1
|
Liu X, Li Y, Gao Y, El Wakil A, Moussian B, Zhang J. RNA interference-mediated silencing of coat protein II (COPII) genes affects the gut homeostasis and cuticle development in Locusta migratoria. Int J Biol Macromol 2024; 266:131137. [PMID: 38537854 DOI: 10.1016/j.ijbiomac.2024.131137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
The coat protein II (COPII) complex consists of five primary soluble proteins, namely the small GTP-binding protein Sar1, the inner coat Sec23/Sec24 heterodimers, and the outer coat Sec13/Sec31 heterotetramers. COPII is essential for cellular protein and lipid trafficking through cargo sorting and vesicle formation at the endoplasmic reticulum. However, the roles of COPII assembly genes remain unknown in insects. In present study, we identified five COPII assembly genes (LmSar1, LmSec23, LmSec24, LmSec13 and LmSec31) in Locusta migratoria. RT-qPCR results revealed that these genes showed different expression patterns in multiple tissues and developmental days of fifth-instar nymphs. Injection of double-stranded RNA against each LmCOPII gene induced a high RNAi efficiency, and considerably suppressed feeding, and increased mortality to 100 %. Results from the micro-sectioning and hematoxylin-eosin staining of midguts showed that the brush border was severely damaged and the number of columnar cells was significantly reduced in dsLmCOPII-injected nymphs, as compared with the control. The dilated endoplasmic reticulum phenotype of columnar cells was observed by transmission electron microscopy. RT-qPCR results further indicated that silencing any of the five genes responsible for COPII complex assembly repressed the expression of genes involved in insulin/mTOR-associated nutritional pathway. Therefore, COPII assembly genes could be promising RNAi targets for insect pest management by disrupting gut and cuticle development.
Collapse
Affiliation(s)
- Xiaojian Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yao Li
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ya Gao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Abeer El Wakil
- Faculty of Education, Department of Biological and Geological Sciences, Alexandria University, Alexandria, Egypt
| | - Bernard Moussian
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
2
|
Feng Z, Liu S, Su M, Song C, Lin C, Zhao F, Li Y, Zeng X, Zhu Y, Hou Y, Ren C, Zhang H, Yi P, Ji Y, Wang C, Li H, Ma M, Luo L, Li L. TANGO6 regulates cell proliferation via COPI vesicle-mediated RPB2 nuclear entry. Nat Commun 2024; 15:2371. [PMID: 38490996 PMCID: PMC10943085 DOI: 10.1038/s41467-024-46720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Coat protein complex I (COPI) vesicles mediate the retrograde transfer of cargo between Golgi cisternae and from the Golgi to the endoplasmic reticulum (ER). However, their roles in the cell cycle and proliferation are unclear. This study shows that TANGO6 associates with COPI vesicles via two transmembrane domains. The TANGO6 N- and C-terminal cytoplasmic fragments capture RNA polymerase II subunit B (RPB) 2 in the cis-Golgi during the G1 phase. COPI-docked TANGO6 carries RPB2 to the ER and then to the nucleus. Functional disruption of TANGO6 hinders the nuclear entry of RPB2, which accumulates in the cytoplasm, causing cell cycle arrest in the G1 phase. The conditional depletion or overexpression of TANGO6 in mouse hematopoietic stem cells results in compromised or expanded hematopoiesis. Our study results demonstrate that COPI vesicle-associated TANGO6 plays a role in the regulation of cell cycle progression by directing the nuclear transfer of RPB2, making it a potential target for promoting or arresting cell expansion.
Collapse
Affiliation(s)
- Zhi Feng
- Research center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Shengnan Liu
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Ming Su
- Research center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Chunyu Song
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Chenyu Lin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Fangying Zhao
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Yang Li
- Research center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Xianyan Zeng
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yong Zhu
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yu Hou
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Chunguang Ren
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Huan Zhang
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, PR China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, PR China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150076, Heilongjiang, PR China
| | - Chao Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, PR China
| | - Hongtao Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Ming Ma
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China.
| | - Li Li
- Research center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China.
| |
Collapse
|
3
|
Kim SS, Park J, Kim E, Hwang EM, Park JY. β-COP Suppresses the Surface Expression of the TREK2. Cells 2023; 12:1500. [PMID: 37296621 PMCID: PMC10252889 DOI: 10.3390/cells12111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
K2P channels, also known as two-pore domain K+ channels, play a crucial role in maintaining the cell membrane potential and contributing to potassium homeostasis due to their leaky nature. The TREK, or tandem of pore domains in a weak inward rectifying K+ channel (TWIK)-related K+ channel, subfamily within the K2P family consists of mechanical channels regulated by various stimuli and binding proteins. Although TREK1 and TREK2 within the TREK subfamily share many similarities, β-COP, which was previously known to bind to TREK1, exhibits a distinct binding pattern to other members of the TREK subfamily, including TREK2 and the TRAAK (TWIK-related acid-arachidonic activated K+ channel). In contrast to TREK1, β-COP binds to the C-terminus of TREK2 and reduces its cell surface expression but does not bind to TRAAK. Furthermore, β-COP cannot bind to TREK2 mutants with deletions or point mutations in the C-terminus and does not affect the surface expression of these TREK2 mutants. These results emphasize the unique role of β-COP in regulating the surface expression of the TREK family.
Collapse
Affiliation(s)
- Seong-Seop Kim
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea; (S.-S.K.); (J.P.)
| | - Jimin Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea; (S.-S.K.); (J.P.)
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul 02841, Republic of Korea
| | - Eunju Kim
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea;
| | - Eun Mi Hwang
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea;
| | - Jae-Yong Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea; (S.-S.K.); (J.P.)
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul 02841, Republic of Korea
- ASTRION, Inc., Seoul 02842, Republic of Korea
| |
Collapse
|
4
|
Tizoxanide Antiviral Activity on Dengue Virus Replication. Viruses 2023; 15:v15030696. [PMID: 36992406 PMCID: PMC10055917 DOI: 10.3390/v15030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Dengue virus is an important circulating arbovirus in Brazil responsible for high morbidity and mortality worldwide, representing a huge economic and social burden, in addition to affecting public health. In this study, the biological activity, toxicity, and antiviral activity against dengue virus type 2 (DENV-2) of tizoxanide (TIZ) was evaluated in Vero cell culture. TIZ has a broad spectrum of action in inhibiting different pathogens, including bacteria, protozoa, and viruses. Cells were infected for 1 h with DENV-2 and then treated for 24 h with different concentrations of the drug. The quantification of viral production indicated the antiviral activity of TIZ. The protein profiles in infected Vero cells treated and not treated with TIZ were analyzed using the label-free quantitative proteomic approach. TIZ was able to inhibit virus replication mainly intracellularly after DENV-2 penetration and before the complete replication of the viral genome. Additionally, the study of the protein profile of infected not-treated and infected-treated Vero cells showed that TIZ interferes with cellular processes such as intracellular trafficking and vesicle-mediated transport and post-translational modifications when added after infection. Our results also point to the activation of immune response genes that would eventually lead to a decrease of DENV-2 production. TIZ is a promising therapeutic molecule for the treatment of DENV-2 infections.
Collapse
|
5
|
Stevenson NL. The factory, the antenna and the scaffold: the three-way interplay between the Golgi, cilium and extracellular matrix underlying tissue function. Biol Open 2023; 12:287059. [PMID: 36802341 PMCID: PMC9986613 DOI: 10.1242/bio.059719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The growth and development of healthy tissues is dependent on the construction of a highly specialised extracellular matrix (ECM) to provide support for cell growth and migration and to determine the biomechanical properties of the tissue. These scaffolds are composed of extensively glycosylated proteins which are secreted and assembled into well-ordered structures that can hydrate, mineralise, and store growth factors as required. The proteolytic processing and glycosylation of ECM components is vital to their function. These modifications are under the control of the Golgi apparatus, an intracellular factory hosting spatially organised, protein-modifying enzymes. Regulation also requires a cellular antenna, the cilium, which integrates extracellular growth signals and mechanical cues to inform ECM production. Consequently, mutations in either Golgi or ciliary genes frequently lead to connective tissue disorders. The individual importance of each of these organelles to ECM function is well-studied. However, emerging evidence points towards a more tightly linked system of interdependence between the Golgi, cilium and ECM. This review examines how the interplay between all three compartments underpins healthy tissue. As an example, it will look at several members of the golgin family of Golgi-resident proteins whose loss is detrimental to connective tissue function. This perspective will be important for many future studies looking to dissect the cause and effect of mutations impacting tissue integrity.
Collapse
Affiliation(s)
- Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Biomedical Sciences University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
6
|
Kim SS, Bae Y, Kwon O, Kwon SH, Seo JB, Hwang EM, Park JY. β-COP Regulates TWIK1/TREK1 Heterodimeric Channel-Mediated Passive Conductance in Astrocytes. Cells 2022; 11:cells11203322. [PMID: 36291187 PMCID: PMC9600989 DOI: 10.3390/cells11203322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Mature astrocytes are characterized by a K+ conductance (passive conductance) that changes with a constant slope with voltage, which is involved in K+ homeostasis in the brain. Recently, we reported that the tandem of pore domains in a weak inward rectifying K+ channel (TWIK1 or KCNK1) and TWIK-related K+ channel 1 (TREK1 or KCNK2) form heterodimeric channels that mediate passive conductance in astrocytes. However, little is known about the binding proteins that regulate the function of the TWIK1/TREK1 heterodimeric channels. Here, we found that β-coat protein (COP) regulated the surface expression and activity of the TWIK1/TREK1 heterodimeric channels in astrocytes. β-COP binds directly to TREK1 but not TWIK1 in a heterologous expression system. However, β-COP also interacts with the TWIK1/TREK1 heterodimeric channel in a TREK1 dependent manner and enhances the surface expression of the heterodimeric channel in astrocytes. Consequently, it regulates TWIK1/TREK1 heterodimeric channel-mediated passive conductance in astrocytes in the mouse brain. Taken together, these results suggest that β-COP is a potential regulator of astrocytic passive conductance in the brain.
Collapse
Affiliation(s)
- Seong-Seop Kim
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| | - Yeonju Bae
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Osung Kwon
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| | - Seung-Hae Kwon
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Korea
| | - Jong Bok Seo
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jae-Yong Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-3290-5637
| |
Collapse
|
7
|
An Integrative Pan-Cancer Analysis of the Oncogenic Role of COPB2 in Human Tumors. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7405322. [PMID: 34676262 PMCID: PMC8526247 DOI: 10.1155/2021/7405322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023]
Abstract
Several studies have suggested that coatomer protein complex subunit beta 2 (COPB2) may act as an oncogene in various cancer types. However, no systematic pan-cancer analysis has been performed to date. Therefore, the present study analyzed the potential oncogenic role of COPB2 using TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus) datasets. The majority of the cancer types overexpressed the COPB2 protein, and its expression significantly correlated with tumor prognosis. In certain tumors, such as those found in breast and ovarian tissues, phosphorylated S859 exhibited high expression. It was found that mutations of the COPB2 protein in kidney and endometrial cancers exhibited a significant impact on patient prognosis. It is interesting to note that COPB2 expression correlated with the number of cancer-associated fibroblasts in certain tumors, such as cervical and endocervical cancers and colon adenocarcinomas. In addition, COPB2 was involved in the transport of substances and correlated with chemotherapy sensitivity. This is considered the first pan-tumor study, which provided a relatively comprehensive understanding of the mechanism by which COPB2 promotes cancer growth.
Collapse
|
8
|
Rebensburg SV, Wei G, Larue RC, Lindenberger J, Francis AC, Annamalai AS, Morrison J, Shkriabai N, Huang SW, KewalRamani V, Poeschla EM, Melikyan GB, Kvaratskhelia M. Sec24C is an HIV-1 host dependency factor crucial for virus replication. Nat Microbiol 2021; 6:435-444. [PMID: 33649557 PMCID: PMC8012256 DOI: 10.1038/s41564-021-00868-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
Early events of the human immunodeficiency virus 1 (HIV-1) lifecycle, such as post-entry virus trafficking, uncoating and nuclear import, are poorly characterized because of limited understanding of virus-host interactions. Here, we used mass spectrometry-based proteomics to delineate cellular binding partners of curved HIV-1 capsid lattices and identified Sec24C as an HIV-1 host dependency factor. Gene deletion and complementation in Jurkat cells revealed that Sec24C facilitates infection and markedly enhances HIV-1 spreading infection. Downregulation of Sec24C in HeLa cells substantially reduced HIV-1 core stability and adversely affected reverse transcription, nuclear import and infectivity. Live-cell microscopy showed that Sec24C co-trafficked with HIV-1 cores in the cytoplasm during virus ingress. Biochemical assays demonstrated that Sec24C directly and specifically interacted with hexameric capsid lattices. A 2.3-Å resolution crystal structure of Sec24C228-242 in the complex with a capsid hexamer revealed that the Sec24C FG-motif bound to a pocket comprised of two adjoining capsid subunits. Combined with previous data1-4, our findings indicate that a capsid-binding FG-motif is conserved in unrelated proteins present in the cytoplasm (Sec24C), the nuclear pore (Nup153; refs. 3,4) and the nucleus (CPSF6; refs. 1,2). We propose that these virus-host interactions during HIV-1 trafficking across different cellular compartments are crucial for productive infection of target cells.
Collapse
Affiliation(s)
- Stephanie V Rebensburg
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Guochao Wei
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ross C Larue
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jared Lindenberger
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ashwanth C Francis
- Department of Pediatrics, Infectious Diseases, Emory University, Atlanta, GA, USA
| | - Arun S Annamalai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James Morrison
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nikoloz Shkriabai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Szu-Wei Huang
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Vineet KewalRamani
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Eric M Poeschla
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory B Melikyan
- Department of Pediatrics, Infectious Diseases, Emory University, Atlanta, GA, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
9
|
Feltrin RDS, Segatto ALA, de Souza TA, Schuch AP. Open gaps in the evolution of the eukaryotic nucleotide excision repair. DNA Repair (Amst) 2020; 95:102955. [DOI: 10.1016/j.dnarep.2020.102955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/06/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
|
10
|
Jain Goyal M, Zhao X, Bozhinova M, Andrade-López K, de Heus C, Schulze-Dramac S, Müller-McNicoll M, Klumperman J, Béthune J. A paralog-specific role of COPI vesicles in the neuronal differentiation of mouse pluripotent cells. Life Sci Alliance 2020; 3:3/9/e202000714. [PMID: 32665377 PMCID: PMC7368096 DOI: 10.26508/lsa.202000714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/03/2022] Open
Abstract
The paralogous COPI coat subunit γ1-COP plays a unique role in promoting neurite outgrowth during the neuronal differentiation of mouse pluripotent cells. Coat protein complex I (COPI)–coated vesicles mediate membrane trafficking between Golgi cisternae as well as retrieval of proteins from the Golgi to the endoplasmic reticulum. There are several flavors of the COPI coat defined by paralogous subunits of the protein complex coatomer. However, whether paralogous COPI proteins have specific functions is currently unknown. Here, we show that the paralogous coatomer subunits γ1-COP and γ2-COP are differentially expressed during the neuronal differentiation of mouse pluripotent cells. Moreover, through a combination of genome editing experiments, we demonstrate that whereas γ-COP paralogs are largely functionally redundant, γ1-COP specifically promotes neurite outgrowth. Our work stresses a role of the COPI pathway in neuronal polarization and provides evidence for distinct functions for coatomer paralogous subunits in this process.
Collapse
Affiliation(s)
- Manu Jain Goyal
- Junior Research Group, Cluster of Excellence CellNetworks, Heidelberg, Germany.,Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Xiyan Zhao
- Junior Research Group, Cluster of Excellence CellNetworks, Heidelberg, Germany.,Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Mariya Bozhinova
- Junior Research Group, Cluster of Excellence CellNetworks, Heidelberg, Germany.,Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Karla Andrade-López
- Junior Research Group, Cluster of Excellence CellNetworks, Heidelberg, Germany.,Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Cecilia de Heus
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sandra Schulze-Dramac
- RNA Regulation Group, Cluster of Excellence "Macromolecular Complexes," Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Cluster of Excellence "Macromolecular Complexes," Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Julien Béthune
- Junior Research Group, Cluster of Excellence CellNetworks, Heidelberg, Germany .,Heidelberg University Biochemistry Center, Heidelberg, Germany
| |
Collapse
|
11
|
Bösl K, Ianevski A, Than TT, Andersen PI, Kuivanen S, Teppor M, Zusinaite E, Dumpis U, Vitkauskiene A, Cox RJ, Kallio-Kokko H, Bergqvist A, Tenson T, Merits A, Oksenych V, Bjørås M, Anthonsen MW, Shum D, Kaarbø M, Vapalahti O, Windisch MP, Superti-Furga G, Snijder B, Kainov D, Kandasamy RK. Common Nodes of Virus-Host Interaction Revealed Through an Integrated Network Analysis. Front Immunol 2019; 10:2186. [PMID: 31636628 PMCID: PMC6787150 DOI: 10.3389/fimmu.2019.02186] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
Viruses are one of the major causes of acute and chronic infectious diseases and thus a major contributor to the global burden of disease. Several studies have shown how viruses have evolved to hijack basic cellular pathways and evade innate immune response by modulating key host factors and signaling pathways. A collective view of these multiple studies could advance our understanding of virus-host interactions and provide new therapeutic perspectives for the treatment of viral diseases. Here, we performed an integrative meta-analysis to elucidate the 17 different host-virus interactomes. Network and bioinformatics analyses showed how viruses with small genomes efficiently achieve the maximal effect by targeting multifunctional and highly connected host proteins with a high occurrence of disordered regions. We also identified the core cellular process subnetworks that are targeted by all the viruses. Integration with functional RNA interference (RNAi) datasets showed that a large proportion of the targets are required for viral replication. Furthermore, we performed an interactome-informed drug re-purposing screen and identified novel activities for broad-spectrum antiviral agents against hepatitis C virus and human metapneumovirus. Altogether, these orthogonal datasets could serve as a platform for hypothesis generation and follow-up studies to broaden our understanding of the viral evasion landscape.
Collapse
Affiliation(s)
- Korbinian Bösl
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thoa T Than
- Institut Pasteur Korea, Seongnam, South Korea
| | - Petter I Andersen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Suvi Kuivanen
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Mona Teppor
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Uga Dumpis
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Science, Kaunas, Lithuania
| | - Rebecca J Cox
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
| | - Hannimari Kallio-Kokko
- Department of Virology and Immunology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Anders Bergqvist
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit W Anthonsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - David Shum
- Institut Pasteur Korea, Seongnam, South Korea
| | - Mari Kaarbø
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Olli Vapalahti
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Berend Snijder
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Richard K Kandasamy
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway.,Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
12
|
Ma J, Wang Y, Ma X, Meng L, Jing R, Wang F, Wang S, Cheng Z, Zhang X, Jiang L, Wang J, Wang J, Zhao Z, Guo X, Lin Q, Wu F, Zhu S, Wu C, Ren Y, Lei C, Zhai H, Wan J. Disruption of gene SPL35, encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1679-1693. [PMID: 30771255 PMCID: PMC6662554 DOI: 10.1111/pbi.13093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 05/23/2023]
Abstract
Lesion mimic mutants that exhibit spontaneous hypersensitive response (HR)-like necrotic lesions are ideal experimental systems for elucidating molecular mechanisms involved in plant cell death and defence responses. Here we report identification of a rice lesion mimic mutant, spotted leaf 35 (spl35), and cloning of the causal gene by TAIL-PCR strategy. spl35 exhibited decreased chlorophyll content, higher accumulation of H2 O2 , up-regulated expression of defence-related marker genes, and enhanced resistance to both fungal and bacterial pathogens of rice. The SPL35 gene encodes a novel CUE (coupling of ubiquitin conjugation to ER degradation) domain-containing protein that is predominantly localized in cytosol, ER and unknown punctate compartment(s). SPL35 is constitutively expressed in all organs, and both overexpression and knockdown of SPL35 cause the lesion mimic phenotype. SPL35 directly interacts with the E2 protein OsUBC5a and the coatomer subunit delta proteins Delta-COP1 and Delta-COP2 through the CUE domain, and down-regulation of these interacting proteins also cause development of HR-like lesions resembling those in spl35 and activation of defence responses, indicating that SPL35 may be involved in the ubiquitination and vesicular trafficking pathways. Our findings provide insight into a role of SPL35 in regulating cell death and defence response in plants.
Collapse
Affiliation(s)
- Jian Ma
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Yongfei Wang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| | - Xiaoding Ma
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Lingzhi Meng
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Ruonan Jing
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| | - Fan Wang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| | - Shuai Wang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Zhijun Cheng
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Xin Zhang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Ling Jiang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| | - Jiulin Wang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Jie Wang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Zhichao Zhao
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Xiuping Guo
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Qibing Lin
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Fuqing Wu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Shanshan Zhu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Chuanyin Wu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Yulong Ren
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Cailin Lei
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Huqu Zhai
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Jianmin Wan
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
13
|
Ryu J, Kim DG, Lee YS, Bae Y, Kim A, Park N, Hwang EM, Park JY. Surface expression of TTYH2 is attenuated by direct interaction with β-COP. BMB Rep 2019. [PMID: 30670146 PMCID: PMC6675250 DOI: 10.5483/bmbrep.2019.52.7.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
TTYH2 is a calcium-activated, inwardly rectifying anion channel that has been shown to be related to renal cancer and colon cancer. Based on the topological prediction, TTYH2 protein has five transmembrane domains with the extracellular N-terminus and the cytoplasmic C-terminus. In the present study, we identified a vesicle transport protein, β-COP, as a novel specific binding partner of TTYH2 by yeast two-hybrid screening using a human brain cDNA library with the C-terminal region of TTYH2 (TTYH2-C) as a bait. Using in vitro and in vivo binding assays, we confirmed the protein-protein interactions between TTYH2 and β-COP. We also found that the surface expression and activity of TTYH2 were decreased by co-expression with β-COP in the heterologous expression system. In addition, β-COP associated with TTYH2 in a native condition at a human colon cancer cell line, LoVo cells. The over-expression of β-COP in the LoVo cells led to a dramatic decrease in the surface expression and activity of endogenous TTYH2. Collectively, these data suggested that β-COP plays a critical role in the trafficking of the TTYH2 channel to the plasma membrane.
Collapse
Affiliation(s)
- Jiwon Ryu
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| | - Dong-Gyu Kim
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul 02792, Korea
| | - Young-Sun Lee
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| | - Yeonju Bae
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| | - Ajung Kim
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul 02792, Korea; KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Nammi Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| | - Eun Mi Hwang
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul 02792, Korea; KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jae-Yong Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
14
|
Park JS, Helble JD, Lazarus JE, Yang G, Blondel CJ, Doench JG, Starnbach MN, Waldor MK. A FACS-Based Genome-wide CRISPR Screen Reveals a Requirement for COPI in Chlamydia trachomatis Invasion. iScience 2018; 11:71-84. [PMID: 30590252 PMCID: PMC6308251 DOI: 10.1016/j.isci.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/20/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
The invasion of Chlamydia trachomatis, an obligate intracellular bacterium, into epithelial cells is driven by a complex interplay of host and bacterial factors. To comprehensively define the host genes required for pathogen invasion, we undertook a fluorescence-activated cell sorting (FACS)-based CRISPR screen in human cells. A genome-wide loss-of-function library was infected with fluorescent C. trachomatis and then sorted to enrich for invasion-deficient mutants. The screen identified heparan sulfate, a known pathogen receptor, as well as coatomer complex I (COPI). We found that COPI, through a previously unappreciated role, promotes heparan sulfate cell surface presentation, thereby facilitating C. trachomatis attachment. The heparan sulfate defect does not fully account for the resistance of COPI mutants. COPI also promotes the activity of the pathogen's type III secretion system. Together, our findings establish the requirement for COPI in C. trachomatis invasion and the utility of FACS-based CRISPR screening for the elucidation of host factors required for pathogen invasion. FACS-based CRISPR screen to identify host factors required for C. trachomatis invasion Candidate genes comprise heparan sulfate biosynthesis, actin remodeling, and COPI COPI regulates heparan sulfate cell surface presentation and C. trachomatis attachment COPI is also required for efficient C. trachomatis T3SS translocation
Collapse
Affiliation(s)
- Joseph S Park
- Howard Hughes Medical Institute, Boston, MA 02215, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Boston University School of Medicine, Boston, MA 02120, USA
| | - Jennifer D Helble
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jacob E Lazarus
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Guanhua Yang
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA
| | - Carlos J Blondel
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew K Waldor
- Howard Hughes Medical Institute, Boston, MA 02215, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
15
|
Wang S, Xie K, Xu G, Zhou H, Guo Q, Wu J, Liao Z, Liu N, Wang Y, Liu Y. Plant G proteins interact with endoplasmic reticulum luminal protein receptors to regulate endoplasmic reticulum retrieval. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:541-561. [PMID: 29573168 DOI: 10.1111/jipb.12648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Maintaining endoplasmic reticulum (ER) homeostasis is essential for the production of biomolecules. ER retrieval, i.e., the retrograde transport of compounds from the Golgi to the ER, is one of the pathways that ensures ER homeostasis. However, the mechanisms underlying the regulation of ER retrieval in plants remain largely unknown. Plant ERD2-like proteins (ERD2s) were recently suggested to function as ER luminal protein receptors that mediate ER retrieval. Here, we demonstrate that heterotrimeric G protein signaling is involved in ERD2-mediated ER retrieval. We show that ERD2s interact with the heterotrimeric G protein Gα and Gγ subunits at the Golgi. Silencing of Gα, Gβ, or Gγ increased the retention of ER luminal proteins. Furthermore, overexpression of Gα, Gβ, or Gγ caused ER luminal proteins to escape from the ER, as did the co-silencing of ERD2a and ERD2b. These results suggest that G proteins interact with ER luminal protein receptors to regulate ER retrieval.
Collapse
Affiliation(s)
- Shanshan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ke Xie
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guoyong Xu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Huarui Zhou
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Guo
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingyi Wu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zengwei Liao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Na Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Mi Y, Sun C, Wei B, Sun F, Guo Y, Hu Q, Ding W, Zhu L, Xia G. Coatomer subunit beta 2 (COPB2), identified by label-free quantitative proteomics, regulates cell proliferation and apoptosis in human prostate carcinoma cells. Biochem Biophys Res Commun 2017; 495:473-480. [PMID: 29129687 DOI: 10.1016/j.bbrc.2017.11.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Label-free quantitative proteomics has broad applications in the identification of differentially expressed proteins. Here, we applied this method to identify differentially expressed proteins (such as coatomer subunit beta 2 [COPB2]) and evaluated the functions and molecular mechanisms of these proteins in prostate cancer (PCA) cell proliferation. Proteins extracted from surgically resected PCA tissues and adjacent tissues of 3 patients were analyzed by label-free quantitative proteomics. The target protein was confirmed by bioinformatics and GEO dataset analyses. To investigate the role of the target protein in PCA, we used lentivirus-mediated small-interfering RNA (siRNA) to knockdown protein expression in the prostate carcinoma cell line, CWR22RV1 cells and assessed gene and protein expression by reverse transcription quantitative polymerase chain reaction and western blotting. CCK8 and colony formation assays were conducted to evaluate cell proliferation. Cell cycle distributions and apoptosis were assayed by flow cytometry. We selected the differentiation-related protein COPB2 as our target protein based on the results of label-free quantitative proteomics. High expression of COPB2 was found in PCA tissue and was related to poor overall survival based on a public dataset. Cell proliferation was significantly inhibited in COPB2-knockdown CWR22RV1 cells, as demonstrated by CCK8 and colony formation assays. Additionally, the apoptosis rate and percentage of cells in the G1 phase were increased in COPB2-knockdown cells compared with those in control cells. CDK2, CDK4, and cyclin D1 were downregulated, whereas p21 Waf1/Cip1 and p27 Kip1 were upregulated, affecting the cell cycle signaling pathway. COPB2 significantly promoted CWR22RV1 cell proliferation through the cell cycle signaling pathway. Thus, silencing of COPB2 may have therapeutic applications in PCA.
Collapse
Affiliation(s)
- Yuanyuan Mi
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai 200040, PR China
| | - Chuanyu Sun
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai 200040, PR China
| | - Bingbing Wei
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai 200040, PR China
| | - Feiyu Sun
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, 128 Ruili Rd, Shanghai 200240, PR China
| | - Yijun Guo
- Department of Urology, Jing'An District Center Hospital of Shanghai, 259 Xikang Rd, Shanghai 200040, PR China
| | - Qingfeng Hu
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai 200040, PR China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai 200040, PR China
| | - Lijie Zhu
- Department of Urology, Third Affiliated Hospital of Nantong University, 585 Xingyuan Rd, Wuxi 214041, PR China.
| | - Guowei Xia
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai 200040, PR China.
| |
Collapse
|
17
|
Mi Y, Yu M, Zhang L, Sun C, Wei B, Ding W, Zhu Y, Tang J, Xia G, Zhu L. COPB2 Is Upregulated in Prostate Cancer and Regulates PC-3 Cell Proliferation, Cell Cycle, and Apoptosis. Arch Med Res 2017; 47:411-418. [PMID: 27986120 DOI: 10.1016/j.arcmed.2016.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/13/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Transport of membranes and proteins in eukaryotic cells is mediated by vesicular carriers. Coatomer complex I (COPI)-coated vesicles are involved in the transport between endoplasmic reticulum (ER) and Golgi complex. Several studies indicated that some subunits of COPI were correlated with the cell proliferation of malignant tumors. The present study focused on the function of coatomer protein complex subunit β 2 (COPB2), one of seven proteins in COPI, in prostate cancer (PCa). METHODS COPB2 gene expression was first analyzed by immunohistochemistry (IHC) in 15 paired PCa and carcinoma adjacent normal tissue from patients. To investigate the role of COPB2 in PCa, we used lentivirus-mediated small interfering RNA (siRNA) to knockdown COPB2 expression in human PCa cell line PC-3 and assessed it by RT-qPCR. Cellomics ArrayScan VTI imaging and colony formation were conducted to evaluate cell proliferation. Cell cycle phase arrest and apoptosis were assayed by flow cytometry. RESULTS COPB2 gene was upregulated in the PCa tissue. Cell proliferation was significantly inhibited in COPB2-silenced PC-3 cells using both Cellomics ArrayScan VTI imaging and colony formation assays. S-phase cell counts were significantly decreased; G1- and G2-phase cell counts were significantly increased in COPB2-siRNA group than the control group. Apoptosis was significantly increased in COPB2-siRNA cells. CONCLUSIONS COPB2 significantly promoted PC-3 cell proliferation and colony formation through the cell cycle and apoptosis pathway. Moreover, COPB2 showed a clinical correlation and may serve as a biomarker for the detection for PCa.
Collapse
Affiliation(s)
- Yuanyuan Mi
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China; Department of Urology, Third Affiliated Hospital of Nantong University, Wuxi, Jiangsu, PR China
| | - Menglei Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Emergency Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Lifeng Zhang
- Department of Urology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, PR China
| | - Chuanyu Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Bingbing Wei
- Department of Urology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu, PR China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yingfeng Zhu
- Department of Pathology, Huashan North Hospital, Fudan University, Shanghai, PR China
| | - Jianmin Tang
- Department of Pathology, Huashan North Hospital, Fudan University, Shanghai, PR China
| | - Guowei Xia
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Lijie Zhu
- Department of Urology, Third Affiliated Hospital of Nantong University, Wuxi, Jiangsu, PR China.
| |
Collapse
|
18
|
Lunev S, Semmelink MFW, Xian JL, Ma KY, Leenders AJA, Dömling ASS, Shtutman M, Groves MR. Crystal structure of truncated human coatomer protein complex subunit ζ1 (Copζ1). Acta Crystallogr F Struct Biol Commun 2017; 73:1-8. [PMID: 28045387 PMCID: PMC5287372 DOI: 10.1107/s2053230x16018896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/25/2016] [Indexed: 11/11/2022] Open
Abstract
The majority of modern anticancer approaches target DNA/protein targets involved in tumour-cell proliferation. Such approaches have a major drawback, as nonproliferating cancer cells remain unaffected and may cause relapse or remission. Human coatomer protein complex I (COPI) subunit ζ (Copζ), a component of the coat protein involved in cell apoptosis and intracellular trafficking, has recently been proposed as a potential anticancer drug target. Previous studies have shown that two different isoforms of the Copζ subunit exist in mammalian cells. While normal cells express both Copζ1 and Copζ2 isoforms, various types of tumour cells display a loss of Copζ2 expression and rely solely on Copζ1 for growth and survival. Subsequent knockdown of Copζ1 results in specific inhibition of both proliferating and dormant tumour-cell populations, with no adverse growth effects on normal cells. Therefore, a Copζ1-targeting therapy was proposed to bypass the problem of dormant cancer cells that are resistant to conventional antiproliferative drugs, which is the major cause of tumour relapse. In order to aid in structure-based inhibitor design, a crystal structure is required. In this article, the recombinant expression, purification, crystallization and crystal structure of Copζ1, as well as the expression and purification of Copζ2, are reported.
Collapse
Affiliation(s)
- Sergey Lunev
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Marije F. W. Semmelink
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Jia Ling Xian
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Kai Yu Ma
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Anna J. A. Leenders
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Alexander S. S. Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Matthew R. Groves
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| |
Collapse
|
19
|
Schmid JA. Endoplasmosis and exoplasmosis: the evolutionary principles underlying endocytosis, exocytosis, and vesicular transport. Wien Med Wochenschr 2016; 166:236-41. [PMID: 27167530 PMCID: PMC4871923 DOI: 10.1007/s10354-016-0453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Eukaryotic cells are characterized by a multicompartmental structure with a variety of organelles. Vesicular transport between these compartments requires membrane fusion events. Based on a membrane topology view, we conclude that there are two basic mechanisms of membrane fusion, namely where the membranes first come in contact with the cis-side (the plasmatic phase of the lipid bilayer) or with the trans-side (the extra-plasmatic face). We propose to designate trans-membrane fusion processes as “endoplasmosis” as they lead to uptake of a compartment into the plasmatic phase. Vice versa we suggest the term “exoplasmosis” (as already suggested in a 1964 publication) for cis-membrane fusion events, where the interior of a vesicle is released to an extraplasmatic environment (the extracellular space or the lumen of a compartment). This concept is supported by the fact that all cis- and all trans-membrane fusions, respectively, exhibit noticeable similarities implying that they evolved from two functionally different mechanisms.
Collapse
Affiliation(s)
- Johannes A Schmid
- Center for Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria.
| |
Collapse
|
20
|
Lahav A, Rozenberg H, Parnis A, Cassel D, Adir N. Structure of the bovine COPI δ subunit μ homology domain at 2.15 Å resolution. ACTA ACUST UNITED AC 2015; 71:1328-34. [PMID: 26057672 DOI: 10.1107/s1399004715006203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/26/2015] [Indexed: 11/11/2022]
Abstract
The heptameric COPI coat (coatomer) plays an essential role in vesicular transport in the early secretory system of eukaryotic cells. While the structures of some of the subunits have been determined, that of the δ-COP subunit has not been reported to date. The δ-COP subunit is part of a subcomplex with structural similarity to tetrameric clathrin adaptors (APs), where δ-COP is the structural homologue of the AP μ subunit. Here, the crystal structure of the μ homology domain (MHD) of δ-COP (δ-MHD) obtained by phasing using a combined SAD-MR method is presented at 2.15 Å resolution. The crystallographic asymmetric unit contains two monomers that exhibit short sections of disorder, which may allude to flexible regions of the protein. The δ-MHD is composed of two subdomains connected by unstructured linkers. Comparison between this structure and those of known MHD domains from the APs shows significant differences in the positions of specific loops and β-sheets, as well as a more general change in the relative positions of the protein subdomains. The identified difference may be the major source of cargo-binding specificity. Finally, the crystal structure is used to analyze the potential effect of the I422T mutation in δ-COP previously reported to cause a neurodegenerative phenotype in mice.
Collapse
Affiliation(s)
- Avital Lahav
- Schulich Faculty of Chemistry, Technion, Haifa 32000, Israel
| | - Haim Rozenberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anna Parnis
- Department of Biology, Technion, Haifa 32000, Israel
| | - Dan Cassel
- Department of Biology, Technion, Haifa 32000, Israel
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion, Haifa 32000, Israel
| |
Collapse
|
21
|
Lindquist E, Alezzawi M, Aronsson H. Bioinformatic indications that COPI- and clathrin-based transport systems are not present in chloroplasts: an Arabidopsis model. PLoS One 2014; 9:e104423. [PMID: 25137124 PMCID: PMC4138088 DOI: 10.1371/journal.pone.0104423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/11/2014] [Indexed: 02/07/2023] Open
Abstract
Coated vesicle transport occurs in the cytosol of yeast, mammals and plants. It consists of three different transport systems, the COPI, COPII and clathrin coated vesicles (CCV), all of which participate in the transfer of proteins and lipids between different cytosolic compartments. There are also indications that chloroplasts have a vesicle transport system. Several putative chloroplast-localized proteins, including CPSAR1 and CPRabA5e with similarities to cytosolic COPII transport-related proteins, were detected in previous experimental and bioinformatics studies. These indications raised the hypothesis that a COPI- and/or CCV-related system may be present in chloroplasts, in addition to a COPII-related system. To test this hypothesis we bioinformatically searched for chloroplast proteins that may have similar functions to known cytosolic COPI and CCV components in the model plants Arabidopsis thaliana and Oryza sativa (subsp. japonica) (rice). We found 29 such proteins, based on domain similarity, in Arabidopsis, and 14 in rice. However, many components could not be identified and among the identified most have assigned roles that are not related to either COPI or CCV transport. We conclude that COPII is probably the only active vesicle system in chloroplasts, at least in the model plants. The evolutionary implications of the findings are discussed.
Collapse
Affiliation(s)
- Emelie Lindquist
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mohamed Alezzawi
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Abstract
Proteins synthesised at the endoplasmic reticulum (ER) have to undergo a number of consecutive and coordinated steps to reach the Golgi complex. To understand the dynamic complexity of ER-to-Golgi transport at the structural and molecular level, light microscopy approaches are fundamental tools that allow in vivo observations of protein dynamics and interactions of fluorescent proteins in living cells. Imaging protein and organelle dynamics close to the ultra-structural level became possible by combining light microscopy with electron microscopy analyses or super-resolution light microscopy methods. Besides, increasing evidence suggests that the early secretory pathway is tightly connected to other cellular processes, such as signal transduction, and quantitative information at the systems level is fundamental to achieve a comprehensive molecular understanding of these connections. High-throughput microscopy in fixed and living cells in combination with systematic perturbation of gene expression by, e.g. RNA interference, will open new avenues to gain such an understanding of the early secretory pathway at the systems level. In this Commentary, we first outline examples that revealed the dynamic organisation of ER-to-Golgi transport in living cells. Next, we discuss the use of advanced imaging methods in studying ER-to-Golgi transport and, finally, delineate the efforts in understanding ER-to-Golgi transport at the systems level.
Collapse
Affiliation(s)
- Fatima Verissimo
- European Molecular Biology Laboratory, Cell Biology and Cell Biophysics Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
23
|
Abstract
Members of the Arf family of small GTP-binding proteins, or GTPases, are activated by guanine nucleotide exchange factors (GEFs) that catalyze GDP release from their substrate Arf, allowing GTP to bind. In the secretory pathway, Arf1 is first activated by GBF1 at the cis-Golgi, then by BIG1 and BIG2 at the trans-Golgi and trans-Golgi network (TGN). Upon activation, Arf1-GTP interacts with effectors such as coat complexes, and is able to recruit different coat complexes to different membrane sites in cells. The COPI coat is primarily recruited to cis-Golgi membranes, whereas other coats, such as AP-1/clathrin, and GGA/clathrin, are recruited to the trans-Golgi and the TGN. Although Arf1-GTP is required for stable association of these various coats to membranes, and is sufficient in vitro, other molecules, such as vesicle cargo and coat receptors on the membrane, contribute to specificity of coat recruitment in cells. Another mechanism to achieve specificity is interaction of effectors such as coats with the GEF itself, which would increase the concentration of a given coat in proximity to the site where Arf is activated, thus favoring its recruitment. This interaction between a GEF and an effector could also provide a mechanism for spatial organization of vesicle budding sites, similar to that described for Cdc42-mediated establishment of polarity sites such as the emerging bud in yeast. Another factor affecting the amount of freely diffusible Arf1-GTP in membranes is the GEF(s) themselves acting as effectors. Sec7p, the yeast homolog of mammalian BIG1 and BIG2, and Arno/cytohesin 2, a PM-localized Arf1 GEF, both bind to Arf1-GTP. This binding to the products of the exchange reaction establishes a positive feedback loop for activation.
Collapse
Affiliation(s)
- Catherine L Jackson
- Institut Jacques Monod, CNRS; Université Paris Diderot; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
24
|
Karim S, Aronsson H. The puzzle of chloroplast vesicle transport - involvement of GTPases. FRONTIERS IN PLANT SCIENCE 2014; 5:472. [PMID: 25295043 PMCID: PMC4171996 DOI: 10.3389/fpls.2014.00472] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/28/2014] [Indexed: 05/04/2023]
Abstract
In the cytosol of plant cells vesicle transport occurs via secretory pathways among the endoplasmic reticulum network, Golgi bodies, secretory granules, endosome, and plasma membrane. Three systems transfer lipids, proteins and other important molecules through aqueous spaces to membrane-enclosed compartments, via vesicles that bud from donor membranes, being coated and uncoated before tethered and fused with acceptor membranes. In addition, molecular, biochemical and ultrastructural evidence indicates presence of a vesicle transport system in chloroplasts. Little is known about the protein components of this system. However, as chloroplasts harbor the photosynthetic apparatus that ultimately supports most organisms on the planet, close attention to their pathways is warranted. This may also reveal novel diversification and/or distinct solutions to the problems posed by the targeted intra-cellular trafficking of important molecules. To date two homologs to well-known yeast cytosolic vesicle transport proteins, CPSAR1 and CPRabA5e (CP, chloroplast localized), have been shown to have roles in chloroplast vesicle transport, both being GTPases. Bioinformatic data indicate that several homologs of cytosolic vesicle transport system components are putatively chloroplast-localized and in addition other proteins have been implicated to participate in chloroplast vesicle transport, including vesicle-inducing protein in plastids 1, thylakoid formation 1, snowy cotyledon 2/cotyledon chloroplast biogenesis factor, curvature thylakoid 1 proteins, and a dynamin like GTPase FZO-like protein. Several putative potential cargo proteins have also been identified, including building blocks of the photosynthetic apparatus. Here we discuss details of the largely unknown putative chloroplast vesicle transport system, focusing on GTPase-related components.
Collapse
Affiliation(s)
| | - Henrik Aronsson
- *Correspondence: Henrik Aronsson, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden e-mail:
| |
Collapse
|
25
|
Tröße C, Nilsen F, Dalvin S. RNA interference mediated knockdown of the KDEL receptor and COPB2 inhibits digestion and reproduction in the parasitic copepod Lepeophtheirus salmonis. Comp Biochem Physiol B Biochem Mol Biol 2013; 170:1-9. [PMID: 24382395 DOI: 10.1016/j.cbpb.2013.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/29/2022]
Abstract
Retrograde transport of proteins from the endoplasmic reticulum to the Golgi is an essential part of the secretory pathway that all newly synthesised secreted and membrane proteins in eukaryotic cells undergo. The aim of this study was to characterise two components of the retrograde transport pathway in the parasitic copepod Lepeophtheirus salmonis (salmon louse) on a molecular and functional level. LsKDELR and LsCOPB2 were confirmed to be the salmon louse homologues of the chosen target proteins by sequence similarity. Ontogenetic analysis by qRT-PCR revealed the highest expression levels of both genes in adult females and the earliest larval stage. LsKDELR and LsCOPB2 localisation in adult females was detected by immunofluorescence and in situ hybridisation, respectively. Both LsKDELR and LsCOPB2 were found in the ovaries, the oocytes and the gut. LsKDELR and LsCOPB2 were knocked down by RNA interference in preadult females, which was confirmed by qRT-PCR. LsCOPB2 knockdown lice had a significantly higher mortality and failed to develop normally, while both LsCOPB2 and LsKDELR knockdown caused disturbed digestion and the absence of egg strings. This shows the potential of LsKDELR and LsCOPB2 as suitable target candidates for new pest control methods.
Collapse
Affiliation(s)
- Christiane Tröße
- Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway.
| | - Frank Nilsen
- SLRC-Sea Lice Research Centre, Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
| | - Sussie Dalvin
- SLRC-Sea Lice Research Centre, Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| |
Collapse
|
26
|
Ooi YS, Stiles KM, Liu CY, Taylor GM, Kielian M. Genome-wide RNAi screen identifies novel host proteins required for alphavirus entry. PLoS Pathog 2013; 9:e1003835. [PMID: 24367265 PMCID: PMC3868536 DOI: 10.1371/journal.ppat.1003835] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/31/2013] [Indexed: 12/21/2022] Open
Abstract
The enveloped alphaviruses include important and emerging human pathogens such as Chikungunya virus and Eastern equine encephalitis virus. Alphaviruses enter cells by clathrin-mediated endocytosis, and exit by budding from the plasma membrane. While there has been considerable progress in defining the structure and function of the viral proteins, relatively little is known about the host factors involved in alphavirus infection. We used a genome-wide siRNA screen to identify host factors that promote or inhibit alphavirus infection in human cells. Fuzzy homologue (FUZ), a protein with reported roles in planar cell polarity and cilia biogenesis, was required for the clathrin-dependent internalization of both alphaviruses and the classical endocytic ligand transferrin. The tetraspanin membrane protein TSPAN9 was critical for the efficient fusion of low pH-triggered virus with the endosome membrane. FUZ and TSPAN9 were broadly required for infection by the alphaviruses Sindbis virus, Semliki Forest virus, and Chikungunya virus, but were not required by the structurally-related flavivirus Dengue virus. Our results highlight the unanticipated functions of FUZ and TSPAN9 in distinct steps of alphavirus entry and suggest novel host proteins that may serve as targets for antiviral therapy. Alphaviruses are a group of small enveloped viruses that include important human pathogens for which there are no antiviral therapies or vaccines. Alphaviruses enter host cells by receptor-mediated endocytosis and low pH-triggered membrane fusion, and exit by budding from the host cell plasma membrane. The roles of host cell proteins in these events are not well understood in spite of extensive studies. Here we performed a screen using small interfering RNAs to identify host factors involved in alphavirus infection of human cells. We defined the mechanism of two novel host proteins that promote alphavirus entry. Fuzzy homologue (FUZ), a protein with roles in cilia biogenesis, promoted endocytosis of both alphaviruses and a well-studied endocytic cargo, transferrin. The tetraspanin membrane protein, TSPAN9, did not significantly affect endocytic uptake or acidification, but was critical for the efficient fusion of the virus in the endosome. These two proteins were required for infection by several different alphaviruses, suggesting that they may be useful targets for drugs to prevent alphavirus infection.
Collapse
Affiliation(s)
- Yaw Shin Ooi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Katie M. Stiles
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Catherine Y. Liu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Gwen M. Taylor
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
Han HM, Bouchet-Marquis C, Huebinger J, Grabenbauer M. Golgi apparatus analyzed by cryo-electron microscopy. Histochem Cell Biol 2013; 140:369-81. [PMID: 23954988 PMCID: PMC3787787 DOI: 10.1007/s00418-013-1136-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2013] [Indexed: 11/28/2022]
Abstract
In 1898, the Golgi apparatus was discovered by light microscopy, and since the 1950s, the ultrastructure composition is known by electron microscopic investigation. The complex three-dimensional morphology fascinated researchers and was sometimes even the driving force to develop novel visualization techniques. However, the highly dynamic membrane systems of Golgi apparatus are delicate and prone to fixation artifacts. Therefore, the understanding of Golgi morphology and its function has been improved significantly with the development of better preparation methods. Nowadays, cryo-fixation is the method of choice to arrest instantly all dynamic and physiological processes inside cells, tissues, and small organisms. Embedded in amorphous ice, such samples can be further processed by freeze substitution or directly analyzed in their fully hydrated state by cryo-electron microscopy and tomography. Even though the overall morphology of vitrified Golgi stacks is comparable to well-prepared and resin-embedded samples, previously unknown structural details can be observed solely based on their native density. At this point, any further improvement of sample preparation would gain novel insights, perhaps not in terms of general morphology, but on fine structural details of this dynamic organelle.
Collapse
Affiliation(s)
- Hong-Mei Han
- Department of Systemic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Cedric Bouchet-Marquis
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO USA
- FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124 USA
| | - Jan Huebinger
- Department of Systemic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Markus Grabenbauer
- Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Structural disorder provides increased adaptability for vesicle trafficking pathways. PLoS Comput Biol 2013; 9:e1003144. [PMID: 23874186 PMCID: PMC3715437 DOI: 10.1371/journal.pcbi.1003144] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 06/02/2013] [Indexed: 01/07/2023] Open
Abstract
Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (∼23%) than the other two, COPI (∼9%) and COPII (∼8%). We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking and suggest major roles for this structural property in shaping the differences of evolutionary adaptability in the three routes. Vesicle trafficking systems are fundamental among cellular transport mechanisms; various cargo molecules are transported via different coated vesicles to their specific destinations in every eukaryotic cell. Clathrin-coated vesicles mediate endocytosis and the late secretory route, while the COat Protein I and II (COPI and COPII) vesicle trafficking routes are responsible for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar basic principles, regulatory mechanisms and structural features of the three systems, their molecular machinery, functions, and evolutionary characteristics vastly differ. We investigated and compared these three routes and their basic functional protein groups from the structural disorder point of view, since disordered protein regions could provide a broad variety of functional and evolutionary advantages for them. We found that structurally disordered protein segments are most abundant in the clathrin system, which might explain the observed inherent plasticity, increased adaptability and exceptional robustness of this route. We support our hypothesis by two analyses on protein multi-functionality and tissue specificity, both being indicative of evolutionary adaptability. Clathrin pathway proteins stand out in both measures, with their disordered regions being largely responsible for their outstanding capabilities.
Collapse
|
29
|
Jablonka-Shariff A, Boime I. A novel carboxyl-terminal heptapeptide initiates the regulated secretion of LH from unique sub-domains of the ER. PLoS One 2013; 8:e65002. [PMID: 23734233 PMCID: PMC3666967 DOI: 10.1371/journal.pone.0065002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 04/25/2013] [Indexed: 12/31/2022] Open
Abstract
The coordinated secretion of LH and FSH are critical for reproductive functions. After translocation into the endoplasmic reticulum (ER), their biosynthetic routes diverge at a determinative step prior to sorting in the regulated (LH) and constitutive (FSH) secretion pathways. Recently, we identified a C-terminal heptapeptide sequence, present only in the LHβ subunit, as a critical signal for entry of the LH dimer into the regulated pathway. We showed that an LHβ mutant lacking the heptapeptide (LHβΔT) assembled more efficiently with the α subunit than wild-type LHβ subunit, and this LHΔT dimer was secreted constitutively. Thus, an association exists between the presence of the C-terminal heptapeptide and sorting of the LH heterodimer to the regulated pathway. To study how this delayed LHβ subunit assembly is related to the trafficking of LH, we exploited the single subunit transfection model in rat somatotrope-derived GH3 cells with the use of immunofluorescence confocal microscopy. The LHβ subunit showed a distinct immunofluorescent localization as compared to the FSHβ subunit and LHβ mutants. The wild-type LHβ subunit exhibited a perinuclear staining corresponding to the ER/nuclear envelope region. In contrast, the wild-type FSHβ subunit and the mutants LHβΔT and LHβL119A displayed no detectable perinuclear staining; only peripheral ER puncta were observed. Also, no perinuclear fluorescence was detected in cells expressing the LH heterodimer. We propose that the C-terminal heptapeptide is responsible for delayed heterodimer assembly within an ER sub-domain of the nuclear envelope, as an early partitioning event necessary for the entrance of LH into the regulated secretory pathway, whereas FSHβ does not traverse the nuclear envelope region. These data suggest that, at least for LH, the molecular decision to enter the regulated secretory pathway is a pre-Golgi event controlled by the novel C-terminal heptapeptide.
Collapse
Affiliation(s)
- Albina Jablonka-Shariff
- Departments of Developmental Biology and Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Irving Boime
- Departments of Developmental Biology and Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
30
|
Pinar M, Pantazopoulou A, Peñalva MA. Live-cell imaging of Aspergillus nidulans autophagy: RAB1 dependence, Golgi independence and ER involvement. Autophagy 2013; 9:1024-43. [PMID: 23722157 DOI: 10.4161/auto.24483] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We exploited the amenability of the fungus Aspergillus nidulans to genetics and live-cell microscopy to investigate autophagy. Upon nitrogen starvation, GFP-Atg8-containing pre-autophagosomal puncta give rise to cup-shaped phagophores and circular (0.9-μm diameter) autophagosomes that disappear in the vicinity of the vacuoles after their shape becomes irregular and their GFP-Atg8 fluorescence decays. This 'autophagosome cycle' gives rise to characteristic cone-shaped traces in kymographs. Autophagy does not require endosome maturation or ESCRTs, as autophagosomes fuse with vacuoles directly in a RabS (homolog of Saccharomyces cerevisiae Ypt7 and mammalian RAB7; written hereafter as RabS(RAB7))-HOPS-(homotypic fusion and vacuole protein sorting complex)-dependent manner. However, by removing RabS(RAB7) or Vps41 (a component of the HOPS complex), we show that autophagosomes may still fuse, albeit inefficiently, with the endovacuolar system in a process almost certainly mediated by RabA(RAB5)/RabB(RAB5) (yeast Vps21 homologs)-CORVET (class C core vacuole/endosome tethering complex), because acute inactivation of HbrA/Vps33, a key component of HOPS and CORVET, completely precludes access of GFP-Atg8 to vacuoles without affecting autophagosome biogenesis. Using a FYVE 2-GFP probe and endosomal PtdIns3P-depleted cells, we imaged PtdIns3P on autophagic membranes. PtdIns3P present on autophagosomes decays at late stages of the cycle, preceding fusion with the vacuole. Autophagy does not require Golgi traffic, but it is crucially dependent on RabO(RAB1). TRAPPIII-specific factor AN7311 (yeast Trs85) localizes to the phagophore assembly site (PAS) and RabO(RAB1) localizes to phagophores and autophagosomes. The Golgi and autophagy roles of RabO(RAB1) are dissociable by mutation: rabO(A136D) hyphae show relatively normal secretion at 28°C but are completely blocked in autophagy. This finding and the lack of Golgi traffic involvement pointed to the ER as one potential source of membranes for autophagy. In agreement, autophagosomes form in close association with ring-shaped omegasome-like ER structures resembling those described in mammalian cells.
Collapse
Affiliation(s)
- Mario Pinar
- Centro de Investigaciones Biológicas (CSIC); Madrid, Spain
| | | | | |
Collapse
|
31
|
Zhou Y, Gao L, Shi H, Xia H, Gao L, Lian C, Chen L, Yao Q, Chen K, Liu X. Microarray analysis of gene expression profile in resistant and susceptible Bombyx mori strains reveals resistance-related genes to nucleopolyhedrovirus. Genomics 2013; 101:256-62. [PMID: 23434630 DOI: 10.1016/j.ygeno.2013.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 01/28/2023]
Abstract
To investigate the molecular mechanism of silkworm resistance to BmNPV infection, we constructed a near-isogenic line (BC8) with BmNPV resistance using highly resistant (NB) and highly susceptible parental strains (306). We investigated variations in the gene expression in the midguts of BmNPV-infected BC8 and 306 at 12 h pi using the microarray. 92 differentially expressed genes were identified. Real-time qPCR analysis confirmed that 10 genes were significantly up-regulated or down-regulated in the midguts of BC8 and NB compared to 306. To our knowledge, we first defined the role of the amino acid transporter and 26S proteasome in insect antiviral. However, serine protease was not completely consistent with data of reported previously in insect antiviral. The role of the 5 genes (Bm123, Bm122, COP β', aquaporin, glycoside hydrolases) was also demonstrated in insect antiviral. Our results provided new insights into the molecular mechanism of the Bombyx mori immune response against BmNPV infection.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Life Sciences, Jiangsu University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ibiricu I, Maurer UE, Grünewald K. Characterization of herpes simplex virus type 1 L-particle assembly and egress in hippocampal neurones by electron cryo-tomography. Cell Microbiol 2013; 15:285-91. [PMID: 23253400 PMCID: PMC3638362 DOI: 10.1111/cmi.12093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/21/2022]
Abstract
Visualizing virus-host interactions in situ inside infected cells by electron cryo-tomography provides unperturbed snapshots of the infection process. Here we focus on the assembly and egress pathway of herpesviruses. Cells infected with herpes simplex virus 1 produce and release not only infective virions but also non-infectious light particles (L-particles). L-particles are devoid of viral capsids and genomes. In this study, we analysed L-particle assembly and egress pathways in cultured dissociated hippocampus neurones by electron cryo-tomography. Virion and L-particle formation occurred in close proximity, suggesting shared assembly and exit pathways. Clathrin-like coats were occasionally associated with L-particle and virion assembly sites. Further, we compared the three-dimensional ultrastructure of intracellular and extracellular L-particles and quantified their diameters and the abundance of inclusion bodies contained.
Collapse
Affiliation(s)
- Iosune Ibiricu
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, D-82152, Germany
| | | | | |
Collapse
|
33
|
Rabaglino MB, Richards E, Denslow N, Keller-Wood M, Wood CE. Genomics of estradiol-3-sulfate action in the ovine fetal hypothalamus. Physiol Genomics 2012; 44:669-77. [PMID: 22570439 DOI: 10.1152/physiolgenomics.00127.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In fetal sheep during late gestation sulfoconjugated estrogens in plasma reach a concentration 40-100 times greater than unconjugated estrogens. The objective of the present study was to determine the genomics of estradiol-3-sulfate (E(2)S) action in the ovine fetal brain. The hypothesis was that E(2)S stimulates genes involved in the neuroendocrine pathways that direct or facilitate fetal development at the end of gestation. Four sets of chronically catheterized ovine twin fetuses were studied (gestational age: 120-127 days gestation) with one infused with E(2)S intracerebroventricularly (1 mg/day) and the other remaining untreated (control). After euthanasia, mRNA samples were extracted from fetal brains. Only hypothalamic samples were employed for this study given the important function of this brain region in the control of the hypothalamus-pituitary-adrenal axis. Microarray analysis was performed following the Agilent protocol for one-color 8 × 15 microarrays, designed for Ovis aries. A total of 363 known genes were significantly upregulated by the E(2)S treatment (P < 0.05). Network and enrichment analyses were performed using the Cytoscape/Bingo software, and the results validated by quantitative real-time PCR. The main overrepresented biological processes resulting from this analysis were feeding behavior, hypoxia response, and transforming growth factor signaling. Notably, the genes involved in the feeding behavior (neuropeptide Y and agouti-related protein) were the most strongly induced by the E(2)S treatment. In conclusion, E(2)S may be an important component of the mechanism for activating orexigenic, hypoxia responsiveness and neuroprotective pathways in the lamb as it approaches postnatal life.
Collapse
Affiliation(s)
- Maria Belen Rabaglino
- Department of Animal Sciences, University of Florida College of Agriculture and Life Sciences, Gainesville, Florida 32610-0274, USA
| | | | | | | | | |
Collapse
|
34
|
Klann M, Koeppl H, Reuss M. Spatial modeling of vesicle transport and the cytoskeleton: the challenge of hitting the right road. PLoS One 2012; 7:e29645. [PMID: 22253752 PMCID: PMC3257240 DOI: 10.1371/journal.pone.0029645] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/02/2011] [Indexed: 01/15/2023] Open
Abstract
The membrane trafficking machinery provides a transport and sorting system for many cellular proteins. We propose a mechanistic agent-based computer simulation to integrate and test the hypothesis of vesicle transport embedded into a detailed model cell. The method tracks both the number and location of the vesicles. Thus both the stochastic properties due to the low numbers and the spatial aspects are preserved. The underlying molecular interactions that control the vesicle actions are included in a multi-scale manner based on the model of Heinrich and Rapoport (2005). By adding motor proteins we can improve the recycling process of SNAREs and model cell polarization. Our model also predicts that coat molecules should have a high turnover at the compartment membranes, while the turnover of motor proteins has to be slow. The modular structure of the underlying model keeps it tractable despite the overall complexity of the vesicle system. We apply our model to receptor-mediated endocytosis and show how a polarized cytoskeleton structure leads to polarized distributions in the plasma membrane both of SNAREs and the Ste2p receptor in yeast. In addition, we can couple signal transduction and membrane trafficking steps in one simulation, which enables analyzing the effect of receptor-mediated endocytosis on signaling.
Collapse
Affiliation(s)
- Michael Klann
- Automatic Control Laboratory, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
35
|
Syntaxin 17 cycles between the ER and ERGIC and is required to maintain the architecture of ERGIC and Golgi. Biol Cell 2012; 103:333-50. [DOI: 10.1042/bc20110006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
|
37
|
Cureton DK, Burdeinick-Kerr R, Whelan SPJ. Genetic inactivation of COPI coatomer separately inhibits vesicular stomatitis virus entry and gene expression. J Virol 2012; 86:655-66. [PMID: 22072764 PMCID: PMC3255828 DOI: 10.1128/jvi.05810-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/26/2011] [Indexed: 11/20/2022] Open
Abstract
Viruses coopt cellular membrane transport to invade cells, establish intracellular sites of replication, and release progeny virions. Recent genome-wide RNA interference (RNAi) screens revealed that genetically divergent viruses require biosynthetic membrane transport by the COPI coatomer complex for efficient replication. Here we found that disrupting COPI function by RNAi inhibited an early stage of vesicular stomatitis virus (VSV) replication. To dissect which replication stage(s) was affected by coatomer inactivation, we used visual and biochemical assays to independently measure the efficiency of viral entry and gene expression in hamster (ldlF) cells depleted of the temperature-sensitive ε-COP subunit. We show that ε-COP depletion for 12 h caused a primary block to virus internalization and a secondary defect in viral gene expression. Using brefeldin A (BFA), a chemical inhibitor of COPI function, we demonstrate that short-term (1-h) BFA treatments inhibit VSV gene expression, while only long-term (12-h) treatments block virus entry. We conclude that prolonged coatomer inactivation perturbs cellular endocytic transport and thereby indirectly impairs VSV entry. Our results offer an explanation of why COPI coatomer is frequently identified in screens for cellular factors that support cell invasion by microbial pathogens.
Collapse
Affiliation(s)
- David K Cureton
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
38
|
|
39
|
RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and Cdc42. Mol Syst Biol 2011; 7:474. [PMID: 21407211 PMCID: PMC3094068 DOI: 10.1038/msb.2011.7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/03/2011] [Indexed: 01/08/2023] Open
Abstract
A genome wide RNAi screen identifies 72 host cell genes affecting S. Typhimurium entry, including actin regulators and COPI. This study implicates COPI-dependent cholesterol and sphingolipid localization as a common mechanism of infection by bacterial and viral pathogens. Genome-scale RNAi screen identifies 72 host genes affecting S. Typhimurium host cell invasion. Step-specific follow-up assays assign the phenotypes to specific steps of the invasion process. COPI effects on host cell binding, ruffling and invasion were traced to a key role of COPI in membrane targeting of cholesterol, sphingolipids, Rac1 and Cdc42. This new role of COPI explains why COPI is required for host cell infection by numerous bacterial and viral pathogens.
Pathogens are not only a menace to public health, but they also provide excellent tools for probing host cell function. Thus, studying infection mechanisms has fueled progress in cell biology (Ridley et al, 1992; Welch et al, 1997). In the presented study, we have performed an RNAi screen to identify host cell genes required for Salmonella host cell invasion. This screen identified proteins known to contribute to Salmonella-induced actin rearrangements (e.g., Cdc42 and the Arp2/3 complex; reviewed in Schlumberger and Hardt, 2006) and vesicular traffic (e.g., Rab7) as well as unexpected hits, such as the COPI complex. COPI is a known organizer of Golgi-to-ER vesicle transport (Bethune et al, 2006; Beck et al, 2009). Here, we show that COPI is also involved in plasma membrane targeting of cholesterol, sphingolipids and the Rho GTPases Cdc42 and Rac1, essential host cell factors required for Salmonella invasion. This explains why COPI depletion inhibits infection by S. Typhimurium and illustrates how combining bacterial pathogenesis and systems approaches can promote cell biology. Salmonella Typhimurium is a common food-borne pathogen and worldwide a major public health problem causing severe diarrhea. The pathogen uses the host's gut mucosa as a portal of entry and gut tissue invasion is a key event leading to the disease. This explains the intense interest from medicine and basic biology in the mechanism of Salmonella host cell invasion. Tissue culture infection models have delineated a sequence of events leading host cell invasion (Figure 1;Schlumberger and Hardt, 2006): (i) pathogen binding to the host cell surface; (ii) activation of a syringe-like apparatus (‘Type III secretion system 1', T1) of the bacterium and injection of a bacterial toxin cocktail into the host cell. These toxins include SopE, a key virulence factor triggering invasion (Hardt et al, 1998), which was analyzed in our study; (iii) toxin-triggered membrane ruffling. To a significant extent, this is facilitated by SopE-triggered activation of Cdc42 and Rac1 and subsequent actin polymerization at the site of infection; (iv) engulfment of the pathogen within a vesicular compartment (SCV) and (v) maturation of the SCV, a process driven by a second Type III secretion system (T2), which is expressed by the pathogen upon bacterial entry (Figure 1). This sequence of events mediates Salmonella invasion into the gut epithelium and illustrates that this pathogen can be used for probing mechanisms of host cell actin control, membrane biogenesis, vesicle formation and vesicular trafficking. SopE is a key virulence factor of invasion and triggers the activation of Cdc42 and Rac1 and subsequent actin polymerization at the site of infection. We have employed a SopE-expressing S. Typhimurium strain and RNAi screening technology to identify host cell factors affecting invasion. First, we developed an automated fluorescence microscopy assay to quantify S. Typhimurium entry in a high-throughput format (Figure 1C). This assay was based on a GFP reporter expressed by the pathogen after invasion and maturation of the SCV. Using this assay, we screened a ‘druggable genome' siRNA library (6978 genes, 3 oligos each, 1 oligo per well) and identified 72 invasion hits. These included established regulators of the actin cytoskeleton (Cdc42, Arp2/3, Nap1; Schlumberger and Hardt, 2006), some of which have not been implicated so far in Salmonella entry (Pfn1, Cap1), as well as proteins not previously thought to influence infection (Atp1a1, Rbx1, COPI complex). Potentially, these hits could affect any step of the invasion process (Figure 1A). In the second stage of the study, we have assigned each ‘invasion hit' to particular steps of the invasion process. For this purpose, we developed step-specific assays for Salmonella binding, injection, ruffling and membrane engulfment and re-screened the genes found as hits in the first screen (four siRNAs per gene). As expected, a significant number of ‘hits' affected binding to the host cell, others affected binding and ruffling (e.g., Pfn1, Itgβ5, Cap1), a few were specific for the ruffling step (e.g., Cdc42) and some affected SCV maturation, namely Rab7a, the trafficking protein Vps39 and the vacuolar proton pump Atp6ap2. Thus, our experimental strategy allowed mechanistic interpretation and linked novel hits to particular phenotypes, thus providing a basis for further studies (Figure 1). COPI depletion impaired effector injection and ruffling. This was surprising, as the COPI complex was known to regulate retrogade Golgi-to-ER transport, but was not expected to affect pathogen interactions at the plasma membrane. Therefore, we have investigated the underlying mechanism. We have observed that COPI depletion entailed dramatic changes in the plasma membrane composition (Figure 6). Cholesterol and sphingolipids, which form domains (‘lipid rafts') in the plasma membrane, were depleted from the cell surface and redirected into a large vesicular compartment. The same was true for the Rho GTPases Rac1 and Cdc42. This strong decrease in the amount of cholesterol-enriched microdomains and Rho GTPases in the plasma membrane explained the observed defects in S. Typhimurium host cell invasion and assigned a novel role for COPI in controlling mammalian plasma membrane composition. It should be noted that other viral and bacterial pathogens do show a similar dependency on host cellular COPI and plasma membrane lipids. This includes notorious pathogens such as Staphylococcus aureus (Ramet et al, 2002; Potrich et al, 2009), Listeria monocytogenes (Seveau et al, 2004; Agaisse et al, 2005; Cheng et al, 2005; Gekara et al, 2005), Mycobacterium tuberculosis (Munoz et al, 2009), Chlamydia trachomatis (Elwell et al, 2008), influenza virus (Hao et al, 2008; Konig et al, 2010), hepatitis C virus (Tai et al, 2009; Popescu and Dubuisson, 2010) and the vesicular stomatitis virus (presented study) and suggests that COPI-mediated control of host cell plasma membrane composition might be of broad importance for pathogenesis. Future work will have to address whether this might offer starting points for developing anti-infective therapeutics with a very broad spectrum of activity. The pathogen Salmonella Typhimurium is a common cause of diarrhea and invades the gut tissue by injecting a cocktail of virulence factors into epithelial cells, triggering actin rearrangements, membrane ruffling and pathogen entry. One of these factors is SopE, a G-nucleotide exchange factor for the host cellular Rho GTPases Rac1 and Cdc42. How SopE mediates cellular invasion is incompletely understood. Using genome-scale RNAi screening we identified 72 known and novel host cell proteins affecting SopE-mediated entry. Follow-up assays assigned these ‘hits' to particular steps of the invasion process; i.e., binding, effector injection, membrane ruffling, membrane closure and maturation of the Salmonella-containing vacuole. Depletion of the COPI complex revealed a unique effect on virulence factor injection and membrane ruffling. Both effects are attributable to mislocalization of cholesterol, sphingolipids, Rac1 and Cdc42 away from the plasma membrane into a large intracellular compartment. Equivalent results were obtained with the vesicular stomatitis virus. Therefore, COPI-facilitated maintenance of lipids may represent a novel, unifying mechanism essential for a wide range of pathogens, offering opportunities for designing new drugs.
Collapse
|
40
|
Defects in coatomer protein I (COPI) transport cause blood feeding-induced mortality in Yellow Fever mosquitoes. Proc Natl Acad Sci U S A 2011; 108:E211-7. [PMID: 21628559 DOI: 10.1073/pnas.1102637108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Blood feeding by vector mosquitoes provides the entry point for disease pathogens and presents an acute metabolic challenge that must be overcome to complete the gonotrophic cycle. Based on recent data showing that coatomer protein I (COPI) vesicle transport is involved in cellular processes beyond Golgi-endoplasmic reticulum retrograde protein trafficking, we disrupted COPI functions in the Yellow Fever mosquito Aedes aegypti to interfere with blood meal digestion. Surprisingly, we found that decreased expression of the γCOPI coatomer protein led to 89% mortality in blood-fed mosquitoes by 72 h postfeeding compared with 0% mortality in control dsRNA-injected blood-fed mosquitoes and 3% mortality in γCOPI dsRNA-injected sugar-fed mosquitoes. Similar results were obtained using dsRNA directed against five other COPI coatomer subunits (α, β, β', δ, and ζ). We also examined midgut tissues by EM, quantitated heme in fecal samples, and characterized feeding-induced protein expression in midgut, fat body, and ovary tissues of COPI-deficient mosquitoes. We found that COPI defects disrupt epithelial cell membrane integrity, stimulate premature blood meal excretion, and block induced expression of several midgut protease genes. To study the role of COPI transport in ovarian development, we injected γCOPI dsRNA after blood feeding and found that, although blood digestion was normal, follicles in these mosquitoes were significantly smaller by 48 h postinjection and lacked eggshell proteins. Together, these data show that COPI functions are critical to mosquito blood digestion and egg maturation, a finding that could also apply to other blood-feeding arthropod vectors.
Collapse
|
41
|
Schülein R, Westendorf C, Krause G, Rosenthal W. Functional significance of cleavable signal peptides of G protein-coupled receptors. Eur J Cell Biol 2011; 91:294-9. [PMID: 21543132 DOI: 10.1016/j.ejcb.2011.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 01/22/2023] Open
Abstract
About 5-10% of the G protein-coupled receptors (GPCRs) contain N-terminal signal peptides that are cleaved off by the signal peptidases of the endoplasmic reticulum (ER) during the translocon-mediated receptor insertion into the ER membrane. The reason as to why only a subset of the GPCRs requires these additional signal peptides was addressed in the past decade only by a limited number of studies. Recent progress suggests that signal peptides of GPCRs do not only serve the classical ER targeting and translocon gating functions as described for the signal peptides of secretory proteins. In the case of GPCRs, uncleaved pseudo signal peptides may regulate receptor expression at the plasma membrane and may also influence G protein coupling. Moreover, signal peptides of GPCRs seem to match functionally with sequences of the mature N tails. In this review, we summarize the current knowledge about cleavable signal peptides of GPCRs and address the question whether these sequences may be future drug targets in pharmacology.
Collapse
Affiliation(s)
- Ralf Schülein
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | | | | | | |
Collapse
|
42
|
Abstract
Pirh2 (p53-induced RING-H2) is an E3 ubiquitin ligase that can target p53 for degradation and thereby repress a diverse group of biological activities regulated by p53. Notably, Pirh2, rather than MDM2, is the primary degrader of active p53 under conditions of DNA damage. Moreover, Pirh2 is highly expressed in multiple cancer cell lines regardless of p53 status. Recent research has shown that Pirh2 is involved in many signalling pathways related to the genesis and evolution of cancer. This review aims to summarize a comprehensive picture of the role of Pirh2 in cellular processes and its significance to tumorigenesis. Furthermore, this review focuses on its potential role as a cancer therapeutic target.
Collapse
Affiliation(s)
- Zhihao Wang
- School of Medicine, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Hasegawa H, Liu L, Nishimura M. Dilysine retrieval signal-containing p24 proteins collaborate in inhibiting γ-cleavage of amyloid precursor protein. J Neurochem 2010; 115:771-81. [PMID: 20807314 DOI: 10.1111/j.1471-4159.2010.06977.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
γ-Secretase mediates intramembranous γ-cleavage and ε-cleavage of β-amyloid precursor protein (APP) to liberate β-amyloid peptide (Aβ) and APP intracellular domain respectively from the membrane. Although the regulatory mechanism of γ-secretase cleavage remains unresolved, a member of the p24 cargo protein family, named p24δ(1) or TMP21, has been identified as an activity-modulating component. The p24 family proteins are divided into four subfamilies (p24α, β, δ and γ). In contrast to p24δ(1), p24β(1) has reportedly no effect on γ-cleavage. In this study, we determined whether p24α(2), p24γ(3) or p24γ(4) modulates APP processing. Knockdown of cellular p24α(2) induced a significant increase in Aβ generation but not in APP intracellular domain production in cell-based and cell-free assays, whereas p24α(2) over-expression suppressed Aβ secretion. By contrast, Aβ secretion was not altered by p24γ(3) or p24γ(4) knockdown. Endogenous p24α(2) co-immunoprecipitated with core components of the γ-secretase complex, and the anti-p24α(2) immunoprecipitate exhibited γ-secretase activity. Mutational disruption of the conserved dilysine ER-retrieval motifs of p24α(2) and p24δ(1) perturbed inhibition of γ-cleavage. Simultaneous knockdown, or co-over-expression, of these proteins had no additive or synergistic effect on Aβ generation. Our findings suggest that dilysine ER-retrieval signal-containing p24 proteins, p24α(2) and p24δ(1), bind with γ-secretase complexes and collaborate in attenuating γ-cleavage of APP.
Collapse
Affiliation(s)
- Hiroshi Hasegawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | | | | |
Collapse
|
45
|
Zuo Y, Gao J, Yeung WSB, Lee KF. The testis-specific VAD1.3/AEP1 interacts with β-actin and syntaxin 1 and directs peri-nuclear/Golgi expression with bipartite nucleus localization (BNL) sequence. Biochem Biophys Res Commun 2010; 401:275-80. [PMID: 20850414 DOI: 10.1016/j.bbrc.2010.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 09/10/2010] [Indexed: 01/24/2023]
Abstract
VAD1.3 (AEP1), a novel testis-specific gene, was first isolated from the testis of a retinol-treated vitamin-A-deficient (VAD) rat model. It is expressed at the acrosomal region of spermatids from postnatal day 25. VAD1.3 immunoreactivity is present in rat, human, monkey and porcine spermatids and spermatozoa, suggesting that VAD1.3 may play a role in acrosome formation. However, direct evidence on the detailed sub-cellular localization of the VAD1.3 protein in the acrosome and how VAD1.3 is involved in acrosome formation remains largely unknown. Here, we isolated and identified VAD1.3 interacting proteins by immunoprecipitation followed by mass spectrometry, and determined the functional motifs of VAD1.3 that were important for its specific sub-cellular location in vitro. We found that VAD1.3 bound to syntaxin 1 and β-actin proteins in vitro. Immunogold electron microscopic study localized VAD1.3 immunoreactivity to the acrosome membranes and matrix, and colocalized it with the β-actin protein. The full-length GFP-VAD (1-3601) and GFP-VAD (1-730) fusion proteins that contain the bipartite nucleus localization (BNL) signal were located in the peri-nucleus/Golgi of the transfected cells. In addition, the GFP signal colocalized with the endoplasmic reticulum marker and the syntaxin 1 protein in the transfected HeLa and GC-2spd cells. The C-terminal GFP-VAD (1770-3601) was expressed in the nucleus. Taken together, VAD1.3 interacts with β-actin and syntaxin 1 in vitro. The BNL signal may mediate the peri-nuclei localization of the protein that may interact with syntaxin 1 and β-actin for acrosome formation in spermatogenesis.
Collapse
Affiliation(s)
- Yan Zuo
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | |
Collapse
|
46
|
Mathie A, Rees KA, El Hachmane MF, Veale EL. Trafficking of neuronal two pore domain potassium channels. Curr Neuropharmacol 2010; 8:276-86. [PMID: 21358977 PMCID: PMC3001220 DOI: 10.2174/157015910792246146] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/18/2010] [Accepted: 01/18/2010] [Indexed: 01/05/2023] Open
Abstract
The activity of two pore domain potassium (K2P) channels regulates neuronal excitability and cell firing. Post-translational regulation of K2P channel trafficking to the membrane controls the number of functional channels at the neuronal membrane affecting the functional properties of neurons. In this review, we describe the general features of K channel trafficking from the endoplasmic reticulum (ER) to the plasma membrane via the Golgi apparatus then focus on established regulatory mechanisms for K2P channel trafficking. We describe the regulation of trafficking of TASK channels from the ER or their retention within the ER and consider the competing hypotheses for the roles of the chaperone proteins 14-3-3, COP1 and p11 in these processes and where these proteins bind to TASK channels. We also describe the localisation of TREK channels to particular regions of the neuronal membrane and the involvement of the TREK channel binding partners AKAP150 and Mtap2 in this localisation. We describe the roles of other K2P channel binding partners including Arf6, EFA6 and SUMO for TWIK1 channels and Vpu for TASK1 channels. Finally, we consider the potential importance of K2P channel trafficking in a number of disease states such as neuropathic pain and cancer and the protection of neurons from ischemic damage. We suggest that a better understanding of the mechanisms and regulations that underpin the trafficking of K2P channels to the plasma membrane and to localised regions therein may considerably enhance the probability of future therapeutic advances in these areas.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, Universities of Kent and Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | | | | | | |
Collapse
|
47
|
Abstract
Estimates based on proteomic analyses indicate that a third of translated proteins in eukaryotic genomes enter the secretory pathway. After folding and assembly of nascent secretory proteins in the endoplasmic reticulum (ER), the coat protein complex II (COPII) selects folded cargo for export in membrane-bound vesicles. To accommodate the great diversity in secretory cargo, protein sorting receptors are required in a number of instances for efficient ER export. These transmembrane sorting receptors couple specific secretory cargo to COPII through interactions with both cargo and coat subunits. After incorporation into COPII transport vesicles, protein sorting receptors release bound cargo in pre-Golgi or Golgi compartments, and receptors are then recycled back to the ER for additional rounds of cargo export. Distinct types of protein sorting receptors that recognize carbohydrate and/or polypeptide signals in secretory cargo have been characterized. Our current understanding of the molecular mechanisms underlying cargo receptor function are described.
Collapse
Affiliation(s)
- Julia Dancourt
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
48
|
Xu X, Kedlaya R, Higuchi H, Ikeda S, Justice MJ, Setaluri V, Ikeda A. Mutation in archain 1, a subunit of COPI coatomer complex, causes diluted coat color and Purkinje cell degeneration. PLoS Genet 2010; 6:e1000956. [PMID: 20502676 PMCID: PMC2873907 DOI: 10.1371/journal.pgen.1000956] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 04/19/2010] [Indexed: 11/18/2022] Open
Abstract
Intracellular trafficking is critical for delivering molecules and organelles to their proper destinations to carry out normal cellular functions. Disruption of intracellular trafficking has been implicated in the pathogenesis of various neurodegenerative disorders. In addition, a number of genes involved in vesicle/organelle trafficking are also essential for pigmentation, and loss of those genes is often associated with mouse coat-color dilution and human hypopigmentary disorders. Hence, we postulated that screening for mouse mutants with both neurological defects and coat-color dilution will help identify additional factors associated with intracellular trafficking in neuronal cells. In this study, we characterized a mouse mutant with a unique N-ethyl-N-nitrosourea (ENU)-induced mutation, named nur17. nur17 mutant mice exhibit both coat-color dilution and ataxia due to Purkinje cell degeneration in the cerebellum. By positional cloning, we identified that the nur17 mouse carries a T-to-C missense mutation in archain 1 (Arcn1) gene which encodes the delta subunit of the coat protein I (COPI) complex required for intracellular trafficking. Consistent with this function, we found that intracellular trafficking is disrupted in nur17 melanocytes. Moreover, the nur17 mutation leads to common characteristics of neurodegenerative disorders such as abnormal protein accumulation, ER stress, and neurofibrillary tangles. Our study documents for the first time the physiological consequences of the impairment of the ARCN1 function in the whole animal and demonstrates a direct association between ARCN1 and neurodegeneration.
Collapse
Affiliation(s)
- Xinjie Xu
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Rajendra Kedlaya
- Department of Dermatology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Hitoshi Higuchi
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
49
|
Koegler E, Bonnon C, Waldmeier L, Mitrovic S, Halbeisen R, Hauri HP. p28, a novel ERGIC/cis Golgi protein, required for Golgi ribbon formation. Traffic 2010; 11:70-89. [PMID: 19948005 DOI: 10.1111/j.1600-0854.2009.01009.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mammalian Golgi apparatus consists of individual cisternae that are stacked in a polarized manner to form the compact zones of the Golgi. Several stacks are linked to form a ribbon via dynamic lateral bridges. The determinants required for maintaining the characteristic Golgi structure are incompletely understood. Here, we have characterized p28, a new gamma-subfamily member of p24 membrane proteins. p28 localized to endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and cis Golgi and accumulated in the ERGIC upon Brefeldin A treatment, typical for a protein cycling in the early secretory pathway. p28 interacted with a subset of p24 proteins. Its depletion by small interfering RNA (siRNA) led to fragmentation of the Golgi without affecting the overall organization of microtubules but considerably reducing the amount of acetylated tubulin. The distribution of COPI and tethers, including GM130, was not affected. At the ultrastructural level, the Golgi fragments appeared as mini-stacks with apparently unchanged cis-trans topology. Golgi fragmentation did not impair anterograde or retrograde traffic. Fluorescence recovery after photobleaching (FRAP) experiments revealed that silencing p28 prevents protein exchange between Golgi stacks during reassembly after Brefeldin A-induced Golgi breakdown. These results show that the formation of a Golgi ribbon requires the structural membrane protein p28 in addition to previously identified SNAREs, coat proteins and tethers.
Collapse
Affiliation(s)
- Eva Koegler
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
van der Vaart A, Griffith J, Reggiori F. Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol Biol Cell 2010; 6:800-1. [PMID: 20444982 PMCID: PMC2893990 DOI: 10.1091/mbc.e09-04-0345] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The delivery of proteins and organelles to the vacuole by autophagy involves membrane rearrangements that result in the formation of autophagosomes. We have investigated the role of the Golgi in autophagy and found that, in yeast, this organelle plays a crucial role in supplying lipid bilayers necessary for autophagosome biogenesis. The delivery of proteins and organelles to the vacuole by autophagy involves membrane rearrangements that result in the formation of large vesicles called autophagosomes. The mechanism underlying autophagosome biogenesis and the origin of the membranes composing these vesicles remains largely unclear. We have investigated the role of the Golgi complex in autophagy and have determined that in yeast, activation of ADP-ribosylation factor (Arf)1 and Arf2 GTPases by Sec7, Gea1, and Gea2 is essential for this catabolic process. The two main events catalyzed by these components, the biogenesis of COPI- and clathrin-coated vesicles, do not play a critical role in autophagy. Analysis of the sec7 strain under starvation conditions revealed that the autophagy machinery is correctly assembled and the precursor membrane cisterna of autophagosomes, the phagophore, is normally formed. However, the expansion of the phagophore into an autophagosome is severely impaired. Our data show that the Golgi complex plays a crucial role in supplying the lipid bilayers necessary for the biogenesis of double-membrane vesicles possibly through a new class of transport carriers or a new mechanism.
Collapse
Affiliation(s)
- Aniek van der Vaart
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | | | | |
Collapse
|