1
|
Candian V, Scarpino V, Bona A, Tedeschi R, Blandino M. Mycotoxins-contaminated wheat matrices bioconversion by Tenebrio molitor larvae (Coleoptera: Tenebrionidae). INSECT SCIENCE 2025. [PMID: 40361277 DOI: 10.1111/1744-7917.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025]
Abstract
Tenebrio molitor is proposed for the valorization of mycotoxins-contaminated substrates no longer usable for other purposes. Larvae were reared on three different wheat matrices (wholegrain flour, shorts and bran) contaminated with different levels of mycotoxins. Nine diets (3 matrices × 3 contamination levels) were assessed. Larval development time, average daily gain (ADG), substrate consumption, survival rate, and the capacity of T. molitor to accumulate and excrete different mycotoxins, through exuviae and frass, were evaluated. Larval development time, ADG, survival rate and substrate consumption were not negatively affected by the mycotoxins, but only by the rearing matrix, depending on the nutritive value. The ability of larvae to excrete DON and its derivatives through exuviae and frass was observed. Within each matrix, DON contamination in larvae increased significantly moving from poorly to highly contaminated ones. Overall, the ratio between the modified form (deoxynivalenol-3-glucoside) and the native one (DON), increased from 7%, in the raw materials, to 101% in the larvae, highlighting their ability to modify this mycotoxin and accumulate it in their body. Larvae accumulated also nivalenol, zearalenone, and enniatins showing a higher concentration in larvae reared on substrates with high level of contamination, while moniliformin was never found in larvae. Overall, the levels of mycotoxins recorded in larvae was always below the current legal limits for livestock feed, thanks to their ability to excrete them through exuviae and frass. These interesting data open new scenarios on the valorization of mycotoxin-contaminated matrices, not suitable for other livestock farming, by means of insects.
Collapse
Affiliation(s)
- Valentina Candian
- Department of Agricultural Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Valentina Scarpino
- Department of Agricultural Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Alessandro Bona
- Department of Agricultural Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Rosemarie Tedeschi
- Department of Agricultural Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Massimo Blandino
- Department of Agricultural Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| |
Collapse
|
2
|
Davalos-Vazquez A, Mojica L, Sánchez-Velázquez OA, Castillo-Herrera G, Urías-Silvas JE, Doyen A, Moreno-Vilet L. Techno-functional properties and structural characteristics of cricket protein concentrates affected by pre-treatments and ultrafiltration/diafiltration processes. Food Chem 2024; 461:140908. [PMID: 39181044 DOI: 10.1016/j.foodchem.2024.140908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
This study aimed to evaluate different pre-treatments on cricket flour (CF), solvent-defatting (CFH), and supercritical-defatting (CFS) to obtain cricket protein concentrate (CPC) by ultrafiltration (UF)-diafiltration (DF) and evaluate the UF-DF performance, techno-functional properties, and digestibility. Results showed that defatting efficiency was 63 % and 85 % for solvent-defatting and supercritical fluid defatting, respectively. The supercritical fluid extraction process decreased the protein solubility and affected the UF performance, decreasing protein retention by 33 %. However, the soluble protein of the generated concentrates was higher than 90 %. Protein concentrates showed a better foaming capacity at pH 5.0 and 7.0, while the oil-holding capacity (1.95-2.20 g/g) decreased in defatted concentrates but was higher than water-holding (0.30-0.60 g/g). Emulsion activity (45-50 %) was not affected by pre-treatments (p > 0.05). Protein digestibility ranged from 71 to 75 % (p < 0.05). Supercritical fluid defatting and ultrafiltration-diafiltration processes were suitable for obtaining cricket protein concentrates.
Collapse
Affiliation(s)
- Alejandro Davalos-Vazquez
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero #1227, Col. El Bajío Arenal, CP 45019 Zapopan, Jalisco, Mexico.
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero #1227, Col. El Bajío Arenal, CP 45019 Zapopan, Jalisco, Mexico.
| | - Oscar Abel Sánchez-Velázquez
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero #1227, Col. El Bajío Arenal, CP 45019 Zapopan, Jalisco, Mexico.
| | - Gustavo Castillo-Herrera
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero #1227, Col. El Bajío Arenal, CP 45019 Zapopan, Jalisco, Mexico.
| | - Judith E Urías-Silvas
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero #1227, Col. El Bajío Arenal, CP 45019 Zapopan, Jalisco, Mexico.
| | - Alain Doyen
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Quebec G1V 0A6, Canada.
| | - Lorena Moreno-Vilet
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero #1227, Col. El Bajío Arenal, CP 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
3
|
Singh SK, Pawar L, Thomas AJ, Debbarma R, Biswas P, Ningombam A, Devi AG, Waikhom G, Patel AB, Meena DK, Chakraborty G. The current state of research and potential applications of insects for resource recovery and aquaculture feed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62264-62282. [PMID: 37556060 DOI: 10.1007/s11356-023-29068-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
Concerns about fishmeal use and its ecological footprints must be addressed for the aquaculture industry to move on as a sustainable food production sector. Through recent research outcomes, the insect-based meals in fish diets have promise and harnessed promises for commercial applications. In this midst, the efficiency of the selected insects in valorizing biological waste, as well as the nutritional profile of the harvested insects for use in fish diets, will be the driving forces behind such an approach. More extensive research has been published on the suitability of the waste substrate, the nutritional profiling of the meals, the level of substitution, the effects on growth, the immune physiology, and the flesh quality of the animals. Previously, there are only a few reviews available in insect protein applications in aqua feed that focused particularly on the nutritional quality and substitution levels. Considering the dearth of available work, the goal of this review is to provide a more comprehensive account of the resource recovery potential of insects and its derivatives, with a special emphasis on quality as determined by substrate used and processing techniques. Suggestions and policy implications for a sustainable approach to achieving a circular bio-economy of insect farming and its application in aquaculture are discussed for progression and advancement of the existing state of the art.
Collapse
Affiliation(s)
- Soibam Khogen Singh
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India.
| | - Lokesh Pawar
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Akhil Joe Thomas
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Reshmi Debbarma
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Pradyut Biswas
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Arati Ningombam
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, 795004, Manipur, India
| | - Ayam Gangarani Devi
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Tripura West, 799210, India
| | - Gusheinzed Waikhom
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Arun Bhai Patel
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Dharmendra Kumar Meena
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Gunimala Chakraborty
- NITTE University Centre for Science Education & Research, Mangalore, 575018, India
| |
Collapse
|
4
|
Rudy S, Dziki D, Biernacka B, Polak R, Krzykowski A, Krajewska A, Stanisławczyk R, Rudy M, Żurek J, Rudzki G. Impact of Drying Process on Grindability and Physicochemical Properties of Celery. Foods 2024; 13:2585. [PMID: 39200512 PMCID: PMC11354119 DOI: 10.3390/foods13162585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
The objective of this study was to evaluate the impact of various drying methods: freeze drying, vacuum drying, convection drying, and convection-microwave drying at microwave powers of 50 W and 100 W, along with process temperatures (40 °C, 60 °C, and 80 °C), on the drying kinetics, selected physicochemical properties of dried celery stems, and their grindability. The Page model was employed to mathematically describe the drying kinetics across the entire measurement range. Convection-microwave drying significantly reduced the drying time compared to the other methods. The longest drying duration was observed with freeze drying at 40 °C. The product obtained through freeze drying at 40 °C exhibited the least alteration in color coordinates, the highest antioxidant capacity, and the greatest retention of chlorophylls and total carotenoids. At a specific temperature, the quality of the product obtained from vacuum drying was slightly lower compared to that from freeze drying. The most substantial changes in the physicochemical properties of the dried product were observed with convection-microwave drying at a microwave power of 100 W. The drying method selected had a significant impact on the energy consumption of grinding, average particle size, and the grinding energy index of the dried celery stems; these parameters worsened as the drying temperature increased. The product with the best quality characteristics and disintegration parameters was achieved using freeze drying at 40 °C.
Collapse
Affiliation(s)
- Stanisław Rudy
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland; (S.R.); (D.D.); (B.B.); (R.P.); (A.K.)
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland; (S.R.); (D.D.); (B.B.); (R.P.); (A.K.)
| | - Beata Biernacka
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland; (S.R.); (D.D.); (B.B.); (R.P.); (A.K.)
| | - Renata Polak
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland; (S.R.); (D.D.); (B.B.); (R.P.); (A.K.)
| | - Andrzej Krzykowski
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland; (S.R.); (D.D.); (B.B.); (R.P.); (A.K.)
| | - Anna Krajewska
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland; (S.R.); (D.D.); (B.B.); (R.P.); (A.K.)
| | - Renata Stanisławczyk
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza St. 4, 35-601 Rzeszów, Poland; (R.S.); (M.R.)
| | - Mariusz Rudy
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza St. 4, 35-601 Rzeszów, Poland; (R.S.); (M.R.)
| | - Jagoda Żurek
- Department of Financial Markets and Public Finance, Institute of Economics and Finance, College of Social Sciences, University of Rzeszow, Ćwiklińskiej 2, 35-601 Rzeszów, Poland;
| | - Grzegorz Rudzki
- Department of Endocrinology, Diabetology, and Metabolic Diseases, Medical University of Lublin, Jaczewski St. 8, 20-090 Lublin, Poland;
| |
Collapse
|
5
|
Gómez-Oquendo G, Loza Puerta A, Gonzales Gutierrez C, Gómez-Bravo CA, Salazar-Cubillas K. Oven-drying and decontamination effects on crude protein concentration and in vitro crude protein digestibility of yellow mealworm (Tenebrio molitor) (Coleoptera: Tenebrionidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:12. [PMID: 39118393 PMCID: PMC11310299 DOI: 10.1093/jisesa/ieae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
The study aims to assess the impact of oven-drying and decontamination on crude protein concentration and in vitro crude protein digestibility of yellow mealworms. Two kilograms of 12-wk-old mealworm larvae were subjected to freezing prior to the drying process. Approximately 1.5 kg of mealworm larvae were divided into 3 groups and exposed to oven-drying at temperatures of 50 °C for 36 h, 60 °C, and 70 °C for 24 h each. At intervals of 2 h, sets of 3 replicates were withdrawn to record water loss. Consistent weight stabilization was observed at 36 h for 50 °C (T50), 18 h for 60 °C (T60), and 14 h for 70 °C (T70). The remaining 0.5 kg of mealworm larvae was divided and dried under treatments T50, T60, and T70. Each treatment was then split into 2 portions, with one portion subjected to 90 °C for 15 min (denoted as T50-90, T60-90, T70-90) to eliminate microbial contamination. The 6 treatments were then used to determine concentrations of dry matter, crude ash, crude protein, pre-caecal protein digestibility, and dry matter residues after neutral detergent fiber, acid detergent fiber, and acid detergent lignin treatments. No interaction was observed between drying and decontamination treatments (P > 0.17). Pre-caecal crude protein digestibility increased with decreasing temperature (T50: 58% crude protein; T60: 51% crude protein; T70: 50% crude protein). Therefore, lower temperatures for longer times preserve crude protein digestibility. These findings are crucial for understanding how drying temperature and time impact protein bioavailability.
Collapse
Affiliation(s)
- Giovanna Gómez-Oquendo
- Faculty of Veterinary and Biological Sciences, Veterinary Medicine and Zootechnics, Universidad Científica del Sur, Lima, Peru
- Department of Nutrition, Faculty of Zootechnics, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Andrés Loza Puerta
- Faculty of Veterinary and Biological Sciences, Veterinary Medicine and Zootechnics, Universidad Científica del Sur, Lima, Peru
| | - Cesar Gonzales Gutierrez
- Faculty of Veterinary and Biological Sciences, Veterinary Medicine and Zootechnics, Universidad Científica del Sur, Lima, Peru
| | - Carlos A Gómez-Bravo
- Department of Nutrition, Faculty of Zootechnics, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Khaterine Salazar-Cubillas
- Faculty of Agricultural and Nutritional Sciences, Institute of Animal Nutrition and Feed Science, Christian-Albrechts-Universität zu Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
6
|
Rahman MM, Byanju B, Lamsal BP. Protein, lipid, and chitin fractions from insects: Method of extraction, functional properties, and potential applications. Crit Rev Food Sci Nutr 2024; 64:6415-6431. [PMID: 36691837 DOI: 10.1080/10408398.2023.2168620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Edible insects are accepted as food and feed ingredients in many parts of the world. Insects account for more than 80% of animal kingdom providing rich biodiversity of protein and lipid profiles compared to conventional livestock. Insect biomasses contain an average of 35-62% protein, 3-57% lipid, and 3-12% chitin, and their nutritional values are widely recognized due to their presence, including minerals, and vitamins. While whole insects are consumed as eggs, larvae, pupae, or adults, there has been a recent uptick in interest to use fractions, e.g., protein, lipid, and chitin, as food and feed ingredients. To utilize these fractions in various food and feed preparations, a deeper understanding of the physicochemical as well as functional properties of the ingredients is required, which are generally impacted by extraction and preparation processes. Thus, the methods of extraction/purification are important to preserve the quality and functional properties of these ingredients. This paper discusses the extraction methods for insect protein, lipid, and chitin, their functional properties, and potential applications in food and feed applications.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Bibek Byanju
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Buddhi P Lamsal
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
7
|
Liang Z, Zhu Y, Leonard W, Fang Z. Recent advances in edible insect processing technologies. Food Res Int 2024; 182:114137. [PMID: 38519159 DOI: 10.1016/j.foodres.2024.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Alternative foods have emerged as one of the hot research topics aiming at alleviating food shortage. Insects are one of the alternative foods due to their rich nutrients. Processing is a critical step to develop insect foods, while there is a lack of comprehensive reviews to summarize the main studies. This review aims to demonstrate different processing methods in terms of their impact on insect nutrition and their potential risks. Heat treatments such as boiling and blanching show a negative effect on insect nutrition, but essential to assure food safety. Insects treated by high-pressure hydrostatic technology (HPP) and cold atmospheric pressure plasma (CAPP) can achieve a similar sterilization effect but retain the nutritional and sensory properties. Drying is a practical processing method for industrial insect production, where oven drying serves as a cost-effective method yielding products comparable in quality to freeze-dried ones. In terms of extraction technology, supercritical carbon dioxide and ultrasound-assisted technology can improve the extraction efficiency of proteins and lipids from insects, enhance the production of composite insect-fortified foods, and thus facilitate the development of the insect food industry. To address the widespread negative perceptions and low acceptance towards insect foods among consumers, the primary development direction of the insect food industry may involve creating composite fortified foods and extracting insect-based food components.
Collapse
Affiliation(s)
- Zijian Liang
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yijin Zhu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 65022, China
| | - William Leonard
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
8
|
Zhang X, Zhang T, Zhao Y, Jiang L, Sui X. Structural, extraction and safety aspects of novel alternative proteins from different sources. Food Chem 2024; 436:137712. [PMID: 37852073 DOI: 10.1016/j.foodchem.2023.137712] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
With rapid population growth and continued environmental degradation, it is no longer sustainable to rely on conventional proteins to meet human requirements. This has prompted the search for novel alternative protein sources of greater sustainability. Currently, proteins of non-conventional origin have been developed, with such alternative protein sources including plants, insects, algae, and even bacteria and fungi. Most of these protein sources have a high protein content, along with a balanced amino acid composition, and are regarded as healthy and nutritious sources of protein. While these novel alternative proteins have excellent nutritional, research on their structure are still at a preliminary stage, particularly so for insects, algae, bacteria, and fungi. Therefore, this review provides a comprehensive overview of promising novel alternative proteins developed in recent years with a focus on their nutrition, sustainability, classification, and structure. In addition, methods of extraction and potential safety factors for these proteins are summarized.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Baldacchino F, Spagnoletta A, Lamaj F, Vitale ML, Verrastro V. First Optimization of Tomato Pomace in Diets for Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). INSECTS 2023; 14:854. [PMID: 37999053 PMCID: PMC10672421 DOI: 10.3390/insects14110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Tomato pomace (TP), an agricultural industrial waste product from the tomato processing industry, is valorized as a rearing substrate for Tenebrio molitor (L.). This study evaluated bran-based diets with increasing tomato pomace (0%, 27%, 41%, and 100%). Protein sources, such as brewer's spent grain and yeast, were used in TP27 and TP41 diets to ensure equal protein contents to the control diet. Results showed no different for larval and pupal weights between diets; however, the time of development significantly increases in TP100 compared to all diets. The feed conversion rate progressively increases from 2.7 to 4.3, respectively, from the control to the TP100 diet. Conversely, lycopene and β-carotene increase in the larvae. The fatty acid composition improves by increasing polyunsaturated fatty acids (mainly α-linoleic acid). Although the best nutritional quality was obtained in T100, the TP41 is the optimal diet for balance between larval performance and qualitative improvement of larvae. Therefore, tomato pomace is suitable for the formulation of mealworm diets, even in high dosages, when supplemented with sustainable protein and carbohydrate sources.
Collapse
Affiliation(s)
- Ferdinando Baldacchino
- Laboratory of Bioproducts and Bioprocess, ENEA—Trisaia Research Centre, S.S. Jonica 106, Km 419+500, I-75026 Rotondella, Italy
| | - Anna Spagnoletta
- Laboratory of Bioproducts and Bioprocess, ENEA—Trisaia Research Centre, S.S. Jonica 106, Km 419+500, I-75026 Rotondella, Italy
| | - Flutura Lamaj
- CIHEAM-Bari, Mediterranean Agronomic Institute of Bari, Via Ceglie, 9, I-70100 Valenzano, Italy
| | - Maria Luisa Vitale
- CIHEAM-Bari, Mediterranean Agronomic Institute of Bari, Via Ceglie, 9, I-70100 Valenzano, Italy
| | - Vincenzo Verrastro
- CIHEAM-Bari, Mediterranean Agronomic Institute of Bari, Via Ceglie, 9, I-70100 Valenzano, Italy
| |
Collapse
|
10
|
Ma Z, Mondor M, Goycoolea Valencia F, Hernández-Álvarez AJ. Current state of insect proteins: extraction technologies, bioactive peptides and allergenicity of edible insect proteins. Food Funct 2023; 14:8129-8156. [PMID: 37656123 DOI: 10.1039/d3fo02865h] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This review aims to provide an updated overview of edible insect proteins and the bioactivity of insect-derived peptides. The essential amino acid content of edible insects is compared with well-known protein sources to demonstrate that edible insects have the potential to cover the protein quality requirements for different groups of the population. Then the current methodologies for insect protein extraction are summarized including a comparison of the protein extraction yield and the final protein content of the resulting products for each method. Furthermore, in order to improve our understanding of insect proteins, their functional properties (such as solubility, foaming capacity, emulsifying, gelation, water holding capacity and oil holding capacity) are discussed. Bioactive peptides can be released according to various enzymatic hydrolysis protocols. In this context, the bioactive properties of insect peptides (antihypertensive, antidiabetic, antioxidant and anti-inflammatory properties) have been discussed. However, the allergens present in insect proteins are still a major concern and an unsolved issue for insect-based product consumption; thus, an analysis of cross reactivity and the different methods available to reduce allergenicity are proposed. Diverse studies of insect protein hydrolysates/peptides have been ultimately promoting the utilization of insect proteins for future perspectives and the emerging processing technologies to enhance the wider utilization of insect proteins for different purposes.
Collapse
Affiliation(s)
- Zidan Ma
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| | - Martin Mondor
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, QC, J2S 8E3, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, G1V 0A6, Canada
| | | | | |
Collapse
|
11
|
Gnana Moorthy Eswaran U, Karunanithi S, Gupta RK, Rout S, Srivastav PP. Edible insects as emerging food products-processing and product development perspective. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2105-2120. [PMID: 37273559 PMCID: PMC10232397 DOI: 10.1007/s13197-022-05489-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/12/2022] [Accepted: 05/15/2022] [Indexed: 06/06/2023]
Abstract
Edible insects (EI) are also becoming as a part of the diet due to their nutritional value and health benefits in many regions of the world. These EI are inexhaustible sources accessible by garnering from the wild with high feed conversion efficiency. Appreciating the budding of EI in justifiable food production, enlightening food security and biodiversity conversion, is promising a sufficient supply of the insect resource for future food to the world. These insects are processed to develop new products, improve organoleptic and nutritional parameters as well as the extension of shelf life. In this review, we discuss the edible insect characteristics, the potential application of EI in food industry, processing, pretreatments, drying, extraction of edible compounds like protein, lipid and chitin various food products formulation, safety regulation. Availability of broad nutritional spectrum of EI includes protein, mono and poly unsaturaturated fatty acids, amino acids, vitamins, amino aids and minerals has been used as an ingredient in development of various forms of food products such as flours in the form of whole insect powder, protein isolate, canned products, extruded products, hard candies, spreads, liquor infusion, cookies and other products.
Collapse
Affiliation(s)
- U. Gnana Moorthy Eswaran
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| | - Sangeetha Karunanithi
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| | - Rakesh Kumar Gupta
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| | - Srutee Rout
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| |
Collapse
|
12
|
Noyens I, Schoeters F, Van Peer M, Berrens S, Goossens S, Van Miert S. The nutritional profile, mineral content and heavy metal uptake of yellow mealworm reared with supplementation of agricultural sidestreams. Sci Rep 2023; 13:11604. [PMID: 37463987 DOI: 10.1038/s41598-023-38747-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Insect farming, a potential approach to deal with the increasing global protein demand, is a new activity in the Western world with many unanswered questions regarding product quality and safety. Insects may fulfill an important role in a circular economy by upcycling biowaste into valuable biomass. About half of the total mass of mealworm feeding substrates exists out of wet feed. This can be sourced from biowaste, increasing the sustainability of insect farming. This paper reports on the nutritional profile of yellow mealworm, Tenebrio molitor, reared with supplementation of organic sidestreams. These included unsold vegetables, potato cuttings, fermented chicory roots and horticultural foliage. The evaluation was performed by analyzing proximate compositions, fatty acid profiles, mineral and heavy metal contents. Mealworms fed with potato cuttings doubled their fat content and increased saturated and mono-unsaturated fatty acids. Providing fermented chicory roots increased the mineral content and accumulated heavy metals. Additionally, the uptake of minerals by mealworms was selective as only calcium, iron and manganese concentrations increased. Adding vegetable mix or horticultural foliage to the diet did not significantly change the nutritional profile. In conclusion, sidestreams were successfully recycled into protein-rich biomass and their nutrient content and bio-availability influenced the composition of mealworms.
Collapse
Affiliation(s)
- Isabelle Noyens
- RADIUS, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440, Geel, Belgium.
| | - Floris Schoeters
- RADIUS, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440, Geel, Belgium
| | - Meggie Van Peer
- RADIUS, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440, Geel, Belgium
| | - Siebe Berrens
- RADIUS, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440, Geel, Belgium
| | - Sarah Goossens
- RADIUS, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440, Geel, Belgium
| | - Sabine Van Miert
- RADIUS, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440, Geel, Belgium
| |
Collapse
|
13
|
Pornsuwan R, Pootthachaya P, Bunchalee P, Hanboonsong Y, Cherdthong A, Tengjaroenkul B, Boonkum W, Wongtangtintharn S. Evaluation of the Physical Characteristics and Chemical Properties of Black Soldier Fly ( Hermetia illucens) Larvae as a Potential Protein Source for Poultry Feed. Animals (Basel) 2023; 13:2244. [PMID: 37508022 PMCID: PMC10376289 DOI: 10.3390/ani13142244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to investigate and compare the effects of different drying methods on the physical and chemical properties of black soldier fly larvae (BSFL) to determine their potential as an alternative protein source in animal feed. The experimental design was a 2 × 3 factorial arrangement in a completely randomized design (BSFL type × drying method), with five replications. The influence of post-harvest procedures was studied, including the different BSFL types (non-defatted and defatted) and drying methods (parabola dome, hot air oven, and microwave). The results showed that the types of BSFL, drying methods, and their interaction significantly (p < 0.001) influenced the feed's physical properties; these included the brightness of color (L* 29.74-54.07; a* 0.40-5.95; b* 9.04-25.57), medium bulk density (381.54-494.58 g/L), free flow with an angle of repose (41.30-45.40°), and small particle size. They significantly (p < 0.001) influenced the nutritive value of BSFL, which contained 42-59% crude protein, 7-14% crude fiber, 9-30% ether extract, and 5035-5861 kcal/kg of energy. Overall, both BSFL types and all the drying methods resulted in a slight variation in the proximate composition. However, a microwave and a hot-air oven were considered the most suitable methods for producing BSFL powder because of the high levels of nutrients retained and the improved physical parameters when compared to a parabola dome. This characterization of the physical and chemical composition of BSFL represents a preliminary methodology that could be used to initially preprocess larvae for use as an alternative protein source in animal feed and for other applications.
Collapse
Affiliation(s)
- Rattanakorn Pornsuwan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Padsakorn Pootthachaya
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pasakorn Bunchalee
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Yupa Hanboonsong
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anusorn Cherdthong
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Bundit Tengjaroenkul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
- Network Center for Animal Breeding and Omics Research, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sawitree Wongtangtintharn
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
14
|
Lee JH, Kim TK, Park SY, Kang MC, Cha JY, Lim MC, Choi YS. Effects of Blanching Methods on Nutritional Properties and Physicochemical Characteristics of Hot-Air Dried Edible Insect Larvae. Food Sci Anim Resour 2023; 43:428-440. [PMID: 37181217 PMCID: PMC10172815 DOI: 10.5851/kosfa.2023.e4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Global meat consumption is increasing worldwide, however, supply remains lacking. Several alternative protein sources, such as cultured meat, plant-based protein production, and edible insects, have been proposed to overcome this shortage. Interestingly, edible insects are characterized by superior digestive and absorptive qualities that make them the ideal replacement for traditional protein production. This study aims to further the processing ability of insect protein by investigating the effects of various pre-treatment methods, such as blanching (HB), roasting (HR), and superheated steam (HS), on the nutritional properties and physicochemical characteristics of proteins extracted from Hermetia illucens larvae. The drying rate, pH value, color analysis, amino and fatty acid profile, as well as bulk density, shear force, and rehydration ratios of the above pre-treatment methods, were explored. HS was found to have the highest drying rate and pH value analysis showed that HB and HS samples have significantly higher values compared to the other modalities. Raw edible insects had the highest value in the sum of essential amino acid (EAA) and EAA index when compared to EAAs. HB and HS showed significantly lower bulk density results, and HS showed the highest shear force and the highest value in rehydration ratio, regardless of immersion time. Therefore, taking the above results together, it was found that blanching and superheated steam blanching pre-treatment were the most effective methods to improve the processing properties of H. illucens after hot-air drying.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Sun-Young Park
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Min-Cheol Lim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| |
Collapse
|
15
|
Aguilar-Toalá JE, Cruz-Monterrosa RG, Liceaga AM. Beyond Human Nutrition of Edible Insects: Health Benefits and Safety Aspects. INSECTS 2022; 13:insects13111007. [PMID: 36354831 PMCID: PMC9692588 DOI: 10.3390/insects13111007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/30/2023]
Abstract
Nowadays, edible insects are considered an outstanding source of nutrients, primarily because they contain high-quality protein, amino acids, and vitamins. Insects are considered a promising alternative protein source towards alleviating future global food shortage problems due to their production considered as being more sustainable by using less agricultural land and water, as well as releasing a smaller amount of greenhouse gas emissions. However, other important aspects to consider about the consumption of edible insects include their health benefits and some safety aspects, which has been relatively overlooked. In this sense, edible insects contain bioactive compounds that can provide diverse bioactivities, such as antioxidant, antihypertensive, anti-inflammatory, antimicrobial, and immunomodulatory with a positive impact on human health. On the other hand, edible insects are a nutrient-rich food that can provide a perfect growth medium for diverse microorganisms, as well as possess some anti-nutritive factors. These two main aspects could represent food safety concerns for consumers. In this context, recent scientific evidence indicates that preservation methods, mainly thermal treatments, utilized in the cooking or processing of edible insects decreased the microbial levels and anti-nutritive factors, which suggests that edible insects do not represent a critical biological risk to humans. Besides, edible insects could have a positive effect on gut microbiota, either by their pre-biotic effect or their antimicrobial activity towards pathogens. Thus, this review is focused on studies related to the health benefits of edible insects and their isolated components, as well as discussion about potential issues related to their microbial content and anti-nutritive factors; this review will provide a synopsis on whether edible insects may be considered safe for human consumption.
Collapse
Affiliation(s)
- José E. Aguilar-Toalá
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Av. de las Garzas 10, Col. El Panteón, Lerma de Villada 52005, Estado de México, Mexico
| | - Rosy G. Cruz-Monterrosa
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Av. de las Garzas 10, Col. El Panteón, Lerma de Villada 52005, Estado de México, Mexico
| | - Andrea M. Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Ha NI, Mun SK, Im SB, Jang HY, Jeong HG, Kang KY, Park KW, Seo KS, Ban SE, Kim KJ, Yee ST. Changes in Functionality of Tenebrio molitor Larvae Fermented by Cordyceps militaris Mycelia. Foods 2022; 11:foods11162477. [PMID: 36010477 PMCID: PMC9407045 DOI: 10.3390/foods11162477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
The Food and Agriculture Organization (FAO) has been estimating the potential of insects as human food since 2010, and for this reason, Tenebrio molitor larvae, also called mealworms, have been explored as an alternative protein source for various foods. In this study, in order to increase nutrient contents and improve preference as an alternative protein source, we fermented the T. molitor larvae by Cordyceps militaris mycelia. T. molitor larvae were prepared at optimal conditions for fermentation and fermented with C. militaris mycelia, and we analyzed T. molitor larvae change in functionality with proximate composition, β-glucan, cordycepin, adenosine, and free amino acids content. T. molitor larvae fermented by C. militaris mycelia showed higher total protein, total fiber, and β-glucan content than the unfermented larvae. In addition, the highest cordycepin content (13.75 mg/g) was observed in shaded dried T. molitor larvae fermented by C. militaris mycelia. Additionally, the isolated cordycepin from fermented T. molitor larvae showed similar cytotoxicity as standard cordycepin when treated with PC-9 cells. Therefore, we report that the optimized methods of T. molitor larvae fermented by C. militaris mycelia increase total protein, total fiber, β-glucan and produce the amount of cordycepin content, which can be contributed to healthy food and increase T. molitor larvae utilization.
Collapse
Affiliation(s)
- Neul-I Ha
- Department of Pharmacy, Sunchon National University, Jungang-Ro, Suncheon 549-742, Korea
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Korea
| | - Seul-Ki Mun
- Department of Pharmacy, Sunchon National University, Jungang-Ro, Suncheon 549-742, Korea
| | - Seung-Bin Im
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Korea
| | - Ho-Yeol Jang
- Suncheon Research Center for Bio Health Care, Jungang-Ro, Suncheon 57922, Korea
| | - Hee-Gyeong Jeong
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Korea
| | - Kyung-Yun Kang
- Suncheon Research Center for Bio Health Care, Jungang-Ro, Suncheon 57922, Korea
| | - Kyung-Wuk Park
- Suncheon Research Center for Bio Health Care, Jungang-Ro, Suncheon 57922, Korea
| | - Kyoung-Sun Seo
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Korea
| | - Seung-Eon Ban
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Korea
| | - Kyung-Je Kim
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Korea
| | - Sung-Tae Yee
- Department of Pharmacy, Sunchon National University, Jungang-Ro, Suncheon 549-742, Korea
- Correspondence: ; Tel.: +82-61-750-3752; Fax: +82-61-750-3708
| |
Collapse
|
17
|
Abstract
The literature highlights the importance of insect consumption for nutritional health habits. The increasingly clear legislation, the developed studies demonstrating their nutritional value, and the prospect of overcoming some barriers that have prevented consumers from consuming insects are among the reasons supporting the advantages of consuming insects. The leading determinants of consumption are culture and individual and social beliefs, accessibility to a particular nutritional resource, and individual behavior. The barriers to neophobia were analyzed by evaluating factors of influence and their respective relationship and meaning through quantitative research to measure the significance of the results. To develop a conceptual model that aims to change eating behavior and recognize structural aspects that can be barriers in the process of changing eating behavior, a methodological framework was developed. The methodological framework aimed to identify the characteristics that can be associated with the profile of opinion leaders, and it included a questionnaire which was applied to 213 young people. Moreover, the structural equation model was the statistical technique used. Given the projected population growth and increasing life expectancy, nutrition is a challenge in terms of health, but also in economic, social, and environmental respects. Aiming for sustainability, it is crucial to identify nutritional alternatives within the circular economy.
Collapse
|
18
|
Valdés F, Villanueva V, Durán E, Campos F, Avendaño C, Sánchez M, Domingoz-Araujo C, Valenzuela C. Insects as Feed for Companion and Exotic Pets: A Current Trend. Animals (Basel) 2022; 12:1450. [PMID: 35681914 PMCID: PMC9179905 DOI: 10.3390/ani12111450] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
The objective of this review was to carry out a comprehensive investigation of the benefits of incorporating insects as a pet food ingredient and the implications this can have in determining a market demand for insect-based pet foods. Black soldier fly larvae (Hermetia illucens), mealworm larvae (Tenebrio molitor) and adult house crickets (Acheta domesticus) are currently used in pet food. These insects are widely fed to exotic pets, mainly in whole, live or dehydrated formats. They are also incorporated as meal or fat and are offered to cats and dogs as dry or wet food and treats. Scientific studies about the use of insects for dog and cat feed are scarce. Most studies are in dogs. Research shows that insect nutrients, mainly amino acids, have high digestibility, are beneficial to health, do not have any detrimental effect on the gut microbiota and are accepted by dogs. In several countries, insects are approved for use in pet food and commercialization has spread throughout the world. Pet owners are willing to try foods made with insect meal for their pets. In conclusion, the use of insects in pet food is a reality that is taking on more and more prominence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carolina Valenzuela
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias de la Universidad de Chile, La Pintana, Santiago 11735, Chile; (F.V.); (V.V.); (E.D.); (F.C.); (C.A.); (M.S.); (C.D.-A.)
| |
Collapse
|
19
|
Liceaga AM. Edible insects, a valuable protein source from ancient to modern times. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:129-152. [PMID: 35940702 PMCID: PMC9107018 DOI: 10.1016/bs.afnr.2022.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The current COVID-19 pandemic has demonstrated that we are not prepared to deal with food security amid unexpected situations; the FAO (Food and Agriculture Organization) has stipulated that the future of our food & agriculture looks challenging toward the year 2050; primarily in response to the fact that global population is expected to increase by 9 billion people by 2050. Although entomophagy has been practiced by humans for thousands of years, until recently, edible insects have gained special attention due to their high nutritional value (particularly their high protein and essential amino acid content) and lower environmental impact that could help alleviate the global food demand. Edible insects are classified into eight main orders belonging to Blattodea (cockroaches and termites), Coleoptera (beetles), Diptera (flies), Hemiptera (cicadas, stink bugs), Hymenoptera (bees, wasps, ants), Lepidoptera (butterflies, moths), Odonata (dragonflies), and Orthoptera (crickets, grasshoppers, locusts). Several traditional cooking (e.g., boiling, roasting, sun-drying) and processing technologies (e.g., pasteurization, enzymatic proteolysis, high pressure processing) have shown that it is feasible to prepare safe and nutritious insects and/or foods with insects. Nevertheless, challenges associated with consumers acceptance to eat insects, as well as potential presence of anti-nutritive factors and allergens, need to be carefully evaluated as the industry grows in the coming years. Foreseeing such food shortages during pandemics and future food security concerns, consumers, scientists, and the food industry need to consider the value of farming insects as promising protein sources.
Collapse
Affiliation(s)
- Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
20
|
Kim TK, Lee JH, Yong HI, Kang MC, Cha JY, Chun JY, Choi YS. Effects of Defatting Methods on the Physicochemical Properties of Proteins Extracted from Hermetiaillucens Larvae. Foods 2022; 11:1400. [PMID: 35626970 PMCID: PMC9140877 DOI: 10.3390/foods11101400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, we investigated the effects of various defatting methods, including organic solvent (aqueous, acetone, ethanol, and hexane) extraction and physical (cold pressure) extraction, on the nutritional, physicochemical, and functional properties of proteins extracted from Hermetia illucens larvae. The total essential amino acid contents were higher with cold pressure protein extraction than other treatments. The surface hydrophobicity with cold pressure treatment was the lowest, and there were no significant differences among the other treatments. The protein solubility after defatting with organic solvent was higher than for other treatments. The nonreduced protein band at 50 kDa of the defatted protein prepared using organic solvent was fainter than in the cold pressure treatment. The cold pressure-defatted protein showed the highest emulsifying capacity, and the water extracted protein showed the lowest emulsifying capacity. Although organic solvents may be efficient for defatting proteins extracted from insects, organic solvents have detrimental effects on the human body. In addition, the organic solvent extraction method requires a considerable amount of time for lipid extraction. Based on our results, using cold pressure protein extraction on edible insect proteins is ecofriendly and economical due to the reduced degreasing time and its potential industrial applications.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (T.-K.K.); (J.-H.L.); (H.I.Y.); (M.-C.K.); (J.Y.C.)
| | - Jae-Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (T.-K.K.); (J.-H.L.); (H.I.Y.); (M.-C.K.); (J.Y.C.)
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (T.-K.K.); (J.-H.L.); (H.I.Y.); (M.-C.K.); (J.Y.C.)
| | - Min-Cheoul Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (T.-K.K.); (J.-H.L.); (H.I.Y.); (M.-C.K.); (J.Y.C.)
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (T.-K.K.); (J.-H.L.); (H.I.Y.); (M.-C.K.); (J.Y.C.)
| | - Ji Yeon Chun
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea;
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (T.-K.K.); (J.-H.L.); (H.I.Y.); (M.-C.K.); (J.Y.C.)
| |
Collapse
|
21
|
Munialo CD, Stewart D, Campbell L, Euston SR. Extraction, characterisation and functional applications of sustainable alternative protein sources for future foods: A Review. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
22
|
Arévalo Arévalo HA, Menjura Rojas EM, Barragan Fonseca KB, Vásquez Mejía SM. Implementation of the HACCP system for production of Tenebrio molitor larvae meal. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Boukil A, Marciniak A, Mezdour S, Pouliot Y, Doyen A. Effect of High Hydrostatic Pressure Intensity on Structural Modifications in Mealworm (Tenebrio molitor) Proteins. Foods 2022; 11:foods11070956. [PMID: 35407046 PMCID: PMC8997566 DOI: 10.3390/foods11070956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022] Open
Abstract
Processing edible insects into protein extracts may improve consumer acceptability. However, a better understanding of the effects of food processing on the proteins is needed to facilitate their incorporation into food matrices. In this study, soluble proteins from Tenebrio molitor (10% w/v) were pressurized using high hydrostatic pressure (HHP) at 70–600 MPa for 5 min and compared to a non-pressurized control (0.1 MPa). Protein structural modifications were evaluated using turbidity measurement, particle-size distribution, intrinsic fluorescence, surface hydrophobicity, gel electrophoresis coupled with mass spectrometry, and transmission electron microscopy (TEM). The observed decrease in fluorescence intensity, shift in the maximum emission wavelength, and increase in surface hydrophobicity reflected the unfolding of mealworm proteins. The formation of large protein aggregates consisting mainly of hexamerin 2 and ⍺-amylase were confirmed by protein profiles on gel electrophoresis, dynamic light scattering, and TEM analysis. The typical aggregate shape and network observed by TEM after pressurization indicated the potential involvement of myosin and actin in aggregate formation, and these were detected by mass spectrometry. For the first time, the identification of mealworm proteins involved in protein aggregation phenomena under HHP was documented. This work is the first step in understanding the mealworm protein–protein interactions necessary for the development of innovative insect-based ingredients in food formulations.
Collapse
Affiliation(s)
- Abir Boukil
- Department of Food Science, Université Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (Y.P.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Alice Marciniak
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Samir Mezdour
- AgroParisTech, UMR782 Paris Saclay Food and Bioproduct Engineering, 1 Rue des Olympiades, 91077 Massy, France;
| | - Yves Pouliot
- Department of Food Science, Université Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (Y.P.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Alain Doyen
- Department of Food Science, Université Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (Y.P.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
24
|
Kim TK, Cha JY, Yong HI, Jang HW, Jung S, Choi YS. Application of edible insects as novel protein sources and strategies
for improving their processing. Food Sci Anim Resour 2022; 42:372-388. [PMID: 35611082 PMCID: PMC9108959 DOI: 10.5851/kosfa.2022.e10] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Insects have long been consumed by humans as a supplemental protein source, and
interest in entomophagy has rapidly increased in recent years as a potential
sustainable resource in the face of environmental challenges and global food
shortages. However, food neophobia inhibits the widespread consumption of edible
insects, despite their high nutritional and functional value. The own
characteristics of edible insect protein such as foaming properties, emulsifying
properties, gelling properties and essential amino acid ratio can be improved by
drying, defatting, and extraction. Although nutritional value of some
protein-enriched bread, pasta, and meat products, especially essential amino
acid components was increased, replacement of conventional food with edible
insects as a novel food source has been hindered owing to the poor cross-linking
properties of edible insect protein. This deterioration in physicochemical
properties may further limit the applicability of edible insects as food.
Therefore, strategies must be developed to improve the quality of edible insect
enriched food with physical, chemical, and biological methods. It was presented
that an overview of the recent advancements in these approaches and highlight
the challenges and prospects for this field. Applying these strategies to
develop insect food in a more familiar form can help to make insect-enriched
foods more appealing to consumers, facilitating their widespread consumption as
a sustainable and nutritious protein source.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Hae Won Jang
- Department of Food Science and
Biotechnology, Sungshin Women's University, Seoul 01133,
Korea
| | - Samooel Jung
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
- Corresponding author: Yun-Sang
Choi, Research Group of Food Processing, Korea Food Research Institute, Wanju
55365, Korea, Tel: +82-63-219-9387, Fax: +82-63-219-9076, E-mail:
| |
Collapse
|
25
|
Sete da Cruz RM, da Silva C, da Silva EA, Hegel P, Barão CE, Cardozo-Filho L. Composition and oxidative stability of oils extracted from Zophobas morio and Tenebrio molitor using pressurized n-propane. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Sweers L, Politiek R, Lakemond C, Bruins M, Boom R, Fogliano V, Mishyna M, Keppler J, Schutyser M. Dry fractionation for protein enrichment of animal by-products and insects: A review. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Zhang F, Xu Y, Kong B, Chen Q, Sun F, Zhang H, Liu Q. Comparative study of two types of pre-extraction treatment (drying or non-drying) on physicochemical, structural and functional properties of extracted insect proteins from Tenebrio molitor larvae. Curr Res Food Sci 2022; 5:1570-1580. [PMID: 36147550 PMCID: PMC9486610 DOI: 10.1016/j.crfs.2022.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Microwave drying (MD) or freeze drying (FD) was commonly used as a drying treatment prior to the extraction of edible insect proteins. However, some quality defects (e.g., lipid oxidation or protein denaturation) were probably occurred via the drying step. To this end, the effect of drying or non-drying treatments (ND) after slaughtering by liquid nitrogen freezing on the physicochemical characteristics, structural and functional properties of Tenebrio molitor larvae protein (TMP) was investigated. The results indicate that TMP extracted from the ND group showed higher essential/total amino acid content, total/free sulfhydryl content, surface hydrophobicity, solubility, water/oil holding capacities, and emulsifying/foaming properties than those extracted from the MD or FD groups (P < 0.05). Moreover, the ND group had minimal impact on the structural changes of TMP which was associated with protein denaturation. Therefore, it can be concluded that a non-drying strategy prior to TMP extraction can improve functional properties and retard protein denaturation, while also conserving energy. Tenebrio molitor larvae was firstly slaughtered by liquid nitrogen freezing. Frozen larvae were subjected to either drying or non-drying treatment. Tenebrio molitor larvae protein (TMP) was extracted from dried or non-dried group. TMP extracted from the non-dried group had optimum functional properties. TMP extracted from the non-dried group had least degree of protein denaturation.
Collapse
Affiliation(s)
- Fengxue Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yining Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang, 150028, China
- Corresponding author. College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
28
|
Hirunyophat P, Chalermchaiwat P, On‐nom N, Prinyawiwatkul W. Selected physicochemical properties and sensory acceptability as affected by addition of lecithin and calcium carbonate in extruded breakfast cereals made with silkworm pupae powder and rice flour. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patthama Hirunyophat
- Food and Nutrition Program Department of Home Economics Faculty of Agriculture Kasetsart University 50, Ngam Wong Wan Road Bangkok Thailand
| | - Parisut Chalermchaiwat
- Food and Nutrition Program Department of Home Economics Faculty of Agriculture Kasetsart University 50, Ngam Wong Wan Road Bangkok Thailand
| | - Nattira On‐nom
- Institute of Nutrition Mahidol University Phutthamonthon Sai 4 Road Nakhon Pathom 999 Thailand
| | - Witoon Prinyawiwatkul
- Agricultural Center School of Nutrition and Food Sciences Louisiana State University Baton Rouge LA 70803 USA
| |
Collapse
|
29
|
Techno-functional properties of edible insect proteins and effects of processing. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Errico S, Spagnoletta A, Verardi A, Moliterni S, Dimatteo S, Sangiorgio P. Tenebrio molitor as a source of interesting natural compounds, their recovery processes, biological effects, and safety aspects. Compr Rev Food Sci Food Saf 2021; 21:148-197. [PMID: 34773434 DOI: 10.1111/1541-4337.12863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Nowadays, it is urgent to produce in larger quantities and more sustainably to reduce the gap between food supply and demand. In a circular bioeconomy vision, insects receive great attention as a sustainable alternative to satisfy food and nutritional needs. Among all insects, Tenebrio molitor (TM) is the first insect approved by the European Food Safety Authority as a novel food in specific conditions and uses, testifying its growing relevance and potential. This review holistically presents the possible role of TM in the sustainable and circular solution to the growing needs for food and nutrients. We analyze all high value-added products obtained from TM (powders and extracts, oils and fatty acids, proteins and peptides, and chitin and chitosan), their recovery processes (evaluating the best ones in technical and environmental terms), their nutritional and economical values, and their biological effects. Safety aspects are also mentioned. TM potential is undoubted, but some aspects still need to be discussed, including the health effects of substances and microorganisms in its body, the optimal production conditions (that affect product quality and safety), and TM capacity to convert by-products into new products. Environmental, economic, social, and market feasibility studies are also required to analyze the new value chains. Finally, to unlock the enormous potential of edible insects as a source of nutritious and sustainable food, it will be necessary to overcome the cultural, psychological, and regulatory barriers still present in Western countries.
Collapse
Affiliation(s)
- Simona Errico
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Anna Spagnoletta
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Alessandra Verardi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Stefania Moliterni
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Salvatore Dimatteo
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| | - Paola Sangiorgio
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability, Trisaia Research Center, Rotondella, Italy
| |
Collapse
|
31
|
Ojha S, Bekhit AED, Grune T, Schlüter OK. Bioavailability of nutrients from edible insects. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Lee JH, Kim TK, Jeong CH, Yong HI, Cha JY, Kim BK, Choi YS. Biological activity and processing technologies of edible insects: a review. Food Sci Biotechnol 2021; 30:1003-1023. [PMID: 34471556 DOI: 10.1007/s10068-021-00942-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022] Open
Abstract
The burgeoning global population growth has raised concerns regarding the expected increase in the demand for food, which could be partially tackled by identifying novel food sources. To this end, edible insects have recently attracted research interest. Several technologies for utilizing edible insect-derived proteins have been introduced; however, research into their functional utilization is insufficient. Herein, we reviewed the relevant literature on the importance of insects as food sources, extraction of edible insects, the nutritional value of insects, biological activities of components, and their applications in food industries. We summarized the studies primarily focused on the functional utilization of edible insects, suggesting that for successful incorporation and growth of edible insects in food and pharmaceutical industries, strategies to improve the extraction methods are required to explore the biological activity of edible insects. Furthermore, the awareness of edible insects with a focus on their allergens warrants consideration.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Chang Hee Jeong
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| |
Collapse
|
33
|
Tobolková B, Takáč P, Mangová B, Kozánek M. A comparative study of colour characteristics of thermally/non-thermally treated mealworm larvae (Tenebrio molitor) by means of UV/Vis spectroscopy and multivariate analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00957-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Hirunyophat P, Chalermchaiwat P, On‐nom N, Prinyawiwatkul W. Selected nutritional quality and physicochemical properties of silkworm pupae (frozen or powdered) from two species. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Patthama Hirunyophat
- Food and Nutrition Program Department of Home Economics Faculty of Agriculture Kasetsart University 50, Ngam Wong Wan Road Bangkok Thailand
| | - Parisut Chalermchaiwat
- Food and Nutrition Program Department of Home Economics Faculty of Agriculture Kasetsart University 50, Ngam Wong Wan Road Bangkok Thailand
| | - Nattira On‐nom
- Institute of Nutrition Mahidol University Phutthamonthon Sai 4 Road Nakhon Pathom999Thailand
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Louisiana State UniversityAgricultural Center Baton Rouge LA70803USA
| |
Collapse
|
35
|
Selaledi L, Mabelebele M. The Influence of Drying Methods on the Chemical Composition and Body Color of Yellow Mealworm ( Tenebrio molitor L.). INSECTS 2021; 12:insects12040333. [PMID: 33917808 PMCID: PMC8068098 DOI: 10.3390/insects12040333] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022]
Abstract
To preserve the quality of the yellow mealworm, different drying methods are being explored by farmers and processors. However, the energy costs associated with these methods are usually high for smallholder insect-rearing farmers. Thus, the core aim of this study was to investigate different drying procedures and their impact on the chemical composition of yellow mealworm larvae. Yellow mealworms (exposed to sun, oven and freeze drying) were later analyzed for their chemical composition and body color. Crude protein (CP) content of freeze and oven-dried mealworms were similar (p > 0.05), but higher (p < 0.05) than those of the sun-dried samples. The b (yellowness) color of the sun-dried samples scored the lowest value (p < 0.05) in comparison with both oven and freeze-dried samples. The majority of the essential amino acids were higher (p < 0.05) in the sun-dried mealworms than both oven and freeze-dried samples. Similarly, the fat content of sun-dried mealworms was higher (p < 0.05) than if they had been oven or freeze dried. However, SFA (saturated fatty acids), PUFA (polyunsaturated fatty acids) and n-6 fatty acids were similar (p > 0.05) for all drying methods. We, therefore, conclude that sun drying resulted in the same nutritional composition as freeze and oven drying despite the noted color changes. Freeze and oven-drying strategies can be used to formulate mealworm-based feed and food products without noticeable nutritional changes. For the benefit of small-scale insect-rearing farmers, an appropriate drying technology that is affordable and easy to use should be developed considering the needs and experiences of these farmers.
Collapse
Affiliation(s)
- Letlhogonolo Selaledi
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Science, University of South Africa, Florida Campus, 28 Pioneer Ave, Florida Park, Roodepoort 1709, South Africa;
- Department of Zoology and Entomology, Mammal Research Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria 0002, South Africa
| | - Monnye Mabelebele
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Science, University of South Africa, Florida Campus, 28 Pioneer Ave, Florida Park, Roodepoort 1709, South Africa;
- Correspondence:
| |
Collapse
|
36
|
Characterization of freeze-dried, oven-dried and blanched house crickets (Acheta domesticus) and Jamaican field crickets (Gryllus assimilis) by means of their physicochemical properties and volatile compounds. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03709-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Ojha S, Bußler S, Schlüter OK. Food waste valorisation and circular economy concepts in insect production and processing. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 118:600-609. [PMID: 33010691 DOI: 10.1016/j.wasman.2020.09.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Food loss and waste are serious threats to the sustainability of our food systems. Innovative and multi-faced solutions are continuously being proposed, tested and implemented by researchers, government authorities, non-government bodies and food industries to tackle this problem of food waste. Insect-based bioconversions have been reported as a marketable solution for reducing food waste. This rather novel approach can efficiently convert several tonnes of food waste into valuable products including human food, animal feed, fertiliser and other secondary industrial compounds. This paper couples the production of edible insects with the valorisation of food waste, providing an attractive key for closing the loop of food value chain. Current status of insect processing and their importance in circular economy is also discussed in detail.
Collapse
Affiliation(s)
- Shikha Ojha
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany
| | - Sara Bußler
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany
| | - Oliver K Schlüter
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany.
| |
Collapse
|
38
|
An insight to fermented edible insects: A global perspective and prospective. Food Res Int 2020; 137:109750. [PMID: 33233312 DOI: 10.1016/j.foodres.2020.109750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/30/2020] [Accepted: 09/22/2020] [Indexed: 11/24/2022]
Abstract
The practice of eating insects is not a new phenomenon; however, the interest for their consumption has increased in recent years due to their recognized nutritional value (high content of micro- and macronutrient), potential health benefits (presence of bioactive substances), and low-environmental impact (use of less resources and reduced pollution levels). Currently, research on insects has focused on the promotion of various processing technologies for their use as either ingredients (in a non-recognizable form) to the development of innovative products, or as sources of novel bioactive compounds. In this context, evidence has suggested that alternative technologies, particularly fermentation, could be used the obtain diverse insect-based ingredients/products with unique properties. Therefore, the purpose of this narrative review was to provide an overview of the available literature on fermentation applied to obtain new insect-based products, to summarize the patents and patent-applications to protect fermented edible insect products and processes, as well as to enlist examples of current available products in the market.
Collapse
|
39
|
Kooh P, Jury V, Laurent S, Audiat-Perrin F, Sanaa M, Tesson V, Federighi M, Boué G. Control of Biological Hazards in Insect Processing: Application of HACCP Method for Yellow Mealworm ( Tenebrio molitor) Powders. Foods 2020; 9:E1528. [PMID: 33114308 PMCID: PMC7690899 DOI: 10.3390/foods9111528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 11/16/2022] Open
Abstract
Entomophagy has been part of human diets for a long time in a significant part of the world, but insects are considered to be a novel food everywhere else. It would appear to be a strategic alternative in the future of human diet to face the challenge of ensuring food security for a growing world population, using more environmentally sustainable production systems than those required for the rearing of other animals. Tenebrio molitor, called yellow mealworm, is one of the most interesting insect species in view of mass rearing, and can be processed into a powder that ensures a long shelf life for its use in many potential products. When considering insects as food or feed, it is necessary to guarantee their safety. Therefore, manufacturers must implement a Hazard Analysis Critical Control plan (HACCP), to limit risks for consumers' health. The aim of this case study was to develop a HACCP plan for Tenebrio molitor larvae powders for food in a risk-based approach to support their implementation in industry. Specific purposes were to identify related significant biological hazards and to assess the efficiency of different manufacturing process steps when used as Critical Control Points. Then, combinations of four different processes with four potential uses of powders by consumers in burger, protein shake, baby porridge, and biscuits were analyzed with regard to their safety.
Collapse
Affiliation(s)
- Pauline Kooh
- French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France; (P.K.); (F.A.-P.); (M.S.)
| | - Vanessa Jury
- Oniris, Université de Nantes, CNRS, GEPEA, UMR 6144 F-44000 Nantes, France; (V.J.); (S.L.)
| | - Sophie Laurent
- Oniris, Université de Nantes, CNRS, GEPEA, UMR 6144 F-44000 Nantes, France; (V.J.); (S.L.)
| | - Frédérique Audiat-Perrin
- French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France; (P.K.); (F.A.-P.); (M.S.)
| | - Moez Sanaa
- French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France; (P.K.); (F.A.-P.); (M.S.)
| | - Vincent Tesson
- INRAe, Oniris, Secalim UMR 1014, route de Gachet, CS 40706, 44307 Nantes, France; (V.T.); (M.F.)
| | - Michel Federighi
- INRAe, Oniris, Secalim UMR 1014, route de Gachet, CS 40706, 44307 Nantes, France; (V.T.); (M.F.)
| | - Géraldine Boué
- INRAe, Oniris, Secalim UMR 1014, route de Gachet, CS 40706, 44307 Nantes, France; (V.T.); (M.F.)
| |
Collapse
|
40
|
Alles MC, Smetana S, Parniakov O, Shorstkii I, Toepfl S, Aganovic K, Heinz V. Bio-refinery of insects with Pulsed electric field pre-treatment. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Fröhling A, Bußler S, Durek J, Schlüter OK. Thermal Impact on the Culturable Microbial Diversity Along the Processing Chain of Flour From Crickets ( Acheta domesticus). Front Microbiol 2020; 11:884. [PMID: 32523562 PMCID: PMC7261824 DOI: 10.3389/fmicb.2020.00884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022] Open
Abstract
The role of insects for human consumption has lately increased in interest and in order to deliver safe and high-quality raw materials and ingredients for food and feed applications, processing of insects is a major pre-requisite. For edible insects a thermal treatment and appropriate storage conditions are recommended to minimize the microbiological risk and the impact of processing methods on the microbial contamination needs to be considered and determined. Based on standard process conditions for the production of Acheta domesticus flour, different heating treatments were used to reduce the microbial load of A. domesticus. In addition, the drying temperature and drying time were varied to determine whether the required residual moisture of <5% can be achieved more quickly with consistent microbial quality. The influence of the process conditions on the microbial community of A. domesticus along the processing chain was finally investigated under optimized process conditions. The total viable count was reduced from 9.24 log10 CFU/gDM to 1.98 log10 CFU/gDM along the entire processing chain. While Bacillaceae, Enterobacteriaceae, Enterococcaceae, and yeast and molds were no longer detectable in the A. domesticus flour, Staphylococcaceae and mesophilic spore forming bacteria were still found in the flour. The results indicate that the steaming process is essential for effectively increasing microbial safety since this processing step showed the highest inactivation. It is recommended to not only evaluate the total viable count but also to monitor changes in microbial diversity during processing to ensure microbial safety of the final product.
Collapse
Affiliation(s)
- Antje Fröhling
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Sara Bußler
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Food4Future, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Julia Durek
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Oliver K. Schlüter
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Food4Future, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| |
Collapse
|
42
|
Gravel A, Doyen A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102272] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Melgar‐Lalanne G, Hernández‐Álvarez A, Salinas‐Castro A. Edible Insects Processing: Traditional and Innovative Technologies. Compr Rev Food Sci Food Saf 2019; 18:1166-1191. [DOI: 10.1111/1541-4337.12463] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Guiomar Melgar‐Lalanne
- Author Melgar‐Lalane is with Inst. de Ciencias BásicasUniv. Veracruzana Av. Dr. Luis Castelazo Ayala s/n. Col Industrial Ánimas 91192 Xalapa Veracruz Mexico
| | | | - Alejandro Salinas‐Castro
- Author Salinas‐Castro is with Dirección General de InvestigacionesAv. Dr. Luis Castelazo Ayala s/n. Col Industrial Ánimas 91192 Xalapa Veracruz Mexico
| |
Collapse
|
44
|
Protein quality and physicochemical properties of commercial cricket and mealworm powders. Journal of Food Science and Technology 2019; 56:3355-3363. [PMID: 31274903 DOI: 10.1007/s13197-019-03818-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
The pressing need for protein supply growth gives rise to alternative protein sources, such as insect proteins. Commercial cricket and mealworm powders were examined for their protein quality, surface charge and functional attributes. Both insect powders had similar proximate compositions with protein and ash contents of ~ 66% db (dry weight basis) and 5% db, respectively, however cricket powder contained more lipid (16.1%, db) than mealworm powder (13.7%, db). Mealworm protein had an amino acid score of 0.71 and was first limiting in lysine, whereas cricket protein was first limiting in tryptophan with an amino acid score of 0.85. In vitro protein digestibility values of 75.7% and 76.2%, and in vitro protein digestibility corrected amino acid scores of 0.54 and 0.65, were obtained for mealworm and cricket powders, respectively. Zeta potential measurements gave isoelectric points near pH 3.9 for both insect powders. Mealworm and cricket powders had water hydration capacities of 1.62 g/g and 1.76 g/g, respectively, and oil holding capacities of 1.58 g/g and 1.42 g/g, respectively. Both insect proteins had low solubility (22-30%) at all pHs (3.0, 5.0, and 7.0) measured. Cricket powder had a foaming capacity of 82% and foam stability of 86%, whereas mealworm powder was non-foaming. Values for commercial pea and faba bean protein concentrates were reported for comparative purposes. The insect proteins had similar protein quality as the pulse proteins and had higher solubility at pH 5.0 but were much less soluble at pH 7.0.
Collapse
|
45
|
Rabani V, Cheatsazan H, Davani S. Proteomics and Lipidomics of Black Soldier Fly (Diptera: Stratiomyidae) and Blow Fly (Diptera: Calliphoridae) Larvae. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5523071. [PMID: 31237955 PMCID: PMC6592434 DOI: 10.1093/jisesa/iez050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 05/06/2023]
Abstract
Farming insects has recently emerged as a new source of protein and lipid production. To date, research has mostly focused on food applications of insects. Focusing on nonfood potential of oil and proteins of insects, high-throughput studies of insect lipids and proteins are needed. We performed proteomics and lipidomics investigation on black soldier fly (Hermitia illucens) and blow fly (Lucilia sericata) larvae to investigate new potential and applications. We used mass spectrometry for proteomics and lipidomics analysis of control and treated larvae. Treatment was performed by incubation with a biological decomposer. We provide the list of all fatty acids with their concentration in control and treated larvae. This result showed high levels of lauric acid in black soldier fly, which could even increase after biological decomposition. Proteomics analysis showed the presence of proteins like collagen of cosmetic interest, and proteins with antimicrobial properties such as phenoloxidases and enzymatic activities, such as amylase and trypsin. Insects harbor high potential for nonfood usage as additives, antimicrobial effects, and even pharmaceuticals and cosmetics. These data open avenues for future research in pharmacological and cosmetic approaches to find new molecules of interests.
Collapse
Affiliation(s)
- Vahideh Rabani
- UBFC, EA 3920 UFR Santé, Université Bourgogne Franche-Comte, Besançon, France
| | - Hamed Cheatsazan
- UBFC, EA 3920 UFR Santé, Université Bourgogne Franche-Comte, Besançon, France
| | - Siamak Davani
- UBFC, EA 3920 UFR Santé, Université Bourgogne Franche-Comte, Besançon, France
- Laboratoire de Pharmacologie Clinique et Toxicologie, CHU de Besançon, Boulevard Fleming, Besançon, France
- Corresponding author, e-mail:
| |
Collapse
|
46
|
Larouche J, Deschamps MH, Saucier L, Lebeuf Y, Doyen A, Vandenberg GW. Effects of Killing Methods on Lipid Oxidation, Colour and Microbial Load of Black Soldier Fly ( Hermetia illucens) Larvae. Animals (Basel) 2019; 9:E182. [PMID: 31010069 PMCID: PMC6523926 DOI: 10.3390/ani9040182] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 11/30/2022] Open
Abstract
Black soldier fly (BSF) larvae represent a promising alternative ingredient for animal feed. Post-production processing can, however, affect their quality. This project aimed to optimize larval killing by comparing the effects on the nutritional and microbiological quality of 10 methods, i.e., blanching (B = 40 s), desiccation (D = 60 °C, 30 min), freezing (F20 = -20 °C, 1 h; F40 = -40 °C, 1 h; N = liquid nitrogen, 40 s), high hydrostatic pressure (HHP = 3 min, 600 MPa), grinding (G = 2 min) and asphyxiation (CO2 = 120 h; N2 = 144 h; vacuum conditioning, V = 120 h). Some methods affected the pH (B, asphyxiation), total moisture (B, asphyxiation and D) and ash contents (B, p < 0.001). The lipid content (asphyxiation) and their oxidation levels (B, asphyxiation and D) were also affected (p < 0.001). Killing methods altered the larvae colour during freeze-drying and in the final product. Blanching appears to be the most appropriate strategy since it minimizes lipid oxidation (primary = 4.6 ± 0.7 mg cumen hydroperoxide (CHP) equivalents/kg; secondary = 1.0 ± 0.1 mg malondialdehyde/kg), reduces microbial contamination and initiates dehydration (water content = 78.1 ± 1.0%). We propose herein, an optimized protocol to kill BSF that meet the Canadian regulatory requirements of the insect production and processing industry.
Collapse
Affiliation(s)
- Jennifer Larouche
- Département des Sciences Animales, Pavillon Paul-Comtois Université Laval, Quebec, QC G1V 0A6, Canada.
| | - Marie-Hélène Deschamps
- Département des Sciences Animales, Pavillon Paul-Comtois Université Laval, Quebec, QC G1V 0A6, Canada.
| | - Linda Saucier
- Département des Sciences Animales, Pavillon Paul-Comtois Université Laval, Quebec, QC G1V 0A6, Canada.
| | - Yolaine Lebeuf
- Département des Sciences Animales, Pavillon Paul-Comtois Université Laval, Quebec, QC G1V 0A6, Canada.
| | - Alain Doyen
- Département des Sciences des Aliments, Pavillon Paul-Comtois Université Laval, Quebec, QC G1V 0A6, Canada.
| | - Grant W Vandenberg
- Département des Sciences Animales, Pavillon Paul-Comtois Université Laval, Quebec, QC G1V 0A6, Canada.
| |
Collapse
|
47
|
Kröncke N, Grebenteuch S, Keil C, Demtröder S, Kroh L, Thünemann AF, Benning R, Haase H. Effect of Different Drying Methods on Nutrient Quality of the Yellow Mealworm ( Tenebrio molitor L.). INSECTS 2019; 10:insects10040084. [PMID: 30934687 PMCID: PMC6523706 DOI: 10.3390/insects10040084] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 11/29/2022]
Abstract
Yellow mealworm (Tenebrio molitor L.) represents a sustainable source of proteins and fatty acids for feed and food. Industrial production of mealworms necessitates optimized processing techniques, where drying as the first postharvest procedure is of utmost importance for the quality of the final product. This study examines the nutritional quality of mealworm larvae processed by rack oven drying, vacuum drying or freeze drying, respectively. Proximate composition and fatty acid profile were comparable between the dried larvae. In contrast, larvae color impressions and volatile compound profiles were very much dependent on processing procedure. High-temperature rack oven drying caused pronounced darkening with rather low content of volatiles, pointing toward the progress of Maillard reaction. On the other hand, vacuum drying or freeze drying led to enrichment of volatile Maillard reaction and lipid oxidation intermediates, whose actual sensory relevance needs to be clarified in the future. Beyond sensory and visual importance drying intermediates have to be considered with regard to their metal ion chelating ability; in particular for essential trace elements such as Zn2+. This study found comparable total zinc contents for the differently dried mealworm samples. However, dried larvae, in particular after rack oven drying, had only low zinc accessibility, which was between 20% and 40%. Therefore, bioaccessibility rather than total zinc has to be considered when their contribution to meeting the nutritional requirements for zinc in humans and animals is evaluated.
Collapse
Affiliation(s)
- Nina Kröncke
- Institute of Food Technology and Bioprocess Engineering, University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany.
| | - Sandra Grebenteuch
- Department Food Chemistry and Analytics, Institute of Food Technology and Food Chemistry, TU Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Claudia Keil
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Sebastian Demtröder
- Department Food Chemistry and Analytics, Institute of Food Technology and Food Chemistry, TU Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Lothar Kroh
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Andreas F Thünemann
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Rainer Benning
- Institute of Food Technology and Bioprocess Engineering, University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany.
| | - Hajo Haase
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| |
Collapse
|
48
|
Kröncke N, Böschen V, Woyzichovski J, Demtröder S, Benning R. Comparison of suitable drying processes for mealworms (Tenebrio molitor). INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Impact of drying method on the nutritional value of the edible insect protein from black soldier fly (Hermetia illucens L.) larvae: amino acid composition, nutritional value evaluation, in vitro digestibility, and thermal properties. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3136-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Clarkson C, Mirosa M, Birch J. Potential of Extracted Locusta Migratoria Protein Fractions as Value-Added Ingredients. INSECTS 2018; 9:insects9010020. [PMID: 29425143 PMCID: PMC5872285 DOI: 10.3390/insects9010020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/26/2018] [Accepted: 02/06/2018] [Indexed: 11/18/2022]
Abstract
Although locusts can be sustainably produced and are nutrient rich, the thought of eating them can be hard to swallow for many consumers. This paper aims to investigate the nutritional composition of Locusta migratoria, including the properties of extracted locust protein, contributing to limited literature and product development opportunities for industry. Locusts sourced from Dunedin, New Zealand, contained a high amount of protein (50.79% dry weight) and fat (34.93%), which contained high amounts of omega-3 (15.64%), creating a desirably low omega-3/omega-6 ratio of 0.57. Three protein fractions including; insoluble locust fraction, soluble locust fraction, and a supernatant fraction were recovered following alkali isoelectric precipitation methodology. Initially, proteins were solubilised at pH 10 then precipitated out at the isoelectric point (pH 4). All fractions had significantly higher protein contents compared with the whole locust. The insoluble protein fraction represented 37.76% of the dry weight of protein recovered and was much lighter in colour and greener compared to other fractions. It also had the highest water and oil holding capacity of 5.17 mL/g and 7.31 mL/g, possibly due to larger particle size. The high supernatant yield (56.60%) and low soluble protein yield (9.83%) was unexpected and could be a result of experimental pH conditions chosen.
Collapse
Affiliation(s)
- Claudia Clarkson
- Food Science Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Miranda Mirosa
- Food Science Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - John Birch
- Food Science Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|