in soil are untargeted to these pesticides. The stable isotope approach has been a useful technique to find the source of organic matter in studies relating to aquatic ecology and environmental sciences since the 1980s. In this study, we discuss commonly used analytical methods using liquid and gas chromatography coupled with isotopic ratio mass spectrometry, as well as the advanced compound-specific isotope analysis (CSIA). CSIA applications are discussed for tracing organic pollutants and understanding chemical reactions (mechanisms) in natural environments. It shows great applicability for the issues on unintended pesticide pollution in several environments with the progress history of isotope application in agricultural and environmental studies. We also suggest future study directions based on the forensic applications of stable isotope analysis to trace pesticides in the environment and crops.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| | - Hee-Young Yun
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| | - Dong-Hun Lee
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Marine Environment Research Division, National Institute of Fisheries Science, Busan 46083, Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| |
Collapse
|
29
|
Wang C, Fuller ME, Heraty LJ, Hatzinger PB, Sturchio NC. Photocatalytic mechanisms of 2,4-dinitroanisole degradation in water deciphered by C and N dual-element isotope fractionation. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125109. [PMID: 33858090 DOI: 10.1016/j.jhazmat.2021.125109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/16/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
In surface water environments, photodegradation may be an important process for the natural attenuation of 2,4-dinitroanisole (DNAN). Understanding the photolysis and photocatalysis mechanisms of DNAN is difficult because the photosensitivity of nitro groups and the behavior of DNAN as a potential photosensitizer are unclear in aqueous solutions. Here, we investigate the degradation mechanisms of DNAN under UV-A (λ ~ 350 nm) and UV-C (λ ~ 254 nm) irradiation in a photolysis reactor where aqueous solution was continuously recycled through a UV-irradiated volume from a non-irradiated external reservoir. By tracking C and N isotopic fractionation in DNAN and its reaction products, we observed normal 13C fractionation (εC = -3.34‰) and inverse 15N fractionation (εN = +12.30‰) under UV-A (λ ~ 350 nm) irradiation, in contrast to inverse 13C fractionation (εC = +1.45‰) and normal 15N fractionation (εN = -3.79‰) under UV-C (λ ~ 254 nm) irradiation. These results indicate that DNAN can act as a photosensitizer and may follow a product-to-parent reversion mechanism in surface water environments. The data also indicate that photocatalytic degradation of DNAN in aqueous systems can be monitored via C and N stable isotope analysis.
Collapse
Affiliation(s)
- Chunlei Wang
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Mark E Fuller
- Aptim Federal Services, LLC, Lawrenceville, NJ 08648, USA
| | - Linnea J Heraty
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA
| | | | - Neil C Sturchio
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
30
|
Wang L, Li P, Zhang Q, Wu WM, Luo J, Hou D. Modeling the Conditional Fragmentation-Induced Microplastic Distribution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6012-6021. [PMID: 33840192 DOI: 10.1021/acs.est.1c01042] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are drawing increasing attention from the international community due to their potential threats to the ecosystem and human health. Although their occurrence and spatial distribution have been extensively studied in recent years, the relationship between their abundance and sizes remains unclear. Moreover, the underlying mechanisms dominating their size distribution have rarely been explored. In the present study, we developed a novel conditional fragmentation model to describe MP size distribution in the soil environment. It is proposed that the distribution of MPs is not a coincidence but controlled by conditional aging. The applicability of this model was tested using data collected from different land use settings in Beijing, China. A distinct downsizing phenomenon from fibers, films, and fragments to granules is observed. Undisturbed land use types accumulated larger sized MPs with higher stability, while human interference accelerated the fragmentation of MPs. Both morphological analysis and time-of-flight secondary ion mass spectroscopy (TOF-SIMS) observations provided direct evidence for the conditional fragmentation process. Furthermore, the model has proven to be suitable for describing the size distribution of MPs from various sources (including atmospheric deposition, transportation, and agriculture) and aging processes (such as mechanical abrasion, chemical oxidation, and photochemical transformation). It is proposed that this model can be used for various purposes in MP-related studies, especially source identification, transport modeling, and risk assessment.
Collapse
Affiliation(s)
- Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Pengfei Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Qi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305-4020, United States
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Limon AW, Moingt M, Widory D. The carbon stable isotope compositions of glyphosate and aminomethylphosphonic acid (AMPA): Improved analytical sensitivity and first application to environmental water matrices. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9017. [PMID: 33270272 DOI: 10.1002/rcm.9017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
RATIONALE The presence of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in the environment has adverse effects on environmental quality, raising the need to better constrain their fates, in particular the processes that control their production and degradation. Our aim was to improve the sensitivity of their δ13 C analysis and demonstrate the feasibility of measuring them in natural surface water. METHODS The δ13 C values of dissolved glyphosate and AMPA were determined using isotope ratio mass spectrometry (IRMS) (Delta V Plus instrument) coupled to a high-performance liquid chromatography (HPLC) unit, where glyphosate and AMPA were separated on a Hypercarb column. RESULTS We demonstrated an improved sensitivity of the δ13 C analysis for glyphosate and AMPA by LC/IRMS compared with previous studies. For waters from the carbonate and silicate hydrofacies, while no pretreatment was required for the isotope analysis of glyphosate, removal by H3 PO4 acidification of dissolved inorganic carbon, that co-elutes with AMPA, was required prior to its analysis. We successfully tested a freeze-drying pre-concentration method showing no associated isotope fractionation up to concentration factors of 500 and 50 for glyphosate and AMPA, respectively. CONCLUSIONS We demonstrated, for the first time, the feasibility of measuring the δ13 C values of glyphosate and AMPA in natural surface waters with contrasted hydrofacies (calcium carbonate and silicate types). This opens new fields in pesticide research, especially on the characterization of processes that control their degradation and the production of their secondary byproducts.
Collapse
Affiliation(s)
- A Williams Limon
- GEOTOP/Université du Québec à Montréal, case postale 8888, , Montréal, QC, H3C 3P8, Canada
| | - Matthieu Moingt
- GEOTOP/Université du Québec à Montréal, case postale 8888, , Montréal, QC, H3C 3P8, Canada
| | - David Widory
- GEOTOP/Université du Québec à Montréal, case postale 8888, , Montréal, QC, H3C 3P8, Canada
| |
Collapse
|
32
|
Ren Z, Zeng Y, Luo X, Huang C, Tian Y, Gao S, Mai B. Observable carbon isotope fractionation in the photodegradation of polybrominated diphenyl ethers by simulated sunlight. CHEMOSPHERE 2021; 266:128950. [PMID: 33218726 DOI: 10.1016/j.chemosphere.2020.128950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
In the present study, carbon isotope effects were investigated during the photodegradation of polybrominated diphenyl ethers (PBDEs) by compound-specific stable isotope analysis (CSIA). Five PBDE congeners (BDE 85, 99, 100, 153 and 154) in n-hexane were individually exposed to simulated sunlight for as long as 15 h, except for BDE 100 (24 h). Consecutive debromination of PBDE by photolysis in n-hexane was confirmed by the clear 13C enrichment of mother congeners and successive depletion of δ13C values for the photodegradation products with decreasing degree of bromination, which can be attributed to mass-dependent isotope fractionation. The observed variation in the isotope fractionation trends for the para-debrominated products might be linked to the different photocatalytic activities of the PBDE congeners. Higher fractionation was observed for penta-BDEs (εc=-2.2 ± 0.45‰ and -2.3 ± 0.26‰ for BDE 85 and BDE 99, respectively) compared to that for hexa-BDEs (εc=-1.7 ± 0.41‰, and -1.3 ± 0.12‰ for BDE 153 and BDE 154, respectively). Normal isotope effects (AKIE > 1) observed in our study supports the utility of CSIA for the evaluation of the photodegradation of PBDEs.
Collapse
Affiliation(s)
- Zihe Ren
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Chenchen Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yankuan Tian
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| |
Collapse
|
33
|
Würth A, Menberg K, Martus P, Sültenfuß J, Blum P. Quantifying biodegradation rate constants of o-xylene by combining compound-specific isotope analysis and groundwater dating. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 238:103757. [PMID: 33465657 DOI: 10.1016/j.jconhyd.2020.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/26/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
The objective of this study is to estimate hydraulic conductivities and biodegradation rate constants in a coal-tar contaminated aquifer by compound-specific isotope analysis (CSIA) and tracer-based (3H-3He) groundwater dating (TGD). In two observation wells downgradient from the contaminant source in situ biodegradation of o-xylene, toluene and naphthalene under sulfate-reducing redox conditions could be demonstrated using CSIA. Median biodegradation rate constants for o-xylene ranging between 0.08 and 0.22 a-1 were estimated. By using tracer-based groundwater dating in these two wells, hydraulic conductivities could be also estimated, which are in a similar range as k-values derived from sieve analysis, a pumping test and a calibrated groundwater flow model. These results clearly demonstrate the applicability of tracer-based groundwater dating for the determination of in situ hydraulic conductivities in aquifers without pumping contaminated groundwater. Finally, a sensitivity analysis is performed using a Monte Carlo simulation. These results indicate high sensitivities of the assumed effective porosity for the estimation of the hydraulic conductivity and the selected isotope enrichment factor for the biodegradation rate constant, respectively. Conversely, the outcome also evidently demonstrates the main limitations of the novel combined isotope approach for a successful implementation of monitored natural attenuation (MNA) at such field sites.
Collapse
Affiliation(s)
- Andreas Würth
- Karlsruhe Institute of Technology (KIT), Institute for Applied Geosciences (AGW), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Kathrin Menberg
- Karlsruhe Institute of Technology (KIT), Institute for Applied Geosciences (AGW), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Peter Martus
- AECOM Deutschland GmbH, Siemensstraße 10, 63263 Neu-Isenburg, Germany
| | - Jürgen Sültenfuß
- University of Bremen, Institute of Environmental Physics, Otto-Hahn-Allee, 28359 Bremen, Germany
| | - Philipp Blum
- Karlsruhe Institute of Technology (KIT), Institute for Applied Geosciences (AGW), Kaiserstraße 12, 76131 Karlsruhe, Germany.
| |
Collapse
|
34
|
Zhang J, Liu S, Gui J, Li X, Qi G. Compound-Specific Chlorine Isotope Analysis of Organochlorine Pesticides by Gas Chromatography-Negative Chemical Ionization Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:8874679. [PMID: 33575062 PMCID: PMC7861914 DOI: 10.1155/2021/8874679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/08/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Compound-specific stable chlorine isotope analysis (CSIA-Cl) is an important method for identifying sources of organochlorine contaminants and helping assess their quantification of transformation processes. However, the present CSIA-Cl is challenged by either redundant conversion pretreatment or complicated mathematical correction. To overcome the mentioned problems, a novel method has been developed for the CSIA-Cl of eight organochlorine pesticides using gas chromatography-negative chemical ionization mass spectrometry (GC-NCI-qMS) in this study. The instrument parameters, acquisition mode, and required injection amounts were optimized in terms of the precision of GC-NCI-qMS. An ionization energy of 90 eV and emission current of 90 μA were selected, and the precisions for eight organochlorine pesticides were in the range of 0.37‰-2.15‰ in single ion monitoring (SIM) mode when the injected amount was 0.50 mg L-1 (viz. 0.5 ng on column). Furthermore, when standards from Supelco and O2si were calibrated using standards from AccuStandard regarded as external isotope standard, chlorine isotope composition of α-hexachlorocyclohexane (α-HCH) and 2, 2-dichloro-1, 1-bis (4-chlorophenyl) ethylene (p, p'-DDE) in Supelco and O2si was confidently differentiated. The provenance identification method was validated by three organochlorine contaminated groundwater samples and showed a prospect in identifying the source of organochlorine pesticides.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China
| | - Shenghua Liu
- Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang 050061, China
- School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jianye Gui
- Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China
| | - Xiaoya Li
- Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China
| | - Guochen Qi
- Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China
| |
Collapse
|
35
|
Julien M, Liégeois M, Höhener P, Paneth P, Remaud GS. Intramolecular non-covalent isotope effects at natural abundance associated with the migration of paracetamol in solid matrices during liquid chromatography. J Chromatogr A 2021; 1639:461932. [PMID: 33535117 DOI: 10.1016/j.chroma.2021.461932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Position-specific isotope analysis by Nuclear Magnetic Resonance spectrometry was employed to study the 13C intramolecular isotopic fractionation associated with the migration of organic substrates through different stationary phases chromatography columns. Liquid chromatography is often used to isolate compounds prior to their isotope analysis and this purification step potentially alters the isotopic composition of target compounds introducing a bias in the later measured data. Moreover, results from liquid chromatography can yield the sorption parameters needed in reactive transport models that predict the transport and fate of organic contaminants to in the environment. The aim of this study was to use intramolecular isotope analysis to study both 13C and 15N isotope effects associated with the elution of paracetamol (acetaminophen) through different stationary phases and to compare them to effects observed previously for vanillin. Results showed very different intramolecular isotope fractionation profiles depending on the chemical structure of the stationary phase. The data also demonstrate that both the amplitude and the distribution of measured isotope effects depend on the nature of the non-covalent interactions involved in the migration process. Results provided by theoretical calculation performed during this study also confirmed the direct link between observed intramolecular isotope fractionation and the nature of involved intermolecular interactions. It is concluded that the nature of the stationary phase through which the substrate passes has a major impact on the intramolecular isotopic composition of organic compounds isolated by chromatography methods..
Collapse
Affiliation(s)
- Maxime Julien
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ōokayama, Meguro-ku, Tokyo, 152-8551 Japan; Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| | | | - Patrick Höhener
- University of Aix-Marseille-CNRS, Laboratoire Chimie Environnement, UMR 7376, place Victor Hugo 3, 13331 Marseille, France
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Gérald S Remaud
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
36
|
Asfaw BA, Sakaguchi-Söder K, Bernstein A, Siebner H, Schüth C. Optimization of compound-specific chlorine stable isotope analysis of chloroform using the Taguchi design of experiments. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8922. [PMID: 32770575 DOI: 10.1002/rcm.8922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Chloroform, a probable human carcinogen, is commonly detected in various concentration levels in many surface water and groundwater sources. Compound-specific chlorine stable isotope analysis (Cl-CSIA) is significant in investigating the fate of chlorinated contaminants in the environment. Analytical conditions should, however, be thoroughly examined for any isotopic fractionation. In this study, we simultaneously optimize three analytical parameters for a robust online Cl-CSIA of chloroform using the Taguchi design of experiments. METHODS For Cl-CSIA, a purge-and-trap autosampler coupled to a gas chromatograph in tandem with a quadrupole mass spectrometer, with electron ionization in selected ion monitoring (SIM) mode, was used. Using the Taguchi method, the dominant parameter affecting the results of Cl-CSIA for chloroform was identified through concurrent investigation of the signal-to-noise ratios (S/N) of three parameters, each at three levels: purging time (5, 10, 15 min), transfer time (80, 120, 160 s), and dwell time (20, 60, 100 ms). Moreover, the optimum combination of the levels was identified. RESULTS The purging time, with a maximum S/N, resulted in the highest influence on the isotope ratios determined. It was further refined through additional experiments to sufficiently extract chloroform from the aqueous phase. Accordingly, 8 min of purging time, 120 s transfer time and 100 ms dwell time were the optimum conditions for Cl-CSIA of chloroform. Post-optimization, a precision of ±0.28 ‰ was achieved for 8.4 nmol of chloroform (equivalent to 0.89 μg or approx. 25 nmol Cl-mass on column). CONCLUSIONS A simple online method for Cl-CSIA of chloroform was optimized with the Taguchi design of experiments. The Taguchi method was very useful for the optimization of the analytical conditions. However, the purging conditions should be fine-tuned and selected so that sufficient extraction of a target compound is confirmed to acquire a stable and higher precision of the method.
Collapse
Affiliation(s)
- Berhane Abrha Asfaw
- Institute of Applied Geosciences, Technische Universität Darmstadt, Schnittspahn Straße 9, Darmstadt, 64287, Germany
| | - Kaori Sakaguchi-Söder
- Institute of Applied Geosciences, Technische Universität Darmstadt, Schnittspahn Straße 9, Darmstadt, 64287, Germany
- Institut IWAR, Technische Universität Darmstadt, Franziska-Braun Straße 7, Darmstadt, 64287, Germany
| | - Anat Bernstein
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sde Boker Campus, Beer-Sheva, 84990, Israel
| | - Hagar Siebner
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sde Boker Campus, Beer-Sheva, 84990, Israel
| | - Christoph Schüth
- Institute of Applied Geosciences, Technische Universität Darmstadt, Schnittspahn Straße 9, Darmstadt, 64287, Germany
| |
Collapse
|
37
|
Teramoto EH, Vogt C, Martins Baessa MP, Polese L, Soriano AU, Chang HK, Richnow HH. Dynamics of hydrocarbon mineralization characterized by isotopic analysis at a jet-fuel-contaminated site in subtropical climate. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 234:103684. [PMID: 32711211 DOI: 10.1016/j.jconhyd.2020.103684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Release of benzene, toluene, ethylbenzene, and xylene (BTEX) as components of the light non-aqueous phase liquids (LNAPL) contaminates soil and groundwater. Assessing the mechanisms of degradation and mineralization of BTEX in groundwater helps understand the migration of the dissolved plume, enabling the reduction of risks to humans. Here, we studied the fate of ethylbezene, m,p-xylenes and o-xylenes and the accompanying formation of methane in a Cenozoic lateritic aquifer in Brazil by compound-specific carbon stable isotope analysis (CSIA), to gain insights into the complex dynamics of release and biodegradation of BTEX in the LNAPL source zone. The enrichment of ∂13C in aromatic compounds dissolved in groundwater compared to the corresponding compounds in LNAPL indicate that CSIA can provide valuable information regarding biodegradation. The isotopic analysis of methane provides direct indication of oxidation mediated by aquifer oxygenation. The ∂13C-CO2 values indicate methanogenesis prevailing at the border and aerobic biodegradation in the center of the LNAPL source zone. Importantly, the isotopic results allowed major improvements in the previously developed conceptual model, supporting the existence of oxic and anoxic environments within the LNAPL source zone.
Collapse
Affiliation(s)
- Elias Hideo Teramoto
- São Paulo State University, UNESP, Environmental Studies Center (CEA) and Basin Studies Laboratory (LEBAC), Rio Claro, Brazil
| | - Carsten Vogt
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | - Luciana Polese
- São Paulo State University, UNESP, Environmental Studies Center (CEA) and Basin Studies Laboratory (LEBAC), Rio Claro, Brazil
| | | | - Hung Kiang Chang
- São Paulo State University, UNESP, Environmental Studies Center (CEA) and Basin Studies Laboratory (LEBAC), Rio Claro, Brazil; São Paulo State University, UNESP, Dept. of Applied Geology, Rio Claro, Brazil.
| | | |
Collapse
|
38
|
Huang C, Zeng Y, Luo X, Ren Z, Lu Q, Tian Y, Gao S, Wang S, Harrad S, Mai B. Tracing the sources and microbial degradation of PCBs in field sediments by a multiple-line-of-evidence approach including compound-specific stable isotope analysis. WATER RESEARCH 2020; 182:115977. [PMID: 32619684 DOI: 10.1016/j.watres.2020.115977] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/29/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Comprehensive monitoring is crucial for tracing micropollutants in the natural environment. To better evaluate the sources and natural attenuation of polychlorinated biphenyls (PCBs), three composite sediment cores were sampled from a closed pond near e-waste recycling plants, and a multiple-line-of-evidence approach (MLEA) including quantification, enantiomer analysis, microbial community profiling, and compound-specific isotope analysis (CSIA) was used to investigate the fate of PCBs in sediment cores. The difference in the maximum PCB concentrations and associated depths between sites 1/2 and 3 and the corresponding significant (p < 0.01) difference in δ13C values strongly indicated two different PCB inputs at sites 1/2 and 3. A significant (p < 0.01) negative correlation between the variation in chlorine per biphenyl (CPB) and Log the abundance of Dehalococcoides/total molar concentration of PCBs (Log Dhc/TPCB) along the cores suggested that different degrees of PCB degradation occurred and that Dehalococcoides likely participated in PCB degradation in these sediments. Nonracemic compositions and pronounced stable carbon isotope fractionation (Δδ13C > 1‰) of PCB congeners were observed, confirming that in situ degradation occurred in the sediment cores. The progressive enrichment in 13C with increasing core depth suggested strengthened microbial degradation of the residual congener pools. The results of this study suggested that MLEA analysis of PCBs can provide reliable information to better monitor the sources and fate of these compounds in the environment.
Collapse
Affiliation(s)
- Chenchen Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zihe Ren
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yankuan Tian
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Stuart Harrad
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
39
|
Torabi E, Wiegert C, Guyot B, Vuilleumier S, Imfeld G. Dissipation of S-metolachlor and butachlor in agricultural soils and responses of bacterial communities: Insights from compound-specific isotope and biomolecular analyses. J Environ Sci (China) 2020; 92:163-175. [PMID: 32430119 DOI: 10.1016/j.jes.2020.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 06/11/2023]
Abstract
The soil dissipation of the widely used herbicides S-metolachlor (SM) and butachlor (BUT) was evaluated in laboratory microcosms at two environmentally relevant doses (15 and 150 μg/g) and for two agricultural soils (crop and paddy). Over 80% of SM and BUT were dissipated within 60 and 30 days, respectively, except in experiments with crop soil at 150 μg/g. Based on compound-specific isotope analysis (CSIA) and observed dissipation, biodegradation was the main process responsible for the observed decrease of SM and BUT in the paddy soil. For SM, biodegradation dominated over other dissipation processes, with changes of carbon isotope ratios (Δδ13C) of up to 6.5‰ after 60 days, and concomitant production of ethane sulfonic acid (ESA) and oxanilic acid (OXA) transformation products. In crop soil experiments, biodegradation of SM occurred to a lesser extent than in paddy soil, and sorption was the main driver of apparent BUT dissipation. Sequencing of the 16S rRNA gene showed that soil type and duration of herbicide exposure were the main determinants of bacterial community variation. In contrast, herbicide identity and spiking dose had no significant effect. In paddy soil experiments, a high (4:1, V/V) ESA to OXA ratio for SM was observed, and phylotypes assigned to anaerobic Clostridiales and sulfur reducers such as Desulfuromonadales and Syntrophobacterales were dominant for both herbicides. Crop soil microcosms, in contrast, were associated with a reverse, low (1:3, V/V) ratio of ESA to OXA for SM, and Alphaproteobacteria, Actinobacteria, and Bacillales dominated regardless of the herbicide. Our results emphasize the variability in the extent and modes of SM and BUT dissipation in agricultural soils, and in associated changes in bacterial communities.
Collapse
Affiliation(s)
- Ehssan Torabi
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Daneshkadeh St., P.O. Box #3158711167-4111, Karaj, Iran; Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), Université de Strasbourg, UMR 7517 CNRS/EOST, 1 Rue Blessig, 67084, Strasbourg Cedex, France; Génétique Moléculaire, Génomique, Microbiologie (GMGM), Université de Strasbourg, UMR 7156 CNRS, 4 Allée Konrad Roentgen, 67000, Strasbourg, France
| | - Charline Wiegert
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), Université de Strasbourg, UMR 7517 CNRS/EOST, 1 Rue Blessig, 67084, Strasbourg Cedex, France
| | - Benoît Guyot
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), Université de Strasbourg, UMR 7517 CNRS/EOST, 1 Rue Blessig, 67084, Strasbourg Cedex, France
| | - Stéphane Vuilleumier
- Génétique Moléculaire, Génomique, Microbiologie (GMGM), Université de Strasbourg, UMR 7156 CNRS, 4 Allée Konrad Roentgen, 67000, Strasbourg, France
| | - Gwenaël Imfeld
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), Université de Strasbourg, UMR 7517 CNRS/EOST, 1 Rue Blessig, 67084, Strasbourg Cedex, France.
| |
Collapse
|
40
|
Berens MJ, Hofstetter TB, Bolotin J, Arnold WA. Assessment of 2,4-Dinitroanisole Transformation Using Compound-Specific Isotope Analysis after In Situ Chemical Reduction of Iron Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5520-5531. [PMID: 32275413 DOI: 10.1021/acs.est.9b07616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ferrous iron-bearing minerals are important reductants in the contaminated subsurface, but their availability for the reduction of anthropogenic pollutants is often limited by competition with other electron acceptors including microorganisms and poor accessibility to Fe(II) in complex hydrogeologic settings. The supply of external electron donors through in situ chemical reduction (ISCR) has been proposed as one remediation approach, but the quantification of pollutant transformation is complicated by the perturbations introduced to the subsurface by ISCR. Here, we evaluate the application of compound specific isotope analysis (CSIA) for monitoring the reduction of 2,4-dinitroanisole (DNAN), a component of insensitive munitions formulations, by mineral-bound Fe(II) generated through ISCR of subsurface material from two field sites. Electron balances from laboratory experiments in batch and column reactors showed that 3.6% to 11% of the total Fe in the sediments was available for the reduction of DNAN and its partially reduced intermediates after dithionite treatment. The extent of DNAN reduction was successfully quantified from its N isotope fractionation measured in the column effluent based on the derivation of a N isotope enrichment factor, εN, derived from a comprehensive series of isotope fractionation experiments with numerous Fe(II)-bearing minerals as well as dithionite-reduced subsurface materials. Our observations illustrate the utility of CSIA as a robust approach to evaluate the success of in situ remediation through abiotic contaminant reduction.
Collapse
Affiliation(s)
- Matthew J Berens
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Chemistry, Überlandstrasse 133, CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Jakov Bolotin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Chemistry, Überlandstrasse 133, CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| |
Collapse
|
41
|
Knossow N, Siebner H, Bernstein A. Isotope analysis method for the herbicide bromoxynil and its application to study photo-degradation processes. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122036. [PMID: 31951995 DOI: 10.1016/j.jhazmat.2020.122036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Bromoxynil is an increasingly applied nitrile herbicide used for post-emergent control of annual broadleaved weeds. Compound-specific isotope analysis (CSIA) of the compound is of interest for studying its environmental fate, yet is challenging following its polar nature. We present a CSIA method for bromoxynil that includes offline thin-layer chromatography purification followed by an elemental analyzer isotope ratio mass spectrometer (EA-IRMS). This method was shown to be accurate and precise for δ13C and δ15N analysis of the compound (standard deviation of replicate standards <0.5‰). The method was applied to photodegraded samples, either radiated under laboratory condition with a UV lamp, or exposed to sunlight under environmental conditions. Dominating degradation products were similar in both cases. Nevertheless, isotope effects differed, presenting a strong inverse carbon isotope effect (εC = 4.74 ± 0.82‰) and a weak inverse nitrogen isotope effect (εN = 0.76 ± 0.12‰) for the laboratory experiment, and an insignificant carbon isotope effect (εC = 0.34 ± 0.44‰) and a normal nitrogen isotope effect (εN = -3.70 ± 0.30‰) for the natural conditions experiment. The differences in δ13C vs. δ15N enrichment trends suggest different mechanism for the two processes. Finally, the obtained dual isotope trend for natural conditions provide the basis for studying the dominance of photodegradation as a degradation route in the environment.
Collapse
Affiliation(s)
- Nadav Knossow
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Hagar Siebner
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel.
| |
Collapse
|
42
|
Accelerated solvent extraction combined with GC–MS: A convenient technique for the determination and compound-specific stable isotope analysis of phthalates in mine tailings. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Chen S, Zhang K, Jha RK, Ma L. Impact of atrazine concentration on bioavailability and apparent isotope fractionation in Gram-negative Rhizobium sp. CX-Z. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113614. [PMID: 31761577 DOI: 10.1016/j.envpol.2019.113614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/10/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Compound-specific stable isotope analysis of micropollutants has become an established method for the qualitative and quantitative assessment of biodegradation in the field. However, many of environmental factors may have an influence on the observed isotope fractionation. Herein, we investigate the impact of substrate concentration on the observed enrichment factor derived from Rayleigh plot of batch laboratory experiments conducted to measure the atrazine carbon isotope fractionation of Rhizobium sp. CX-Z subjected to the different initial concentration level of atrazine. The Rayleigh plot (changes in bulk concentration vs. isotopic composition) derived from batch experiments shown divergence from the linear relation towards the end of degradation, confirming bioavailability of atrazine changed along with the decay of substrate concentration, consequently, influenced the isotope fractionation and lowered the observed enrichment factor. When microbial degradation is coupled to a mass transfer step limiting the bioavailability of substrate, the observed enrichment factor displays a dependence on initial atrazine concentration. Observed enrichment factors (ε) (absolute value) derived from the low concentration (i.e. 9.5 μM) are below 3.5‰ to the value of -5.4‰ determined at high bioavailability (membrane-free cells). The observed enrichment factor depended significantly on the atrazine concentration, indicating the concentration level and the bioavailability of a substrate in realistic environments should be considered during the assessment of microbial degradation or in situ bioremediation based on compound-specific stable isotope analysis (CSIA) method.
Collapse
Affiliation(s)
- Songsong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Kai Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Rohit Kumar Jha
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
44
|
Derrien M, Brogi SR, Gonçalves-Araujo R. Characterization of aquatic organic matter: Assessment, perspectives and research priorities. WATER RESEARCH 2019; 163:114908. [PMID: 31362212 DOI: 10.1016/j.watres.2019.114908] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Organic matter (OM) refers to the largest reactive reservoir of carbon-based compounds on Earth. Aside of its role as a source of carbon, OM is also actively involved in a wide range of ecological functions. It also plays an important role in the solubility, toxicity, bioavailability, mobility and distribution of pollutants. Therefore, OM is a key component in the local and global carbon cycle. About 12,000 articles containing organic matter in the title were published during the past decade, with a continuous increasing number each year (ISI Web of Science). Although this topic was widely explored and its interest has significantly increased, some limitations remain. These limitations can be technical (e.g., pre-treatment processes, low-resolution instrument, data handling) and can be related to the current approach. In this review, we first present the current strategies and tools to characterize the organic matter in the aquatic environment, then we tackle several aspects of current characterization limitations. Finally, we suggest new perspectives and priorities of research to improve the current limitations. From our point of view, simultaneous studies of particulate and dissolved OM fractions should be prioritized and multi-disciplinary approach, creation of databases, controlled experiments and collaborative works should be the next targets for future OM research priorities.
Collapse
Affiliation(s)
- Morgane Derrien
- Department of Environment and Energy, Sejong University, Seoul, 143-747, South Korea.
| | - Simona Retelletti Brogi
- Department of Environment and Energy, Sejong University, Seoul, 143-747, South Korea; Biophysics Institute, Italian National Research Council, Pisa, Italy
| | | |
Collapse
|
45
|
Margalef-Marti R, Carrey R, Viladés M, Jubany I, Vilanova E, Grau R, Soler A, Otero N. Use of nitrogen and oxygen isotopes of dissolved nitrate to trace field-scale induced denitrification efficiency throughout an in-situ groundwater remediation strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:709-718. [PMID: 31195279 DOI: 10.1016/j.scitotenv.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
In the framework of the Life+ InSiTrate project, a pilot-plant was established to demonstrate the viability of inducing in-situ heterotrophic denitrification to remediate nitrate (NO3-)-polluted groundwater. Two injection wells supplied acetic acid by pulses to an alluvial aquifer for 22months. The monitoring was performed by regular sampling at three piezometers and two wells located downstream. In the present work, the pilot-plant monitoring samples were used to test the usefulness of the isotopic tools to evaluate the efficiency of the treatment. The laboratory microcosm experiments determined an isotopic fractionation (ε) for N-NO3- of -12.6‰ and for O-NO3- of -13.3‰. These ε15NNO3/N2 and ε18ONO3/N2 values were modelled by using a Rayleigh distillation equation to estimate the percentage of the induced denitrification at the pilot-plant while avoiding a possible interference from dilution due to non-polluted water inputs. In some of the field samples, the induced NO3- reduction was higher than 50% with respect to the background concentration. The field samples showed a reduced slope between δ18O-NO3- and δ15N-NO3- (0.7) compared to the laboratory experiments (1.1). This finding was attributed to the reoxidation of NO2- to NO3- during the treatment. The NO3- isotopic characterization also permitted the recognition of a mixture between the denitrified and partially or non-denitrified groundwater in one of the sampling points. Therefore, the isotopic tools demonstrated usefulness in assessing the implementation of the field-scale induced denitrification strategy.
Collapse
Affiliation(s)
- Rosanna Margalef-Marti
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Raúl Carrey
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Viladés
- Sustainability Department, Fundació CTM Centre Tecnològic, Spain
| | - Irene Jubany
- Sustainability Area, Eurecat, Centre Tecnològic de Catalunya, Spain
| | | | | | - Albert Soler
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Barcelona, Spain
| | - Neus Otero
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Barcelona, Spain; Serra Húnter Fellow, Generalitat de Catalunya, Spain
| |
Collapse
|
46
|
Lihl C, Renpenning J, Kümmel S, Gelman F, Schürner HKV, Daubmeier M, Heckel B, Melsbach A, Bernstein A, Shouakar-Stash O, Gehre M, Elsner M. Toward Improved Accuracy in Chlorine Isotope Analysis: Synthesis Routes for In-House Standards and Characterization via Complementary Mass Spectrometry Methods. Anal Chem 2019; 91:12290-12297. [DOI: 10.1021/acs.analchem.9b02463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christina Lihl
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Julian Renpenning
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research − UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research − UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Faina Gelman
- Geological Survey of Israel, 32 Yeshayahu Leibowitz Street, 9692100 Jerusalem, Israel
| | - Heide K. V. Schürner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Martina Daubmeier
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Benjamin Heckel
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistraße 17, 81377 München, Germany
| | - Aileen Melsbach
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, 84990 Sede Boqer, Israel
| | - Orfan Shouakar-Stash
- Department of Earth Sciences, University of Waterloo, 200 University Avenue, Waterloo, Ontario, Canada N2L 3G1
| | - Matthias Gehre
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research − UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistraße 17, 81377 München, Germany
| |
Collapse
|
47
|
Dong X, Bäcker LE, Rahmatullah M, Schunk D, Lens G, Meckenstock RU. Quantification of microbial degradation activities in biological activated carbon filters by reverse stable isotope labelling. AMB Express 2019; 9:109. [PMID: 31312915 PMCID: PMC6635546 DOI: 10.1186/s13568-019-0827-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/29/2019] [Indexed: 11/10/2022] Open
Abstract
Biological activated carbon (BAC) filters are frequently used in drinking water production for removing dissolved organic carbon (DOC) via adsorption of organic compounds and microbial degradation. However, proper methods are still missing to distinguish the two processes. Here, we introduce reverse stable isotope labelling (RIL) for assessing microbial activity in BAC filters. We incubated BAC samples from three different BAC filters (two granular activated carbon- and one extruded activated carbon-based) in a buffer amended with 13C-labelled bicarbonate. By monitoring the release of 12C–CO2 from the mineralization of DOC, we could demonstrate the successful application of RIL in analysing microbial DOC degradation during drinking water treatment. Changing the water flow rates through BAC filters did not alter the microbial activities, even though apparent DOC removal efficiencies changed accordingly. Microbial DOC degradation activities quickly recovered from backwashing which was applied for removing particulate impurities and preventing clogging. The size distributions of activated carbon particles led to vertical stratification of microbial activities along the filter beds. Our results demonstrate that reverse isotope labelling is well suited to measure microbial DOC degradation on activated carbon particles, which provides a basis for improving operation and design of BAC filters.
Collapse
|
48
|
Melsbach A, Ponsin V, Torrentó C, Lihl C, Hofstetter TB, Hunkeler D, Elsner M. 13C- and 15N-Isotope Analysis of Desphenylchloridazon by Liquid Chromatography-Isotope-Ratio Mass Spectrometry and Derivatization Gas Chromatography-Isotope-Ratio Mass Spectrometry. Anal Chem 2019; 91:3412-3420. [PMID: 30672693 DOI: 10.1021/acs.analchem.8b04906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The widespread application of herbicides impacts surface water and groundwater. Metabolites (e.g., desphenylchloridazon from chloridazon) may be persistent and even more polar than the parent herbicide, which increases the risk of groundwater contamination. When parent herbicides are still applied, metabolites are constantly formed and may also be degraded. Evaluating their degradation on the basis of concentration measurements is, therefore, difficult. This study presents compound-specific stable-isotope analysis (CSIA) of nitrogen- and carbon-isotope ratios at natural abundances as an alternative analytical approach to track the origin, formation, and degradation of desphenylchloridazon (DPC), the major degradation product of the herbicide chloridazon. Methods were developed and validated for carbon- and nitrogen-isotope analysis (δ13C and δ15N) of DPC by liquid chromatography-isotope-ratio mass spectrometry (LC-IRMS) and derivatization gas chromatography-IRMS (GC-IRMS), respectively. Injecting standards directly onto an Atlantis LC-column resulted in reproducible δ13C-isotope analysis (standard deviation <0.5‰) by LC-IRMS with a limit of precise analysis of 996 ng of DPC on-column. Accurate and reproducible δ15N analysis with a standard deviation of <0.4‰ was achieved by GC-IRMS after derivatization of >100 ng of DPC with 160-fold excess of (trimethylsilyl)diazomethane. Application of the method to environmental-seepage water indicated that newly formed DPC could be distinguished from "old" DPC by the different isotopic signatures of the two DPC sources.
Collapse
Affiliation(s)
- Aileen Melsbach
- Helmholtz Zentrum München , Institute of Groundwater Ecology , 85764 Neuherberg , Germany
| | - Violaine Ponsin
- Centre for Hydrogeology and Geothermics (CHYN) , University of Neuchâtel , 2000 Neuchâtel , Switzerland
| | - Clara Torrentó
- Centre for Hydrogeology and Geothermics (CHYN) , University of Neuchâtel , 2000 Neuchâtel , Switzerland
| | - Christina Lihl
- Helmholtz Zentrum München , Institute of Groundwater Ecology , 85764 Neuherberg , Germany
| | - Thomas B Hofstetter
- Swiss Federal Institute of Aquatic Science and Technology (Eawag) , 8600 Dübendorf , Switzerland
| | - Daniel Hunkeler
- Centre for Hydrogeology and Geothermics (CHYN) , University of Neuchâtel , 2000 Neuchâtel , Switzerland
| | - Martin Elsner
- Helmholtz Zentrum München , Institute of Groundwater Ecology , 85764 Neuherberg , Germany.,Chair of Analytical Chemistry and Water Chemistry , Technical University of Munich , 81377 Munich , Germany
| |
Collapse
|
49
|
Ehrl B, Kundu K, Gharasoo M, Marozava S, Elsner M. Rate-Limiting Mass Transfer in Micropollutant Degradation Revealed by Isotope Fractionation in Chemostat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1197-1205. [PMID: 30514083 PMCID: PMC6365907 DOI: 10.1021/acs.est.8b05175] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 05/05/2023]
Abstract
Biodegradation of persistent micropollutants like pesticides often slows down at low concentrations (μg/L) in the environment. Mass transfer limitations or physiological adaptation are debated to be responsible. Although promising, evidence from compound-specific isotope fractionation analysis (CSIA) remains unexplored for bacteria adapted to this low concentration regime. We accomplished CSIA for degradation of a persistent pesticide, atrazine, during cultivation of Arthrobacter aurescens TC1 in chemostat under four different dilution rates leading to 82, 62, 45, and 32 μg/L residual atrazine concentrations. Isotope analysis of atrazine in chemostat experiments with whole cells revealed a drastic decrease in isotope fractionation with declining residual substrate concentration from ε(C) = -5.36 ± 0.20‰ at 82 μg/L to ε(C) = -2.32 ± 0.28‰ at 32 μg/L. At 82 μg/L ε(C) represented the full isotope effect of the enzyme reaction. At lower residual concentrations smaller ε(C) indicated that this isotope effect was masked indicating that mass transfer across the cell membrane became rate-limiting. This onset of mass transfer limitation appeared in a narrow concentration range corresponding to about 0.7 μM assimilable carbon. Concomitant changes in cell morphology highlight the opportunity to study the role of this onset of mass transfer limitation on the physiological level in cells adapted to low concentrations.
Collapse
Affiliation(s)
- Benno
N. Ehrl
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Kankana Kundu
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Mehdi Gharasoo
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Sviatlana Marozava
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin Elsner
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
- Chair
of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 Munich, Germany
| |
Collapse
|
50
|
Yu H, Bonetti J, Gaucher C, Fries I, Vernex-Loset L, Leroy P, Chaimbault P. Higher-energy collision-induced dissociation for the quantification by liquid chromatography/tandem ion trap mass spectrometry of nitric oxide metabolites coming from S-nitroso-glutathione in an in vitro model of the intestinal barrier. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1-11. [PMID: 30248720 DOI: 10.1002/rcm.8287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE The potency of S-nitrosoglutathione (GSNO) as a nitric oxide (NO) donor to treat cardiovascular diseases (CVDs) has been highlighted in numerous studies. In order to study its bioavailability after oral administration, which represents the most convenient route for the chronic treatment of CVDs, it is essential to develop an analytical method permitting (i) the simultaneous measurement of GSNO metabolites, i.e. nitrite, S-nitrosothiols (RSNOs) and nitrate and (ii) to distinguish them from other sources (endogenous synthesis and diet). METHODS Exogenous GSNO was labeled with 15 N, and the GS15 NO metabolites after conversion into the nitrite ion were derivatized with 2,3-diaminonaphthalene. The resulting 2,3-naphthotriazole was quantified by liquid chromatography/tandem ion trap mass spectrometry (LC/ITMS/MS) in multiple reaction monitoring mode after Higher-energy Collision-induced Dissociation (HCD). Finally, the validated method was applied to an in vitro model of the intestinal barrier (monolayer of Caco-2 cells) to study GS15 NO intestinal permeability. RESULTS A LC/ITMS/MS method based on an original transition (m/z 171 to 156) for sodium 15 N-nitrite, GS15 NO and sodium 15 N-nitrate measurements was validated, with recoveries of 100.8 ± 3.8, 98.0 ± 2.7 and 104.1 ± 3.3%, respectively. Intra- and inter-day variabilities were below 13.4 and 12.6%, and the limit of quantification reached 5 nM (signal over blank = 4). The permeability of labeled GS15 NO (10-100 μM) was evaluated by calculating its apparent permeability coefficient (Papp ). CONCLUSIONS A quantitative LC/ITMS/MS method using HCD was developed for the first time to selectively monitor GS15 NO metabolites. The assay allowed evaluation of GS15 NO intestinal permeability and situated this drug candidate within the middle permeability class according to FDA guidelines. In addition, the present method has opened the perspective of a more fundamental work aiming at studying the fragmentation mechanism leading to the ion at m/z 156 in HCD tandem mass spectrometry in the presence of acetonitrile.
Collapse
Affiliation(s)
- Haiyan Yu
- CITHEFOR, Université de Lorraine, F-54000, Nancy, France
| | | | | | - Isabelle Fries
- CITHEFOR, Université de Lorraine, F-54000, Nancy, France
| | | | - Pierre Leroy
- CITHEFOR, Université de Lorraine, F-54000, Nancy, France
| | | |
Collapse
|