1
|
The Effects of Experimental Whole-Body Burning on Histological Age-at-Death Estimation from Human Cortical Bone and Dental Cementum. BIOLOGY 2022; 11:biology11111569. [PMID: 36358272 PMCID: PMC9687164 DOI: 10.3390/biology11111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 03/10/2023]
Abstract
Whole-body donations (n = 6) were placed in various experimental fire-death scenarios to understand the histological effects of thermal alteration on bones and teeth. Midshaft samples of the femur, 6th rib, and metatarsal were removed from each donor pre- and post-burning to examine histomorphometric differences and test established age-at-death estimation methods. Dental samples were taken post-burning to test the applicability of dental cementum analysis for age-at-death estimation. Significant differences in osteon area or Haversian canal area between some pre- and post-burn samples were found although no patterns related to temperature or element were observable. The femoral age estimates across pre- and post-burn samples were 91% accurate across all donors. The point age estimates from the ribs compared to known age were significantly different (t(10) = 6.88, p < 0.001) with an average difference of −18.53 years. Dental age estimates of post-burn samples were not significantly different from the known donor age (t(3) = −0.74, p = 0.512) with an average difference of −3.96 years. Overall, the results of this study show that thermally altered remains can be used for histologic age-at-death analysis of cortical bone and dental cementum, within certain burning parameters.
Collapse
|
2
|
Stover DA, Housman G, Stone AC, Rosenberg MS, Verrelli BC. Evolutionary Genetic Signatures of Selection on Bone-Related Variation within Human and Chimpanzee Populations. Genes (Basel) 2022; 13:183. [PMID: 35205228 PMCID: PMC8871609 DOI: 10.3390/genes13020183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Bone strength and the incidence and severity of skeletal disorders vary significantly among human populations, due in part to underlying genetic differentiation. While clinical models predict that this variation is largely deleterious, natural population variation unrelated to disease can go unnoticed, altering our perception of how natural selection has shaped bone morphologies over deep and recent time periods. Here, we conduct the first comparative population-based genetic analysis of the main bone structural protein gene, collagen type I α 1 (COL1A1), in clinical and 1000 Genomes Project datasets in humans, and in natural populations of chimpanzees. Contrary to predictions from clinical studies, we reveal abundant COL1A1 amino acid variation, predicted to have little association with disease in the natural population. We also find signatures of positive selection associated with intron haplotype structure, linkage disequilibrium, and population differentiation in regions of known gene expression regulation in humans and chimpanzees. These results recall how recent and deep evolutionary regimes can be linked, in that bone morphology differences that developed among vertebrates over 450 million years of evolution are the result of positive selection on subtle type I collagen functional variation segregating within populations over time.
Collapse
Affiliation(s)
- Daryn A. Stover
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Arizona State University at Lake Havasu, Lake Havasu, AZ 86403, USA
| | - Genevieve Housman
- Section of Genetic Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Anne C. Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA;
| | - Michael S. Rosenberg
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Brian C. Verrelli
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
3
|
Montoya‐Sanhueza G, Bennett NC, Oosthuizen MK, Dengler‐Crish CM, Chinsamy A. Bone remodeling in the longest living rodent, the naked mole-rat: Interelement variation and the effects of reproduction. J Anat 2021; 239:81-100. [PMID: 33554344 PMCID: PMC8197955 DOI: 10.1111/joa.13404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The pattern of bone remodeling of one of the most peculiar mammals in the world, the naked mole-rat (NMR), was assessed. NMRs are known for their long lifespans among rodents and for having low metabolic rates. We assessed long-term in vivo bone labeling of subordinate individuals, as well as the patterns of bone resorption and bone remodeling in a large sample including reproductive and non-reproductive individuals (n = 70). Over 268 undecalcified thin cross-sections from the midshaft of humerus, ulna, femur and tibia were analyzed with confocal fluorescence and polarized light microscopy. Fluorochrome analysis revealed low osteogenesis, scarce bone resorption and infrequent formation of secondary osteons (Haversian systems) (i.e., slow bone turnover), thus most likely reflecting the low metabolic rates of this species. Secondary osteons occurred regardless of reproductive status. However, considerable differences in the degree of bone remodeling were found between breeders and non-breeders. Pre-reproductive stages (subordinates) exhibited quite stable skeletal homeostasis and bone structure, although the attainment of sexual maturity and beginning of reproductive cycles in female breeders triggered a series of anabolic and catabolic processes that up-regulate bone turnover, most likely associated with the increased metabolic rates of reproduction. Furthermore, bone remodeling was more frequently found in stylopodial elements compared to zeugopodial elements. Despite the limited bone remodeling observed in NMRs, the variation in the pattern of skeletal homeostasis (interelement variation) reported here represents an important aspect to understand the skeletal dynamics of a small mammal with low metabolic rates. Given the relevance of the remodeling process among mammals, this study also permitted the comparison of such process with the well-documented histomorphology of extinct therapsids (i.e., mammalian precursors), thus evidencing that bone remodeling and its endocortical compartmentalization represent ancestral features among the lineage that gave rise to mammals. It is concluded that other factors associated with development (and not uniquely related to biomechanical loading) can also have an important role in the development of bone remodeling.
Collapse
Affiliation(s)
- Germán Montoya‐Sanhueza
- Department of Biological SciencesUniversity of Cape TownCape TownSouth Africa
- Department of ZoologyFaculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Nigel C. Bennett
- Department of Zoology and EntomologyMammal Research InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Maria K. Oosthuizen
- Department of Zoology and EntomologyMammal Research InstituteUniversity of PretoriaPretoriaSouth Africa
| | | | - Anusuya Chinsamy
- Department of Biological SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
4
|
Raguin E, Drapeau MSM. Relation between cross-sectional bone geometry and double zonal osteon frequency and morphology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171:598-612. [PMID: 31675105 DOI: 10.1002/ajpa.23954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES While double-zonal osteons (DZ) are characterized by a hyper-mineralized ring inside their lamellae, recent findings suggest that this ring is also defined by a change in the collagen fibers' orientation. Collagen and minerals are essential components to the maintenance of adequate bone strength and their alteration can modify the mechanical properties of the bone tissue. Consequently, the aim of this study is to explore the effect of past loads, as estimated from cross-sectional geometric properties, on the formation of DZ osteons compared to type I (common) osteons. MATERIALS AND METHODS The sample consists of paired humerus and femur midshaft sections (n = 23) of Eurocanadian settlers from the historical St. Matthew cemetery, Quebec City (1771-1860). Histomorphometric variables included in this study are osteon density for DZ and type I osteons (DZD; OPD), osteon area (DZOn.Ar; On. Ar), Haversian canal area (DZH.Ar; H.Ar), and the area within the hypermineralized ring (HR. Ar). Loading history is estimated from cross-sectional properties including the following variable: cortical and total area (CA, TA), maximum and minimum second moment of area (Imax , Imin ) and polar moment of area (J). RESULTS When the humerus and femur of the same individuals are compared, the femur has a higher OPD, DZD, and relative DZD (DZD/OPD). DZ osteons have a smaller area and Haversian canal area compared to type I osteons. The area within the hypermineralized ring in DZ is higher than the Haversian canal area of the type I osteons. Correlations between the residual scores of the regression of histomorphometric variables and cross-sectional properties of the humerus on the femur were not significant. DISCUSSION Based on the analysis of the entire cross-section, the lack of correlation between variations in cross-sectional properties and remodeling combined with the significant differences between humeri and femura suggests that the creation of DZ or type I osteons in the bone tissue might be due to a bone specific response, possibly related to differences in bone tissue age that needs to be further investigated. Definitive conclusion regarding biomechanical loads still seem to be premature as regional variations associated with mechanical properties remain to be explored.
Collapse
Affiliation(s)
- Emeline Raguin
- Département d'anthropologie, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
5
|
Pfeiffer S, Cameron ME, Sealy J, Beresheim AC. Diet and adult age-at-death among mobile foragers: A synthesis of bioarcheological methods. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:131-147. [PMID: 31265761 DOI: 10.1002/ajpa.23883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVES The research explores whether the combined study of cortical bone histology, bone morphology, and dietary stable isotopes can expand insights into past human health and adaptations, particularly dietary sufficiency and life span. MATERIALS AND METHODS Midthoracic rib cortices from 54 South African Late Holocene adult skeletons (28 M, 24 F, two sex undetermined) are assessed by transmitted-light microscopy for cross-sectional area measurements, osteon area (On.Ar), osteon population density, and presence/absence of secondary osteon variants. Values for δ13 Cbone collagen , δ15 Nbone collagen , 14 C dates, Southwestern and Southern Cape geographic regions, body size measures, estimated ages-at-death from both morphological and histological methods are integrated into analyses, which include Spearman correlations, χ2 tests and Kruskal-Wallis ANOVAs. RESULTS There is reduced On.Ar variability with higher δ15 N (r = -.41, p = .005); rib %cortical area and δ15 N are negatively correlated in the Southern Cape group (r = -.60, p = .03). Osteon variants are more common in older adults; histological ages at death are significantly older than those determined from gross morphology. DISCUSSION We found bone tissue relationships with measures of diet composition, but indicators of dietary adequacy remain elusive. Relationships of tissue quality and isotopes suggest that some Southern Cape adults lived long lives. Osteon variants are associated with age-at-death; some association with diet remains possible. Gross morphological methods appear to underestimate adult ages-at-death, at least among small-bodied adults.
Collapse
Affiliation(s)
- Susan Pfeiffer
- Anthropology, University of Toronto, Toronto, Ontario, Canada.,Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | | | - Judith Sealy
- Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | - Amy C Beresheim
- Anthropology, University of Toronto, Toronto, Ontario, Canada.,Department of Anatomy, Des Moines University, Des Moines, Iowa
| |
Collapse
|
6
|
Botha D, Bhagwandin A, Lynnerup N, Steyn M. The use of stereological methods in the histomorphometric assessment of bone for age-at-death estimation. Forensic Sci Int 2018; 290:353.e1-353.e7. [DOI: 10.1016/j.forsciint.2018.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/22/2018] [Accepted: 06/17/2018] [Indexed: 11/25/2022]
|
7
|
Beresheim AC, Pfeiffer SK, Grynpas MD, Alblas A. Sex-specific patterns in cortical and trabecular bone microstructure in the Kirsten Skeletal Collection, South Africa. Am J Hum Biol 2018; 30:e23108. [PMID: 29411454 DOI: 10.1002/ajhb.23108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/08/2017] [Accepted: 01/20/2018] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES The purpose of this study was to provide bone histomorphometric reference data for South Africans of the Western Cape who likely dealt with health issues under the apartheid regime. METHODS The 206 adult individuals (n female = 75, n male = 131, mean = 47.9 ± 15.8 years) from the Kirsten Skeletal Collection, U. Stellenbosch, lived in the Cape Town metropole from the late 1960s to the mid-1990s. To study age-related changes in cortical and trabecular bone microstructure, photomontages of mid-thoracic rib cross-sections were quantitatively examined. Variables include relative cortical area (Rt.Ct.Ar), osteon population density (OPD), osteon area (On.Ar), bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular spacing (Tb.Sp). RESULTS All cortical variables demonstrated significant relationships with age in both sexes, with women showing stronger overall age associations. Peak bone mass was compromised in some men, possibly reflecting poor nutritional quality and/or substance abuse issues throughout adolescence and early adulthood. In women, greater predicted decrements in On.Ar and Rt.Ct.Ar suggest a structural disadvantage with age, consistent with postmenopausal bone loss. Age-related patterns in trabecular bone microarchitecture are variable and difficult to explain. Except for Tb.Th, there are no statistically significant relationships with age in women. Men demonstrate significant negative correlations between BV/TV, Tb.N, and age, and a significant positive correlation between Tb.Sp and age. CONCLUSIONS This research highlights sex-specific differences in patterns of age-related bone loss, and provides context for discussion of contemporary South African bone health. While the study sample demonstrates indicators of poor bone quality, osteoporosis research continues to be under-prioritized in South Africa.
Collapse
Affiliation(s)
- Amy C Beresheim
- Department of Anthropology, University of Toronto, Toronto, M5S 2S2, Canada
| | - Susan K Pfeiffer
- Department of Anthropology, University of Toronto, Toronto, M5S 2S2, Canada.,Department of Archaeology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Marc D Grynpas
- Department of Laboratory Medicine and Pathobiology and Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5T 3L9, Canada.,Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, M5T 3H7, Canada
| | - Amanda Alblas
- Division of Anatomy and Histology, Department of Biomedical Sciences, Stellenbosch University, Cape Town, 8000, South Africa
| |
Collapse
|
8
|
Keenan KE, Mears CS, Skedros JG. Utility of osteon circularity for determining species and interpreting load history in primates and nonprimates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 162:657-681. [PMID: 28121024 DOI: 10.1002/ajpa.23154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/31/2016] [Accepted: 12/02/2016] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Histomorphological analyses of bones are used to estimate an individual's chronological age, interpret a bone's load history, and differentiate species. Among various histomorphological characteristics that can influence mechanical properties of cortical bone, secondary osteon (Haversian system) population density and predominant collagen fiber orientation are particularly important. Cross-sectional shape characteristics of secondary osteons (On.Cr = osteon circularity, On.El = osteon ellipticality) are considered helpful in these contexts, but more robust proof is needed. We sought to determine if variations in osteon shape characteristics are sufficient for accurately differentiating species, load-complexity categories, and regional habitual strain-mode distributions (e.g., tension vs. compression regions). MATERIALS AND METHODS Circularly polarized light images were obtained from 100-micron transverse sections from diaphyses of adult deer calcanei; sheep calcanei, radii, and tibiae; equine calcanei, radii, and third metacarpals (MC3s); chimpanzee femora; and human femora and fibulae. Osteon cross-sectional area (On.Ar), On.Cr, and On.El were quantified indiscriminately and in the contexts of load-complexity and regional strain-mode distributions. RESULTS On.Cr and On.El, when examined independently in terms of all data, or mean (nested) data, for each bone, exceeded 80% accuracy in the inter-species comparisons only with respect to distinguishing humans from nonhumans. Correct classification among the nonhuman species was <70%. When On.Cr and On.El were coupled together and with On.Ar in discriminant function analyses (nested and unnested data) there were high misclassifications in all but human vs. nonhuman comparisons. DISCUSSION Frequent misclassifications in nonhuman comparisons might reflect influences of habitual load complexity and/or strain-mode distributions, or other factors not accounted for by these two considerations.
Collapse
Affiliation(s)
- Kendra E Keenan
- Bone and Joint Research Laboratory, George E. Whalen Veteran's Affairs Medical Center, Salt Lake City, Utah
| | - Chad S Mears
- Bone and Joint Research Laboratory, George E. Whalen Veteran's Affairs Medical Center, Salt Lake City, Utah
| | - John G Skedros
- Bone and Joint Research Laboratory, George E. Whalen Veteran's Affairs Medical Center, Salt Lake City, Utah
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, 84132
| |
Collapse
|
9
|
Pfeiffer S, Heinrich J, Beresheim A, Alblas M. Cortical bone histomorphology of known-age skeletons from the Kirsten collection, Stellenbosch university, South Africa. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 160:137-47. [PMID: 26865244 PMCID: PMC5067612 DOI: 10.1002/ajpa.22951] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/08/2015] [Accepted: 01/12/2016] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Normal human bone tissue changes predictably as adults get older, but substantial variability in pattern and pace remains unexplained. Information is needed regarding the characteristics of histological variables across diverse human populations. METHODS Undecalcified thin sections from mid-thoracic ribs of 213 skeletons (138 M, 75 F, 17-82 years, mean age 48 years), are used to explore the efficacy of an established age-at-death estimation method and methodological approach (Cho et al.: J Forensic Sci 47 (2002) 12-18) and expand on it. The ribs are an age-balanced sample taken from skeletonized cadavers collected from 1967 to 1999 in South Africa, each with recorded sex, age, cause of death and government-defined population group (129 "Colored," 49 "Black," 35 "White"). RESULTS The Ethnicity Unknown equation performs better than those developed for European-Americans and African-Americans, in terms of accuracy and bias. A new equation based solely on the study sample does not improve accuracy. Osteon population densities (OPD) show predicted values, yet secondary osteon areas (On.Ar) are smaller than expected for non-Black subgroups. Relative cortical area (Ct.Ar/Tt.Ar) is low among non-Whites. CONCLUSIONS Results from this highly diverse sample show that population-specific equations do not increase estimate precision. While within the published range of error for the method (±24.44 years), results demonstrate a systematic under-aging of young adults and over-aging of older adults. The regression approach is inappropriate. The field needs fresh approaches to statistical treatment and to factors behind cortical bone remodeling.
Collapse
Affiliation(s)
- Susan Pfeiffer
- Department of AnthropologyUniversity of TorontoTorontoM5S 2S2Canada
- Department of ArchaeologyUniversity of Cape TownRondeboschSouth Africa 7701
| | - Jarred Heinrich
- Department of AnthropologyUniversity of TorontoTorontoM5S 2S2Canada
| | - Amy Beresheim
- Department of AnthropologyUniversity of TorontoTorontoM5S 2S2Canada
| | - Mandi Alblas
- Department of Biomedical SciencesUniversity of StellenboschCape TownSouth Africa 8000
| |
Collapse
|
10
|
Didier ES, MacLean AG, Mohan M, Didier PJ, Lackner AA, Kuroda MJ. Contributions of Nonhuman Primates to Research on Aging. Vet Pathol 2016; 53:277-90. [PMID: 26869153 PMCID: PMC5027759 DOI: 10.1177/0300985815622974] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is the biological process of declining physiologic function associated with increasing mortality rate during advancing age. Humans and higher nonhuman primates exhibit unusually longer average life spans as compared with mammals of similar body mass. Furthermore, the population of humans worldwide is growing older as a result of improvements in public health, social services, and health care systems. Comparative studies among a wide range of organisms that include nonhuman primates contribute greatly to our understanding about the basic mechanisms of aging. Based on their genetic and physiologic relatedness to humans, nonhuman primates are especially important for better understanding processes of aging unique to primates, as well as for testing intervention strategies to improve healthy aging and to treat diseases and disabilities in older people. Rhesus and cynomolgus macaques are the predominant monkeys used in studies on aging, but research with lower nonhuman primate species is increasing. One of the priority topics of research about aging in nonhuman primates involves neurologic changes associated with cognitive decline and neurodegenerative diseases. Additional areas of research include osteoporosis, reproductive decline, caloric restriction, and their mimetics, as well as immune senescence and chronic inflammation that affect vaccine efficacy and resistance to infections and cancer. The purpose of this review is to highlight the findings from nonhuman primate research that contribute to our understanding about aging and health span in humans.
Collapse
Affiliation(s)
- E S Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - A G MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - M Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - P J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - A A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - M J Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Trabecular bone loss and vertebral fractures are historical hallmarks of osteoporosis. During the past 70 years, this view has dominated research aiming to understand the structural basis of bone fragility. We suggest this notion needs to be revised to recognize and include the role of cortical bone deterioration as an important determinant of bone strength throughout life. RECENT FINDINGS About 80% of the fragility fractures involve the appendicular skeleton, at regions comprising large amounts of cortical bone. Up to 70% of the age-related bone loss at these locations is the result of intracortical remodeling that cavitates cortical bone producing porosity. It is now possible to accurately quantify cortical porosity in vivo and use this information to understand the pathogenesis of bone fragility throughout life, assist in identifying patients at risk for fracture, and use this as a potential marker to monitor the effects of treatment on bone structure and strength. SUMMARY Cortical bone has an important role in determining bone strength. The loss of strength is the result of intracortical and endocortical remodeling imbalance that produces cortical porosity and thinning. Studies are needed to determine whether porosity is an independent predictor of fracture risk and whether a reduction in porosity serves as a surrogate of antifracture efficacy.
Collapse
|
12
|
Dominguez VM, Agnew AM. Examination of Factors Potentially Influencing Osteon Size in the Human Rib. Anat Rec (Hoboken) 2016; 299:313-24. [DOI: 10.1002/ar.23305] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/16/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Victoria M. Dominguez
- Skeletal Biology Research Laboratory, Division of Anatomy; The Ohio State University; Columbus Ohio
| | - Amanda M. Agnew
- Skeletal Biology Research Laboratory, Division of Anatomy; The Ohio State University; Columbus Ohio
- Department of Anthropology; The Ohio State University; Columbus Ohio
| |
Collapse
|
13
|
Seeman E. Growth and Age-Related Abnormalities in Cortical Structure and Fracture Risk. Endocrinol Metab (Seoul) 2015; 30:419-28. [PMID: 26394727 PMCID: PMC4722394 DOI: 10.3803/enm.2015.30.4.419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/03/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023] Open
Abstract
Vertebral fractures and trabecular bone loss have dominated thinking and research into the pathogenesis and the structural basis of bone fragility during the last 70 years. However, 80% of all fractures are non-vertebral and occur at regions assembled using large amounts of cortical bone; only 20% of fractures are vertebral. Moreover, ~80% of the skeleton is cortical and ~70% of all bone loss is cortical even though trabecular bone is lost more rapidly than cortical bone. Bone is lost because remodelling becomes unbalanced after midlife. Most cortical bone loss occurs by intracortical, not endocortical remodelling. Each remodelling event removes more bone than deposited enlarging existing canals which eventually coalesce eroding and thinning the cortex from 'within.' Thus, there is a need to study the decay of cortical as well as trabecular bone, and to develop drugs that restore the strength of both types of bone. It is now possible to accurately quantify cortical porosity and trabecular decay in vivo. The challenges still to be met are to determine whether measurement of porosity identifies persons at risk for fracture, whether this approach is compliments information obtained using bone densitometry, and whether changes in cortical porosity and other microstructural traits have the sensitivity to serve as surrogates of treatment success or failure.
Collapse
Affiliation(s)
- Ego Seeman
- Division of Endocrinology, Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
14
|
Bala Y, Bui QM, Wang XF, Iuliano S, Wang Q, Ghasem-Zadeh A, Rozental TD, Bouxsein ML, Zebaze RMD, Seeman E. Trabecular and cortical microstructure and fragility of the distal radius in women. J Bone Miner Res 2015; 30:621-9. [PMID: 25327362 DOI: 10.1002/jbmr.2388] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 12/22/2022]
Abstract
Fragility fractures commonly involve metaphyses. The distal radius is assembled with a thin cortex formed by fusion (corticalization) of trabeculae arising from the periphery of the growth plate. Centrally positioned trabeculae reinforce the thin cortex and transfer loads from the joint to the proximal thicker cortical bone. We hypothesized that growth- and age-related deficits in trabecular bone disrupt this frugally assembled microarchitecture, producing bone fragility. The microarchitecture of the distal radius was measured using high-resolution peripheral quantitative computed tomography in 135 females with distal radial fractures, including 32 girls (aged 7 to 18 years), 35 premenopausal women (aged 18 to 44 years), and 68 postmenopausal women (aged 50 to 76 years). We also studied 240 fracture-free controls of comparable age and 47 healthy fracture-free premenopausal mother-daughter pairs (aged 30 to 55 and 7 to 20 years, respectively). In fracture-free girls and pre- and postmenopausal women, fewer or thinner trabeculae were associated with a smaller and more porous cortical area (r = 0.25 to 0.71 after age, height, and weight adjustment, all p < 0.05). Fewer and thinner trabeculae in daughters were associated with higher cortical porosity in their mothers (r = 0.30 to 0.47, all p < 0.05). Girls and premenopausal and postmenopausal women with forearm fractures had 0.3 to 0.7 standard deviations (SD) fewer or thinner trabeculae and higher cortical porosity than controls in one or more compartment; one SD trait difference conferred odds ratio (95% confidence interval) for fracture ranging from 1.56 (1.01-2.44) to 4.76 (2.86-7.69). Impaired trabecular corticalization during growth, and cortical and trabecular fragmentation during aging, may contribute to the fragility of the distal radius.
Collapse
Affiliation(s)
- Yohann Bala
- Endocrine Center, Austin Health, University of Melbourne, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bjørnerem Å, Bui M, Wang X, Ghasem-Zadeh A, Hopper JL, Zebaze R, Seeman E. Genetic and environmental variances of bone microarchitecture and bone remodeling markers: a twin study. J Bone Miner Res 2015; 30:519-27. [PMID: 25407438 DOI: 10.1002/jbmr.2365] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/05/2014] [Accepted: 09/18/2014] [Indexed: 12/30/2022]
Abstract
All genetic and environmental factors contributing to differences in bone structure between individuals mediate their effects through the final common cellular pathway of bone modeling and remodeling. We hypothesized that genetic factors account for most of the population variance of cortical and trabecular microstructure, in particular intracortical porosity and medullary size - void volumes (porosity), which establish the internal bone surface areas or interfaces upon which modeling and remodeling deposit or remove bone to configure bone microarchitecture. Microarchitecture of the distal tibia and distal radius and remodeling markers were measured for 95 monozygotic (MZ) and 66 dizygotic (DZ) white female twin pairs aged 40 to 61 years. Images obtained using high-resolution peripheral quantitative computed tomography were analyzed using StrAx1.0, a nonthreshold-based software that quantifies cortical matrix and porosity. Genetic and environmental components of variance were estimated under the assumptions of the classic twin model. The data were consistent with the proportion of variance accounted for by genetic factors being: 72% to 81% (standard errors ∼18%) for the distal tibial total, cortical, and medullary cross-sectional area (CSA); 67% and 61% for total cortical porosity, before and after adjusting for total CSA, respectively; 51% for trabecular volumetric bone mineral density (vBMD; all p < 0.001). For the corresponding distal radius traits, genetic factors accounted for 47% to 68% of the variance (all p ≤ 0.001). Cross-twin cross-trait correlations between tibial cortical porosity and medullary CSA were higher for MZ (rMZ = 0.49) than DZ (rDZ = 0.27) pairs before (p = 0.024), but not after (p = 0.258), adjusting for total CSA. For the remodeling markers, the data were consistent with genetic factors accounting for 55% to 62% of the variance. We infer that middle-aged women differ in their bone microarchitecture and remodeling markers more because of differences in their genetic factors than differences in their environment.
Collapse
Affiliation(s)
- Åshild Bjørnerem
- Department of Health and Care Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | | | | | | | | | | |
Collapse
|
16
|
Tiyasatkulkovit W, Malaivijitnond S, Charoenphandhu N, Havill LM, Ford AL, VandeBerg JL. Pueraria mirifica extract and puerarin enhance proliferation and expression of alkaline phosphatase and type I collagen in primary baboon osteoblasts. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1498-503. [PMID: 25442257 PMCID: PMC4679364 DOI: 10.1016/j.phymed.2014.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/19/2014] [Accepted: 06/27/2014] [Indexed: 05/13/2023]
Abstract
Phytoestrogen-rich Pueraria mirifica (PM) tuberous extract is a promising candidate for the development of anti-osteoporosis drugs for postmenopausal women, but its action has never been validated in humans or in non-human primates, which are more closely related to humans than rodents. In vitro study of non-human primate osteoblasts is thus fundamental to prepare for in vivo studies of phytoestrogen effects on primate bone. This study aimed to establish a culture system of baboon primary osteoblasts and to investigate the effects of PM extract and its phytoestrogens on these cells. Primary osteoblasts from adult baboon fibulae exhibited osteoblast characteristics in regard to proliferation, differentiation, mineralization, and estrogen receptor expression. They responded to 17β-estradiol by increased proliferation rate and mRNA levels of alkaline phosphatase (ALP), type I collagen, and osteocalcin. After being exposed for 48 h to 100 μg/ml PM extract, 1000 nM genistein, or 1000 nM puerarin, primary baboon osteoblasts markedly increased the rate of proliferation and mRNA levels of ALP and type I collagen without changes in Runx2, osterix, or osteocalcin expression. PM extract, genistein, and puerarin also decreased the RANKL/OPG ratio, suggesting that they could decrease osteoclast-mediated bone resorption. However, neither PM extract nor its phytoestrogens altered calcium deposition in osteoblast culture. In conclusion, we have established baboon primary osteoblast culture, which is a new tool for bone research and drug discovery. Furthermore, the present results provide substantial support for the potential of PM extract and its phytoestrogens to be developed as therapeutic agents against bone fragility.
Collapse
Affiliation(s)
- Wacharaporn Tiyasatkulkovit
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Narattaphol Charoenphandhu
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lorena M Havill
- Southwest National Primate Research Center and Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78245, USA
| | - Allen L Ford
- Southwest National Primate Research Center and Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78245, USA
| | - John L VandeBerg
- Southwest National Primate Research Center and Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78245, USA
| |
Collapse
|
17
|
Havill LM, Coan HB, Mahaney MC, Nicolella DP. Characterization of complex, co-adapted skeletal biomechanics phenotypes: a needed paradigm shift in the genetics of bone structure and function. Curr Osteoporos Rep 2014; 12:174-80. [PMID: 24756406 PMCID: PMC4010686 DOI: 10.1007/s11914-014-0211-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The genetic architecture of skeletal biomechanical performance has tremendous potential to advance our knowledge of the biological mechanisms that drive variation in skeletal fragility and osteoporosis risk. Research using traditional approaches that focus on specific gene pathways is increasing our understanding of how and to what degree those pathways may affect population-level variation in fracture susceptibility, and shows that known pathways may affect bone fragility through unsuspected mechanisms. Non-traditional approaches that incorporate a new appreciation for the degree to which bone traits co-adapt to functional loading environments, using a wide variety of redundant compensatory mechanisms to meet both physiological and mechanical demands, represent a radical departure from the dominant reductionist paradigm and have the potential to rapidly advance our understanding of bone fragility and identification of new targets for therapeutic intervention.
Collapse
Affiliation(s)
- L M Havill
- Genetics, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX, 78245, USA,
| | | | | | | |
Collapse
|