1
|
Reuter H, Steinritz D, Worek F, John H. Phosphonylated tyrosine and cysteine disulfide adducts both generated from immunoglobulin G and human serum albumin indicate exposure to the nerve agent VX in vitro. Anal Bioanal Chem 2025; 417:1833-1845. [PMID: 39891660 PMCID: PMC11913938 DOI: 10.1007/s00216-025-05762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Pronase-catalyzed proteolysis is shown to produce single amino acid adducts of tyrosine (Tyr) and cysteine (Cys) obtained from both human serum albumin (HSA) and immunoglobulin G (IgG) after in vitro exposure of plasma to the nerve agent VX. Total plasma as well as isolated HSA and IgG yielded the Tyr residue phosphonylated with the ethyl methylphosphonic acid moiety, Tyr(-EMP). Furthermore, a Cys residue adducted with the diisopropylaminoethane thiol leaving group of the agent bound via a disulfide bridge, Cys(-DPAET), was also obtained from both proteins. Even though Tyr(-EMP) represents an internationally well-accepted biomarker of a VX-like agent its origin from plasma IgG has never been shown before. In addition, this is the first time that Cys(-DPAET) is presented as a biomarker of VX exposure clearly identifying the chemical nature of the V-type nerve agent's leaving group. Both biomarkers were detected after selective affinity-based solid-phase extraction (SPE) from plasma that yielded highly purified HSA and IgG as documented by sodium dodecyl polyamide gel electrophoresis (SDS-PAGE). Both biomarkers were found in the corresponding protein bands of HSA and IgG each after in-gel proteolysis with pronase. A micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry method (LC-ESI HR-MS/MS) was developed for the simultaneous detection of Tyr(-EMP) and Cys(-DPAET). The time for proteolysis was optimized for maximum biomarker yield. The method showed excellent selectivity and sensitivity, and the adducted proteins and biomarkers were found to be highly stable during storage. Accordingly, the presented method sheds more light on the molecular toxicology of VX and broadens the spectrum of methods suited for biomedical verification.
Collapse
Affiliation(s)
- Henrik Reuter
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany.
| |
Collapse
|
2
|
Braglia C, Alberoni D, Di Gioia D, Giacomelli A, Bocquet M, Bulet P. Application of a robust MALDI mass spectrometry approach for bee pollen investigation. Anal Bioanal Chem 2024; 416:4315-4324. [PMID: 38879687 PMCID: PMC11271380 DOI: 10.1007/s00216-024-05368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
Pollen collected by pollinators can be used as a marker of the foraging behavior as well as indicate the botanical species present in each environment. Pollen intake is essential for pollinators' health and survival. During the foraging activity, some pollinators, such as honeybees, manipulate the collected pollen mixing it with salivary secretions and nectar (corbicular pollen) changing the pollen chemical profile. Different tools have been developed for the identification of the botanical origin of pollen, based on microscopy, spectrometry, or molecular markers. However, up to date, corbicular pollen has never been investigated. In our work, corbicular pollen from 5 regions with different climate conditions was collected during spring. Pollens were identified with microscopy-based techniques, and then analyzed in MALDI-MS. Four different chemical extraction solutions and two physical disruption methods were tested to achieve a MALDI-MS effective protocol. The best performance was obtained using a sonication disruption method after extraction with acetic acid or trifluoroacetic acid. Therefore, we propose a new rapid and reliable methodology for the identification of the botanical origin of the corbicular pollens using MALDI-MS. This new approach opens to a wide range of environmental studies spanning from plant biodiversity to ecosystem trophic interactions.
Collapse
Affiliation(s)
- Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Università di Bologna, Viale Fanin 42, 40127, Bologna, Italia
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Università di Bologna, Viale Fanin 42, 40127, Bologna, Italia.
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Università di Bologna, Viale Fanin 42, 40127, Bologna, Italia
| | - Alessandra Giacomelli
- Unione Nazionale Associazioni Apicoltori Italiani (UNA API), Via Pietro Boselli 2, Firenze, Italia
| | - Michel Bocquet
- Apimedia, 82 Route de Proméry, Pringy, 74370, Annecy, France
| | - Philippe Bulet
- CR, University Grenoble Alpes, IAB Inserm 1209, CNRS UMR5309, 38000, Grenoble, France
- Plateforme BioPark of Archamps, 74160, Archamps, France
| |
Collapse
|
3
|
Chu S, Li XH, Letcher RJ. Covalent adduct formation of histone with organophosphorus pesticides in vitro. Chem Biol Interact 2024; 398:111095. [PMID: 38844256 DOI: 10.1016/j.cbi.2024.111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
It is established that organophosphorus pesticide (OPP) toxicity results from modification of amino acids in active sites of target proteins. OPPs can also modify unrelated target proteins such as histones and such covalent histone modifications can alter DNA-binding properties and lead to aberrant gene expression. In the present study, we report on non-enzymatic covalent modifications of calf thymus histones adducted to selected OPPs and organophosphate flame retardants (OPFRs) in vitro using a bottom-up proteomics method approach. Histones were not found to form detectable adducts with the two tested OPFRs but were avidly modified by a few of the seven OPPs that were tested in vitro. Dimethyl phosphate (or diethyl phosphate) adducts were identified on Tyr, Lys and Ser residues. Most of the dialkyl phosphate adducts were identified on Tyr residues. Methyl and ethyl modified histones were also detected. Eleven amino residues in histones showed non-enzymatic covalent methylation by exposure of dichlorvos and malathion. Our bottom-up proteomics approach showing histone-OPP adduct formation warrants future studies on the underlying mechanism of chronic illness from exposure to OPPs.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada.
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, PR China.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada.
| |
Collapse
|
4
|
Wang J, Lu X, Gao R, Pei C, Wang H. Progressive expansion of albumin adducts for organophosphorus nerve agent traceability based on single and group adduct collection. Anal Bioanal Chem 2024; 416:3569-3584. [PMID: 38698257 DOI: 10.1007/s00216-024-05311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Protein adducts are important biological targets for traceability of organophosphorus nerve agents (OPNAs). Currently, the recognized biomarkers that can be used in actual samples in the field of chemical forensics only include Y411 in albumin and the active nonapeptide in butyrylcholinesterase (BChE). To explore stable and reliable protein adducts and increase the accuracy of OPNAs traceability further, we gradually expanded OPNAs-albumin adducts based on single and group adduct collection. Several stable peptides were found via LC-MS/MS analysis in human serum albumin (HSA) exposed to OPNAs in a large exposure range. These adducts were present in HSA samples exposed to OPNAs of each concentration, which provided data support for the reliability and stability of using adducts to trace OPNAs. Meanwhile, the formation mechanism of OPNAs-cysteine adduct was clarified via computer simulations. Then, these active sites found and modified peptides were used as raw materials for progressive expansion of albumin adducts. We constructed an OPNAs-HSA adducts group, in which a specific agent is the exposure source, and three or more active peptides constitute data sets for OPNAs traceability. Compared with single or scattered protein adducts, the OPNAs-HSA adduct group improves OPNAs identification by mutual verification using active peptides or by narrowing the identity range of the exposure source. We also determined the minimum detectable concentration of OPNAs for the adduct group. Two or more peptides can be detected when there is an exposure of 50 times the molar excess of OPNAs in relation to HSA. This improved the accuracy of OPNAs exposure and identity confirmation. A collection of OPNAs-albumin adducts was also examined. The collection was established by collecting, classifying, and integrating the existing albumin adducts according to the species to which each albumin belongs, the types of agents, and protease. This method can serve as a reference for discovering new albumin adducts, characteristic phosphonylated peptides, and potential biomarkers. In addition, to avoid a false negative for OPNAs traceability using albumin adducts, we explored OPNAs-cholinesterase adducts because cholinesterase is more reactive with OPNAs than albumin. Seven active peptides in red blood cell acetylcholinesterase (RBC AChE) and serum BChE can assist in OPNAs exposure and identity confirmation.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xiaogang Lu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Runli Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Chengxin Pei
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Hongmei Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
5
|
Belinskaia DA, Koryagina NL, Goncharov NV, Savelieva EI. Structure-Dependent Mechanism of Organophosphate Release from Albumin and Butyrylcholinesterase Adducts When Exposed to Fluoride Ion: A Comprehensive In Silico Study. Int J Mol Sci 2023; 24:14819. [PMID: 37834267 PMCID: PMC10573431 DOI: 10.3390/ijms241914819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The most favorable targets for retrospectively determining human exposure to organophosphorus pesticides, insecticides, retardants, and other industrial organophosphates (OPs) are adducts of OPs with blood plasma butyrylcholinesterase (BChE) and human serum albumin (HSA). One of the methods for determining OP exposure is the reactivation of modified BChE using a concentrated solution of KF in an acidic medium. It is known that under the action of fluoride ion, OPs or their fluoroanhydrides can be released not only from BChE adducts but also from the adducts with albumin; however, the contribution of albumin to the total pool of released OPs after plasma treatment with KF has not yet been studied. The efficiency of OP release can be affected by many factors associated with the experimental technique, but first, the structure of the adduct must be taken into account. We report a comparative analysis of the structure and conformation of organophosphorus adducts on HSA and BChE using molecular modeling methods and the mechanism of OP release after fluoride ion exposure. The conformational analysis of the organophosphorus adducts on HSA and BChE was performed, and the interaction of fluoride ions with modified proteins was studied by molecular dynamics simulation. The geometric and energy characteristics of the studied adducts and their complexes with fluoride ion were calculated using molecular mechanics and semiempirical approaches. The structural features of modified HSA and BChE that can affect the efficiency of OP release after fluoride ion exposure were revealed. Using the proposed approach, the expediency of using KF for establishing exposure to different OPs, depending on their structure, can be assessed.
Collapse
Affiliation(s)
- Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, 194223 St. Petersburg, Russia
| | - Nadezhda L. Koryagina
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Bld.93 p.o. Kuz’molovsky, 188663 St. Petersburg, Russia
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, 194223 St. Petersburg, Russia
| | - Elena I. Savelieva
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Bld.93 p.o. Kuz’molovsky, 188663 St. Petersburg, Russia
| |
Collapse
|
6
|
Kranawetvogl T, Kranawetvogl A, Scheidegger L, Wille T, Steinritz D, Worek F, Thiermann H, John H. Evidence of nerve agent VX exposure in rat plasma by detection of albumin-adducts in vitro and in vivo. Arch Toxicol 2023; 97:1873-1885. [PMID: 37264164 PMCID: PMC10256656 DOI: 10.1007/s00204-023-03521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
VX is a highly toxic organophosphorus nerve agent that reacts with a variety of endogenous proteins such as serum albumin under formation of adducts that can be targeted by analytical methods for biomedical verification of exposure. Albumin is phosphonylated by the ethyl methylphosphonic acid moiety (EMP) of VX at various tyrosine residues. Additionally, the released leaving group of VX, 2-(diisopropylamino)ethanethiol (DPAET), may react with cysteine residues in diverse proteins. We developed and validated a microbore liquid chromatography-electrospray ionization high-resolution tandem mass spectrometry (µLC-ESI MS/HR MS) method enabling simultaneous detection of three albumin-derived biomarkers for the analysis of rat plasma. After pronase-catalyzed cleavage of rat plasma proteins single phosphonylated tyrosine residues (Tyr-EMP), the Cys34(-DPAET)Pro dipeptide as well as the rat-specific LeuProCys448(-DPAET) tripeptide were obtained. The time-dependent adduct formation in rat plasma was investigated in vitro and biomarker formation during proteolysis was optimized. Biomarkers were shown to be stable for a minimum of four freeze-and-thaw cycles and for at least 24 h in the autosampler at 15 °C thus making the adducts highly suited for bioanalysis. Cys34(-DPAET)Pro was superior compared to the other serum biomarkers considering the limit of identification and stability in plasma at 37 °C. For the first time, Cys34(-DPAET)Pro was detected in in vivo specimens showing a time-dependent concentration increase after subcutaneous exposure of rats underlining the benefit of the dipeptide disulfide biomarker for sensitive analysis.
Collapse
Affiliation(s)
- Tamara Kranawetvogl
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
- Walther-Straub-Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Lisa Scheidegger
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
- Walther-Straub-Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| |
Collapse
|
7
|
Wang J, Lu X, Gao R, Pei C, Wang H. Current Progress for Retrospective Identification of Nerve Agent Biomarkers in Biological Samples after Exposure. TOXICS 2022; 10:toxics10080439. [PMID: 36006118 PMCID: PMC9416412 DOI: 10.3390/toxics10080439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022]
Abstract
Organophosphorus neurotoxic agents (OPNAs) seriously damage the nervous system, inhibiting AChE activity and threatening human health and life. Timely and accurate detection of biomarkers in biomedical samples is an important means for identifying OPNA exposure, helping to recognize and clarify its characteristics and providing unambiguous forensic evidence for retrospective research. It is therefore necessary to summarize the varieties of biomarkers, recognize their various characteristics, and understand the principal research methods for these biomarkers in the retrospective detection of OPNA exposure. Common biomarkers include mainly intact agents, degradation products and protein adducts. Direct agent identification in basic experimental research was successfully applied to the detection of free OPNAs, however, this method is not applicable to actual biomedical samples because the high reactivity of OPNAs promotes rapid metabolism. Stepwise degradation products are important targets for retrospective research and are usually analyzed using a GC–MS, or an LC–MS system after derivatization. The smaller window of detection time requires that sampling be accomplished within 48 h, increasing the obstacles to determining OPNA exposure. For this reason, the focus of retrospective identification of OPNA exposure has shifted to protein adducts with a longer lifetime. Compared to the fluoride-induced reactivation method, which cannot be used for aged adducts, digestive peptide analysis is the more elegant method for detecting various adducts, identifying more active sites, exploring potential biomarkers and excavating characteristic ions. Retrospective identification of biomarkers after OPNA poisoning is of primary importance, providing unambiguous evidence for forensic analysis in actual cases and judgment of chemical accidents. At present, degradation products, the nonapeptide from BChE adducts and Y411 from human serum adducts are used successfully in actual cases of OPNA exposure. However, more potential biomarkers are still in the discovery stage, which may prove inconclusive. Therefore, there is an urgent need for research that screens biomarker candidates with high reactivity and good reliability from the potential candidates. In addition, mass spectrometry detection with high resolution and reactivity and an accurate data processing system in the scanning mode must also be further improved for the retrospective identification of unknown agents.
Collapse
|
8
|
Retrospective detection for V-type OPNAs exposure via phosphonylation and disulfide adducts in albumin. Sci Rep 2022; 12:10979. [PMID: 35768567 PMCID: PMC9243071 DOI: 10.1038/s41598-022-15198-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
Organophosphorus nerve agents (OPNAs) that damage the central nervous system by inhibiting acetylcholinesterase activity, pose severe threats to human health and life security. Reliable biomarkers that quickly and accurately detect OPNAs exposure are urgently needed to help diagnose quickly and treat in time. Albumins that covalently bind to OPNAs could serve as important targets for retrospective verification of OPNAs exposure. The goal of this study is to explore the potential biomarkers in albumins with high reactivity and good stability and expand the group of potential biomarkers in different species for detecting the exposure of V-type OPNAs including O-ethyl S-(2-(diisopropylamino)ethyl) methylphosphonothioate (VX), O-isobutyl S-(2(diethylamino)ethyl) methylphosphonothioate (VR), and O-butyl S-(2-(diethylamino)ethyl) methylphosphonothioate (Vs). Taking human serum albumin (HSA), bovine serum albumin (BSA) and rabbit serum albumin (RSA) as the research objectives, multiple active sites including phosphonylation and disulfide adduct sites were observed in albumins from different species. Numerous phosphonylation sites labeled by all agents in one type of albumin were found. Among the different species, four shared phosphonylation sites with high reactivity include K499, K549, K249, and Y108. In addition, Y108 on ETY*GEMADCCAK, Y287 on Y*ICENQDSISSK, Y377 on TY*ETTLEK and Y164 on YLY*EIAR in HSA were stably phosphonylated by all agents in gradient concentration, making them stable and suitable potential biomarkers for V-type OPNAs exposure. Notably, Y108 on ETY*GEMADCCAK in HSA, on DTY*GDVADCCEK in RSA, and on ETY*GDMADCCEK in BSA were highly reactive to all V-type agents, regardless of species. It was also successfully labeled in HSA exposed to class V agents in gradient concentration. Y108 is expected to be used to screen and identify the exposure of V-type agents in the retrospective research. Disulfide adducts sites, consisted of four sites in HSA and two sites in BSA were also successfully labeled by V-type agents, and characteristic ion fragments from these disulfide adducts were also identified by secondary mass spectrometry. Molecular simulation of the stably modified sites were conducted to discover the promoting factors of covalent adduct formation, which help further clarify formation mechanism of albumin adducts at active sites.
Collapse
|
9
|
Onder S, van Grol M, Fidder A, Xiao G, Noort D, Yerramalla U, Tacal O, Schopfer LM, Lockridge O. Rabbit Antidiethoxyphosphotyrosine Antibody, Made by Single B Cell Cloning, Detects Chlorpyrifos Oxon-Modified Proteins in Cultured Cells and Immunopurifies Modified Peptides for Mass Spectrometry. J Proteome Res 2021; 20:4728-4745. [PMID: 34469172 PMCID: PMC8491160 DOI: 10.1021/acs.jproteome.1c00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Chronic low-dose
exposure to organophosphorus pesticides is associated
with the risk of neurodegenerative disease. The mechanism of neurotoxicity
is independent of acetylcholinesterase inhibition. Adducts on tyrosine,
lysine, threonine, and serine can occur after exposure to organophosphorus
pesticides, the most stable being adducts on tyrosine. Rabbit monoclonal
1C6 to diethoxyphosphate-modified tyrosine (depY) was created by single
B cell cloning. The amino acid sequence and binding constant (Kd 3.2 × 10–8 M) were
determined. Cultured human neuroblastoma SH-SY5Y and mouse neuroblastoma
N2a cells incubated with a subcytotoxic dose of 10 μM chlorpyrifos
oxon contained depY-modified proteins detected by monoclonal 1C6 on
Western blots. depY-labeled peptides from tryptic digests of cell
lysates were immunopurified by binding to immobilized 1C6. Peptides
released with 50% acetonitrile and 1% formic acid were analyzed by
liquid chromatography tandem mass spectrometry (LC-MS/MS) on an Orbitrap
Fusion Lumos mass spectrometer. Protein Prospector database searches
identified 51 peptides modified on tyrosine by diethoxyphosphate in
SH-SY5Y cell lysate and 73 diethoxyphosphate-modified peptides in
N2a cell lysate. Adducts appeared most frequently on the cytoskeleton
proteins tubulin, actin, and vimentin. It was concluded that rabbit
monoclonal 1C6 can be useful for studies that aim to understand the
mechanism of neurotoxicity resulting from low-dose exposure to organophosphorus
pesticides.
Collapse
Affiliation(s)
- Seda Onder
- Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Marco van Grol
- TNO Organisation for Applied Scientific Research, 2280 AA Rijswijk, The Netherlands
| | - Alex Fidder
- TNO Organisation for Applied Scientific Research, 2280 AA Rijswijk, The Netherlands
| | - Gaoping Xiao
- Syd Labs, Inc., Hopkinton, Massachusetts 01748, United States
| | - Daan Noort
- TNO Organisation for Applied Scientific Research, 2280 AA Rijswijk, The Netherlands
| | | | - Ozden Tacal
- Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
10
|
Herrera-Moreno JF, Medina-Díaz IM, Bernal-Hernández YY, Barrón-Vivanco BS, González-Arias CA, Moreno-Godínez ME, Verdín-Betancourt FA, Sierra-Santoyo A, Rojas-García AE. Organophosphorus pesticide exposure biomarkers in a Mexican population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50825-50834. [PMID: 33970420 DOI: 10.1007/s11356-021-14270-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
The organophosphate (OP) pesticides are neurotoxic compounds widely used around the world. Evaluation of OP exposure in human studies is important for enabling adequate data analyses and drawing accurate conclusions. The aim of this study was to analyze OP exposure biomarkers and their relationships in a Mexican population with different exposure levels. Dialkylphosphates (DAP) were determined through gas chromatography-mass spectrometry (GC-MSD); acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), arylesterase (AREase), basal paraoxonase 1 (PONase), and β-glucuronidase activities were detected using spectrophotometric methods. The albumin content was determined in a certified clinical laboratory. The DMTP metabolite was found in the highest concentration, and a negative and significant correlation between DAP and cholinesterase activity was observed. Our results suggested that BuChE is a considerably more sensitive biomarker than AChE. In addition, β-glucuronidase was positively correlated with albumin, BuChE, and PONase. In conclusion, our data strongly support the use of two or more biomarkers of exposure in human monitoring and the application of a strong and validated questionnaire.
Collapse
Affiliation(s)
- José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Ma Elena Moreno-Godínez
- Laboratorio de Toxicología y Salud Ambiental. Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Francisco Alberto Verdín-Betancourt
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Adolfo Sierra-Santoyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.
| |
Collapse
|
11
|
Monroy-Noyola A, Sogorb MA, Almenares-Lopez D, Vilanova E. DAEH N-terminal sequence of avian serum albumins as catalytic center of Cu (II)-dependent organophosphorus hydrolyzing A-esterase activity. Chem Biol Interact 2021; 345:109524. [PMID: 34022193 DOI: 10.1016/j.cbi.2021.109524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Accepted: 05/16/2021] [Indexed: 02/02/2023]
Abstract
O-hexyl O-2,5-dichlorophenyl phosphoramidate (HDCP) induces delayed neuropathy. The R (+)-HDCP inhibits and caused the so call "aging reaction" on inhibited-NTE. This enantiomer is not hydrolyzed by Ca(II)-dependent A-esterases in mammal tissues but is hydrolyzed by Cu(II)-dependent chicken serum albumin (CSA). With the aim of identifying HDCP hydrolysis by other vertebrate albumins, we incubated albumin with 400 μM racemic HDCP in the presence of 100 μM copper sulfate. HDCPase activity was assessed by measurement of HDCP with chiral chromatography. Human, sheep, dog, pig, lamprey or cobra serum albumin did not show a significant activity (~10%). Rabbit and bovine albumins hydrolyzed both enantiomers of HDCP (25% and 50% respectively). Turkey serum albumin had more HDCPase activity (~80 μM remaining) than the chicken albumin (~150 μM remaining). No animal albumins other than chicken showed stereoselective hydrolysis. Preincubation of chicken albumin with 1 mM the histidine modifying agents, 100 μM N-bromosuccinimide (NBS) and Zn(II), inhibited its Cu(II)-dependent R (+)-HDCPase activity, where as other mM amino acids modifiers had no inhibitory effects. . These results confirm that the stereoselective hydrolysis of (+)-HDCP is a specific A-esterase catalytic property of chicken albumin. The higher HDCPase activity by turkey albumin suggests the amino-terminal sequence of avian albumins (DAEHK) is the active center of this Cu(II)-dependent A-esterase activity.
Collapse
Affiliation(s)
- Antonio Monroy-Noyola
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma Del Estado de Morelos, Mexico.
| | - Miguel Angel Sogorb
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Alicante, Spain.
| | - Damianys Almenares-Lopez
- Laboratorio de Neuroprotección, Facultad de Farmacia, Universidad Autónoma Del Estado de Morelos, Mexico; División de Ingenierías y Ciencias Agropecuarias, Universidad Popular de La Chontalpa, Heroica Cárdenas, Tabasco, Mexico.
| | - Eugenio Vilanova
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Alicante, Spain.
| |
Collapse
|
12
|
John H, Richter A, Siegert M, Eyer F, Thiermann H. Evidence of exposure to organophosphorus toxicants by detection of the propionylated butyrylcholinesterase-derived nonapeptide-adduct as a novel biomarker. Forensic Sci Int 2021; 323:110818. [PMID: 33990018 DOI: 10.1016/j.forsciint.2021.110818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Organophosphorus (OP) nerve agents represent a class of highly toxic chemical warfare agents banned by the Chemical Weapons Convention. Nevertheless, in the past few years they have been used repeatedly for warfare, assassination and attempted murder. In addition, the chemically related OP pesticides were frequently used for suicide and may be deployed for terroristic attacks. Therefore, sensitive and selective bioanalytical methods are indispensable to investigate biological specimens as pieces of evidence to prove poisoning. OP agents form long-lived covalent reaction products (adducts) with endogenous proteins like human serum albumin (HSA) and butyrylcholinesterase (BChE). The adducted nonapeptide (NP) obtained by proteolysis of the BChE-adduct is one of the most sensitive and important biomarkers. We herein present a novel class of NP-adducts propionylated at its N-terminal phenylalanine residue (F195). The biomarker derivative is produced by addition of propionic anhydride to the NP-adduct inducing its quantitative conversion in aqueous buffer within 5 min at room temperature. Afterwards the mixture is directly analyzed by micro-liquid chromatography-electrospray ionization tandem-mass spectrometry (µLC-ESI MS/MS). The sensitivity of the method is comparable to that of the non-derivatized NP-adduct. These characteristics make the method highly beneficial for forensic analysis especially in cases in which the OP agent does not form adducts with HSA that are typically targeted as a second biomarker of exposure. This novel procedure was successfully applied to nerve agent-spiked samples sent by the Organisation for the Prohibition of Chemical Weapons (OPCW) as well as to plasma samples of real cases of pesticide poisoning.
Collapse
Affiliation(s)
- Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | - Annika Richter
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany; Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Florian Eyer
- Department of Clinical Toxicology, TUM School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| |
Collapse
|
13
|
Fu F, Guo Y, Lu X, Zhao P, Zou S, Wang H, Gao R, Pei C. Forensic analysis of soman exposure using characteristic fragment ions from protein adducts. Hum Exp Toxicol 2021; 40:1519-1527. [PMID: 33729033 DOI: 10.1177/09603271211001111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The verification of exposure to nerve agents is a serious challenge, especially in cases of soman (GD) poisoning. Protein adducts are reliable biomarkers, that provide forensic information and evidence during incidents of terrorism or sporadic poisoning. Mass spectrometry, coupled with a proteomics approach, was established for the forensic analysis of GD-based protein adducts. The fragmentation pathways of GD-based protein adducts were investigated for the first time using electrospray ionization tandem mass spectrometry. Three abundant natural loss product ions, [M+2H-54]2+ (loss of two carbon cations), [M+2H-72]2+ (loss of tert-butyl and methyl moieties), and [M+2H-84]2+ (loss of the pinacolyl moieties), were observed in each of the GD-labeled adducts, and the product ions were independent of protein structure and exposure route. A unique mechanism for the formation of product ions involving GD-protein adducts is proposed here. These findings support the development of a simple and precise forensic analysis technique to rapidly verify GD poisoning using these three GD-related product ions.
Collapse
Affiliation(s)
- F Fu
- 535871State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Y Guo
- 535871State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - X Lu
- 535871State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - P Zhao
- 535871State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - S Zou
- 535871State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - H Wang
- 535871State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - R Gao
- 535871State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - C Pei
- 535871State Key Laboratory of NBC Protection for Civilian, Beijing, China
| |
Collapse
|
14
|
Baygildiev ТМ, Vokuev MF, Braun AV, Yashkir VA, Rуbalchenko IV, Rodin IA. Identification of 2-(diethylamino)ethylthiol dipeptide (Cys-Pro) adduct as biomarker of nerve agents VR and CVX in human plasma using liquid chromatography-high-resolution tandem mass spectrometry. Anal Bioanal Chem 2021; 413:1905-1916. [PMID: 33479815 DOI: 10.1007/s00216-021-03158-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022]
Abstract
Organophosphorus nerve agents pose a significant threat to human health. The most toxic compounds in this class include V-type poisonous substances such as VX, CVX, and VR. Although all stockpiles of this type of substance are subject to destruction under the Chemical Weapons Convention (CWC), there is still a risk that they could be used for criminal and terrorist purposes. The latter determines the relevance of studies aimed at identification of biomarkers that may indicate the exposure of these group substances to the organism. A liquid chromatography mass spectrometry/high-resolution mass spectrometry (LC-MS/HR MS) method for determination of trace amounts of nerve agents such as VR and CVX in human plasma was proposed. The method is based on enzymatic plasma hydrolysis with the use of pronase to form a stable adduct of 2-(diethylamino)ethylthiol with dipeptide cysteine-proline (DEAET-CP) with its subsequent determination by LC-MS/HR MS. Synthesis of DEAET-CP as reference compound was conducted using non-toxic precursors. Sample preparation of human blood plasma samples exposed to VR was carried out with the use of solid-phase extraction (SPE). Liquid chromatography (LC) separation on the reversed-phase column and mass spectrometric detection (selection of optimal transitions and detection modes) were performed. The achieved limit of detection (LOD) of VR (in the form of DEAET-CP) in human blood plasma was 0.05 ng mL-1. The proposed approach was developed using plasma samples exposed to VR and CVX obtained in the frame of the Fifth Official Biomedical Test of the Organization for the Prohibition of Chemical Weapons (OPCW) and showed good specificity of detection.
Collapse
Affiliation(s)
- Тimur М Baygildiev
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Mikhail F Vokuev
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - Arkady V Braun
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia, 119991
- Laboratory for the Chemical and Analytical Control of the Military Research Centre, Moscow, Russia, 105005
| | - Vadim A Yashkir
- Laboratory for the Chemical and Analytical Control of the Military Research Centre, Moscow, Russia, 105005
| | - Igor V Rуbalchenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia, 119991
- Laboratory for the Chemical and Analytical Control of the Military Research Centre, Moscow, Russia, 105005
| | - Igor A Rodin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia, 119991
- Department of Epidemiology and Evidence Based Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia, 119435
| |
Collapse
|
15
|
Chu S, Letcher RJ. Identification and characterization of serum albumin covalent adduct formed with atrazine by liquid chromatography mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1163:122503. [PMID: 33388526 DOI: 10.1016/j.jchromb.2020.122503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/13/2020] [Indexed: 11/16/2022]
Abstract
The present study developed an analytical technique to investigate the possible covalent adduct formation of albumin with the herbicide atrazine, and to characterize the protein modifications in vitro using liquid chromatography separation coupled with high resolution time-of-flight mass spectrometry (LC-TOF-MS). Tandem mass spectrum analysis (MS/MS) with collision induced dissociation (CID) revealed the specific sites of rat, human and bovine serum albumin adduct with atrazine. The formation of b-ion, y-ion series in MS/MS showed a covalent adduct with an addition mass of 179.1 Da located on Cys-34 of serum albumin from rats, human and bovine. This clearly indicated that the chemical group C8H13N5 forms an adduct with Cys-34 despite the sequences differences between of rat, human and bovine serum albumin. To confirm the method reliability, concentration-dependent and time-dependent formation of adducts between serum albumins and atrazine were also investigated. Our results confirmed that atrazine can directly react with Cys-34 of serum albumin and form covalent adducts without prior metabolism.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Carleton University, Ottawa, ON, K1A 0H3 Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Carleton University, Ottawa, ON, K1A 0H3 Canada.
| |
Collapse
|
16
|
John H, Thiermann H. Poisoning by organophosphorus nerve agents and pesticides: An overview of the principle strategies and current progress of mass spectrometry-based procedures for verification. J Mass Spectrom Adv Clin Lab 2021; 19:20-31. [PMID: 34820662 PMCID: PMC8601002 DOI: 10.1016/j.jmsacl.2021.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/02/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Evidence of poisoning with organophosphorus (OP) nerve agents requires biomedical verification. OP nerve agents undergo common biotransformation pathways producing valuable biomarkers. Internationally accepted methods target remaining poison, hydrolysis products and protein-adducts. Mass spectrometry-based methods provide optimum selectivity and sensitivity for identification. Methods, strategies, current proceedings, quality criteria and real cases of poisoning are presented.
Intoxication by organophosphorus (OP) poisons, like nerve agents and pesticides, is characterized by the life-threatening inhibition of acetylcholinesterase (AChE) caused by covalent reaction with the serine residue of the active site of the enzyme (phosphylation). Similar reactions occur with butyrylcholinesterase (BChE) and serum albumin present in blood as dissolved proteins. For forensic purposes, products (adducts) with the latter proteins are highly valuable long-lived biomarkers of exposure to OP agents that are accessible by diverse mass spectrometric procedures. In addition, the evidence of poison incorporation might also succeed by the detection of remaining traces of the agent itself, but more likely its hydrolysis and/or enzymatic degradation products. These relatively short-lived molecules are distributed in blood and tissue, and excreted via urine. This review presents the mass spectrometry-based methods targeting the different groups of biomarkers in biological samples, which are already internationally accepted by the Organisation for the Prohibition of Chemical Weapons (OPCW), introduces novel approaches in the field of biomedical verification, and outlines the strict quality criteria that must be fulfilled for unambiguous forensic analysis.
Collapse
|
17
|
Belinskaia DA, Goncharov NV. Theoretical and Practical Aspects of Albumin Esterase Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020030036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Fu F, Liu H, Gao R, Zhao P, Lu X, Zhang R, Wang L, Wang H, Pei C. Protein adduct binding properties of tabun-subtype nerve agents after exposure in vitro and in vivo. Toxicol Lett 2020; 321:1-11. [DOI: 10.1016/j.toxlet.2019.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
|
19
|
Belinskaia DA, Terpilovskii MA, Batalova AA, Goncharov NV. Effect of Cys34 Oxidation State of Albumin on Its Interaction with Paraoxon according to Molecular Modeling Data. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Richardson RJ, Fink JK, Glynn P, Hufnagel RB, Makhaeva GF, Wijeyesakere SJ. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). ADVANCES IN NEUROTOXICOLOGY 2020; 4:1-78. [PMID: 32518884 PMCID: PMC7271139 DOI: 10.1016/bs.ant.2020.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic inhibition of neuropathy target esterase (NTE) with certain organophosphorus (OP) compounds produces OP compound-induced delayed neurotoxicity (OPIDN), a distal degeneration of axons in the central nervous system (CNS) and peripheral nervous system (PNS), thereby providing a powerful model for studying a spectrum of neurodegenerative diseases. Axonopathies are important medical entities in their own right, but in addition, illnesses once considered primary neuronopathies are now thought to begin with axonal degeneration. These disorders include Alzheimer's disease, Parkinson's disease, and motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Moreover, conditional knockout of NTE in the mouse CNS produces vacuolation and other degenerative changes in large neurons in the hippocampus, thalamus, and cerebellum, along with degeneration and swelling of axons in ascending and descending spinal cord tracts. In humans, NTE mutations cause a variety of neurodegenerative conditions resulting in a range of deficits including spastic paraplegia and blindness. Mutations in the Drosophila NTE orthologue SwissCheese (SWS) produce neurodegeneration characterized by vacuolization that can be partially rescued by expression of wild-type human NTE, suggesting a potential therapeutic approach for certain human neurological disorders. This chapter defines NTE and OPIDN, presents an overview of OP compounds, provides a rationale for NTE research, and traces the history of discovery of NTE and its relationship to OPIDN. It then briefly describes subsequent studies of NTE, including practical applications of the assay; aspects of its domain structure, subcellular localization, and tissue expression; abnormalities associated with NTE mutations, knockdown, and conventional or conditional knockout; and hypothetical models to help guide future research on elucidating the role of NTE in OPIDN.
Collapse
Affiliation(s)
- Rudy J. Richardson
- Molecular Simulations Laboratory, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States,Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI, United States,Corresponding author:
| | - John K. Fink
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, United States
| | - Paul Glynn
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia
| | - Sanjeeva J. Wijeyesakere
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Verification of soman-related nerve agents via detection of phosphonylated adducts from rabbit albumin in vitro and in vivo. Arch Toxicol 2019; 93:1853-1863. [DOI: 10.1007/s00204-019-02485-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
|
22
|
Mass Spectrometry Identifies Isopeptide Cross-Links Promoted by Diethylphosphorylated Lysine in Proteins Treated with Chlorpyrifos Oxon. Chem Res Toxicol 2019; 32:762-772. [DOI: 10.1021/acs.chemrestox.9b00001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Kranawetvogl A, Siegert M, Eyer F, Thiermann H, John H. Verification of organophosphorus pesticide poisoning: Detection of phosphorylated tyrosines and a cysteine-proline disulfide-adduct from human serum albumin after intoxication with dimethoate/omethoate. Toxicol Lett 2018; 299:11-20. [DOI: 10.1016/j.toxlet.2018.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 01/16/2023]
|
24
|
John H, Rychlik M, Thiermann H, Schmidt C. Simultaneous quantification of atropine and scopolamine in infusions of herbal tea and Solanaceae plant material by matrix-assisted laser desorption/ionization time-of-flight (tandem) mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1911-1921. [PMID: 30117208 DOI: 10.1002/rcm.8264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Atropine (Atr) and scopolamine (Scp) are toxic secondary plant metabolites of species within the Solanaceae genus that can accidentally or intentionally reach the food store chain by inaccurate harvesting of any plant material, e.g. for herbal tea infusions. Ingestion may cause severe anticholinergic poisoning thus requiring risk-oriented determination in food and beverages. The suitability of matrix-assisted laser desorption/ionization time-of-flight (tandem) mass spectrometry, MALDI-TOF MS(/MS), should be characterized for simultaneous analysis. METHODS We herein present the first MALDI-TOF MS(/MS) procedure for quantitative determination of both alkaloids in herbal tea infusions and Solanaceae plant material. A standard additions procedure using triply deuterated Atr as internal standard was developed and validated. RESULTS Tropane alkaloids were detected without interferences and the standard additions procedure allowed reliable quantification. Intraday and interday precision were less than 17% and corresponding accuracies were between 77% and 112%. Limits of detection in the spotting solution were found at 5 ng/mL (Atr) and 0.5 ng/mL (Scp). The assay was applied to diverse tea infusions as well as to berries and leaves of deadly nightshade and angel's trumpet. CONCLUSIONS The usefulness of MALDI-TOF MS(/MS) for investigations of plant-derived samples to prove contaminations by small basic compounds was demonstrated. The elaborate procedure is reliable but quite laborious to obtain quantitative results, but MALDI-TOF MS(/MS) was also shown to be a valuable tool for rapid qualitative screening for Atr and Scp in plant extracts.
Collapse
Affiliation(s)
- Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Michael Rychlik
- Analytical Food Chemistry, Technische Universität München, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Christian Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
25
|
Namazbaeva Z, Battakova S, Ibrayeva L, Sabirov Z. Change in metabolic and cognitive state among people of the Aral zone of ecological disaster. Isr J Ecol Evol 2018. [DOI: 10.1163/22244662-20181035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Risk factors in Aral Sea region include toxic metals that competitively interact with essential elements influencing their metabolism, affecting metabolic and cognitive functions. According to epidemiological data, cerebrovascular disease and thyroid function abnormality are the leading disorders. Cognitive and metabolic disorders are considered as risk factors in cerebrovascular diseases. Thus, the objective of current work was to determine the metabolic and cognitive state of people in Aralsk, associated with an imbalance of essential trace elements and find correlation between toxic metals load and psychoemotional status. 275 people between the ages of 21 and 45 years were involved. In evaluating cognitive state, a decrease in short-term memory for numbers and an increase in depression among subjects was found. An inverse correlation between the copper level in blood and short-term memory for numbers, between depression and iodine level in blood, between the zinc level in blood and the “attentional capacity” was also found. The results showed a significant metabolic stress among subjects during adaptation to a high chemical load. Data represent a cross-sectional age-dependent review of metabolic and cognitive processes and microelement metabolism among population, living in the Aral Sea region for a long time.
Collapse
Affiliation(s)
- Zulkiya Namazbaeva
- a Republican State Governmental Enterprise with the right of commercial activity “National Centre of Labour Hygiene and Occupational Diseases”, Ministry of Healthcare of the Republic of Kazakhstan, Karaganda, Kazakhstan
| | - Sharbanu Battakova
- a Republican State Governmental Enterprise with the right of commercial activity “National Centre of Labour Hygiene and Occupational Diseases”, Ministry of Healthcare of the Republic of Kazakhstan, Karaganda, Kazakhstan
| | - Lyazat Ibrayeva
- a Republican State Governmental Enterprise with the right of commercial activity “National Centre of Labour Hygiene and Occupational Diseases”, Ministry of Healthcare of the Republic of Kazakhstan, Karaganda, Kazakhstan
- b Republican State Governmental Enterprise with the right of commercial activity, Karaganda State Medical University, Ministry of Healthcare of the Republic of Kazakhstan, Karaganda, Kazakhstan
| | - Zhanbol Sabirov
- a Republican State Governmental Enterprise with the right of commercial activity “National Centre of Labour Hygiene and Occupational Diseases”, Ministry of Healthcare of the Republic of Kazakhstan, Karaganda, Kazakhstan
| |
Collapse
|
26
|
Monroy-Noyola A, Sogorb MA, Vilanova E. Albumin, the responsible protein of the Cu2+-dependent hydrolysis of O-hexyl O-2,5-dichlorophenyl phosphoramidate (HDCP) by chicken serum "antagonistic stereoselectivity". Food Chem Toxicol 2018; 120:523-527. [DOI: 10.1016/j.fct.2018.07.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022]
|
27
|
Novel cysteine- and albumin-adduct biomarkers to prove human poisoning with the pesticide oxydemeton-S-methyl. Toxicol Lett 2018; 294:122-134. [DOI: 10.1016/j.toxlet.2018.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
|
28
|
A toolbox for microbore liquid chromatography tandem-high-resolution mass spectrometry analysis of albumin-adducts as novel biomarkers of organophosphorus pesticide poisoning. Toxicol Lett 2018; 292:46-54. [DOI: 10.1016/j.toxlet.2018.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
|
29
|
Schopfer LM, Lockridge O. Chlorpyrifos oxon promotes tubulin aggregation via isopeptide cross-linking between diethoxyphospho-Lys and Glu or Asp: Implications for neurotoxicity. J Biol Chem 2018; 293:13566-13577. [PMID: 30006344 PMCID: PMC6120212 DOI: 10.1074/jbc.ra118.004172] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/09/2018] [Indexed: 11/06/2022] Open
Abstract
Exposure to organophosphorus toxicants (OP) can have chronic adverse effects that are not explained by inhibition of acetylcholinesterase, the cause of acute OP toxicity. We therefore hypothesized that OP-induced chronic illness is initiated by the formation of organophosphorus adducts on lysine residues in proteins, followed by protein cross-linking and aggregation. Here, Western blots revealed that exposure to the OP chlorpyrifos oxon converted porcine tubulin from its original 55-kDa mass to high-molecular-weight aggregates. Liquid chromatography–tandem MS analysis of trypsin-digested samples identified several diethoxyphospho-lysine residues in the OP-treated tubulin. Using a search approach based on the Batch Tag program, we identified cross-linked peptides and found that these chemically activated lysines reacted with acidic amino acid residues creating γ-glutamyl-ϵ-lysine or aspartyl-ϵ-lysine isopeptide bonds between β- and α-tubulin. Of note, these cross-linked tubulin molecules accounted for the high-molecular-weight aggregates. To the best of our knowledge, this is the first report indicating that chlorpyrifos oxon–exposed tubulin protein forms intermolecular cross-links with other tubulin molecules, resulting in high-molecular-weight protein aggregates. It is tempting to speculate that chronic illness from OP exposure may be explained by a mechanism that starts with OP adduct formation on protein lysines followed by protein cross-linking. We further speculate that OP-modified or cross-linked tubulin can impair axonal transport, reduce neuron connections, and result in neurotoxicity.
Collapse
Affiliation(s)
- Lawrence M Schopfer
- From the Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900
| | - Oksana Lockridge
- From the Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900
| |
Collapse
|
30
|
Onder S, Schopfer LM, Tacal O, Blake TA, Johnson RC, Lockridge O. Mass Spectral Detection of Diethoxyphospho-Tyrosine Adducts on Proteins from HEK293 Cells Using Monoclonal Antibody depY for Enrichment. Chem Res Toxicol 2018; 31:520-530. [PMID: 29775289 PMCID: PMC6008731 DOI: 10.1021/acs.chemrestox.8b00083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chronic illness from exposure to
organophosphorus toxicants is
hypothesized to involve modification of unknown proteins. Tyrosine
in proteins that have no active site serine readily reacts with organophosphorus
toxicants. We developed a monoclonal antibody, depY, that specifically
recognizes diethoxyphospho-tyrosine in proteins and peptides, independent
of the surrounding amino acid sequence. Our goal in the current study
was to identify diethoxyphosphorylated proteins in human HEK293 cell
lysate treated with chlorpyrifos oxon. Cell lysates treated with chlorpyrifos
oxon were recognized by depY antibody in ELISA and capillary electrophoresis
based Western blot. Tryptic peptides were analyzed by liquid chromatography
tandem mass spectrometry. Liquid chromatography tandem mass spectrometry
identified 116 diethoxyphospho-tyrosine peptides from 73 proteins
in immunopurified samples, but found only 15 diethoxyphospho-tyrosine
peptides from 12 proteins when the same sample was not immunopurified
on depY. The most abundant proteins in the cell lysate, histone H4,
heat shock 70 kDa protein 1A/1B, heat shock protein HSP 90 β,
and α-enolase, were represented by several diethoxyphospho-tyrosine
peptides. It was concluded that use of immobilized depY improved the
number of diethoxyphospho-tyrosine peptides identified in a complex
mixture. The mass spectrometry results confirmed the specificity of
depY for diethoxyphospho-tyrosine peptides independent of the context
of the modified tyrosine, which means depY could be used to analyze
modified proteins in any species. Use of the depY antibody could lead
to an understanding of chronic illness from organophosphorus pesticide
exposure.
Collapse
Affiliation(s)
- Seda Onder
- Department of Biochemistry, School of Pharmacy , Hacettepe University , Ankara 06100 , Turkey.,Eppley Institute , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Lawrence M Schopfer
- Eppley Institute , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Ozden Tacal
- Department of Biochemistry, School of Pharmacy , Hacettepe University , Ankara 06100 , Turkey
| | - Thomas A Blake
- Division of Laboratory Sciences, National Center for Environmental Health , Centers for Disease Control and Prevention , 4770 Buford Highway NE , Atlanta , Georgia 30341 , United States
| | - Rudolph C Johnson
- Division of Laboratory Sciences, National Center for Environmental Health , Centers for Disease Control and Prevention , 4770 Buford Highway NE , Atlanta , Georgia 30341 , United States
| | - Oksana Lockridge
- Eppley Institute , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
31
|
Chu S, Baker MR, Leong G, Letcher RJ, Li QX. Covalent binding of the organophosphate insecticide profenofos to tyrosine on α- and β-tubulin proteins. CHEMOSPHERE 2018; 199:154-159. [PMID: 29433029 PMCID: PMC5847477 DOI: 10.1016/j.chemosphere.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Organophosphorus (OP) compounds can bind covalently to many types of proteins and form protein adducts. These protein adducts can indicate the exposure to and neurotoxicity of OPs. In the present work, we studied adduction of tubulin with the OP insecticide profenofos in vitro and optimized the method for detection of adducted peptides. Porcine tubulin was incubated with profenofos and was then digested with trypsin, followed by mass spectrometric identification of the profenofos-modified tubulin and binding sites. With solvent-assisted digestion (80% acetonitrile in digestion solution), the protein was digested for peptide identification, especially for some peptides with low mass. The MALDI-TOF-MS and LC-ESI-TOF-MS analysis results showed that profenofos bound covalently to Tyr83 in porcine α-tubulin (TGTY*83R) and to Tyr281 in porcine β-tubulin (GSQQY*281R) with a mass increase of 166.02 Da from the original peptide fragments of porcine tubulin proteins. Tyrosine adduct sites were also confirmed by MALDI-TOF/TOF-MS analysis. This result may partially explain the neurotoxicity of profenofos at low doses and prolonged periods of exposure.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel By Dr., Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Margaret R Baker
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA
| | - Gladys Leong
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel By Dr., Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA.
| |
Collapse
|
32
|
Bioanalytical verification of V-type nerve agent exposure: simultaneous detection of phosphonylated tyrosines and cysteine-containing disulfide-adducts derived from human albumin. Anal Bioanal Chem 2018; 410:1463-1474. [DOI: 10.1007/s00216-017-0787-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 01/08/2023]
|
33
|
Blum BC, Mousavi F, Emili A. Single-platform ‘multi-omic’ profiling: unified mass spectrometry and computational workflows for integrative proteomics–metabolomics analysis. Mol Omics 2018; 14:307-319. [DOI: 10.1039/c8mo00136g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advances in instrumentation and analysis tools are permitting evermore comprehensive interrogation of diverse biomolecules and allowing investigators to move from linear signaling cascades to network models, which more accurately reflect the molecular basis of biological systems and processes.
Collapse
Affiliation(s)
- Benjamin C. Blum
- Center for Network Systems Biology
- Boston University School of Medicine
- Boston
- USA
- Department of Biochemistry
| | - Fatemeh Mousavi
- Donnelly Centre
- Department of Molecular Genetics
- University of Toronto
- Toronto
- Canada
| | - Andrew Emili
- Center for Network Systems Biology
- Boston University School of Medicine
- Boston
- USA
- Department of Biochemistry
| |
Collapse
|
34
|
Taborskaya KI, Belinskaya DA, Avdonin PV, Goncharov NV. Building a three-dimensional model of rat albumin molecule by homology modeling. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s0022093017050040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Vucinic S, Antonijevic B, Tsatsakis AM, Vassilopoulou L, Docea AO, Nosyrev AE, Izotov BN, Thiermann H, Drakoulis N, Brkic D. Environmental exposure to organophosphorus nerve agents. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:163-171. [PMID: 28942081 DOI: 10.1016/j.etap.2017.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 05/21/2023]
Abstract
Exposure to organophosphorus nerve agents, the most deadly chemical warfare agents, is possible in a variety of situations, such as destruction of chemical warfare agents, terrorist attacks, armed conflicts or accidents in research laboratories and storage facilities. Hundreds of thousands of tons of chemical munitions were disposed of at the sea in the post World War II period, with European, Russian, Japanese and US coasts being the most affected. Sulfur mustard, Lewisite and nerve agents appear to be the most frequently chemical warfare agents disposed of at the sea. Addressing the overall environmental risk, it has been one of the priorities of the world community since that time. Aside from confirming exposure to nerve agents in the alleged use for forensic purposes, the detection and identification of biological markers of exposure are also needed for the diagnosis and treatment of poisoning, in addition to occupational health monitoring for specific profiles of workers. When estimating detrimental effects of acute or potential chronic sub-lethal doses of organophosphorus nerve agents, released accidentally or intentionally into the environment, it is necessary to understand the wide spectra of physical, chemical and toxicological properties of these agents, and predict their ultimate fate in environmental systems.
Collapse
Affiliation(s)
- Slavica Vucinic
- National Poison Control Centre, Military Medical Academy, Medical Faculty, University of Defense, Belgrade, Serbia.
| | - Biljana Antonijevic
- Department of Toxicology "Akademik Danilo Soldatovic", Faculty of Pharmacy, University of Belgrade, Serbia.
| | - Aristidis M Tsatsakis
- Research Centre, Department of Forensic Sciences of the Medical School, University of Crete, Greece.
| | - Loukia Vassilopoulou
- Research Centre, Department of Forensic Sciences of the Medical School, University of Crete, Greece.
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, 2 Petru Rares, 200349, Craiova, Romania.
| | - Alexander E Nosyrev
- Central Chemical Laboratory of Toxicology, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| | - Boris N Izotov
- Department of Analytical Toxicology Pharmaceutical Chemistry and Pharmacognosy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Greece.
| | - Dragica Brkic
- Faculty of Agriculture, University of Belgrade, Institute for Phytomedicine, Serbia.
| |
Collapse
|
36
|
Belinskaia DA, Taborskaya KI, Avdonin PV, Goncharov NV. Modulation of the albumin–paraoxon interaction sites by fatty acids: Analysis by the molecular modeling methods. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017030037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Chu S, Baker MR, Leong G, Letcher RJ, Gee SJ, Hammock BD, Li QX. Exploring adduct formation between human serum albumin and eleven organophosphate ester flame retardants and plasticizers using MALDI-TOF/TOF and LC-Q/TOF. CHEMOSPHERE 2017; 180:169-177. [PMID: 28407546 PMCID: PMC5494263 DOI: 10.1016/j.chemosphere.2017.03.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/08/2017] [Accepted: 03/28/2017] [Indexed: 05/09/2023]
Abstract
Organophosphate (OP) and organophosphate ester (OPE) adducts of albumin are valuable biomarkers for retrospective verification of exposure. In the present study, our goal was to determine whether OPE flame retardants (OPE FRs) and OPE plasticizers can covalently bind to human serum albumin (HSA), which would allow the resulting adducts to be used to evaluate exposure. Eleven OPE FRs and plasticizers were examined in a HSA-adduct in vitro assay. Pure HSA was incubated with the target OPEs, as well as with an OP insecticide (profenofos) positive control. After enzymatic cleavage with pepsin or Glu-C, the digested albumin was analyzed by matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) and liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-ToF-MS). Under optimized HSA assay conditions, tyrosine adducts were formed at Y411 and Y148/Y150 with a characteristic mass shift for phosphorylation (Δm/z 166) for the profenofos positive control. However, no such phosphorylated peptides were detected for the 11 target OPEs. This negative result suggests that these OPEs have very different affinities from the OP insecticide. They are less reactive or they may specifically interact with other proteins.
Collapse
Affiliation(s)
- Shaogang Chu
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA; Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Science and Technology Branch, National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel Bay Dr., Ottawa, ON, K1A 0H3, Canada
| | - Margaret R Baker
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA
| | - Gladys Leong
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Science and Technology Branch, National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel Bay Dr., Ottawa, ON, K1A 0H3, Canada
| | - Shirley J Gee
- Department of Entomology and Nematology, University of California at Davis, One Shields Avenue, Davis, CA, 95616-858, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California at Davis, One Shields Avenue, Davis, CA, 95616-858, USA
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA.
| |
Collapse
|
38
|
Belinskaya DA, Shmurak VI, Taborskaya KI, Avdonin PP, Avdonin PV, Goncharov NV. In silico analysis of paraoxon binding by human and bovine serum albumin. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s0022093017030036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Fatal sarin poisoning in Syria 2013: forensic verification within an international laboratory network. Forensic Toxicol 2017; 36:61-71. [PMID: 29367863 PMCID: PMC5754388 DOI: 10.1007/s11419-017-0376-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/01/2017] [Indexed: 10/26/2022]
Abstract
During the United Nations fact-finding mission to investigate the alleged use of chemical warfare agents in the Syrian Arab Republic in 2013, numerous tissues from a deceased female victim, who had displayed symptoms of cholinergic crisis, were collected. The Organisation for the Prohibition of Chemical Weapons (OPCW) authorized two specialized laboratories in the Netherlands and Germany for forensic analysis of these samples. Diverse modern mass spectrometry (MS)-based procedures in combination with either liquid chromatography (LC) or gas chromatography (GC) separation were applied. A variety of biotransformation products of the nerve agent sarin was detected, including the hydrolysis product O-isopropyl methylphosphonic acid (IMPA) as well as covalent protein adducts with e.g., albumin and human butyrylcholinesterase (hBChE). IMPA was extracted after sample acidification by solid-phase extraction and directly analyzed by LC-tandem-MS with negative electrospray ionization (ESI). Protein adducts were found, either by fluoride-induced reactivation applying GC-MS techniques or by LC-MS-based detection after positive ESI for proteolyzed proteins yielding phosphonylated tyrosine residues or a specific phosphonylated hBChE-derived nonapeptide. These experimental results provided unambiguous evidence for a systemic intoxication and were the first proving the use of sarin in the ongoing bellicose conflict. This scenario underlines the requirement for qualified and specialized analytical laboratories to face repeated violation of the Chemical Weapons Convention.
Collapse
|
40
|
Serum Albumin Binding and Esterase Activity: Mechanistic Interactions with Organophosphates. Molecules 2017; 22:molecules22071201. [PMID: 28718803 PMCID: PMC6151986 DOI: 10.3390/molecules22071201] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
The albumin molecule, in contrast to many other plasma proteins, is not covered with a carbohydrate moiety and can bind and transport various molecules of endogenous and exogenous origin. The enzymatic activity of albumin, the existence of which many scientists perceive skeptically, is much less studied. In toxicology, understanding the mechanistic interactions of organophosphates with albumin is a special problem, and its solution could help in the development of new types of antidotes. In the present work, the history of the issue is briefly examined, then our in silico data on the interaction of human serum albumin with soman, as well as comparative in silico data of human and bovine serum albumin activities in relation to paraoxon, are presented. Information is given on the substrate specificity of albumin and we consider the possibility of its affiliation to certain classes in the nomenclature of enzymes.
Collapse
|
41
|
Sun F, Ding J, Lu X, Gao R, Lu X, Shi E, Wang H, Pei C. Mass spectral characterization of tabun-labeled lysine biomarkers in albumin. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1057:54-61. [DOI: 10.1016/j.jchromb.2017.04.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/24/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
|
42
|
Kranawetvogl A, Küppers J, Gütschow M, Worek F, Thiermann H, Elsinghorst PW, John H. Identification of novel disulfide adducts between the thiol containing leaving group of the nerve agent VX and cysteine containing tripeptides derived from human serum albumin. Drug Test Anal 2017; 9:1192-1203. [DOI: 10.1002/dta.2144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Andreas Kranawetvogl
- Bundeswehr Institute of Pharmacology and Toxicology; Neuherbergstrasse 11 80937 Munich Germany
| | - Jim Küppers
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology; Neuherbergstrasse 11 80937 Munich Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology; Neuherbergstrasse 11 80937 Munich Germany
| | - Paul W. Elsinghorst
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn; An der Immenburg 4 53121 Bonn Germany
- Central Institute of the Bundeswehr Medical Service Munich; Ingolstädter Landstrasse 102 85748 Garching Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology; Neuherbergstrasse 11 80937 Munich Germany
| |
Collapse
|
43
|
Sabbioni G, Turesky RJ. Biomonitoring Human Albumin Adducts: The Past, the Present, and the Future. Chem Res Toxicol 2017; 30:332-366. [PMID: 27989119 PMCID: PMC5241710 DOI: 10.1021/acs.chemrestox.6b00366] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 12/21/2022]
Abstract
Serum albumin (Alb) is the most abundant protein in blood plasma. Alb reacts with many carcinogens and/or their electrophilic metabolites. Studies conducted over 20 years ago showed that Alb forms adducts with the human carcinogens aflatoxin B1 and benzene, which were successfully used as biomarkers in molecular epidemiology studies designed to address the role of these chemicals in cancer risk. Alb forms adducts with many therapeutic drugs or their reactive metabolites such as β-lactam antibiotics, acetylsalicylic acid, acetaminophen, nonsteroidal anti-inflammatory drugs, chemotherapeutic agents, and antiretroviral therapy drugs. The identification and characterization of the adduct structures formed with Alb have served to understand the generation of reactive metabolites and to predict idiosyncratic drug reactions and toxicities. The reaction of candidate drugs with Alb is now exploited as part of the battery of screening tools to assess the potential toxicities of drugs. The use of gas chromatography-mass spectrometry, liquid chromatography, or liquid chromatography-mass spectrometry (LC-MS) enabled the identification and quantification of multiple types of Alb xenobiotic adducts in animals and humans during the past three decades. In this perspective, we highlight the history of Alb as a target protein for adduction to environmental and dietary genotoxicants, pesticides, and herbicides, common classes of medicinal drugs, and endogenous electrophiles, and the emerging analytical mass spectrometry technologies to identify Alb-toxicant adducts in humans.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland
- Alpine Institute of Chemistry and Toxicology, CH-6718 Olivone, Switzerland
- Walther-Straub-Institut für Pharmakologie
und Toxikologie, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | - Robert J. Turesky
- Masonic Cancer Center and Department of
Medicinal Chemistry, College of Pharmacy, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
44
|
Kranawetvogl A, Worek F, Thiermann H, John H. Modification of human serum albumin by the nerve agent VX: microbore liquid chromatography/electrospray ionization high-resolution time-of-flight tandem mass spectrometry method for detection of phosphonylated tyrosine and novel cysteine containing disulfide adducts. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2191-2200. [PMID: 27490696 DOI: 10.1002/rcm.7707] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Organophosphorus nerve agents still constitute a considerable threat to the health of military personnel and the civilian population. Long-term biomarkers are crucial for reliable verification of exposure to banned substances. Therefore, current research focuses on identification of endogenous protein targets showing covalent modifications by organophosphorus nerve agents (adducts). METHODS Purified human serum albumin and human plasma were incubated with the nerve agent VX followed by enzymatic proteolysis with pronase. Resulting peptide cleavage products were separated by microbore liquid chromatography (μLC) online coupled to positive electrospray ionization (ESI) with subsequent high-resolution time-of-flight tandem mass spectrometry (HR MS/MS) allowing identification of known and novel adducts. RESULTS In addition to known phosphonylation of various tyrosine residues, albumin was found to be modified at diverse cysteine residues by covalent attachment of the leaving group of VX. These novel disulfide adducts were cleaved from at least two regions of the intact protein as dipeptides containing cysteine and proline either as CP or PC. A rapid and sensitive method was developed for simultaneous detection of the diverse covalent modifications of human albumin by VX. CONCLUSIONS Identification of the novel leaving group adducts with human albumin expands the basic knowledge on molecular toxicology of the nerve agent VX. Furthermore, the presented μLC/ESI HR MS/MS method might be of relevance for verification of VX poisoning. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andreas Kranawetvogl
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| |
Collapse
|
45
|
Sun F, Ding J, Yu H, Gao R, Wang H, Pei C. Identification of new binding sites of human transferrin incubated with organophosphorus agents via Q Exactive LC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1022:256-264. [DOI: 10.1016/j.jchromb.2016.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/29/2016] [Accepted: 04/15/2016] [Indexed: 01/23/2023]
|
46
|
John H, Siegert M, Gandor F, Gawlik M, Kranawetvogl A, Karaghiosoff K, Thiermann H. Optimized verification method for detection of an albumin-sulfur mustard adduct at Cys34 using a hybrid quadrupole time-of-flight tandem mass spectrometer after direct plasma proteolysis. Toxicol Lett 2016; 244:103-111. [DOI: 10.1016/j.toxlet.2015.09.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/25/2022]
|
47
|
Jang YJ, Kim K, Tsay OG, Atwood DA, Churchill DG. Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chem Rev 2015; 115:PR1-76. [DOI: 10.1021/acs.chemrev.5b00402] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yoon Jeong Jang
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Olga G. Tsay
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - David A. Atwood
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305−701, Republic of Korea
| |
Collapse
|
48
|
Goncharov NV, Belinskaia DA, Razygraev AV, Ukolov AI. [On the Enzymatic Activity of Albumin]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:131-44. [PMID: 26165120 DOI: 10.1134/s1068162015020041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Albumin molecule, unlike molecules of many other plasma proteins, is not covered with carbohydrate shell. It plays a crucial role in maintaining of colloid osmotic pressure of the blood, and is able to bind and transport various endogenous and exogenous molecules. The enzymatic activity of albumin, the existence and the role of which most researchers are still skeptical to accept, is of the main interest to us. In this review, a history of the issue is traced, with particular attention to the esterase activity of albumin. The kinetic and thermodynamic characteristics of the interaction of albumin with some substrates are adduced, and possibility of albumin being attributed to certain groups of Enzyme Nomenclature is considered.
Collapse
|
49
|
Pathak KV, Bellamri M, Wang Y, Langouët S, Turesky RJ. 2-Amino-9H-pyrido[2,3-b]indole (AαC) Adducts and Thiol Oxidation of Serum Albumin as Potential Biomarkers of Tobacco Smoke. J Biol Chem 2015; 290:16304-18. [PMID: 25953894 PMCID: PMC4481229 DOI: 10.1074/jbc.m115.646539] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/05/2015] [Indexed: 12/30/2022] Open
Abstract
2-Amino-9H-pyrido[2,3-b]indole (AαC) is a carcinogenic heterocyclic aromatic amine formed during the combustion of tobacco. AαC undergoes bioactivation to form electrophilic N-oxidized metabolites that react with DNA to form adducts, which can lead to mutations. Many genotoxicants and toxic electrophiles react with human serum albumin (albumin); however, the chemistry of reactivity of AαC with proteins has not been studied. The genotoxic metabolites, 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AαC), 2-nitroso-9H-pyrido[2,3-b]indole (NO-AαC), N-acetyloxy-2-amino-9H-pyrido[2,3-b]indole (N-acetoxy-AαC), and their [(13)C6]AαC-labeled homologues were reacted with albumin. Sites of adduction of AαC to albumin were identified by data-dependent scanning and targeted bottom-up proteomics approaches employing ion trap and Orbitrap MS. AαC-albumin adducts were formed at Cys(34), Tyr(140), and Tyr(150) residues when albumin was reacted with HONH-AαC or NO-AαC. Sulfenamide, sulfinamide, and sulfonamide adduct formation occurred at Cys(34) (AαC-Cys(34)). N-Acetoxy-AαC also formed an adduct at Tyr(332). Albumin-AαC adducts were characterized in human plasma treated with N-oxidized metabolites of AαC and human hepatocytes exposed to AαC. High levels of N-(deoxyguanosin-8-yl)-AαC (dG-C8-AαC) DNA adducts were formed in hepatocytes. The Cys(34) was the sole amino acid of albumin to form adducts with AαC. Albumin also served as an antioxidant and scavenged reactive oxygen species generated by metabolites of AαC in hepatocytes; there was a strong decrease in reduced Cys(34), whereas the levels of Cys(34) sulfinic acid (Cys-SO2H), Cys(34)-sulfonic acid (Cys-SO3H), and Met(329) sulfoxide were greatly increased. Cys(34) adduction products and Cys-SO2H, Cys-SO3H, and Met(329) sulfoxide may be potential biomarkers to assess exposure and oxidative stress associated with AαC and other arylamine toxicants present in tobacco smoke.
Collapse
Affiliation(s)
- Khyatiben V Pathak
- From the Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Medjda Bellamri
- UMR INSERM 1085 IRSET, Rennes 1 University, UMS 3480 Biosit, F-35043 Rennes, France
| | - Yi Wang
- From the Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Sophie Langouët
- UMR INSERM 1085 IRSET, Rennes 1 University, UMS 3480 Biosit, F-35043 Rennes, France
| | - Robert J Turesky
- From the Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455 and
| |
Collapse
|
50
|
John H, Breyer F, Schmidt C, Mizaikoff B, Worek F, Thiermann H. Small-scale purification of butyrylcholinesterase from human plasma and implementation of a μLC-UV/ESI MS/MS method to detect its organophosphorus adducts. Drug Test Anal 2015; 7:947-56. [DOI: 10.1002/dta.1792] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 02/27/2015] [Accepted: 03/01/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Harald John
- Bundeswehr Institute of Pharmacology and Toxicology; Munich Germany
| | - Felicitas Breyer
- Institute of Analytical and Bioanalytical Chemistry; University of Ulm; Germany
| | | | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry; University of Ulm; Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology; Munich Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology; Munich Germany
| |
Collapse
|