1
|
Jang J, Sadeghi K, Joo M, Seo J. Safety challenges of mechanically recycled polyethylene terephthalate for food contact materials: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125425. [PMID: 40273793 DOI: 10.1016/j.jenvman.2025.125425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
The global market for polyethylene terephthalate (PET) production and consumption is gradually expanding, with a large amount of plastic wasted. PET is the primary plastic used for direct food contact and the most commonly used mono-material. As it is an appreciable candidate for recycling, PET has emerged as a core concept in the global circular economy of plastics in terms of mechanical and chemical recycling. Chemical recycling is a depolymerization method involving gasification, pyrolysis, and depolymerization, whereas mechanical recycling is a physical process involving sorting, washing, drying, grinding, and remelting. Mechanical recycling, which has the benefits of lower carbon emissions and relative affordability, is more cost- and time-efficient than chemical recycling. Additionally, various safety assessment methods have been established for applying recycled PET (rPET) to food-contact materials (FCMs). Contaminants excised from mechanically recycled PET are reviewed according to different detection methods and types of rPET. The results suggest that various contaminants in rPET produced during each PET recycling process can be monitored using overall migration and specific migration methods. Additionally, the super-cleaning process with filtration is crucial in PET mechanical recycling in terms of the application of rPET as FCMs and the removal of residual migrants. Therefore, this review provides a comprehensive analysis of the safety evaluation of rPET from mechanical recycling, focusing on migration testing and detection methods. It highlights the reliability and limitations of the current regime and identifies gaps in mechanical PET recycling for future research, contributing to the advancement of rPET safety and sustainable applications.
Collapse
Affiliation(s)
- Jaeyoung Jang
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, South Korea
| | - Kambiz Sadeghi
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, USA
| | - Minjung Joo
- Korea Conformity Laboratories, 199, 1st Gasan Digital Road, Gumcheon-gu, 153-803, Seoul, South Korea
| | - Jongchul Seo
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, South Korea.
| |
Collapse
|
2
|
Fernández-Arribas J, Moreno T, Eljarrat E. Plastic additives in the diet: Occurrence and dietary exposure in different population groups. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138317. [PMID: 40273863 DOI: 10.1016/j.jhazmat.2025.138317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
A total diet study focused on exposure to plastic additives has been performed on 109 food samples. Plasticizers were detected in 85 % of analyzed samples with total concentrations ranging between not detected (nd) and 22.0 µg/g wet weight (ww). Non-phthalate plasticizers (NPPs), such as acetyl tributyl citrate (ATBC) or di(2-ethylhexyl) adipate (DEHA), were detected predominantly in baby foods (nd-3.38 µg/g ww) and meat (nd-15.0 µg/g ww), respectively. Significant differences (p ≤ 0.001) were observed across foods with different packaging types regarding the presence of ATBC and DEHA. ATBC was primarily detected in foods packaged in glass containers, meanwhile DEHA is mainly related to fresh food wrapped in plastic materials. Additionally, transference assays in selected ready to cook meals and fresh vegetables were performed, with NPPs exhibiting a higher transference from packaging to food than other compounds. The data obtained have been used for an assessment of estimated daily intake (EDI) of plastic additives in infants (6-12 months), toddlers (1-3 years), and adults (>18 years), resulting in values ranging 0.29-516 µg/kg body weight (bw)/day. Human risk related to baby food consumption, expressed as hazard quotients (HQs), was found with di(2-ethylhexyl) phthalate (DEHP) in the infant population sub-group.
Collapse
Affiliation(s)
- Julio Fernández-Arribas
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Ethel Eljarrat
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
| |
Collapse
|
3
|
Olisah C, Melymuk L, Vestergren R, Rumar K, Wickman T, Melander N, Talasniemi P, Brandsma S, Boije af Gennäs U, Scheringer M. Toward Product Safety and Circularity: Understanding the Information Structure of Global Databases on Chemicals in Products and Articles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1897-1908. [PMID: 39863991 PMCID: PMC11800384 DOI: 10.1021/acs.est.4c07992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Access to information about chemicals in products and articles is critical for supporting enforcement of chemical regulations, assessing risks from chemicals, allowing informed consumer choices, and enabling product circularity. In this work, we identified and evaluated available databases (DBs) on chemicals in products and articles from the literature using a defined protocol and from European national market surveillance authorities, nongovernmental agencies, and industrial sector groups using questionnaires. This is the first comprehensive review of DBs that provide information about chemicals in products and articles. A majority of these DBs are heterogeneous in terms of scope, ontologies, and data structures. Among the 57 identified DBs, 49 identified specific substances and only 30 reported their concentration in their products. In addition, 35 DBs included hazard information and 27 DBs provided safety information about products or chemicals. The analysis highlights the lack of comprehensive or accessible data on chemicals in products and articles for most categories of products/articles and jurisdictions. The limitations of existing DBs were attributed to scattered regulatory information requirements, a lack of data for unregulated substances, the complexity of supply chain communication, and confidentiality issues. In response to these challenges, we identified opportunities for improving existing information transfer structures and exploring alternative data sources to promote product and article safety and circularity.
Collapse
Affiliation(s)
- Chijioke Olisah
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| | - Lisa Melymuk
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| | - Robin Vestergren
- Swedish
Chemical Agency (KEMI), 172 67 Sundbyberg, Stockholm, Sweden
| | - Karin Rumar
- Swedish
Chemical Agency (KEMI), 172 67 Sundbyberg, Stockholm, Sweden
| | - Tonie Wickman
- Swedish
Centre for Chemical Substitution, RISE Research
Institutes of Sweden, 114 86 Stockholm, Sweden
| | - Nina Melander
- Swedish
Centre for Chemical Substitution, RISE Research
Institutes of Sweden, 114 86 Stockholm, Sweden
| | | | - Sicco Brandsma
- Vrije
Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | - Martin Scheringer
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
4
|
Shao K, Zou R, Zhang Z, Mandemaker LDB, Timbie S, Smith RD, Durkin AM, Dusza HM, Meirer F, Weckhuysen BM, Alderete TL, Vermeulen R, Walker DI. Advancements in Assays for Micro- and Nanoplastic Detection: Paving the Way for Biomonitoring and Exposomics Studies. Annu Rev Pharmacol Toxicol 2025; 65:567-585. [PMID: 39270670 DOI: 10.1146/annurev-pharmtox-030424-112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Although plastic pollution and exposure to plastic-related compounds have received worldwide attention, health risks associated with micro- and nanoplastics (MNPs) are largely unknown. Emerging evidence suggests MNPs are present in human biofluids and tissue, including blood, breast milk, stool, lung tissue, and placenta; however, exposure assessment is limited and the extent of human exposure to MNPs is not well known. While there is a critical need to establish robust and scalable biomonitoring strategies to assess human exposure to MNPs and plastic-related chemicals, over 10,000 chemicals have been linked to plastic manufacturing with no existing standardized approaches to account for even a fraction of these exposures. This review provides an overview of the status of methods for measuring MNPs and associated plastic-related chemicals in humans, with a focus on approaches that could be adapted for population-wide biomonitoring and integration with biological response measures to develop hypotheses on potential health effects of plastic exposures. We also examine the exposure risks associated with the widespread use of chemical additives in plastics. Despite advancements in analytical techniques, there remains a pressing need for standardized measurement protocols and untargeted, high-throughput analysis methods to enable comprehensive MNP biomonitoring to identify key MNP exposures in human populations. This review aims to merge insights into the toxicological effects of MNPs and plastic additives with an evaluation of analytical challenges, advocating for enhanced research methods to fully assess, understand, and mitigate the public health implications of MNPs.
Collapse
Affiliation(s)
- Kuanliang Shao
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Runyu Zou
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhuoyue Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Laurens D B Mandemaker
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Sarah Timbie
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Ronald D Smith
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Amanda M Durkin
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hanna M Dusza
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Roel Vermeulen
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| |
Collapse
|
5
|
Tisler S, Kristiansen N, Christensen JH. Chemical migration from reusable plastic bottles: Silicone, polyethylene, and polypropylene show highest hazard potential in LC-HRMS analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136391. [PMID: 39541882 DOI: 10.1016/j.jhazmat.2024.136391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Estimating the chemical hazards of drinking water stored in reusable plastic bottles is challenging due to the numerous intentionally and unintentionally added chemicals. To address this, we developed a broad screening strategy using evaporation enrichment and liquid chromatography high-resolution mass spectrometry (LC-HRMS) to evaluate migration of non-volatile chemicals from various reusable plastic bottles. The study analyzed a wide range of materials, revealing significant variability in chemical profiles across different bottle types. Over 70 % of nearly 1000 unknown compounds were unique to specific bottles. Silicone, HDPE, LDPE, and PP bottles showed the highest migration rates, with silicone releasing the most unknowns, but also phthalates and plasticizers. PP bottles exhibited concerning migration of clarifying agents and bisphenol A derivatives. In contrast, PS, PET, PETG, and PCTG had minimal migration, indicating lower health risks. These findings highlight the need for comprehensive assessments of plastic materials to improve consumer safety.
Collapse
Affiliation(s)
- Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark.
| | - Nastacha Kristiansen
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| |
Collapse
|
6
|
Pei J, Zhang Y, Zhang R, Liu N, Yu W, Wei P, Wang Y, Yu K. Dynamic impact of different human activities on the distribution of organic ultraviolet absorbers in coastal aquatic environments: A case study in Beibu Gulf, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177309. [PMID: 39481554 DOI: 10.1016/j.scitotenv.2024.177309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The increasing environmental concern surrounding organic ultraviolet absorbers (OUVAs) has prompted heightened attention, particularly their presence in personal care products (organic ultraviolet filters, OUVFs) and industrial products (organic ultraviolet stabilizers, OUVSs). This study investigates the impact of human activities and environmental factors on the occurrence, spatiotemporal distribution, and ecological risk of eight commonly utilized OUVFs and OUVSs in the coastal region of Beibu Gulf, South China Sea. The study area is characterized by multiple functional zones with distinct human activities. Results reveal elevated concentrations of OUVAs during summer compared to winter, attributed to increased residential usage, tourist activities, industrial releases, and intensified ultraviolet (UV) radiation. Interestingly, the proportion of OUVFs increases during summer, while OUVSs decrease. Correlation analysis between OUVAs and sampling sites reveals that tourism and domestic wastewater are the main contributors to OUVF contamination in summer, whereas mariculture and port trade significantly impact OUVS contamination in winter. The ecological risk assessment indicates predominantly low or medium risk levels for most OUVAs in both local seawater and freshwater ecosystems. Nevertheless, OUVFs, with a particular focus on 4-methylbenzylidene camphor (4-MBC), and OUVSs, specifically 2-(2-hydroxy-5-methylphenyl) benzotriazole (UV-P), exhibit a heightened risk compared to alternative substances. These findings provide crucial insights into the development of targeted mitigation strategies for OUVAs, taking into account the varying contamination levels of OUVFs and OUVSs resulting from diverse human activities, aiming to protect the health of aquatic ecosystems in diverse functional zones.
Collapse
Affiliation(s)
- Jiying Pei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yingyuan Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Nai Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Wenfeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Pan Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Bello W, Pezzatti J, Rudaz S, Sadeghipour F. Study of leachable compounds in hospital pharmacy-compounded prefilled syringes, infusion bags and vials. J Pharm Sci 2024; 113:3227-3237. [PMID: 39173742 DOI: 10.1016/j.xphs.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Hospital pharmacy compoundings are crucial for maintaining patient care. They are time- and cost-effective in hospital pharmacy settings because they prevent waste, preparation errors, dosage errors, microbial contamination and breakage due to handling. Unfortunately, the drawbacks of hospital pharmacy compounding include the selection of inappropriate medical devices (MDs) for long-term storage, which could directly impact patients. In this study, three important hospital pharmaceutical compoundings, vancomycin in prefilled syringes (PFSs) made of polypropylene (PP) material, paediatric parenteral nutrition (PN) in ethylene vinyl acetate (EVA) bags and diluted insulin in cyclic olefin copolymer (COC) vials, were selected for leachate study and risk assessment. These compounds were studied via a semiquantitative screening approach by means of an ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) with postcolumn infusion and an in-house built database. 17 leachable compounds for the PFS, 25 for the PN, and 10 for the vial were identified, and their concentrations were estimated for toxicological assessments. In conclusion, all MDs used in hospital pharmacy compoundings were observed suitable thanks to risk assessments. However, suitable MDs recommended for long-term storage would remain with polymers like COC, for higher safety when exposed to frail and vulnerable patients like neonates and infants.
Collapse
Affiliation(s)
- William Bello
- Pharmacy Department, Lausanne University Hospital, Switzerland; Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211, Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Switzerland
| | - Julian Pezzatti
- Pharmacy Department, Lausanne University Hospital, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211, Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Switzerland; Swiss Center of Applied Human Toxicology (SCATH), Basel, Switzerland
| | - Farshid Sadeghipour
- Pharmacy Department, Lausanne University Hospital, Switzerland; Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211, Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Switzerland.
| |
Collapse
|
8
|
Pedersen AF, Bayen S, Liu L, Dietz R, Sonne C, Rosing-Asvid A, Ferguson SH, McKinney MA. Nontarget and suspect screening reveals the presence of multiple plastic-related compounds in polar bear, killer whale, narwhal and long-finned pilot whale blubber from East Greenland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124417. [PMID: 38909771 DOI: 10.1016/j.envpol.2024.124417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The monitoring of legacy contaminants in sentinel northern marine mammals has revealed some of the highest concentrations globally. However, investigations into the presence of chemicals of emerging Arctic concern (CEACs) and other lesser-known chemicals are rarely conducted, if at all. Here, we used a nontarget/suspect approach to screen for thousands of different chemicals, including many CEACs and plastic-related compounds (PRCs) in blubber/adipose from killer whales (Orcinus orca), narwhals (Monodon monoceros), long-finned pilot whales (Globicephala melas), and polar bears (Ursus maritimus) in East Greenland. 138 compounds were tentatively identified mostly as PRCs, and four were confirmed using authentic standards: di(2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), di(2-propylheptyl) phthalate (DPHP), and one antioxidant (Irganox 1010). Three other PRCs, a nonylphenol isomer, 2,6-di-tert-butylphenol, and dioctyl sebacate, exhibited fragmentation patterns matching those in library databases. While phthalates were only above detection limits in some polar bear and narwhal, Irganox 1010, nonylphenol, and 2,6-di-tert-butylphenol were detected in >50% of all samples. This study represents the first application of a nontarget/suspect screening approach in Arctic cetaceans, leading to the identification of multiple PRCs in their blubber. Further nontarget analyses are warranted to comprehensively characterize the extent of CEAC and PRC contamination within Arctic marine food webs.
Collapse
Affiliation(s)
- Adam F Pedersen
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Rune Dietz
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Aqqalu Rosing-Asvid
- Department of Birds and Mammals, Greenland Institute of Natural Resources, Nuuk GL-3900, Greenland
| | - Steven H Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
9
|
Tumu K, Vorst K, Curtzwiler G. Understanding intentionally and non-intentionally added substances and associated threshold of toxicological concern in post-consumer polyolefin for use as food packaging materials. Heliyon 2024; 10:e23620. [PMID: 38187279 PMCID: PMC10770487 DOI: 10.1016/j.heliyon.2023.e23620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
The use of post-consumer recycled (PCR) polymers in food contact materials (FCMs) can facilitate achieving a circular economy by reducing environmental waste and landfill accumulation. This study aimed to identify potentially harmful substances, including non-intentionally added substances (NIAS) and unapproved intentionally added substances (IAS), in polyolefin samples from material recovery facilities using gas-chromatography mass-spectrometry. Selected phthalates and bisphenols were quantified by targeted gas-chromatography tandem mass-spectrometry. The analysis detected 9 compounds in virgin polymers and 52 different compounds including alcohols, hydrocarbons, phenols in virgin and hydrocarbons, aromatic, phthalates, organic acids, per- and polyfluoroalkyl substances (PFAS) in PCR polymers. The Cramer classification system was used to assesses the Threshold of Toxicological Concern associated with the detected compounds. The PCR sample showed a slightly higher proportion of Cramer Class III compounds (48.08 %) than the virgin sample (44.44 %), indicating higher toxicity potential. Quantification detected bisphenols only in PCR material including BPA (2.88 ± 0.53 μg/g), BPS (5.12 ± 0.003 μg/g), BPF (3.42 ± 0.01 μg/g), and BADGE (4.638 μg/g). Phthalate concentrations were higher in PCR than virgin samples, with the highest levels detected as DIDP, at 6.18 ± 0.31 μg/g for PCR and 6.04 ± 0.02 for virgin. This study provides critical understanding of the safety and potential risks associated with using PCR polyolefins from different sources in food contact applications.
Collapse
Affiliation(s)
- Khairun Tumu
- Polymer and Food Protection Consortium, Iowa State University, Ames, IA 50011, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Keith Vorst
- Polymer and Food Protection Consortium, Iowa State University, Ames, IA 50011, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Greg Curtzwiler
- Polymer and Food Protection Consortium, Iowa State University, Ames, IA 50011, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Krauss M, Huber C, Schulze T, Bartel-Steinbach M, Weber T, Kolossa-Gehring M, Lermen D. Assessing background contamination of sample tubes used in human biomonitoring by non-targeted liquid chromatography-high resolution mass spectrometry. ENVIRONMENT INTERNATIONAL 2024; 183:108426. [PMID: 38228043 DOI: 10.1016/j.envint.2024.108426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Controlling and minimising background contamination is crucial for maintaining a high quality of samples in human biomonitoring targeting organic chemicals. We assessed the contamination of three previous types and one newly introduced medical-grade type of sample tubes used for storing human body fluids at the German Environmental Specimen Bank. Aqueous extracts from these tubes were analysed by non-targeted liquid chromatography-high resolution mass spectrometry (LC-HRMS) before and after a dedicated cleaning procedure. After peak detection using MZmine, Bayesian hypothesis testing was used to group peaks into those originating either from instrumental and laboratory background contamination, or actual tube contaminants, based on if their peak height was reduced, increased or not affected by the cleaning procedure. For all four tube types 80-90% of the 2475 peaks (1549 in positive and 926 in negative mode) were assigned to laboratory/instrumental background, which we have to consider as potential sample tube contaminants. Among the tube contaminants, results suggest a considerable difference in the contaminant peak inventory and the absolute level of contamination among the different sample tube types. The cleaning procedure did not affect the largest fraction of peaks (50-70%). For the medical grade tubes, the removal of contaminants by the cleaning procedure was strongest compared to the previous tubes, but in all cases a small fraction increased in intensity after cleaning, probably due to a release of oligomers or additives. The identified laboratory background contaminants were mainly semi-volatile polymer additives such as phthalates and phosphate esters. A few compounds could be assigned solely as tube-specific contaminants, such as N,N-dibutylformamide and several constituents of the oligomeric light stabiliser Tinuvin-622. A cleaning procedure before use is an effective way to standardise the used sample tubes and minimises the background contamination, and therefore increases sample quality and therewith analytical results.
Collapse
Affiliation(s)
- Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Department Exposure Science, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Carolin Huber
- Helmholtz Centre for Environmental Research - UFZ, Department Exposure Science, Permoserstr. 15, 04318 Leipzig, Germany; Institute of Ecology, Diversity and Evolution, Goethe University Frankfurt Biologicum, Campus Riedberg, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Department Exposure Science, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martina Bartel-Steinbach
- Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Till Weber
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | | | - Dominik Lermen
- Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany.
| |
Collapse
|
11
|
Canellas E, Vera P, Nerin C, Goshawk J, Dreolin N. Migration of contaminants from printed masks for children to saliva simulant using liquid chromatography coupled to ion mobility-time of flight-mass spectrometry and gas chromatography-mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115644. [PMID: 37924803 DOI: 10.1016/j.ecoenv.2023.115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
The COVID-19 pandemic has led to children using polymeric FFP2 and polymeric surgical masks on a daily basis. Children often bite and suck on such masks as they wear them closed to their mouths. In this work, the migration of contaminants from printed and unprinted children`s masks to a saliva simulant has been studied. Liquid chromatography coupled to ion-mobility quadrupole time-of-flight mass spectrometry has been used for the detection and identification of non-volatile migrants. An orthogonal projection to latent structures - discriminant analysis (OPLS-DA) was applied to compare the data from the printed masks against the data from the unprinted ones. Headspace solid phase microextraction coupled to gas chromatography mass spectrometry was used to assess the migration of volatile compounds. Thirteen compounds were found in the masks with concentrations ranging from 5 ng/g to 254 ng/g. Toluene, chlorobenzene, irganox 1076 and 2-(2-butoxyethoxy)ethyl acetate were all found to migrate from the masks studied. Moreover, differences between the migrants from printed and unprinted FFP2 masks were found. Octocrylene, 4-(dimethylamine)benzoate, methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate and tris(3-methylphenyl)phosphate were found to migrate only from printed masks. Toluene that migrated from all the masks studied and tris(3-methylphenyl)phosphate, that migrated only from printed masks, have been listed as hazardous priority substances.
Collapse
Affiliation(s)
- Elena Canellas
- GUIA Group, Department of Analytical Chemistry, University of Zaragoza, I3A, María de Luna, 3, 50018 Zaragoza, Spain.
| | - Paula Vera
- GUIA Group, Department of Analytical Chemistry, University of Zaragoza, I3A, María de Luna, 3, 50018 Zaragoza, Spain
| | - Cristina Nerin
- GUIA Group, Department of Analytical Chemistry, University of Zaragoza, I3A, María de Luna, 3, 50018 Zaragoza, Spain
| | - Jeff Goshawk
- Waters Corporation, Wilmslow, Stamford Avenue, Altrincham Road, SK9 4AX, United Kingdom
| | - Nicola Dreolin
- Waters Corporation, Wilmslow, Stamford Avenue, Altrincham Road, SK9 4AX, United Kingdom
| |
Collapse
|
12
|
Chen HC, Tsai CJ, Huang YF, Wu CT. Dietary risk assessment of benzophenone derivatives using bread consumption estimates in a Taiwanese population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102323-102334. [PMID: 37665435 DOI: 10.1007/s11356-023-29493-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Listed as endocrine-disrupting chemicals, benzophenone (BP) and its nine analogues (BPs) are an emerging group of contaminants. The migration of BPs from ultraviolet inks to food has been investigated in many studies; however, few studies have investigated BPs in foods and the risks of human exposure to BPs. We validated a trace and multi-residue method for simultaneously determining 10 BPs, including BP, BP-1, BP-2, BP-3, BP-8, 4-MBP, 2-OHBP, 4-OHBP, M2BB, and PBZ. Eighty-one bread samples were analyzed using stable isotope labeling and ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with solid-liquid extraction. We determined the estimated daily intake of BPs, non-cancer risks, and lifetime cancer risks (LTCRs) from daily bread consumption for seven age groups using a Monte Carlo simulation. The method demonstrated robust linearity (R2 ≥ 0.991), low limits of detection (0.04-2 ng/g), and satisfactory precision. The intra- and interday relative standard deviation ranges were 0.6%-9% and 3%-20%, respectively. BP, 4-MBP, 2-OHBP, BP-1, and BP-3 were detected in 97%, 67%, 59%, 24%, and 23% of the samples, respectively. 2-OHBP had the highest mean (range) value of 18.3 (
Collapse
Affiliation(s)
- Hsin-Chang Chen
- Department of Chemistry, College of Science, Tunghai University, Taichung, Taiwan
| | - Chung-Jung Tsai
- Department of Occupational Safety and Health, Chung Hwa University of Medical Technology, Tainan City, Taiwan
| | - Yu-Fang Huang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chen-Ting Wu
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
13
|
Gerassimidou S, Geueke B, Groh KJ, Muncke J, Hahladakis JN, Martin OV, Iacovidou E. Unpacking the complexity of the polyethylene food contact articles value chain: A chemicals perspective. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131422. [PMID: 37099905 DOI: 10.1016/j.jhazmat.2023.131422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Polyethylene (PE) is the most widely used type of plastic food packaging, in which chemicals can potentially migrate into packaged foods. The implications of using and recycling PE from a chemical perspective remain underexplored. This study is a systematic evidence map of 116 studies looking at the migration of food contact chemicals (FCCs) across the lifecycle of PE food packaging. It identified a total of 377 FCCs, of which 211 were detected to migrate from PE articles into food or food simulants at least once. These 211 FCCs were checked against the inventory FCCs databases and EU regulatory lists. Only 25% of the detected FCCs are authorized by EU regulation for the manufacture of food contact materials. Furthermore, a quarter of authorized FCCs exceeded the specific migration limit (SML) at least once, while one-third (53) of non-authorised FCCs exceeded the threshold value of 10 μg/kg. Overall, evidence on FCCs migration across the PE food packaging lifecycle is incomplete, especially at the reprocessing stage. Considering the EU's commitment to increase packaging recycling, a better understanding and monitoring of PE food packaging quality from a chemical perspective across the entire lifecycle will enable the transition towards a sustainable plastics value chain.
Collapse
Affiliation(s)
- Spyridoula Gerassimidou
- Sustainable Plastics Research Group (SPlasH), Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Birgit Geueke
- Food Packaging Forum (FPF), 8045 Zurich, Switzerland
| | - Ksenia J Groh
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Jane Muncke
- Food Packaging Forum (FPF), 8045 Zurich, Switzerland
| | - John N Hahladakis
- Food-Energy-Water-Waste Sustainability (FEWWS) Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Olwenn V Martin
- Plastic Waste Innovation Hub, Department of Arts and Science, University College London, London WC1E 6BT, United Kingdom.
| | - Eleni Iacovidou
- Sustainable Plastics Research Group (SPlasH), Brunel University London, Uxbridge UB8 3PH, United Kingdom; Division of Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| |
Collapse
|
14
|
Díaz-Galiano FJ, Gómez-Ramos MJ, Beraza I, Murcia-Morales M, Fernández-Alba AR. Cooking food in microwavable plastic containers: in situ formation of a new chemical substance and increased migration of polypropylene polymers. Food Chem 2023; 417:135852. [PMID: 36924723 DOI: 10.1016/j.foodchem.2023.135852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
Microwavable plastic food containers can be a source of toxic substances. Plastic materials such as polypropylene polymers are typically employed as safe materials in food packaging, but recent research demonstrates the migration of plastic substances or their by-products to food simulants, to foodstuff, and, more recently, to the human body through food consumption. However, a thorough evaluation of foodstuff in food contact materials under cooking conditions has not yet been undertaken. Here we show for the first time that plastic migrants present in food contact materials can react with natural food components resulting in a compound that combines a UV-photoinitiator (2-hydroxy-2-methyl-1-phenylpropan-1-one) with maltose from potato starch; this has been identified after cooking potatoes in microwavable plastic food containers. Additionally, polypropylene glycol substances have been found to transfer into food through microwave cooking. Identifying these substances formed in situ requires state-of-the-art high-resolution mass spectrometry instrumentation and metabolomics-based strategies.
Collapse
Affiliation(s)
- Francisco José Díaz-Galiano
- University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - María José Gómez-Ramos
- University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - Icíar Beraza
- University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - María Murcia-Morales
- University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - Amadeo R Fernández-Alba
- University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain.
| |
Collapse
|
15
|
Tumu K, Vorst K, Curtzwiler G. Endocrine modulating chemicals in food packaging: A review of phthalates and bisphenols. Compr Rev Food Sci Food Saf 2023; 22:1337-1359. [PMID: 36789797 DOI: 10.1111/1541-4337.13113] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
Phthalates and bisphenol chemicals have been widely used globally in packaging materials and consumer products for several decades. These highly functional chemicals have become a concern due to their toxicity (i.e., endocrine/hormone modulators) and ability to migrate from food contact materials (FCMs) into food matrices and the environment resulting in human and environmental health risks. FCMs, composed of postconsumer materials, are particularly high risk for containing these compounds. The evaluation of postconsumer recycled feedstocks in FCMs is compulsory and selection of an appropriate detection method to comply with applicable regulations is necessary to evaluate human and environmental safety. Numerous regulations have been proposed and passed globally for both compound classes that are recognized as priority pollutants by the United States Environmental Protection Agency and the European Union. Several brand owners and retailers have also released their own "restricted substance lists" due to the mounting consumer and regulatory concerns. This review article has two goals: (1) discuss the utilization, toxicology, human exposure routes, and occurrence levels of phthalates and bisphenols in FCMs and associated legislation in various countries and (2) discuss critical understanding and updates for detection/quantification techniques. Current techniques discussed include extraction and sample preparation methods (solid-phase microextraction [SPME], headspace SPME, Soxhlet procedure, ultrasound-assisted extraction), chromatographic techniques (gas, liquid, detectors), and environmental/blank considerations for quantification. This review complements a previous review of phthalates in foods from 2009 by discussing phthalate and bisphenol characteristics, analytical methods of determining concentrations in packaging materials, and their influence on the migration potential into food.
Collapse
Affiliation(s)
- Khairun Tumu
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Keith Vorst
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Greg Curtzwiler
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
16
|
Xu X, Guo J, Gao Y, Xue Y, Shi X, Zhang L, Zhang Q, Peng M. Leaching behavior and evaluation of zebrafish embryo toxicity of microplastics and phthalates in take-away plastic containers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21104-21114. [PMID: 36264459 DOI: 10.1007/s11356-022-23675-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Take-away containers are the common food contact materials (FCMs) that are widely used in daily life. However, little is known regarding the effects of different food simulants on the pollution characteristics of microplastics derived from food containers, as well as the toxic effects of the chemical substances that are leached from them. Extracts were obtained by adding organic solvents into plastic containers (polypropylene, PP; polystyrene, PS) to simulate aqueous, alcoholic, and fatty environments. The extracted substances and their toxic effects were then assessed by counting and characterizing the resulting microplastics and performing bio-acute toxicity assays. The results demonstrated that the highest abundance of microplastics occurred in PS containers in fatty environments, which was likely due to the rough surface of the PS. In contrast, organic solvents seemed more conducive to the migration of substances. Furthermore, the PP and PS extracts in an alcohol and fatty environment have significant impacts on zebrafish embryo development, including arrhythmia, pericardial cysts, and spinal curvature.
Collapse
Affiliation(s)
- Xia Xu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Jun Guo
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Yu Gao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Yingang Xue
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xinlan Shi
- Changzhou Environmental Monitoring Center of Jiangsu Province, Changzhou, 213001, China
| | - Ling Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Qiuya Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Mingguo Peng
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
17
|
Undas AK, Groenen M, Peters RJB, van Leeuwen SPJ. Safety of recycled plastics and textiles: Review on the detection, identification and safety assessment of contaminants. CHEMOSPHERE 2023; 312:137175. [PMID: 36370761 DOI: 10.1016/j.chemosphere.2022.137175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
In 2019, 368 mln tonnes of plastics were produced worldwide. Likewise, the textiles and apparel industry, with an annual revenue of 1.3 trillion USD in 2016, is one of the largest fast-growing industries. Sustainable use of resources forces the development of new plastic and textile recycling methods and implementation of the circular economy (reduce, reuse and recycle) concept. However, circular use of plastics and textiles could lead to the accumulation of a variety of contaminants in the recycled product. This paper first reviewed the origin and nature of potential hazards that arise from recycling processes of plastics and textiles. Next, we reviewed current analytical methods and safety assessment frameworks that could be adapted to detect and identify these contaminants. Various contaminants can end up in recycled plastic. Phthalates are formed during waste collection while flame retardants and heavy metals are introduced during the recycling process. Contaminants linked to textile recycling include; detergents, resistant coatings, flame retardants, plastics coatings, antibacterial and anti-mould agents, pesticides, dyes, volatile organic compounds and nanomaterials. However, information is limited and further research is required. Various techniques are available that have detected various compounds, However, standards have to be developed in order to identify these compounds. Furthermore, the techniques mentioned in this review cover a wide range of organic chemicals, but studies covering potential inorganic contamination in recycled materials are still missing. Finally, approaches like TTC and CoMSAS for risk assessment should be used for recycled plastic and textile materials.
Collapse
Affiliation(s)
- Anna K Undas
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708, WB, Wageningen, Netherlands
| | - Marc Groenen
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708, WB, Wageningen, Netherlands.
| | - Ruud J B Peters
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708, WB, Wageningen, Netherlands
| | | |
Collapse
|
18
|
Identification of polymer additives from multilayer milk packaging materials by liquid-solid extraction coupled with GC-MS. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
19
|
Angnunavuri PN, Attiogbe F, Mensah B. Effect of storage on the levels of phthalates in high-density polyethylene (HDPE) film-packaged drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157347. [PMID: 35842145 DOI: 10.1016/j.scitotenv.2022.157347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/02/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
High-Density Polyethylene (HDPE)-packaged water is a popular choice for urban potable water across Africa. However, the sources and fate of priority chemical contaminants have not been adequately reported. The present study seeks to determine the effect of storage and labelling on the levels of phthalates - dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), benzyl butyl phthalate (BBP) and di(2-hexylethyl) phthalate (DEHP) - in HDPE packaged water. Printed and unprinted 500 mL packet samples, treated water and raw water samples were collected from two major companies in Accra and stored at three temperature levels for 28 days. Phthalates were extracted and pre-concentrated for analysis by GC-MS weekly. The results indicated that phthalates loading became detectable within the first 7 days of incubation, with printed samples showing higher concentrations than unprinted samples at every incubation temperature. The highest concentration was recorded for BBP (1.03 μg/L between a lower and upper confidence limits of 0.62 μg/L and 1.42 μg/L). Temperature significantly affected the concentration of DMP for printed packets (p-value = 0.05) and unprinted samples (p-value = 0.06), BBP across all samples, and DEHP in printed samples (p-value = 0.06). On the other hand, storage duration significantly affected the concentration of BBP across all samples. There was a very strong correlation between printing and the concentration of phthalates in the water samples (p-values <0.001) across the storage temperatures. Effect size analysis established significant differences between site-specific printed and unprinted samples. The present study revealed weak interactions between the selected phthalates and the HDPE matrix, and recommends alternative packaging that can restrict the presence of phthalates and other priority chemicals in plastic packaged drinking water.
Collapse
Affiliation(s)
- Prosper Naah Angnunavuri
- School of Engineering, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana.
| | - Francis Attiogbe
- School of Engineering, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana
| | - Bismark Mensah
- School of Engineering, University of Ghana, Legon, Ghana
| |
Collapse
|
20
|
Haug H, Klein L, Sauerwald T, Poelke B, Beauchamp J, Roloff A. Sampling Volatile Organic Compound Emissions from Consumer Products: A Review. Crit Rev Anal Chem 2022; 54:1895-1916. [PMID: 36306209 DOI: 10.1080/10408347.2022.2136484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Volatile organic compounds (VOCs) are common constituents of many consumer products. Although many VOCs are generally considered harmless at low concentrations, some compound classes represent substances of concern in relation to human (inhalation) exposure and can elicit adverse health effects, especially when concentrations build up, such as in indoor settings. Determining VOC emissions from consumer products, such as toys, utensils or decorative articles, is of utmost importance to enable the assessment of inhalation exposure under real-world scenarios with respect to consumer safety. Due to the diverse sizes and shapes of such products, as well as their differing uses, a one-size-fits-all approach for measuring VOC emissions is not possible, thus, sampling procedures must be chosen carefully to best suit the sample under investigation. This review outlines the different sampling approaches for characterizing VOC emissions from consumer products, including headspace and emission test chamber methods. The advantages and disadvantages of each sampling technique are discussed in relation to their time and cost efficiency, as well as their suitability to realistically assess VOC inhalation exposures.
Collapse
Affiliation(s)
- Helen Haug
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair of Aroma and Smell Research, Erlangen, Germany
| | - Luise Klein
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Tilman Sauerwald
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Birte Poelke
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jonathan Beauchamp
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Alexander Roloff
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
21
|
Cai K, Lin Y, Ma Y, Yang Z, Yu L, Zhang J, Xu D, Zeng R, Gao W. Determination of Residual Diisocyanates and Related Diamines in Biodegradable Mulch Films Using N-Ethoxycarbonylation Derivatization and GC-MS. Molecules 2022; 27:molecules27196754. [PMID: 36235287 PMCID: PMC9572079 DOI: 10.3390/molecules27196754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
Diisocyanates are highly reactive compounds with two functional isocyanate groups. The exposure of diisocyanates is associated with severely adverse health effects, such as asthma, inflammation in the respiratory tract, and cancer. The hydrolysis product from diisocyanates to related diamines is also a potential carcinogen. Here, we developed an effective, accurate, and precise method for simultaneous determination of residual diisocyanates and related diamines in biodegradable mulch films, based on N-ethoxycarbonylation derivatization and gas chromatography-mass spectrometry. The method development included the optimization of ultrasonic hydrolysis and extraction, screening of N-ethoxycarbonylation conditions with ethyl chloroformate, evaluation of the diamines degradation, and analysis of the fragmentation mechanisms. Under the optimum experimental conditions, good linearity was observed with R2 > 0.999. The extraction recoveries were found in the range of 93.9−101.2% with repeatabilities and reproducibilities in 0.89−8.12% and 2.12−10.56%, respectively. The limits of detection ranged from 0.0025 to 0.057 µg/mL. The developed method was applied to commercial polybutylene adipate co-terephthalate (PBAT) biodegradable mulch film samples for analysis of the diverse residual diisocyanates and related diamine additives. The components varied greatly among the sample from different origin. Overall, this study provides a reliable method for assessing safety in biodegradable mulch films.
Collapse
Affiliation(s)
- Kai Cai
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Yechun Lin
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Yunfei Ma
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Zhixiao Yang
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Lei Yu
- Key Laboratory for Degradation Technologies of Pesticide Residues with Superior Agricultural Products in Guizhou Ecological Environment, Guiyang University, Guiyang 550005, China
| | - Jie Zhang
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Dongqing Xu
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Rong Zeng
- School of Geography Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Weichang Gao
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
- Correspondence: ; Tel.: +86-0851-84116908
| |
Collapse
|
22
|
Liu H, Wang Y, Kannan K, Liu M, Zhu H, Chen Y, Kahn LG, Jacobson MH, Gu B, Mehta-Lee S, Brubaker SG, Ghassabian A, Trasande L. Determinants of phthalate exposures in pregnant women in New York City. ENVIRONMENTAL RESEARCH 2022; 212:113203. [PMID: 35358547 PMCID: PMC9232940 DOI: 10.1016/j.envres.2022.113203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 05/17/2023]
Abstract
Previous studies have provided data on determinants of phthalates in pregnant women, but results were disparate across regions. We aimed to identify the food groups and demographic factors that predict phthalate exposure in an urban contemporary pregnancy cohort in the US. The study included 450 pregnant women from the New York University Children's Health and Environment Study in New York City. Urinary concentrations of 22 phthalate metabolites, including metabolites of di-2-ethylhexylphthalate (DEHP), were determined at three time points across pregnancy by liquid chromatography coupled with tandem mass spectrometry. The Diet History Questionnaire II was completed by pregnant women at mid-pregnancy to assess dietary information. Linear mixed models were fitted to examine determinants of urinary phthalate metabolite concentrations. Using partial-linear single-index (PLSI) models, we assessed the major contributors, among ten food groups, to phthalate exposure. Metabolites of DEHP and its ortho-phthalate replacement, diisononyl phthalate (DiNP), were found in >90% of the samples. The sum of creatinine-adjusted DiNP metabolite concentrations was higher in older and single women and in samples collected in summer. Hispanic and non-Hispanic Black women had lower urinary concentrations of summed metabolites of di-n-octyl phthalate (DnOP), but higher concentrations of low molecular weight phthalates compared with non-Hispanic White women. Each doubling of grain products consumed was associated with a 20.9% increase in ∑DiNP concentrations (95%CI: 4.5, 39.9). PLSI models revealed that intake of dried beans and peas was the main dietary factor contributing to urinary ∑DEHP, ∑DiNP, and ∑DnOP levels, with contribution proportions of 76.3%, 35.8%, and 27.4%, respectively. Urinary metabolite levels of phthalates in pregnant women in NYC varied by age, marital status, seasonality, race/ethnicity, and diet. These results lend insight into the major determinants of phthalates levels, and may be used to identify exposure sources and guide interventions to reduce exposures in susceptible populations.
Collapse
Affiliation(s)
- Hongxiu Liu
- Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China; Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Yuyan Wang
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Mengling Liu
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Hongkai Zhu
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Yu Chen
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Linda G Kahn
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Melanie H Jacobson
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Gu
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Shilpi Mehta-Lee
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sara G Brubaker
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA; NYU Wagner School of Public Service, New York, NY, USA; NYU College of Global Public Health, New York, NY, USA
| |
Collapse
|
23
|
Nontarget analysis and characterization of alkylamides in electrical product plastics by gas chromatography-positive chemical ionization quadrupole-orbitrap high-resolution mass spectrometry and quasi-molecular ion screening and anchoring algorithm. J Chromatogr A 2022; 1682:463466. [DOI: 10.1016/j.chroma.2022.463466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022]
|
24
|
Yang B, Yin S, Bian X, Liu C, Liu X, Yan Y, Zhang C, Zhang H, Hou Z. Preparation and properties of monomethoxyl polyethylene glycol grafted O-carboxymethyl chitosan for edible, fresh-keeping packaging materials. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Xue R, Li S, Wei Z, Zhang Z, Cao Y. Melatonin attenuates di-(2-ethylhexyl) phthalate-induced apoptosis of human granulosa cells by inhibiting mitochondrial fission. Reprod Toxicol 2022; 113:18-29. [PMID: 35952901 DOI: 10.1016/j.reprotox.2022.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most used plasticizers which have contaminated environment widely, and its extensive use causes female reproductive injury. Melatonin has a substantial protective effect against female reproductive toxicity. This study was undertaken to investigate the influence of melatonin on DEHP-induced damage of human granulosa cells (GCs) in vitro and explore the potential mechanisms. Here, we found that melatonin treatment alleviated DEHP-induced human GCs apoptosis and improved mitochondrial function via inhibiting dynamin-related protein 1 (Drp1) mediated mitochondrial fission. Melatonin inhibited the expression, activation and oligomerization of Drp1, which decreased translocation of Drp1 to mitochondria in DEHP-exposed human GCs. Inhibition of mitochondrial fission reduced intracellular reactive oxygen species (ROS) production, sustained mitochondrial membrane potential and decreased cytochrome c release. Further research showed that AMPK-PGC-1α signal pathway was involved in the inhibition of melatonin on Drp1 expression and activation. Melatonin treatment promoted AMPK activation suppressed by DEHP, and activated AMPK recovered the balance of Drp1 phosphorylation at Ser616 and Ser637 sites and enhanced PGC-1α expression. Moreover, PGC-1α could prevent mitochondrial fission by decreasing Drp1 expression directly via binding to its promoter. In contrast, blocking of AMPK or PGC-1α with specific inhibitor negated the protective effects of melatonin on mitochondrial homeostasis and GCs apoptosis. In summary, our results indicated the protective effects of melatonin on improving mitochondrial function and attenuating cells injury in DEHP-exposed human GCs. Melatonin treatment may be a promising therapeutic approach against DEHP-induced reproductive disorder.
Collapse
Affiliation(s)
- Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| | - Shuhang Li
- Department of Oncology of The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| |
Collapse
|
26
|
Zhang L, Ruan Z, Jing J, Yang Y, Li Z, Zhang S, Yang J, Ai S, Luo N, Peng Y, Fang P, Lin H, Zou Y. High-Temperature Soup Foods in Plastic Packaging Are Associated with Phthalate Body Burden and Expression of Inflammatory mRNAs: A Dietary Intervention Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8416-8427. [PMID: 35584204 DOI: 10.1021/acs.est.1c08522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plastic packaging material is widely used to package high-temperature soup food in China, but this combination might lead to increased exposure to phthalates. The health effects and potential biological mechanisms have not been well studied. This study aimed to examine urinary phthalate metabolites and the expression of inflammatory cytokines in the blood before, during, and after a "plastic-packaged high-temperature soup food" dietary intervention in healthy adults. The results showed that compared with those in the preintervention period, urinary creatinine-adjusted levels of monomethyl phthalate (MMP), mono-n-butyl phthalate (MBP), mono-isobutyl phthalate (MIBP), and total phthalate metabolites in the intervention period were significantly higher, with increases of 71.6, 41.8, 38.8, and 29.8% for MMP, MBP, MIBP, and the total phthalate metabolites, respectively. After intervention, the mean levels of IL-1β, IL-4, and TNF-α mRNA increased by 19.0, 21.5, and 25.0%, respectively, while IL-6 and IFN-γ mRNA decreased by 24.2 and 32.9%, respectively, when compared with the preintervention period. We also observed that several phthalates were associated with the mRNA or protein expression of IL-8, TNF-α, and IL-10. Therefore, consumption of plastic-packaged high-temperature soup food was linked to increased phthalate exposure and might result in significant changes in mRNA expression of several inflammatory cytokines.
Collapse
Affiliation(s)
- Li'e Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Zengliang Ruan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210096, China
| | - Jiajun Jing
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiying Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Siqi Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Na Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yang Peng
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Peiyu Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
27
|
Chen Q, Du M, Xu X. A label-free and selective electrochemical aptasensor for ultrasensitive detection of Di(2-ethylhexyl) phthalate based on self-assembled DNA nanostructure amplification. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Geueke B, Groh KJ, Maffini MV, Martin OV, Boucher JM, Chiang YT, Gwosdz F, Jieh P, Kassotis CD, Łańska P, Myers JP, Odermatt A, Parkinson LV, Schreier VN, Srebny V, Zimmermann L, Scheringer M, Muncke J. Systematic evidence on migrating and extractable food contact chemicals: Most chemicals detected in food contact materials are not listed for use. Crit Rev Food Sci Nutr 2022; 63:9425-9435. [PMID: 35585831 DOI: 10.1080/10408398.2022.2067828] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Food packaging is important for today's globalized food system, but food contact materials (FCMs) can also be a source of hazardous chemicals migrating into foodstuffs. Assessing the impacts of FCMs on human health requires a comprehensive identification of the chemicals they contain, the food contact chemicals (FCCs). We systematically compiled the "database on migrating and extractable food contact chemicals" (FCCmigex) using information from 1210 studies. We found that to date 2881 FCCs have been detected, in a total of six FCM groups (Plastics, Paper & Board, Metal, Multi-materials, Glass & Ceramic, and Other FCMs). 65% of these detected FCCs were previously not known to be used in FCMs. Conversely, of the more than 12'000 FCCs known to be used, only 1013 are included in the FCCmigex database. Plastic is the most studied FCM with 1975 FCCs detected. Our findings expand the universe of known FCCs to 14,153 chemicals. This knowledge contributes to developing non-hazardous FCMs that lead to safer food and support a circular economy.
Collapse
Affiliation(s)
- Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Ksenia J Groh
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | | | | | | | - Yu-Ting Chiang
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | | | - Phoenix Jieh
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Paulina Łańska
- Centre for Pollution Research and Policy, Brunel University, Uxbridge, UK
| | - John Peterson Myers
- Environmental Health Sciences and Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Verena N Schreier
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Srebny
- Biointerfaces Lab, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | | | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland
| |
Collapse
|
29
|
Huang YF, Huang JJ, Liu XR. Development and Validation of Benzophenone Derivatives in Packaged Cereal-Based Foods by Solid-Liquid Extraction and Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. Foods 2022; 11:1362. [PMID: 35564085 PMCID: PMC9103691 DOI: 10.3390/foods11091362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
We established and validated a sensitive multi-residue analytical method for identifying benzophenone (BP) and nine BP derivatives (2,4-dihydroxybenzophenone [BP-1], 2,2′,4,4′-tetrahydroxydroxybenzophenone, 2-hydroxy-4-methoxy benzophenone, 2,2′-dihydroxy 4-methoxy benzophenone, 2-hydroxybenzophenone [2-OHBP], 4-hydroxybenzophenone, 4-methylbenzophenone [4-MBP], methyl-2-benzoylbenzoate, and 4-benzoylbiphenyl). Solid−liquid extraction pretreatment and ultra-high-performance liquid chromatography−tandem mass spectrometry (UHPLC−MS/MS) were employed in an analysis of 85 packaged cereal-based food samples (25 pastry, 50 rice, and 10 noodle samples). The method had satisfactory linearity (R2 ≥ 0.995), low limits of detection (pastry: 0.02−4.2 ng/g; rice and noodle: 0.02−2 ng/g), and favorable precision, with within-run and between-run coefficient of variation ranges of 1−29% and 1−28%, respectively. BP and 4-MBP were detected in 100% of the pastry samples, and BP-1 and 2-OHBP were found in 76% and 56% of the pastry samples, respectively. BP and 2-OHBP were found in 92% and 38% of the rice samples, respectively. BP was found in 50% of the noodle samples. BP contributed the most to the total level of BPs in pastries, with significantly higher mean ± standard deviation (range) levels for pastries (26.8 ± 32.6 [1.8−115.4] ng/g) than rice (1.2 ± 2.0 [0.4−13.4] ng/g) and noodles (0.7 ± 0.7 [0.4−1.9] ng/g); p < 0.0001). The trace levels of 4-MBP identified in the samples demonstrate the need for the development of analytical methods with high sensitivity and specificity; the proposed method satisfies this need.
Collapse
Affiliation(s)
- Yu-Fang Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan; (J.-J.H.); (X.-R.L.)
- Center for Chemical Hazards and Environmental Health Risk Research, National United University, Miaoli 36063, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Jun-Jie Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan; (J.-J.H.); (X.-R.L.)
| | - Xuan-Rui Liu
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan; (J.-J.H.); (X.-R.L.)
| |
Collapse
|
30
|
Prata JC, Venâncio C, Girão AV, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T. Effects of virgin and weathered polystyrene and polypropylene microplastics on Raphidocelis subcapitata and embryos of Danio rerio under environmental concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151642. [PMID: 34822904 DOI: 10.1016/j.scitotenv.2021.151642] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are ubiquitous contaminants of freshwater ecosystems. However, few ecotoxicity assays have been conducted on freshwater organisms using environmentally relevant concentrations of virgin and weathered microplastics. This work assessed the adverse effects of virgin and artificially weathered fragments of polystyrene and polypropylene on the microalga Raphidocelis subcapitata (72 h growth inhibition assay) and on embryos of the fish Danio rerio (96 h fish embryo assay) under environmentally relevant concentrations (2000-200,000 MP L-1) and high concentrations (12.5-100 mg L-1). Sizes of microplastics were measured as tens (polystyrene) to hundreds (polypropylene) of micrometers, while aging was assessed by measuring the carbonyl index. In the microalga, the tested high concentrations promoted growth, while environmentally relevant concentration induced either growth inhibition or promotion. In zebrafish embryos, environmentally relevant concentrations decreased body length and heart rates. No relevant effects were observed in organisms exposed to high concentrations for mortality, malformations, hatching rates, and swimming bladder inflation. Virgin microplastics presented slightly higher toxicity but direct comparison was hindered by the lack of a linear dose-response curve. Despite the lack of a clear pattern, adverse effects were often observed in the lowest environmentally relevant concentrations, raising concerns over the impacts of microplastics on freshwater ecosystems.
Collapse
Affiliation(s)
- Joana C Prata
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Cátia Venâncio
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana V Girão
- Department of Materials Engineering and Ceramics (DEMaC) & Aveiro Institute of Materials (CICECO), University of Aveiro, 3810-193 Aveiro, Portugal
| | - João P da Costa
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
31
|
Nerín C, Bourdoux S, Faust B, Gude T, Lesueur C, Simat T, Stoermer A, Van Hoek E, Oldring P. Guidance in selecting analytical techniques for identification and quantification of non-intentionally added substances (NIAS) in food contact materials (FCMS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:620-643. [PMID: 35081016 DOI: 10.1080/19440049.2021.2012599] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There are numerous approaches and methodologies for assessing the identity and quantities of non-intentionally added substances (NIAS) in food contact materials (FCMs). They can give different results and it can be difficult to make meaningful comparisons. The initial approach was to attempt to prepare a prescriptive methodology but as this proved impossible; this paper develops guidelines that need to be taken into consideration when assessing NIAS. Different approaches to analysing NIAS in FCMs are reviewed and compared. The approaches for preparing the sample for analysis, recommended procedures for screening, identification, and quantification of NIAS as well as the reporting requirements are outlined. Different analytical equipment and procedures are compared. Limitations of today's capabilities are raised along with some research needs.
Collapse
Affiliation(s)
- Cristina Nerín
- Grupo Universitario de Investigación Analítica, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Birgit Faust
- Toxicology and Environmental Research and Consulting (TERC), Dow Olefinverbund GmbH, Schkopau, Germany
| | - Thomas Gude
- Swiss Quality Testing Services, Dietikon, Switzerland
| | - Céline Lesueur
- Department of Analytical Chemistry, Danone, Paris, France
| | - Thomas Simat
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Angela Stoermer
- Fraunhofer Institute Process Engineering and Packaging, Freising, Germany
| | - Els Van Hoek
- Organic Contaminants & Additives, Sciensano, Brussels, Belgium
| | - Peter Oldring
- Regulatory Affairs Department, Sherwin Williams, Witney, UK
| |
Collapse
|
32
|
Liu XR, Huang YF, Huang JJ. Identification of Benzophenone Analogs in Rice Cereal through Fast Pesticide Extraction and Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. Foods 2022; 11:572. [PMID: 35206047 PMCID: PMC8871057 DOI: 10.3390/foods11040572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/01/2022] Open
Abstract
A fast, robust, and sensitive analytical method was developed and validated for the simultaneous identification of benzophenone (BP) and nine BP analogs (BP-1, BP-2, BP-3, BP-8, 2-hydroxybenzophenone, 4-hydroxybenzophenone, 4-methylbenzophenone [4-MBP], methyl-2-benzoylbenzoate, and 4-benzoylbiphenyl) in 25 samples of rice cereal. Fast pesticide extraction (FaPEx) coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry was applied. The developed method exhibited satisfactory linearity (r > 0.997), favorable recoveries between 71% and 119%, and a limit of detection ranging from 0.001 to 0.5 ng/g. The detection frequencies of BP, 4-MBP, and BP-3 were 100%, 88%, and 52%, respectively. BP had higher geometric levels, with a mean of 39.8 (19.1-108.9) ng/g, and 4-MBP had low levels, with a mean of 1.9 (1.3-3.3) ng/g. The method can be applied to routine rice cereal analysis at the nanogram-per-gram level. For infants aged 0-3 years, the hazard quotients of BP and 4-MBP were lower than one, and the margin of exposure for BP was higher than 10,000, suggesting that rice cereal consumption poses no health concern for Taiwanese infants.
Collapse
Affiliation(s)
- Xuan-Rui Liu
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan; (X.-R.L.); (J.-J.H.)
| | - Yu-Fang Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan; (X.-R.L.); (J.-J.H.)
- Center for Chemical Hazards and Environmental Health Risk Research, National United University, Miaoli 36063, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Jun-Jie Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan; (X.-R.L.); (J.-J.H.)
| |
Collapse
|
33
|
Samaran Q, Raison-Peyron N, Clark E, Svedman C, Dahlin J, Dereure O, Bruze M, Bourrain JL. A new case of photoallergic contact dermatitis caused by benzophenones in magazine covers. Contact Dermatitis 2022; 86:300-307. [PMID: 35089601 DOI: 10.1111/cod.14057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Allergic contact dermatitis (ACD) and photoallergic contact dermatitis (PACD) to benzophenone present in printing ink have been reported. However, precise chemical analyses and extended photo-patch tests have not been performed in these cases. OBJECTIVES To determine which component present in a magazine cover are responsible for a patient's skin reaction, determine the primary sensitiser and precisely diagnose ACD and PACD PATIENT AND METHODS: After initial photopatch tests were performed on a patient with a history of reaction to magazine covers after sun exposure, gas chromatography-mass spectrometry and high-performance liquid chromatography analyses of the magazine covers and additional photopatch tests were performed. RESULTS The first photopatch test results confirmed PACD to ketoprofen and fenofibrate, and evoked PACD to the magazine covers. 4-methyl benzophenone (4-MBP) and 1-hydroxy-cyclohexyl-phenyl-ketone (1-HCPK) were found in the magazine cover. Additional photopatch tests confirmed PACD to 1-HCPK and to benzophenone, and photo-aggravated ACD to 4-MBP. The primary sensitiser was ketoprofen. CONCLUSIONS Benzophenones are present in a wide variety of products, without always being listed on the packaging. Patients previously sensitised to other ketones, such as ketoprofen, may react to benzophenones without being able to avoid contact with these molecules. New regulations may be needed for more efficient eviction advice. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Quentin Samaran
- Department of Dermatology, Montpellier University Hospital and Montpellier University, Montpellier, FRANCE
| | - Nadia Raison-Peyron
- Department of Dermatology, Montpellier University Hospital and Montpellier University, Montpellier, FRANCE
| | - Evangeline Clark
- Department of Dermatology, Montpellier University Hospital and Montpellier University, Montpellier, FRANCE
| | - Cecilia Svedman
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, SWEDEN
| | - Jakob Dahlin
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, SWEDEN
| | - Olivier Dereure
- Department of Dermatology, Montpellier University Hospital and Montpellier University, Montpellier, FRANCE
| | - Magnus Bruze
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, SWEDEN
| | - Jean Luc Bourrain
- Department of Dermatology, Montpellier University Hospital and Montpellier University, Montpellier, FRANCE.,Department of Pulmonology, Allergology Division, Montpellier University Hospital and Montpellier University, Montpellier, FRANCE.,IDESP, Institut Desbrest d'Epidémiologie et de Santé Publique, UMR INSERM - Montpellier University, Montpellier, FRANCE
| |
Collapse
|
34
|
Baranenko D, Boulkrane MS, Borisova I, Astafyeva B, Lu W, Abd El-Aty AM. Translocation of Phthalates From Food Packaging Materials Into Minced Beef. Front Nutr 2022; 8:813553. [PMID: 35127794 PMCID: PMC8811533 DOI: 10.3389/fnut.2021.813553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/28/2021] [Indexed: 11/21/2022] Open
Abstract
There has been increased concern regarding the potential human health risks associated with exposure to phthalates. Research indicates that food intake is the most critical exposure pathway for phthalates. This study aimed to investigate packaged beef samples for the presence of dimethyl terephthalate (DMTP), di-n-butyl phthalate (DnBP), and diisooctyl phthalate (DiOP) and to assess their translocation from the common form of food packaging procured from various Saint-Petersburg and Leningrad region shops. The packaging samples include paper and different types of plastic. Phthalates were extracted by dichloromethane and analyzed by gas chromatography coupled with mass spectrometry (GC-MS). While DnBP had the highest mean values in beef from 34.5 to 378.5 μg·kg−1, DiOP displayed the lowest mean values from LOD to 37 μg·kg−1. The larger contact area and the presence of distributed fat on the surface of the minced meat resulted in significantly higher phthalate translocation than beef slices. Further, DMTP was not detected in any samples. However, the examined food packages do not meet the requirements of Russian, EU and USA legislation, as DnBP migrates to meat. Calculated maximum DnBP daily intake of 0.167 μg·kg−1·day−1 for chilled minced beef in vacuum packaging did not exceed tolerable daily intake (TDI) level. The most alarming results are concerning the phthalates presence in beef farmed in the Leningrad region and not subjected to any plastic packaging. A full-scale study is warranted to determine the pathways and sources of phthalates migration in the food chain.
Collapse
Affiliation(s)
- Denis Baranenko
- International Research Centre “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, Saint-Petersburg, Russia
- *Correspondence: Denis Baranenko
| | - Mohamed Said Boulkrane
- International Research Centre “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, Saint-Petersburg, Russia
| | - Irina Borisova
- International Research Centre “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, Saint-Petersburg, Russia
| | - Bazhena Astafyeva
- International Research Centre “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, Saint-Petersburg, Russia
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
35
|
Determination of 60 Migrant Substances in Plastic Food Contact Materials by Vortex-Assisted Liquid-Liquid Extraction and GC-Q-Orbitrap HRMS. Molecules 2021; 26:molecules26247640. [PMID: 34946722 PMCID: PMC8703817 DOI: 10.3390/molecules26247640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/27/2022] Open
Abstract
A GC-HRMS analytical method for the determination of 60 migrant substances, including aldehydes, ketones, phthalates and other plasticizers, phenol derivatives, acrylates, and methacrylates, in plastic food contact materials (FCM) has been developed and validated. The proposed method includes migration tests, according to Commission Regulation (EU) 10/2011, using four food simulants (A, B, C, and D1), followed by vortex-assisted liquid–liquid extraction (VA-LLE) and GC-Q-Orbitrap HRMS analysis in selected ion monitoring (SIM) mode, with a resolving power of 30,000 FWHM and a mass accuracy ≤5 ppm. The method was validated, showing satisfactory linearity (R2 ≥ 0.98 from 40 to 400 µg L−1), limits of quantification (40 µg L−1), precision (RSD, 0.6–12.6%), and relative recovery (81–120%). The proposed method was applied to the analysis of field samples, including an epoxy-coated tin food can, a drinking bottle made of Tritan copolyester, a disposable glass made of polycarbonate, and a baby feeding bottle made of polypropylene, showing that they were in compliance with the current European regulation regarding the studied substances.
Collapse
|
36
|
Pack EC, Lee KY, Jung JS, Jang DY, Kim HS, Koo YJ, Lee HG, Kim YS, Lim KM, Lee SH, Choi DW. Determination of the migration of plastic additives and non-intentionally added substances into food simulants and the assessment of health risks from convenience food packaging. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Chiang C, Pacyga DC, Strakovsky RS, Smith RL, James-Todd T, Williams PL, Hauser R, Meling DD, Li Z, Flaws JA. Urinary phthalate metabolite concentrations and serum hormone levels in pre- and perimenopausal women from the Midlife Women's Health Study. ENVIRONMENT INTERNATIONAL 2021; 156:106633. [PMID: 34004451 PMCID: PMC8380691 DOI: 10.1016/j.envint.2021.106633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Phthalate exposure is associated with altered reproductive function, but little is known about associations between phthalate and hormone levels in midlife women. METHODS This cross-sectional analysis includes 45-54-year-old pre- and perimenopausal women from Baltimore, MD and its surrounding counties enrolled in the Midlife Women's Health Study (n = 718). Serum and urine samples were collected from participants once a week for four consecutive weeks to span the menstrual cycle. Serum samples were assayed for estradiol, testosterone, progesterone, sex hormone binding globulin (SHBG), follicle-stimulating hormone (FSH), and anti-Müllerian hormone (AMH), and geometric means were calculated for each hormone across all four weeks. Urine samples were analyzed for nine phthalate metabolites from pools of one-to-four urine samples. Phthalate metabolite concentrations were specific gravity-adjusted and assessed as individual metabolites or as molar sums of metabolites from common parents (di(2-ethylhexyl) phthalate metabolites, ∑DEHP), exposure sources (plastic, ∑Plastics; personal care products, ∑PCP), biological activity (anti-androgenic, ∑AA), and sum of all metabolites (∑Phthalates). We used linear regression models to assess overall associations of phthalate metabolites with hormones, controlling for important demographic, lifestyle, and health factors. We also explored whether associations differed by menopause status, body mass index (BMI), and race/ethnicity. RESULTS Most participants were non-Hispanic white (67%) or black (29%), college-educated (65%), employed (80%), and had somewhat higher mean urinary phthalate metabolite concentrations than other U.S. women. Overall, the following positive associations were observed between phthalate metabolites and hormones: ∑DEHP (%Δ: 4.9; 95%CI: 0.5, 9.6), ∑Plastics (%Δ: 5.1; 95%CI: 0.3, 10.0), and ∑AA (%Δ: 7.8; 95%CI: 2.3, 13.6) with estradiol; MiBP (%Δ: 6.6; 95%CI: 1.5, 12.1) with testosterone; ∑DEHP (%Δ: 8.3; 95%CI: 1.5, 15.6), ∑Plastics (%Δ: 9.8; 95%CI: 2.4, 17.7), MEP (%Δ: 4.6; 95%CI: 0.1, 9.2), ∑PCP (%Δ: 6.0; 95%CI: 0.2, 12.2), ∑Phthalates (%Δ: 9.0; 95%CI: 2.1, 16.5), and ∑AA (%Δ: 12.9; 95%CI: 4.4, 22.1) with progesterone; and MBP (%Δ: 8.5; 95%CI: 1.2, 16.3) and ∑AA (%Δ: 9.0; 95%CI: 1.3, 17.4) with AMH. Associations of phthalate metabolites with hormones differed by menopause status (strongest in premenopausal women for estradiol, progesterone, and FSH), BMI (strongest in obese women for progesterone), and race/ethnicity (strongest in non-Hispanic white women for estradiol and AMH). CONCLUSIONS We found that phthalate metabolites were positively associated with several hormones in midlife women, and that some demographic and lifestyle characteristics modified these associations. Future longitudinal studies are needed to corroborate these findings in more diverse midlife populations.
Collapse
Affiliation(s)
- Catheryne Chiang
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, United States
| | - Diana C Pacyga
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48823, United States; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48823, United States
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48823, United States
| | - Rebecca L Smith
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, United States; Department of Pathobiology, University of Illinois, Urbana, IL 61802, United States
| | - Tamarra James-Todd
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Paige L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Russ Hauser
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, United States
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL 61801, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, United States; Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, United States.
| |
Collapse
|
38
|
Identification of Potential Migrants in Polyethylene Terephthalate Samples of Ecuadorian Market. Polymers (Basel) 2021; 13:polym13213769. [PMID: 34771326 PMCID: PMC8588110 DOI: 10.3390/polym13213769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Polyethylene terephthalate (PET) is the plastic packaging material most widely used to produce bottles intended for contact with food and beverages. However, PET is not inert, and therefore, some chemical compounds present in PET could migrate to food or beverages in contact, leading to safety issues. To evaluate the safety of PET samples, the identification of potential migrants is required. In this work, eight PET samples obtained from the Ecuadorian market at different phases of processing were studied using a well-known methodology based on a solvent extraction followed by gas chromatography–mass spectrometry analysis and overall migration test. Several chemical compounds were identified and categorized as lubricants (carboxylic acids with chain length of C12 to C18), plasticizers (triethyl phosphate, diethyl phthalate), thermal degradation products (p-xylene, benzaldehyde, benzoic acid), antioxidant degradation products (from Irgafos 168 and Irganox), and recycling indicator compounds (limonene, benzophenone, alkanes, and aldehydes). Additionally, overall migration experiments were performed in PET bottles, resulting in values lower than the overall migration limit (10 mg/dm2); however, the presence of some compounds identified in the samples could be related to contamination during manufacturing or to the use of recycled PET-contaminated flakes. In this context, the results obtained in this study could be of great significance to the safety evaluation of PET samples in Ecuador and would allow analyzing the PET recycling processes and avoiding contamination by PET flakes from nonfood containers.
Collapse
|
39
|
Zhang Y, Li J, Su G. Identifying Citric Acid Esters, a Class of Phthalate Substitute Plasticizers, in Indoor Dust via an Integrated Target, Suspect, and Characteristic Fragment-Dependent Screening Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13961-13970. [PMID: 34598436 DOI: 10.1021/acs.est.1c04402] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Citrate acid esters (CAEs) have been proposed as a class of phthalate substitute plasticizers; however, information on their occurrence in indoor environments is rare. By using liquid chromatography coupled with a quadrupole-Orbitrap mass spectrometer, we developed an integrated strategy that can be applied for target, suspect, and characteristic fragment-dependent screening of CAEs. In n = 50 indoor dust samples collected from Nanjing City (China), three CAEs, namely, acetyl tributyl citrate (ATBC; mean: 412,000 ng/g), tributyl citrate (TBC, 11,600 ng/g), and triethyl citrate (TEC, 10,900 ng/g), exhibited the greatest contamination levels. Total concentrations of CAEs (∑8CAEs) were statistically significantly (p < 0.01) greater than those of common organophosphate triesters (OPTEs), a class of ubiquitous contaminants in dust. Suspect and characteristic fragment-dependent screening (m/z 111.0078 ([C5H3O3]+) and m/z 129.0181 ([C5H5O4]+)) of CAEs were further conducted for the same batch of samples. We tentatively identified six novel CAEs, and the most frequent and abundant CAE was fully identified as tributyl aconitate (TBA). Statistically significant correlation relationships were observed on dust levels between TBA vs ATBC (r = 0.650; p < 0.01) and TBA vs TBC (r = 0.384; p < 0.01), suggesting their similar sources in dust samples.
Collapse
Affiliation(s)
- Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
40
|
Katsara K, Kenanakis G, Viskadourakis Z, Papadakis VM. Polyethylene Migration from Food Packaging on Cheese Detected by Raman and Infrared (ATR/FT-IR) Spectroscopy. MATERIALS 2021; 14:ma14143872. [PMID: 34300791 PMCID: PMC8303366 DOI: 10.3390/ma14143872] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
For multiple years, food packaging migration has been a major concern in food and health sciences. Plastics, such as polyethylene, are continuously utilized in food packaging for preservation and easy handling purposes during transportation and storage. In this work, three types of cheese, Edam, Kefalotyri and Parmesan, of different hardness were studied under two complementary vibrational spectroscopy methods, ATR-FTIR and Raman spectroscopy, to determine the migration of low-density polyethylene from plastic packaging to the surface of cheese samples. The experimental duration of this study was set to 28 days due to the degradation time of the selected cheese samples, which is clearly visible after 1 month in refrigerated conditions at 4 °C. Raman and ATR-FTIR measurements were performed at a 4–3–4–3 day pattern to obtain comparative results. Initially, consistency/repeatability measurement tests were performed on Day0 for each sample of all cheese specimens to understand if there is any overlap between the characteristic Raman and ATR-FTIR peaks of the cheese with the ones from the low-density polyethylene package. We provide evidence that on Day14, peaks of low-density polyethylene appeared due to polymeric migration in all three cheese types we tested. In all cheese samples, microbial outgrowth started to develop after Day21, as observed visually and under the bright-field microscope, causing peak reverse. Food packaging migration was validated using two different approaches of vibrational spectroscopy (Raman and FT-IR), revealing that cheese needs to be consumed within a short time frame in refrigerated conditions at 4 °C.
Collapse
Affiliation(s)
- Klytaimnistra Katsara
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece;
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece; (G.K.); (Z.V.)
| | - Zacharias Viskadourakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece; (G.K.); (Z.V.)
| | - Vassilis M. Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece;
- Correspondence: ; Tel.: +30-281-03-912-67
| |
Collapse
|
41
|
Luís C, Algarra M, Câmara JS, Perestrelo R. Comprehensive Insight from Phthalates Occurrence: From Health Outcomes to Emerging Analytical Approaches. TOXICS 2021; 9:toxics9070157. [PMID: 34357900 PMCID: PMC8309855 DOI: 10.3390/toxics9070157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Phthalates are a group of chemicals used in a multitude of important industrial products (e.g., medical devices, children's toys, and food packages), mainly as plasticizers to improve mechanical properties such as flexibility, transparency, durability, and longevity of polyvinyl chloride (PVC). The wide occurrence of phthalates in many consumer products, including foods (e.g., bottled water, soft drinks, wine, milk, and meat) brings that most people are exposed to phthalates every day, which raises some concerns. Adverse health outcomes from phthalates exposure have been associated with endocrine disruption, deformities in the human reproductive system, increased risk of preterm birth, carcinogen exposure, among others. Apprehension related to the health risks and ubiquitous incidence of phthalates in foods inspires the development of reliable analytical approaches that allow their detection and quantification at trace levels. The purpose of the current review is to provide information related to the presence of phthalates in the food chain, highlighting the health risks associated with their exposure. Moreover, an overview of emerging extraction procedures and high-resolution analytical approaches for a comprehensive quantification of phthalates is presented.
Collapse
Affiliation(s)
- Catarina Luís
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.L.); (J.S.C.)
- Faculdade de Ciências da Vida, Unidade de Ciências Médicas, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Manuel Algarra
- Department of Inorganic Chemistry, Faculty of Science, Campus de Teatinos s/n, University of Málaga, 29071 Malaga, Spain;
| | - José S. Câmara
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.L.); (J.S.C.)
- Departamento de Química, Faculdade de Ciências e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.L.); (J.S.C.)
- Correspondence: ; Tel.: +351-291-705-224
| |
Collapse
|
42
|
Kato LS, Conte-Junior CA. Safety of Plastic Food Packaging: The Challenges about Non-Intentionally Added Substances (NIAS) Discovery, Identification and Risk Assessment. Polymers (Basel) 2021; 13:2077. [PMID: 34202594 PMCID: PMC8271870 DOI: 10.3390/polym13132077] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Several food contact materials (FCMs) contain non-intentionally added substances (NIAS), and most of the substances that migrate from plastic food packaging are unknown. This review aimed to situate the main challenges involving unknown NIAS in plastic food packaging in terms of identification, migration tests, prediction, sample preparation, determination methods and risk assessment trials. Most studies have identified NIAS in plastic materials as polyurethane adhesives (PU), polyethylene terephthalate (PET), polyester coatings, polypropylene materials (PP), multilayers materials, plastic films, polyvinyl chloride (PVC), recycled materials, high-density polyethylene (HDPE) and low-density polyethylene (LDPE). Degradation products are almost the primary source of NIAS in plastic FCMs, most from antioxidants as Irganox 1010 and Irgafos 168, following by oligomers and side reaction products. The NIAS assessment in plastics FCMs is usually made by migration tests under worst-case conditions using food simulants. For predicted NIAS, targeted analytical methods are applied using GC-MS based methods for volatile NIAS and GC-MS and LC-MS based methods for semi- and non-volatile NIAS; non-targeted methods to analyze unknown NIAS in plastic FCMs are applied using GC and LC techniques combined with QTOF mass spectrometry (HRMS). In terms of NIAS risk assessment and prioritization, the threshold of toxicological concern (TTC) concept is the most applied tool for risk assessment. Bioassays with sensitive analytical techniques seem to be an efficient method to identify NIAS and their hazard to human exposure; the combination of genotoxicity testing with analytical chemistry could allow the Cramer class III TTC application to prioritize unknown NIAS. The scientific justification for implementing a molecular weight-based cut-off (<1000 Da) in the risk assessment of FCMs should be reevaluated. Although official guides and opinions are being issued on the subject, the whole chain's alignment is needed, and more specific legislation on the steps to follow to get along with NIAS.
Collapse
Affiliation(s)
- Lilian Seiko Kato
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology, (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Carlos A. Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology, (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
43
|
Zhang S, Zhu J, Lv R, Wu J, Liu Y, Li L, Chen S. Mathematical modelling of plasticizer migration and accompanying structural changes within starch ester nanocomposites. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
45
|
Padmanabhan V, Moeller J, Puttabyatappa M. Impact of gestational exposure to endocrine disrupting chemicals on pregnancy and birth outcomes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:279-346. [PMID: 34452689 DOI: 10.1016/bs.apha.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the advent of industrialization, humans are exposed to a wide range of environmental chemicals, many with endocrine disrupting potential. As successful maintenance of pregnancy and fetal development are under tight hormonal control, the gestational exposure to environmental endocrine disrupting chemicals (EDC) have the potential to adversely affect the maternal milieu and support to the fetus, fetal developmental trajectory and birth outcomes. This chapter summarizes the impact of exposure to EDCs both individually and as mixtures during pregnancy, the immediate and long-term consequences of such exposures on the mother and fetus, the direct and indirect mechanisms through which they elicit their effects, factors that modify their action, and the research directions to focus future investigations.
Collapse
Affiliation(s)
| | - Jacob Moeller
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
46
|
Wang C, Huang P, Qiu C, Li J, Hu S, Sun L, Bai Y, Gao F, Li C, Liu N, Wang D, Wang S. Occurrence, migration and health risk of phthalates in tap water, barreled water and bottled water in Tianjin, China. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124891. [PMID: 33360700 DOI: 10.1016/j.jhazmat.2020.124891] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
This study was to investigate the occurrence, migration and health risk of phthalic acid esters (PAEs) in tap water, barreled water and bottled water in Tianjin, China. Six priority controlled PAEs were measured, among which the detection frequency of butyl benzyl phthalate (BBP), dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) was 100%, while the others were not detected. The concentration of DEHP was higher than BBP and DBP in all the samples. The initial ∑3PAEs concentrations in tap water, barreled water and bottled water were 2.409 ± 0.391 μg/L, 1.495 ± 0.213 μg/L and 1.963 ± 0.160 μg/L, respectively. Boiling tap water could reduce the PAEs content to an extent, but they increased significantly in hot tap water contacting with disposable plastic cups. The migration of PAEs in barreled water and bottled water were positively correlated with storage time and temperature, which could be described by exponential models. The hazard indexes of PAEs in different types of drinking water were very low. However, the human carcinogenic risks of DEHP will reach the maximum acceptable risk level of 10-6 when bottled water is stored for 8.8 days at 40 °C, 7.7 days at 50 °C, or 6.1 days at 60 °C.
Collapse
Affiliation(s)
- Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Panpan Huang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China.
| | - Jing Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Shuailong Hu
- China design Digital Technology Co., LTD, Beijing 100043, China
| | - Liping Sun
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fu Gao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Chaocan Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Nannan Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
47
|
Phthalic acid esters and adipates in herbal-based soft drinks: an eco-friendly method. Anal Bioanal Chem 2021; 413:2903-2912. [PMID: 33709193 DOI: 10.1007/s00216-021-03219-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 10/21/2022]
Abstract
Phthalic acid esters (PAEs) and adipates are plasticizers with high applicability in several products and building materials (e.g. cosmetics, packing) very persistent in the environment, features which render them ubiquitous pollutants. These substances can contaminate food through the environment (water, air, and soil) and/or migration from packaging materials, which creates a health concern due to their toxicity. This paper describes an eco-friendly dispersive liquid-liquid microextraction (DLLME) procedure to extract five phthalates and bis(2-ethylhexyl) adipate (DEHA) from bottled herbal-based beverages followed by GC-MS/MS quantification. The method showed low limits of detection (5.0-13 μg L-1) and quantification (20-35 μg L-1), good inter- and intraday precision (RSD < 19%), and recoveries ranging from 82 to 111%. It was applied to 16 real samples, of which 13 showed the presence of at least one of the analytes under study. Additionally, an exposure assessment was performed, and resulted in a hazard quotient less than 1 (HQ < 1) for all analytes. Therefore, PAEs and DEHA found in samples do not pose a health issue.
Collapse
|
48
|
Development of microwave-assisted extraction and dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry for the determination of organic additives in biodegradable mulch films. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Dey A, Dhumal CV, Sengupta P, Kumar A, Pramanik NK, Alam T. Challenges and possible solutions to mitigate the problems of single-use plastics used for packaging food items: a review. Journal of Food Science and Technology 2020; 58:3251-3269. [PMID: 34366444 DOI: 10.1007/s13197-020-04885-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022]
Abstract
Single-use plastic (SUP) being a versatile material, is adopted as an alternate to traditional materials specifically for the use in food packaging due to its inherent characteristics like high durability, inertness, and protecting ability but has become a curse for living being today due to its random usage and unplanned rejection to nature. Mostly plastics used in packaging of beverages, fresh meats, fruits and vegetables are under concern today. Single-use packages result in generation of several billion tons of garbage till date, which pollutes the environment. At the immediate past, it has come to light that micro plastics obtained due to slow degradation of SUP present in oceans, are also being consumed by marine organisms such as fishes and shellfish species which disturbs the marine life extensively. Hence, finding right strategy to mitigate the plastic waste related issues has becoming inevitable today. This review paper briefs various strategies undertaken worldwide to mitigate the pollution due to generation of plastic waste. Various notable impact of adopted strategies and recent innovations to replace the SUP products are also discussed and in view of this a roadmap is also suggested which can be used to achieve the milestone of Zero Plastic Waste.
Collapse
Affiliation(s)
- Ayan Dey
- Indian Institute of Packaging, Plot E-2 M.I.D.C. Area, Andheri East, Mumbai, 400093 Maharashtra India
| | - Chanda Vilas Dhumal
- Indian Institute of Packaging, Plot E-2 M.I.D.C. Area, Andheri East, Mumbai, 400093 Maharashtra India
| | - Priyanka Sengupta
- Indian Institute of Packaging, Plot E-2 M.I.D.C. Area, Andheri East, Mumbai, 400093 Maharashtra India
| | - Arushi Kumar
- Indian Institute of Packaging, Plot E-2 M.I.D.C. Area, Andheri East, Mumbai, 400093 Maharashtra India
| | - Nilay Kanti Pramanik
- Indian Institute of Packaging, Plot E-2 M.I.D.C. Area, Andheri East, Mumbai, 400093 Maharashtra India
| | - Tanweer Alam
- Indian Institute of Packaging, Plot E-2 M.I.D.C. Area, Andheri East, Mumbai, 400093 Maharashtra India
| |
Collapse
|
50
|
Ong HT, Samsudin H, Soto-Valdez H. Migration of endocrine-disrupting chemicals into food from plastic packaging materials: an overview of chemical risk assessment, techniques to monitor migration, and international regulations. Crit Rev Food Sci Nutr 2020; 62:957-979. [DOI: 10.1080/10408398.2020.1830747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hooi-Theng Ong
- Seberang Perai Selatan District Health Office, Nibong Tebal, Pulau Pinang, Malaysia
| | - Hayati Samsudin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Herlinda Soto-Valdez
- Laboratorio de Envases, Centro de Investigaciόn en Alimentaciόn y Desarrollo, A.C., Hermosillo Sonora, Mexico
| |
Collapse
|