1
|
Li J, Xiong W, Yang J, Liao W, Gao Y, Chai J, Wu J, Liu S, Xu X. Characterization of the first antimicrobial peptide from Sea Seal with potent therapeutic effect in septic mice. Biochem Pharmacol 2025; 236:116891. [PMID: 40147802 DOI: 10.1016/j.bcp.2025.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/13/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Marine organisms are a valuable source of natural bioactive substances, and an increasing number of marine antimicrobial peptides as the potential alternative to antibiotics are being developed. Nonetheless, antimicrobial peptides from Antarctic mammals have not been reported heretofore. In this context, we identified a Cathelicidin antimicrobial peptide, Cath-LW (RLRDLIRRGRQKIGRRINRLGRRIQDILKNLQPGKVS), from the whole-genome database of Leptonychotes weddellii, an Antarctic mammal. Cath-LW was characterized to exhibit a typical α-helix structure and broad-spectrum antimicrobial activity. Furthermore, Cath-LW was found to exert its antibacterial effect by destroying cytomembrane, binding to bacterial genome, and inhibiting DNA function. Additionally, Cath-LW could neutralize lipopolysaccharide (LPS) and inhibit LPS-induced inflammatory responses. Interestingly, Cath-LW also showed anticoagulant activity and suppressed FeCl3-induced carotid thrombosis in mice. Finally, in septic mice, Cath-LW was demonstrated to improve the survival rate by effectively alleviating organ inflammation and damage, as well as thrombus formation. These findings not only deepen our understanding of the survival strategies of L. weddellii against microbial infections but also provide a crucial template for developing a novel multifunctional anti-sepsis drug.
Collapse
Affiliation(s)
- Jiali Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weichen Xiong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianxi Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weifei Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yihan Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xueqing Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Cheng KJ, Shastry S, Campolargo JD, Hallock MJ, Pogorelov TV. Charge, Hydrophobicity, and Lipid Type Drive Antimicrobial Peptides' Unique Perturbation Ensembles. Biochemistry 2025; 64:1484-1500. [PMID: 40105792 DOI: 10.1021/acs.biochem.4c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Antimicrobial peptides (AMPs) have emerged as a promising solution to the escalating public health threat caused by multidrug-resistant bacteria. Although ongoing research efforts have established AMP's role in membrane permeabilization and leakage, the precise mechanisms driving these disruption patterns remain unclear. We leverage molecular dynamics (MD) simulations enhanced by membrane mimetic (HMMM) to systematically investigate how the physiochemical properties of magainin (+3) and pexiganan (+9) affect their localization, insertion, curvature perturbation, and membrane binding ensemble. Building on existing microbiology, NMR, circular dichroism, and fluorescence data, our analysis reveals that the lipid makeup is a key determinant in the binding dynamics and structural conformation of AMPs. We find that phospholipid type is crucial for peptide localization, demonstrated through magainin's predominant interaction with lipid tails and pexiganan's with polar headgroups in POPC/POPS membranes. The membrane curvature changes induced by pexiganan relative to magainin suggest that AMPs with larger charges have more potential in modulating bilayer bending. These insights advance our understanding of AMP-membrane interactions at the molecular level, offering guidance for the design of targeted antimicrobial therapies.
Collapse
Affiliation(s)
- Kevin J Cheng
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shashank Shastry
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Juan David Campolargo
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael J Hallock
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Taras V Pogorelov
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- National Center for Supercomputer Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Beck K, Nandy J, Hoernke M. Strong Membrane Permeabilization Activity Can Reduce Selectivity of Cyclic Antimicrobial Peptides. J Phys Chem B 2025; 129:2446-2460. [PMID: 39969852 DOI: 10.1021/acs.jpcb.4c05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Selectivity is a key requirement for membrane-active antimicrobials to be viable in therapeutic contexts. Therefore, the rational design or suitable selection of new compounds requires adequate mechanistic understanding of peptide selectivity. In this study, we compare two similar cyclic peptides that differ only in the arrangement of their three hydrophobic tryptophan (W) and three positively charged arginine (R) residues, yet exhibit different selectivities. This family of peptides has previously been shown to target the cytoplasmic membrane of bacteria, but not to act directly by membrane permeabilization. We have systematically studied and compared the interactions of the two peptides with zwitterionic phosphatidylcholine (PC) and negatively charged phosphatidylglycerol/phosphatidylethanolamine (PG/PE) model membranes using various biophysical methods to elucidate the mechanism of the selectivity. Like many antimicrobial peptides, the cyclic, cationic hexapeptides investigated here bind more efficiently to negatively charged membranes than to zwitterionic ones. Consequently, the two peptides induce vesicle leakage, changes in lipid packing, vesicle aggregation, and vesicle fusion predominantly in binary, negatively charged PG/PE membranes. The peptide with the larger hydrophobic molecular surface (three adjacent W residues) causes all these investigated effects more efficiently. In particular, it induces leakage by asymmetry stress and/or leaky fusion in zwitterionic and charged membranes, which may contribute to high activity but reduces selectivity. The unselective type of leakage appears to be driven by the more pronounced insertion into the lipid layer, facilitated by the larger hydrophobic surface of the peptide. Therefore, avoiding local accumulation of hydrophobic residues might improve the selectivity of future membrane-active compounds.
Collapse
Affiliation(s)
- Katharina Beck
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
- Experimental Physics I, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Janina Nandy
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Maria Hoernke
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Physical Chemistry, Martin-Luther-Universität, 06120 Halle (S.), Germany
| |
Collapse
|
4
|
Kumar G. Natural peptides and their synthetic congeners acting against Acinetobacter baumannii through the membrane and cell wall: latest progress. RSC Med Chem 2025; 16:561-604. [PMID: 39664362 PMCID: PMC11629675 DOI: 10.1039/d4md00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Acinetobacter baumannii is one of the deadliest Gram-negative bacteria (GNB), responsible for 2-10% of hospital-acquired infections. Several antibiotics are used to control the growth of A. baumannii. However, in recent decades, the abuse and misuse of antibiotics to treat non-microbial diseases have led to the emergence of multidrug-resistant A. baumannii strains. A. baumannii possesses a complex cell wall structure. Cell wall-targeting agents remain the center of antibiotic drug discovery. Notably, the antibacterial drug discovery intends to target the membrane of the bacteria, offering several advantages over antibiotics targeting intracellular systems, as membrane-targeting agents do not have to travel through the plasma membrane to reach the cytoplasmic targets. Microorganisms, insects, and mammals produce antimicrobial peptides as their first line of defense to protect themselves from pathogens and predators. Importantly, antimicrobial peptides are considered potential alternatives to antibiotics. This communication summarises the recently identified peptides of natural origin and their synthetic congeners acting against the A. baumannii membrane by cell wall disruption.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
5
|
Tian C, Liu X, Hao Y, Fu H, Shao X, Cai W. Flexible Tail of Antimicrobial Peptide PGLa Facilitates Water Pore Formation in Membranes. J Phys Chem B 2025; 129:1453-1461. [PMID: 39847609 DOI: 10.1021/acs.jpcb.4c06190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
PGLa, an antimicrobial peptide (AMP), primarily exerts its antibacterial effects by disrupting bacterial cell membrane integrity. Previous theoretical studies mainly focused on the binding mechanism of PGLa with membranes, while the mechanism of water pore formation induced by PGLa peptides, especially the role of structural flexibility in the process, remains unclear. In this study, using all-atom simulations, we investigated the entire process of membrane deformation caused by the interaction of PGLa with an anionic cell membrane composed of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG). Using a deep learning-based key intermediate identification algorithm, we found that the C-terminal tail plays a crucial role for PGLa insertion into the membrane, and that with its assistance, a variety of water pores formed inside the membrane. Mutation of the tail residues revealed that, in addition to electrostatic and hydrophobic interactions, the flexibility of the tail residues is crucial for peptide insertion and pore formation. The full extension of these flexible residues enhances peptide-peptide and peptide-membrane interactions, guiding the transmembrane movement of PGLa and the aggregation of PGLa monomers within the membrane, ultimately leading to the formation of water-filled pores in the membrane. Overall, this study provides a deep understanding of the transmembrane mechanism of PGLa and similar AMPs, particularly elucidating for the first time the importance of C-terminal flexibility in both insertion and oligomerization processes.
Collapse
Affiliation(s)
- Chunsuo Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuyang Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuelei Hao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haohao Fu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
6
|
Matheus GG, Chamoun MN, Khosrotehrani K, Sivakumaran Y, Wells TJ. Understanding the pathophysiology of Pseudomonas aeruginosa colonization as a guide for future treatment for chronic leg ulcers. BURNS & TRAUMA 2025; 13:tkae083. [PMID: 39830194 PMCID: PMC11741523 DOI: 10.1093/burnst/tkae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025]
Abstract
Chronic leg wounds represent a major burden of disease worldwide, costing health care systems billions of dollars each year. Aside from the financial implications, they also impose a significant physical and psychosocial burden on the patient, their relatives and/or carers, and the community. Whilst measures such as maintenance of wound hygiene, debridement, dressings and compression are the current standard of care, complete healing is not always achievable and ulcer recurrence is common. Thus, there is still a gap to breach in terms of understanding the intricate pathophysiology of chronic wounds and the role this plays on treatment and management. Pseudomonas aeruginosa has been linked to poor wound healing, with the pathogen being frequently isolated from chronic leg ulcers. Characterized by its multi-drug resistance, targeting P. aeruginosa requires the development of novel therapeutic options. Thus, the aim of this literature review is to describe the pathophysiology of P. aeruginosa in chronic leg ulcers and discuss novel treatment strategies. Here, we describe the key molecular mechanisms driving the observed clinical effect of P. aeruginosa on wounds and discuss novel strategies of molecular targeting of this common bacteria, establishing new approaches that could benefit patients with chronic hard to heal wounds.
Collapse
Affiliation(s)
- Gabriela Gonzalez Matheus
- Frazer Institute, The University of Queensland, Brisbane, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Australia
| | | | - Kiarash Khosrotehrani
- Frazer Institute, The University of Queensland, Brisbane, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Australia
| | - Yogeesan Sivakumaran
- Department of Vascular Surgery, Princess Alexandra Hospital, Brisbane, Australia
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Mann K, Aveyard J, Dallos Ortega M, Chen T, Koduri MP, Fothergill JL, Schache AG, Curran JM, Poole RJ, D'Sa RA. Gelatin emulsion gels loaded with host defence peptides for the treatment of antibiotic-resistant infections. BIOMATERIALS ADVANCES 2025; 166:214071. [PMID: 39426177 DOI: 10.1016/j.bioadv.2024.214071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The surge in multidrug-resistant bacteria against conventional antibiotics is a rapidly developing global health crisis necessitating novel infection management strategies. Host defence peptides (HDPs), also known as antimicrobial peptides (AMPs), offer a promising alternative to traditional antibiotics, but their practical translation is limited by their susceptibility to proteases and potential off-site cytotoxicity. In this paper, we investigate the feasibility of using gelatin emulsion gels (GELs), prepared using a water-in-oil (W/O) method, for the delivery of HDPs DJK-5 and IDR-1018 to improve their clinical utility. DJK-5-loaded GELs exhibited complete eradication of planktonic Methicillin-resistant Staphylococcus aureus (MRSA) at 4 - and 24-h intervals. Similarly, IDR-1018-loaded GELs demonstrated almost complete killing of MRSA and Escherichia coli (E. coli) after 4 h. Importantly, none of the GEL formulations investigated exhibited in vitro cytotoxicity. Overall, these HDP loaded GELs are a promising solution for the treatment of antibiotic-resistant infections.
Collapse
Affiliation(s)
- Kiran Mann
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Jenny Aveyard
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Mateo Dallos Ortega
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Ting Chen
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Manohar Prasad Koduri
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, United Kingdom
| | - Andrew G Schache
- Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7BE, United Kingdom
| | - Judith M Curran
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Robert J Poole
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Raechelle A D'Sa
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom.
| |
Collapse
|
8
|
Prusty JS, Kumar A, Kumar A. Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis. Crit Rev Microbiol 2024:1-37. [PMID: 39440616 DOI: 10.1080/1040841x.2024.2418125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Candida infections, particularly invasive candidiasis, pose a serious global health threat. Candida albicans is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by Candida species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
9
|
Li Y, Gong H, Gan T, Ma X, Geng Q, Yin S, Zhang H, Wu Y. Smart Hydrogel Dressing Enhances the Healing of Chronic Infectious Diabetic Wounds through Dual-Barrier Drug Delivery Action. Biomacromolecules 2024; 25:6814-6829. [PMID: 39235955 DOI: 10.1021/acs.biomac.4c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Chronic diabetic wounds struggle to heal due to drug-resistant bacterial infections, oxidative stress microenvironment, and immune dysfunction. At present, the disease has become a huge clinical challenge. Multifunctional hydrogels with antibacterial, antioxidant, and anti-inflammatory properties are becoming an emerging trend in the treatment of chronic wounds. However, matching different bioactive functions with the wound healing process to sequentially exert antibacterial, antioxidant, anti-inflammatory, and immunomodulatory functions remains a significant challenge. In this research, a hydrogel dressing with bactericidal and anti-inflammatory properties was synthesized by crafting a pH/ROS-responsive scaffold from phenylboronic acid-grafted hyaluronic acid (HA-PBA) and 4-arm-PEG-dopamine (4A-PEG-Dopa), employing dynamic borate ester bonds. This structure was then infused with the antimicrobial peptide (AMP) and ROS-sensitive micelle mPEG-TK-PLGA loaded with quercetin (QC). This dressing embodied a dual-barrier drug delivery mechanism, engineered for the prolonged and consistent liberation of QC. In the experiment, the hydrogel dissociated within the acidic microenvironment of diabetic wounds, thereby liberating the encapsulated micelles and AMP. Upon further dissociation, the micelles release QC due to the ROS-abundant microenvironment, which could relieve oxidative stress and encourage M2 polarization of macrophage via the Akt/STAT6 signaling pathway. Therefore, this smart delivery system, developed through our innovative approach, holds promise for treating chronic infectious diabetic wounds.
Collapse
Affiliation(s)
- Yaxing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Heng Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tingjiang Gan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Ma
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qirui Geng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shijiu Yin
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
10
|
Asghari Baghkheirati A, Golmohammadi R, Sekhavati MH, Razmyar J, Abyazi MA. Recombinant Antimicrobial Peptides (rAMPs); Potential Applications in Medicine and Veterinary Medicine: A Review. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3913. [PMID: 40225299 PMCID: PMC11993234 DOI: 10.30498/ijb.2024.455700.3913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/30/2024] [Indexed: 04/15/2025]
Abstract
Antibiotic resistance has become a major public health concern worldwide. Treatment of humans and animals is becoming increasingly challenging due to antibiotic resistance. Antibiotic-resistant bacteria can be transmitted from animals to humans by several routes, including direct contact, contaminated food or water, or environmental exposure. Various factors contribute to the rising problem, such as the widespread and indiscriminate exploitation of antimicrobials in both human and animal healthcare, over-prescription, misuse of antibiotics, the role of agriculture in spreading antibiotic resistance, and poor animal husbandry practices. According to the preliminary findings, recombinant antimicrobial peptides are an interesting novel area of biotechnology and medical innovation that might be employed as a secure and effective substitute for antibiotics. In this review study, we briefly examine the factors contributing to the rise of antibiotic resistance. We then introduce and discuss recombinant antimicrobial peptides as a promising strategy to address this growing problem.
Collapse
Affiliation(s)
- Amir Asghari Baghkheirati
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Avian Health and Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Golmohammadi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Sekhavati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jamshid Razmyar
- Department of Avian Health and Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Ali Abyazi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Volovik MV, Batishchev OV. Membrane Activity of Melittin and Magainin-I at Low Peptide-to-Lipid Ratio: Different Types of Pores and Translocation Mechanisms. Biomolecules 2024; 14:1118. [PMID: 39334885 PMCID: PMC11430820 DOI: 10.3390/biom14091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial peptides (AMPs) are believed to be a prominent alternative to the common antibiotics. However, despite decades of research, there are still no good clinical examples of peptide-based antimicrobial drugs for system application. The main reasons are loss of activity in the human body, cytotoxicity, and low selectivity. To overcome these challenges, a well-established structure-function relationship for AMPs is critical. In the present study, we focused on the well-known examples of melittin and magainin to investigate in detail the initial stages of AMP interaction with lipid membranes at low peptide-to-lipid ratio. By combining the patch-clamp technique with the bioelectrochemical method of intramembrane field compensation, we showed that these peptides interact with the membrane in different ways: melittin inserts deeper into the lipid bilayer than magainin. This difference led to diversity in pore formation. While magainin, after a threshold concentration, formed the well-known toroidal pores, allowing the translocation of the peptide through the membrane, melittin probably induced predominantly pure lipidic pores with a very low rate of peptide translocation. Thus, our results shed light on the early stages of peptide-membrane interactions and suggest new insights into the structure-function relationship of AMPs based on the depth of their membrane insertion.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
12
|
Deb R, Torres MDT, Boudný M, Koběrská M, Cappiello F, Popper M, Dvořáková
Bendová K, Drabinová M, Hanáčková A, Jeannot K, Petřík M, Mangoni ML, Balíková Novotná G, Mráz M, de la Fuente-Nunez C, Vácha R. Computational Design of Pore-Forming Peptides with Potent Antimicrobial and Anticancer Activities. J Med Chem 2024; 67:14040-14061. [PMID: 39116273 PMCID: PMC11345766 DOI: 10.1021/acs.jmedchem.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Peptides that form transmembrane barrel-stave pores are potential alternative therapeutics for bacterial infections and cancer. However, their optimization for clinical translation is hampered by a lack of sequence-function understanding. Recently, we have de novo designed the first synthetic barrel-stave pore-forming antimicrobial peptide with an identified function of all residues. Here, we systematically mutate the peptide to improve pore-forming ability in anticipation of enhanced activity. Using computer simulations, supported by liposome leakage and atomic force microscopy experiments, we find that pore-forming ability, while critical, is not the limiting factor for improving activity in the submicromolar range. Affinity for bacterial and cancer cell membranes needs to be optimized simultaneously. Optimized peptides more effectively killed antibiotic-resistant ESKAPEE bacteria at submicromolar concentrations, showing low cytotoxicity to human cells and skin model. Peptides showed systemic anti-infective activity in a preclinical mouse model of Acinetobacter baumannii infection. We also demonstrate peptide optimization for pH-dependent antimicrobial and anticancer activity.
Collapse
Affiliation(s)
- Rahul Deb
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Marcelo D. T. Torres
- Machine
Biology Group, Departments of Psychiatry and Microbiology, Institute
for Biomedical Informatics, Institute for Translational Medicine and
Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute for Computational Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Miroslav Boudný
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department
of Internal Medicine, Hematology and Oncology, University Hospital
Brno and Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Markéta Koběrská
- Institute
of Microbiology, Czech Academy of Sciences,
BIOCEV, Vestec 252 50, Czech Republic
| | - Floriana Cappiello
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | - Miroslav Popper
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
| | - Kateřina Dvořáková
Bendová
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
| | - Martina Drabinová
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Adelheid Hanáčková
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Katy Jeannot
- University
of Franche-Comté, CNRS, Chrono-environment, Besançon 25030, France
- National Reference Centre for Antibiotic
Resistance, Besançon 25030, France
| | - Miloš Petřík
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Czech
Advanced Technology and Research Institute, Palacký University, Olomouc 779 00, Czech Republic
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | | | - Marek Mráz
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department
of Internal Medicine, Hematology and Oncology, University Hospital
Brno and Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Cesar de la Fuente-Nunez
- Machine
Biology Group, Departments of Psychiatry and Microbiology, Institute
for Biomedical Informatics, Institute for Translational Medicine and
Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute for Computational Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert Vácha
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- Department
of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic
| |
Collapse
|
13
|
Groover KE, Randall JR, Davies BW. Development of a Selective and Stable Antimicrobial Peptide. ACS Infect Dis 2024; 10:2151-2160. [PMID: 38712889 PMCID: PMC11185160 DOI: 10.1021/acsinfecdis.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
Antimicrobial peptides (AMPs) are presented as potential scaffolds for antibiotic development due to their desirable qualities including broad-spectrum activity, rapid action, and general lack of susceptibility to current resistance mechanisms. However, they often lose antibacterial activity under physiological conditions and/or display mammalian cell toxicity, which limits their potential use. Identification of AMPs that overcome these barriers will help develop rules for how this antibacterial class can be developed to treat infection. Here we describe the development of our novel synthetic AMP, from discovery through in vivo application. Our evolved AMP, DTr18-dab, has broad-spectrum antibacterial activity and is nonhemolytic. It is active against planktonic bacteria and biofilm, is unaffected by colistin resistance, and importantly is active in both human serum and a Galleria mellonella infection model. Several modifications, including the incorporation of noncanonical amino acids, were used to arrive at this robust sequence. We observed that the impact on antibacterial activity with noncanonical amino acids was dependent on assay conditions and therefore not entirely predictable. Overall, our results demonstrate how a relatively weak lead can be developed into a robust AMP with qualities important for potential therapeutic translation.
Collapse
Affiliation(s)
- Kyra E. Groover
- Department
of Molecular Biosciences, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Justin R. Randall
- Department
of Molecular Biosciences, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Bryan W. Davies
- Department
of Molecular Biosciences, The University
of Texas at Austin, Austin, Texas 78712, United States
- John
Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Lohan S, Konshina AG, Tiwari RK, Efremov RG, Maslennikov I, Parang K. Broad-spectrum activity of membranolytic cationic macrocyclic peptides against multi-drug resistant bacteria and fungi. Eur J Pharm Sci 2024; 197:106776. [PMID: 38663759 DOI: 10.1016/j.ejps.2024.106776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/17/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
The emergence of multidrug-resistant (MDR) strains causes severe problems in the treatment of microbial infections owing to limited treatment options. Antimicrobial peptides (AMPs) are drawing considerable attention as promising antibiotic alternative candidates to combat MDR bacterial and fungal infections. Herein, we present a series of small amphiphilic membrane-active cyclic peptides composed, in part, of various nongenetically encoded hydrophilic and hydrophobic amino acids. Notably, lead cyclic peptides 3b and 4b showed broad-spectrum activity against drug-resistant Gram-positive (MIC = 1.5-6.2 µg/mL) and Gram-negative (MIC = 12.5-25 µg/mL) bacteria, and fungi (MIC = 3.1-12.5 µg/mL). Furthermore, lead peptides displayed substantial antibiofilm action comparable to standard antibiotics. Hemolysis (HC50 = 230 µg/mL) and cytotoxicity (>70 % cell viability against four different mammalian cells at 100 µg/mL) assay results demonstrated the selective lethal action of 3b against microbes over mammalian cells. A calcein dye leakage experiment substantiated the membranolytic effect of 3b and 4b, which was further confirmed by scanning electron microscopy. The behavior of 3b and 4b in aqueous solution and interaction with phospholipid bilayers were assessed by employing nuclear magnetic resonance (NMR) spectroscopy in conjunction with molecular dynamics (MD) simulations, providing a solid structural basis for understanding their membranolytic action. Moreover, 3b exhibited stability in human blood plasma (t1/2 = 13 h) and demonstrated no signs of resistance development against antibiotic-resistant S. aureus and E. coli. These findings underscore the potential of these newly designed amphiphilic cyclic peptides as promising anti-infective agents, especially against Gram-positive bacteria.
Collapse
Affiliation(s)
- Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Rd, Irvine, CA 92618, United States; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA 92617, United States
| | - Anastasia G Konshina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russia
| | - Rakesh K Tiwari
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR 97355, United States
| | - Roman G Efremov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russia; National Research University Higher School of Economics, Myasnitskaya ul. 20, Moscow, 101000, Russia
| | - Innokentiy Maslennikov
- Structural Biology Research Center, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Rd., Irvine, CA 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Rd, Irvine, CA 92618, United States.
| |
Collapse
|
15
|
Li Y, Wu M, Fu Y, Xue J, Yuan F, Qu T, Rissanou AN, Wang Y, Li X, Hu H. Therapeutic stapled peptides: Efficacy and molecular targets. Pharmacol Res 2024; 203:107137. [PMID: 38522761 DOI: 10.1016/j.phrs.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.
Collapse
Affiliation(s)
- Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Minghao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Yuan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tianci Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anastassia N Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
16
|
Blomstrand E, Posch E, Stepulane A, Rajasekharan AK, Andersson M. Antibacterial and Hemolytic Activity of Antimicrobial Hydrogels Utilizing Immobilized Antimicrobial Peptides. Int J Mol Sci 2024; 25:4200. [PMID: 38673786 PMCID: PMC11050424 DOI: 10.3390/ijms25084200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are viewed as potential compounds for the treatment of bacterial infections. Nevertheless, the successful translation of AMPs into clinical applications has been impeded primarily due to their low stability in biological environments and potential toxicological concerns at higher concentrations. The covalent attachment of AMPs to a material's surface has been sought to improve their stability. However, it is still an open question what is required to best perform such an attachment and the role of the support. In this work, six different AMPs were covalently attached to a long-ranged ordered amphiphilic hydrogel, with their antibacterial efficacy evaluated and compared to their performance when free in solution. Among the tested AMPs were four different versions of synthetic end-tagged AMPs where the sequence was altered to change the cationic residue as well as to vary the degree of hydrophobicity. Two previously well-studied AMPs, Piscidin 1 and Omiganan, were also included as comparisons. The antibacterial efficacy against Staphylococcus aureus remained largely consistent between free AMPs and those attached to surfaces. However, the activity pattern against Pseudomonas aeruginosa on hydrogel surfaces displayed a marked contrast to that observed in the solution. Additionally, all the AMPs showed varying degrees of hemolytic activity when in solution. This activity was entirely diminished, and all the AMPs were non-hemolytic when attached to the hydrogels.
Collapse
Affiliation(s)
- Edvin Blomstrand
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Göteborg, Sweden; (E.B.); (E.P.); (A.S.)
- Amferia AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden;
| | - Elin Posch
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Göteborg, Sweden; (E.B.); (E.P.); (A.S.)
- Amferia AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden;
| | - Annija Stepulane
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Göteborg, Sweden; (E.B.); (E.P.); (A.S.)
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), SE-405 30 Gothenburg, Sweden
| | - Anand K. Rajasekharan
- Amferia AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden;
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Göteborg, Sweden; (E.B.); (E.P.); (A.S.)
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), SE-405 30 Gothenburg, Sweden
| |
Collapse
|
17
|
Ostan NKH, Cole GB, Wang FZ, Reichheld SE, Moore G, Pan C, Yu R, Lai CCL, Sharpe S, Lee HO, Schryvers AB, Moraes TF. A secreted bacterial protein protects bacteria from cationic antimicrobial peptides by entrapment in phase-separated droplets. PNAS NEXUS 2024; 3:pgae139. [PMID: 38633880 PMCID: PMC11022072 DOI: 10.1093/pnasnexus/pgae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Mammalian hosts combat bacterial infections through the production of defensive cationic antimicrobial peptides (CAPs). These immune factors are capable of directly killing bacterial invaders; however, many pathogens have evolved resistance evasion mechanisms such as cell surface modification, CAP sequestration, degradation, or efflux. We have discovered that several pathogenic and commensal proteobacteria, including the urgent human threat Neisseria gonorrhoeae, secrete a protein (lactoferrin-binding protein B, LbpB) that contains a low-complexity anionic domain capable of inhibiting the antimicrobial activity of host CAPs. This study focuses on a cattle pathogen, Moraxella bovis, that expresses the largest anionic domain of the LbpB homologs. We used an exhaustive biophysical approach employing circular dichroism, biolayer interferometry, cross-linking mass spectrometry, microscopy, size-exclusion chromatography with multi-angle light scattering coupled to small-angle X-ray scattering (SEC-MALS-SAXS), and NMR to understand the mechanisms of LbpB-mediated protection against CAPs. We found that the anionic domain of this LbpB displays an α-helical secondary structure but lacks a rigid tertiary fold. The addition of antimicrobial peptides derived from lactoferrin (i.e. lactoferricin) to the anionic domain of LbpB or full-length LbpB results in the formation of phase-separated droplets of LbpB together with the antimicrobial peptides. The droplets displayed a low rate of diffusion, suggesting that CAPs become trapped inside and are no longer able to kill bacteria. Our data suggest that pathogens, like M. bovis, leverage anionic intrinsically disordered domains for the broad recognition and neutralization of antimicrobials via the formation of biomolecular condensates.
Collapse
Affiliation(s)
- Nicholas K H Ostan
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gregory B Cole
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Flora Zhiqi Wang
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sean E Reichheld
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chuxi Pan
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ronghua Yu
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Simon Sharpe
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
18
|
Sarkar S, Kumari A, Tiwari M, Tiwari V. Interaction and simulation studies suggest the possible molecular targets of intrinsically disordered amyloidogenic antimicrobial peptides in Acinetobacter baumannii. J Biomol Struct Dyn 2024; 42:2747-2764. [PMID: 37144752 DOI: 10.1080/07391102.2023.2208219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Acinetobacter baumannii is one of the causing agents of nosocomial infections. A wide range of antibiotics fails to work against these pathogens. Hence, there is an urgent requirement to develop other therapeutics to solve this problem. Antimicrobial peptides (AMPs) are a diverse group of naturally occurring peptides that have the ability to kill diverse groups of microorganisms. The major challenge of using AMPs as therapeutics is their unstable nature and the fact that most of their molecular targets are still unknown. In this study, we have selected intrinsically disordered and amyloidogenic AMPs, showing activity against A. baumannii, that is, Bactenecin, Cath BF, Citropin 1.1, DP7, NA-CATH, Tachyplesin, and WAM-1. To identify the probable target of these AMPs in A. baumannii, calculation of docking score, binding energy, dissociation constant, and molecular dynamics analysis was performed with selected seventeen possible molecular targets. The result showed that the most probable molecular targets of most of the intrinsically disordered amyloidogenic AMPs were UDP-N-acetylenol-pyruvoyl-glucosamine reductase (MurB), followed by 33-36 kDa outer membrane protein (Omp 33-36), UDP-N-acetylmuramoyl-l-alanyl-d-glutamate-2,6-diaminopimelate ligase (MurE), and porin Subfamily Protein (PorinSubF). Further, molecular dynamics analysis concluded that the target of antimicrobial peptide Bactenecin is MurB of A. baumannii, and identified other molecular targets of selected AMPs. Additionally, the oligomerization capacity of the selected AMPs was also investigated, and it was shown that the selected AMPs form oligomeric states, and interact with their molecular targets in that state. Experimental validation using purified AMPs and molecular targets needs to be done to confirm the interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sayani Sarkar
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Aruna Kumari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
19
|
Huang PW, Liou CY, Lee YC, Wei TY, Ho HC, Yang TY, Wang LC. The Evaluation of Teleost-Derived Antimicrobial Peptides Against Neisseria gonorrhoeae. Cureus 2024; 16:e57168. [PMID: 38681331 PMCID: PMC11056026 DOI: 10.7759/cureus.57168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Gonorrhea has become an emerging sexually transmitted infection worldwide. The multi-antibiotic resistance facilitates the transmission; thus, new antibiotics or alternatives are needed. Antimicrobial peptides (AMP) are antimicrobials naturally secreted by the host as a defense material. Teleost-derived AMP have gained attention over the past two decades due to their potent efficacy toward microorganisms. This study examines teleost-derived AMP against Neisseria gonorrhoeae (GC), the responsible bacteria for gonorrhea, to evaluate the antibiotic potential as a future alternative for preventing gonorrhea. Methods Minimal inhibitory concentration (MIC) and time-killed assay were conducted to evaluate the inhibition concentration of each AMP. Transmission electron microscopy was used to confirm the potential mode of action. The inhibition of microcolony formation and adherence to epithelial cells were examined to assess the infection inhibition. Results Pardaxin-based (flatfish pardaxin {PB2}) and piscidin-based (striped bass piscidin 1 {PIS} and tilapia piscidin {TP} 4) AMP were effective toward GC under or equal to 7.5 μg/mL as of minimal inhibitory concentration. Transmission electron microscopy images revealed that these AMP attack bacterial membranes as membrane blebbing and breakage were observed. These AMP also effectively reduced the GC biofilm formation, as well as their adherence to human endocervical epithelial cells. Conclusion Pardaxin-based (PB2) and piscidin-based (PIS and TP4) teleost-derived AMP can inhibit GC and potentially serve as the new antibiotic alternative for preventing GC colonization and infection. This study will shed some light on the future development of teleost-derived AMP in treating gonorrhea and maintaining reproductive health.
Collapse
Affiliation(s)
- Po-Wei Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
- Division of Urology, Department of Surgery, Zuoying Armed Forces General Hospital, Kaohsiung, TWN
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Kaohsiung, TWN
- Center of General Education, Shu-Zen Junior College of Medicine and Management, Kaohsiung, TWN
| | - Chung-Yi Liou
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
| | - Ying-Chen Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
| | - Tzu-Yu Wei
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, TWN
| | - Tsung-Ying Yang
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung, TWN
| | - Liang-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
| |
Collapse
|
20
|
Surekha S, Lamiyan AK, Gupta V. Antibiotic Resistant Biofilms and the Quest for Novel Therapeutic Strategies. Indian J Microbiol 2024; 64:20-35. [PMID: 38468748 PMCID: PMC10924852 DOI: 10.1007/s12088-023-01138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/03/2023] [Indexed: 03/13/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the major leading causes of death around the globe. Present treatment pipelines are insufficient to overcome the critical situation. Prominent biofilm forming human pathogens which can thrive in infection sites using adaptive features results in biofilm persistence. Considering the present scenario, prudential investigations into the mechanisms of resistance target them to improve antibiotic efficacy is required. Regarding this, developing newer and effective treatment options using edge cutting technologies in medical research is the need of time. The reasons underlying the adaptive features in biofilm persistence have been centred on different metabolic and physiological aspects. The high tolerance levels against antibiotics direct researchers to search for novel bioactive molecules that can help combat the problem. In view of this, the present review outlines the focuses on an opportunity of different strategies which are in testing pipeline can thus be developed into products ready to use.
Collapse
Affiliation(s)
- Saumya Surekha
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | - Varsha Gupta
- GMCH: Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
21
|
Tsai CT, Lin CW, Ye GL, Wu SC, Yao P, Lin CT, Wan L, Tsai HHG. Accelerating Antimicrobial Peptide Discovery for WHO Priority Pathogens through Predictive and Interpretable Machine Learning Models. ACS OMEGA 2024; 9:9357-9374. [PMID: 38434814 PMCID: PMC10905719 DOI: 10.1021/acsomega.3c08676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024]
Abstract
The escalating menace of multidrug-resistant (MDR) pathogens necessitates a paradigm shift from conventional antibiotics to innovative alternatives. Antimicrobial peptides (AMPs) emerge as a compelling contender in this arena. Employing in silico methodologies, we can usher in a new era of AMP discovery, streamlining the identification process from vast candidate sequences, thereby optimizing laboratory screening expenditures. Here, we unveil cutting-edge machine learning (ML) models that are both predictive and interpretable, tailored for the identification of potent AMPs targeting World Health Organization's (WHO) high-priority pathogens. Furthermore, we have developed ML models that consider the hemolysis of human erythrocytes, emphasizing their therapeutic potential. Anchored in the nuanced physical-chemical attributes gleaned from the three-dimensional (3D) helical conformations of AMPs, our optimized models have demonstrated commendable performance-boasting an accuracy exceeding 75% when evaluated against both low-sequence-identified peptides and recently unveiled AMPs. As a testament to their efficacy, we deployed these models to prioritize peptide sequences stemming from PEM-2 and subsequently probed the bioactivity of our algorithm-predicted peptides vis-à-vis WHO's priority pathogens. Intriguingly, several of these new AMPs outperformed the native PEM-2 in their antimicrobial prowess, thereby underscoring the robustness of our modeling approach. To elucidate ML model outcomes, we probe via Shapley Additive exPlanations (SHAP) values, uncovering intricate mechanisms guiding diverse actions against bacteria. Our state-of-the-art predictive models expedite the design of new AMPs, offering a robust countermeasure to antibiotic resistance. Our prediction tool is available to the public at https://ai-meta.chem.ncu.edu.tw/amp-meta.
Collapse
Affiliation(s)
- Cheng-Ting Tsai
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
| | - Chia-Wei Lin
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
| | - Gen-Lin Ye
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
| | - Shao-Chi Wu
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
| | - Philip Yao
- Aurora
High School, 109 W Pioneer Trail, Aurora, Ohio 44202, United States
| | - Ching-Ting Lin
- School
of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Lei Wan
- School
of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Hui-Hsu Gavin Tsai
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
- Research
Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
22
|
Almeida JR. The Century-Long Journey of Peptide-Based Drugs. Antibiotics (Basel) 2024; 13:196. [PMID: 38534631 DOI: 10.3390/antibiotics13030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024] Open
Abstract
The pioneering medical application of peptides as therapeutics began approximately a century ago; however, they remain clinically relevant candidates garnering more attention on the drug development agenda [...].
Collapse
Affiliation(s)
- José R Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| |
Collapse
|
23
|
Couturier C, Ronzon Q, Lattanzi G, Lingard I, Coyne S, Cazals V, Dubarry N, Yvon S, Leroi-Geissler C, Gracia OR, Teague J, Sordello S, Corbett D, Bauch C, Monlong C, Payne L, Taillier T, Fuchs H, Broenstrup M, Harrison PH, Moynié L, Lakshminarayanan A, Gianga TM, Hussain R, Naismith JH, Mourez M, Bacqué E, Björkling F, Sabuco JF, Franzyk H. Studies of antibacterial activity (in vitro and in vivo) and mode of action for des-acyl tridecaptins (DATs). Eur J Med Chem 2024; 265:116097. [PMID: 38157595 DOI: 10.1016/j.ejmech.2023.116097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Tridecaptins comprise a class of linear cationic lipopeptides with an N-terminal fatty acyl moiety. These 13-mer antimicrobial peptides consist of a combination of d- and l-amino acids, conferring increased proteolytic stability. Intriguingly, they are biosynthesized by non-ribosomal peptide synthetases in the same bacterial species that also produce the cyclic polymyxins displaying similar fatty acid tails. Previously, the des-acyl analog of TriA1 (termed H-TriA1) was found to possess very weak antibacterial activity, albeit it potentiated the effect of several antibiotics. In the present study, two series of des-acyl tridecaptins were explored with the aim of improving the direct antibacterial effect. At the same time, overall physico-chemical properties were modulated by amino acid substitution(s) to diminish the risk of undesired levels of hemolysis and to avoid an impairment of mammalian cell viability, since these properties are typically associated with highly hydrophobic cationic peptides. Microbiology and biophysics tools were used to determine bacterial uptake, while circular dichroism and isothermal calorimetry were used to probe the mode of action. Several analogs had improved antibacterial activity (as compared to that of H-TriA1) against Enterobacteriaceae. Optimization enabled identification of the lead compound 29 that showed a good ADMET profile as well as in vivo efficacy in a variety of mouse models of infection.
Collapse
Affiliation(s)
- Cédric Couturier
- Evotec, 1541, Avenue Marcel Mérieux, 69280, Marcy L'Etoile, France.
| | - Quentin Ronzon
- Evotec, 1541, Avenue Marcel Mérieux, 69280, Marcy L'Etoile, France
| | - Giulia Lattanzi
- Evotec-Aptuit (Verona) Srl, Via Alessandro Fleming 4, 37135, Verona, Italy
| | - Iain Lingard
- Evotec-Aptuit (Verona) Srl, Via Alessandro Fleming 4, 37135, Verona, Italy
| | | | | | | | | | | | | | - Joanne Teague
- Evotec, No. 23F, Mereside, Alderley Park, Cheshire, SK10 4TG, United Kingdom
| | | | - David Corbett
- Evotec, No. 23F, Mereside, Alderley Park, Cheshire, SK10 4TG, United Kingdom
| | - Caroline Bauch
- Evotec-Cyprotex, No. 24, Mereside, Alderley Park, Cheshire, SK10 4TG, United Kingdom
| | | | - Lloyd Payne
- Evotec, No. 23F, Mereside, Alderley Park, Cheshire, SK10 4TG, United Kingdom
| | | | - Hazel Fuchs
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Mark Broenstrup
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Peter H Harrison
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Lucile Moynié
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0QS, United Kingdom
| | - Abirami Lakshminarayanan
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Tiberiu-Marius Gianga
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - James H Naismith
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford, OX3 7BN, United Kingdom; Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0QS, United Kingdom
| | | | - Eric Bacqué
- Evotec, 1541, Avenue Marcel Mérieux, 69280, Marcy L'Etoile, France
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | | | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| |
Collapse
|
24
|
Liu C, Han J, Li Z, Liu Y, Wu R, Cao S, Wu D. Imidazolium-Based Main-Chain Copolymers With Alternating Sequences for Broad-Spectrum Bactericidal Activity and Eradication of Bacterial Biofilms. Macromol Biosci 2024:e2300489. [PMID: 38261742 DOI: 10.1002/mabi.202300489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Indexed: 01/25/2024]
Abstract
In response to the escalating challenge of bacterial drug resistance, the imperative to counteract planktonic cell proliferation and eliminate entrenched biofilms underscores the necessity for cationic polymeric antibacterials. However, limited efficacy and cytotoxicity challenge their practical use. Here, novel imidazolium-based main-chain copolymers with imidazolium (PIm+ ) as the cationic component are introduced. By adjusting precursor molecules, hydrophobicity and cationic density of each unit are fine-tuned, resulting in broad-spectrum bactericidal activity against clinically relevant pathogens. PIm+ 1 stands out for its potent antibacterial performance, with a minimum inhibitory concentration of 32 µg mL-1 against Methicillin-resistant Staphylococcus aureus (MRSA), and substantial biofilm reduction in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) biofilms. The bactericidal mechanism involves disrupting the outer and cytoplasmic membranes, depolarizing the cytoplasmic membrane, and triggering intracellular reactive oxygen species (ROS) generation. Collectively, this study postulates the potential of imidazolium-based main-chain copolymers, systematically tailored in their sequences, to serve as a promising candidate in combatting drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Changjiang Liu
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
| | - Jialei Han
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
| | - Zeyuan Li
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
| | - Yadong Liu
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
| | - Ruodai Wu
- Shenzhen University General Hospital, Shenzhen, 518000, China
| | - Shuaishuai Cao
- Shenzhen University General Hospital, Shenzhen, 518000, China
| | - Dalin Wu
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Shenzhen, 518107, China
| |
Collapse
|
25
|
Ghazvini K, Kamali H, Farsiani H, Yousefi M, Keikha M. Sustain-release lipid-liquid crystal formulations of pexiganan against Helicobacter pylori infection: in vitro evaluation in C57BL/6 mice. BMC Pharmacol Toxicol 2024; 25:9. [PMID: 38212864 PMCID: PMC10785446 DOI: 10.1186/s40360-024-00731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
INTRODUCTION The Gram-negative bacterium Helicobacter pylori, H. pylori, is associated with significant digestive disorders. However, the effectiveness of bacterial eradication is declining due to drug resistance. A potent anti-H. pylori activity is shown by the natural antimicrobial peptide pexiganan. OBJECTIVE The current study aimed to evaluate the effectiveness of pexiganan and its lipid-liquid crystals (LLCs) in inducing Helicobacter pylori in mice. METHODS In this experimental study, H. pylori infection was first induced in C57BL/6 mice. Secondly, the antibacterial efficacy of pexiganan and its LLCs formulations was investigated to eliminate H. pylori infection. RESULTS The H. pylori infection could not be completely eradicated by pexiganan peptide alone. However, incorporating pexiganan within the LLC formulation resulted in an increased elimination of H. pylori. Under the H&E strain, the pexiganan-LLCs formulation revealed minimal mucosal alterations and a lower amount of inflammatory cell infiltration in the stomach compared to the placebo. CONCLUSION Clarithromycin was more effective than pexiganan at all tested concentrations. Furthermore, the pexiganan-loaded LLCs exhibited superior efficacy in curing H. pylori infection in a mouse model compared to pexiganan alone. This formulation can enhance H. pylori clearance while mitigating the adverse effects, typically associated with conventional drugs, leading to a viable alternative to current treatment options.
Collapse
Affiliation(s)
- Kiarash Ghazvini
- Department of Microbiology and Virology, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Kamali
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Department of Microbiology and Virology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Yousefi
- Department of Microbiology and Virology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Keikha
- Department of Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
26
|
Stefanik O, Majerova P, Kovac A, Mikus P, Piestansky J. Capillary electrophoresis in the analysis of therapeutic peptides-A review. Electrophoresis 2024; 45:120-164. [PMID: 37705480 DOI: 10.1002/elps.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Therapeutic peptides are a growing class of innovative drugs with high efficiency and a low risk of adverse effects. These biomolecules fall within the molecular mass range between that of small molecules and proteins. However, their inherent instability and potential for degradation underscore the importance of reliable and effective analytical methods for pharmaceutical quality control, therapeutic drug monitoring, and compliance testing. Liquid chromatography-mass spectrometry (LC-MS) has long time been the "gold standard" conventional method for peptide analysis, but capillary electrophoresis (CE) is increasingly being recognized as a complementary and, in some cases, superior, highly efficient, green, and cost-effective alternative technique. CE can separate peptides composed of different amino acids owing to differences in their net charge and size, determining their migration behavior in an electric field. This review provides a comprehensive overview of therapeutic peptides that have been used in the clinical environment for the last 25 years. It describes the properties, classification, current trends in development, and clinical use of therapeutic peptides. From the analytical point of view, it discusses the challenges associated with the analysis of therapeutic peptides in pharmaceutical and biological matrices, as well as the evaluation of CE as a whole and the comparison with LC methods. The article also highlights the use of microchip electrophoresis, nonaqueous CE, and nonconventional hydrodynamically closed CE systems and their applications. Overall, the article emphasizes the importance of developing new CE-based analytical methods to ensure the high quality, safety, and efficacy of therapeutic peptides in clinical practice.
Collapse
Affiliation(s)
- Ondrej Stefanik
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
27
|
Anderson CA, Barrera MD, Boghdeh NA, Smith M, Alem F, Narayanan A. Brilacidin as a Broad-Spectrum Inhibitor of Enveloped, Acutely Infectious Viruses. Microorganisms 2023; 12:54. [PMID: 38257881 PMCID: PMC10819233 DOI: 10.3390/microorganisms12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Alphaviruses, belonging to the Togaviridae family, and bunyaviruses, belonging to the Paramyxoviridae family, are globally distributed and lack FDA-approved vaccines and therapeutics. The alphaviruses Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV) are known to cause severe encephalitis, whereas Sindbis virus (SINV) causes arthralgia potentially persisting for years after initial infection. The bunyavirus Rift Valley Fever virus (RVFV) can lead to blindness, liver failure, and hemorrhagic fever. Brilacidin, a small molecule that was designed de novo based on naturally occurring host defensins, was investigated for its antiviral activity against these viruses in human small airway epithelial cells (HSAECs) and African green monkey kidney cells (Veros). This testing was further expanded into a non-enveloped Echovirus, a Picornavirus, to further demonstrate brilacidin's effect on early steps of the viral infectious cycle that leads to inhibition of viral load. Brilacidin demonstrated antiviral activity against alphaviruses VEEV TC-83, VEEV TrD, SINV, EEEV, and bunyavirus RVFV. The inhibitory potential of brilacidin against the viruses tested in this study was dependent on the dosing strategy which necessitated compound addition pre- and post-infection, with addition only at the post-infection stage not eliciting a robust inhibitory response. The inhibitory activity of brilacidin was only modest in the context of the non-enveloped Picornavirus Echovirus, suggesting brilacidin may be less potent against non-enveloped viruses.
Collapse
Affiliation(s)
| | | | | | | | | | - Aarthi Narayanan
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (C.A.A.); (M.D.B.); (N.A.B.); (M.S.); (F.A.)
| |
Collapse
|
28
|
Kumari A, Sahoo J, De M. 2D-MoS 2-supported copper peroxide nanodots with enhanced nanozyme activity: application in antibacterial activity. NANOSCALE 2023; 15:19801-19814. [PMID: 38051093 DOI: 10.1039/d3nr05458f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Peroxidase (POD)-like nanozymes are an upcoming class of new-generation antibiotics that are efficient for broad-spectrum antibacterial action. The POD-like activity employs the generation of reactive oxygen species (ROS), which have been utilized for bactericidal action. However, their intrinsic low catalytic activity and stability limit their bactericidal properties. In this study, we prepared a MoS2-based nanocomposite with copper peroxide nanodots (MoS2@CP) to achieve pH-dependent light-induced nanozyme-based antibacterial action. It has shown superior peroxidase and antibacterial activity at low pH. The mechanism behind the enhanced POD-like activity and high antibacterial activity was established. The mechanistic pathway involves estimating ROS generation, membrane depolarization, inner membrane permeabilization, metal ion release, and the effect of NIR on photothermal and photodynamic activities. Overall, our work highlighted the combinatorial approach for eradicating bacterial infections using enzyme-based antibacterial agents.
Collapse
Affiliation(s)
- Archana Kumari
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
29
|
Has C, Das SL. The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation. J Membr Biol 2023; 256:343-372. [PMID: 37650909 DOI: 10.1007/s00232-023-00289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Proteins and peptides with hydrophobic and amphiphilic segments are responsible for many biological functions. The sensing and generation of membrane curvature are the functions of several protein domains or motifs. While some specific membrane proteins play an essential role in controlling the curvature of distinct intracellular membranes, others participate in various cellular processes such as clathrin-mediated endocytosis, where several proteins sort themselves at the neck of the membrane bud. A few membrane-inserting proteins form nanopores that permeate selective ions and water to cross the membrane. In addition, many natural and synthetic small peptides and protein toxins disrupt the membrane by inducing nonspecific pores in the membrane. The pore formation causes cell death through the uncontrolled exchange between interior and exterior cellular contents. In this article, we discuss the insertion depth and orientation of protein/peptide helices, and their role as a sensor and inducer of membrane curvature as well as a pore former in the membrane. We anticipate that this extensive review will assist biophysicists to gain insight into curvature sensing, generation, and pore formation by membrane insertion.
Collapse
Affiliation(s)
- Chandra Has
- Department of Chemical Engineering, GSFC University, Vadodara, 391750, Gujarat, India.
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory and Department of Mechanical Engineering, Indian Institute of Technology, Palakkad, 678623, Kerala, India
| |
Collapse
|
30
|
Kumar G, Engle K. Natural products acting against S. aureus through membrane and cell wall disruption. Nat Prod Rep 2023; 40:1608-1646. [PMID: 37326041 DOI: 10.1039/d2np00084a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Covering: 2015 to 2022Staphylococcus aureus (S. aureus) is responsible for several community and hospital-acquired infections with life-threatening complications such as bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi and the treatment of nonmicrobial diseases have led to the rapid emergence of multidrug-resistant pathogens. The bacterial wall is a complex structure consisting of the cell membrane, peptidoglycan cell wall, and various associated polymers. The enzymes involved in bacterial cell wall synthesis are established antibiotic targets and continue to be a central focus for antibiotic development. Natural products play a vital role in drug discovery and development. Importantly, natural products provide a starting point for active/lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. Notably, microorganisms and plant metabolites have contributed as antibiotics for noninfectious diseases. In this study, we have summarized the recent advances in understanding the activity of the drugs or agents of natural origin that directly inhibit the bacterial membrane, membrane components, and membrane biosynthetic enzymes by targeting membrane-embedded proteins. We also discussed the unique aspects of the active mechanisms of established antibiotics or new agents.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
31
|
Guo L, Wambui J, Wang C, Muchaamba F, Fernandez-Cantos MV, Broos J, Tasara T, Kuipers OP, Stephan R. Cesin, a short natural variant of nisin, displays potent antimicrobial activity against major pathogens despite lacking two C-terminal macrocycles. Microbiol Spectr 2023; 11:e0531922. [PMID: 37754751 PMCID: PMC10581189 DOI: 10.1128/spectrum.05319-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/06/2023] [Indexed: 09/28/2023] Open
Abstract
Nisin is a widely used lantibiotic owing to its potent antimicrobial activity and its food-grade status. Its mode of action includes cell wall synthesis inhibition and pore formation, which are attributed to the lipid II binding and pore-forming domains, respectively. We discovered cesin, a short natural variant of nisin, produced by the psychrophilic anaerobe Clostridium estertheticum. Unlike other natural nisin variants, cesin lacks the two terminal macrocycles constituting the pore-forming domain. The current study aimed at heterologous expression and characterization of the antimicrobial activity and physicochemical properties of cesin. Following the successful heterologous expression of cesin in Lactococcus lactis, the lantibiotic demonstrated a broad and potent antimicrobial profile comparable to that of nisin. Determination of its mode of action using lipid II and lipoteichoic acid binding assays linked the potent antimicrobial activity to lipid II binding and electrostatic interactions with teichoic acids. Fluorescence microscopy showed that cesin lacks pore-forming ability in its natural form. Stability tests have shown the lantibiotic is highly stable at different pH values and temperature conditions, but that it can be degraded by trypsin. However, a bioengineered analog, cesin R15G, overcame the trypsin degradation, while keeping full antimicrobial activity. This study shows that cesin is a novel (small) nisin variant that efficiently kills target bacteria by inhibiting cell wall synthesis without pore formation. IMPORTANCE The current increase in antibiotic-resistant pathogens necessitates the discovery and application of novel antimicrobials. In this regard, we recently discovered cesin, which is a short natural variant of nisin produced by the psychrophilic Clostridium estertheticum. However, its suitability as an antimicrobial compound was in doubt due to its structural resemblance to nisin(1-22), a bioengineered short variant of nisin with low antimicrobial activity. Here, we show by heterologous expression, purification, and characterization that the potency of cesin is not only much higher than that of nisin(1-22), but that it is even comparable to the full-length nisin, despite lacking two C-terminal rings that are essential for nisin's activity. We show that cesin is a suitable scaffold for bioengineering to improve its applicability, such as resistance to trypsin. This study demonstrates the suitability of cesin for future application in food and/or for health as a potent and stable antimicrobial compound.
Collapse
Affiliation(s)
- Longcheng Guo
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chenhui Wang
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Jaap Broos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Mhlongo JT, Waddad AY, Albericio F, de la Torre BG. Antimicrobial Peptide Synergies for Fighting Infectious Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300472. [PMID: 37407512 PMCID: PMC10502873 DOI: 10.1002/advs.202300472] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/28/2023] [Indexed: 07/07/2023]
Abstract
Antimicrobial peptides (AMPs) are essential elements of thehost defense system. Characterized by heterogenous structures and broad-spectrumaction, they are promising candidates for combating multidrug resistance. Thecombined use of AMPs with other antimicrobial agents provides a new arsenal ofdrugs with synergistic action, thereby overcoming the drawback of monotherapiesduring infections. AMPs kill microbes via pore formation, thus inhibitingintracellular functions. This mechanism of action by AMPs is an advantage overantibiotics as it hinders the development of drug resistance. The synergisticeffect of AMPs will allow the repurposing of conventional antimicrobials andenhance their clinical outcomes, reduce toxicity, and, most significantly,prevent the development of resistance. In this review, various synergies ofAMPs with antimicrobials and miscellaneous agents are discussed. The effect ofstructural diversity and chemical modification on AMP properties is firstaddressed and then different combinations that can lead to synergistic action,whether this combination is between AMPs and antimicrobials, or AMPs andmiscellaneous compounds, are attended. This review can serve as guidance whenredesigning and repurposing the use of AMPs in combination with other antimicrobialagents for enhanced clinical outcomes.
Collapse
Affiliation(s)
- Jessica T. Mhlongo
- KwaZulu‐Natal Research Innovation and Sequencing Platform (KRISP)School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
| | - Ayman Y. Waddad
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
| | - Fernando Albericio
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and Nanomedicineand Department of Organic ChemistryUniversity of BarcelonaBarcelona08028Spain
| | - Beatriz G. de la Torre
- KwaZulu‐Natal Research Innovation and Sequencing Platform (KRISP)School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| |
Collapse
|
33
|
Wang X, van Beekveld RAM, Xu Y, Parmar A, Das S, Singh I, Breukink E. Analyzing mechanisms of action of antimicrobial peptides on bacterial membranes requires multiple complimentary assays and different bacterial strains. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184160. [PMID: 37100361 DOI: 10.1016/j.bbamem.2023.184160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023]
Abstract
Antimicrobial peptides (AMPs) commonly target bacterial membranes and show broad-spectrum activity against microorganisms. In this research we used three AMPs (nisin, epilancin 15×, [R4L10]-teixobactin) and tested their membrane effects towards three strains (Staphylococcus simulans, Micrococcus flavus, Bacillus megaterium) in relation with their antibacterial activity. We describe fluorescence and luminescence-based assays to measure effects on membrane potential, intracellular pH, membrane permeabilization and intracellular ATP levels. The results show that our control peptide, nisin, performed mostly as expected in view of its targeted pore-forming activity, with fast killing kinetics that coincided with severe membrane permeabilization in all three strains. However, the mechanisms of action of both Epilancin 15× as well as [R4L10]-teixobactin appeared to depend strongly on the bacterium tested. In certain specific combinations of assay, peptide and bacterium, deviations from the general picture were observed. This was even the case for nisin, indicating the importance of using multiple assays and bacteria for mode of action studies to be able to draw proper conclusions on the mode of action of AMPs.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Roy A M van Beekveld
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Yang Xu
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anish Parmar
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool L7 8TX, UK; Antimicrobial Drug Discovery and Development, Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, L69 3BX Liverpool, UK
| | - Sanjit Das
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool L7 8TX, UK; Antimicrobial Drug Discovery and Development, Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, L69 3BX Liverpool, UK
| | - Ishwar Singh
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool L7 8TX, UK
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands; Zhejiang Provincial Key Laboratory of Food Microbiotechnology Research of China, the Zhejiang Gongshang University of China, Hangzhou, China.
| |
Collapse
|
34
|
Botelho Sampaio de Oliveira K, Lopes Leite M, Albuquerque Cunha V, Brito da Cunha N, Luiz Franco O. Challenges and advances in antimicrobial peptide development. Drug Discov Today 2023; 28:103629. [PMID: 37230283 DOI: 10.1016/j.drudis.2023.103629] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Microbial resistance is a major concern for public health worldwide, mainly because of the inappropriate use of antimicrobials. In this scenario, antimicrobial peptides (AMPs) have emerged as a potential therapeutic alternative means by which to control infectious diseases, because of their broad spectrum of action. However, some challenges can make their clinical application problematic, including metabolic instability and toxicity. Here, we provide a clear description of AMPs as promising molecules for the development of unusual antimicrobial drugs. We also describe current strategies used to overcome the main difficulties related to AMP clinical application, including different peptide designs and nanoformulation.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Bloco K, 70.790-900, Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Campus Darcy Ribeiro, Brasilia, Brazil.
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Pós-graduação em Patologia Molecular, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
35
|
Douglas EJA, Wulandari SW, Lovell SD, Laabei M. Novel antimicrobial strategies to treat multi-drug resistant Staphylococcus aureus infections. Microb Biotechnol 2023; 16:1456-1474. [PMID: 37178319 PMCID: PMC10281381 DOI: 10.1111/1751-7915.14268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Antimicrobial resistance is a major obstacle for the treatment of infectious diseases and currently represents one of the most significant threats to global health. Staphylococcus aureus remains a formidable human pathogen with high mortality rates associated with severe systemic infections. S. aureus has become notorious as a multidrug resistant bacterium, which when combined with its extensive arsenal of virulence factors that exacerbate disease, culminates in an incredibly challenging pathogen to treat clinically. Compounding this major health issue is the lack of antibiotic discovery and development, with only two new classes of antibiotics approved for clinical use in the last 20 years. Combined efforts from the scientific community have reacted to the threat of dwindling treatment options to combat S. aureus disease in several innovative and exciting developments. This review describes current and future antimicrobial strategies aimed at treating staphylococcal colonization and/or disease, examining therapies that show significant promise at the preclinical development stage to approaches that are currently being investigated in clinical trials.
Collapse
|
36
|
Kumar R, Yadav G, Kuddus M, Ashraf GM, Singh R. Unlocking the microbial studies through computational approaches: how far have we reached? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48929-48947. [PMID: 36920617 PMCID: PMC10016191 DOI: 10.1007/s11356-023-26220-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/24/2023] [Indexed: 04/16/2023]
Abstract
The metagenomics approach accelerated the study of genetic information from uncultured microbes and complex microbial communities. In silico research also facilitated an understanding of protein-DNA interactions, protein-protein interactions, docking between proteins and phyto/biochemicals for drug design, and modeling of the 3D structure of proteins. These in silico approaches provided insight into analyzing pathogenic and nonpathogenic strains that helped in the identification of probable genes for vaccines and antimicrobial agents and comparing whole-genome sequences to microbial evolution. Artificial intelligence, more precisely machine learning (ML) and deep learning (DL), has proven to be a promising approach in the field of microbiology to handle, analyze, and utilize large data that are generated through nucleic acid sequencing and proteomics. This enabled the understanding of the functional and taxonomic diversity of microorganisms. ML and DL have been used in the prediction and forecasting of diseases and applied to trace environmental contaminants and environmental quality. This review presents an in-depth analysis of the recent application of silico approaches in microbial genomics, proteomics, functional diversity, vaccine development, and drug design.
Collapse
Affiliation(s)
- Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Garima Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah , 27272, United Arab Emirates
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
37
|
Ascoët S, Touchard A, Téné N, Lefranc B, Leprince J, Paquet F, Jouvensal L, Barassé V, Treilhou M, Billet A, Bonnafé E. The mechanism underlying toxicity of a venom peptide against insects reveals how ants are master at disrupting membranes. iScience 2023; 26:106157. [PMID: 36879819 PMCID: PMC9985030 DOI: 10.1016/j.isci.2023.106157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Hymenopterans represent one of the most abundant groups of venomous organisms but remain little explored due to the difficult access to their venom. The development of proteo-transcriptomic allowed us to explore diversity of their toxins offering interesting perspectives to identify new biological active peptides. This study focuses on U9 function, a linear, amphiphilic and polycationic peptide isolated from ant Tetramorium bicarinatum venom. It shares physicochemical properties with M-Tb1a, exhibiting cytotoxic effects through membrane permeabilization. In the present study, we conducted a comparative functional investigation of U9 and M-Tb1a and explored the mechanisms underlying their cytotoxicity against insect cells. After showing that both peptides induced the formation of pores in cell membrane, we demonstrated that U9 induced mitochondrial damage and, at high concentrations, localized into cells and induced caspase activation. This functional investigation highlighted an original mechanism of U9 questioning on potential valorization and endogen activity in T. bicarinatum venom.
Collapse
Affiliation(s)
- Steven Ascoët
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Axel Touchard
- CNRS, UMR Ecologie des Forêts de Guyane, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP316 97310 Kourou, France
| | - Nathan Téné
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Benjamin Lefranc
- Inserm U1239, NorDiC, Laboratoire de Différenciation et Communication Neuroendocrine, Endocrine et Germinale, Université de Rouen-Normandie, 76000 Rouen, France
- Inserm US51, HeRacLeS, Université de Rouen-Normandie, 76000 Rouen, France
| | - Jérôme Leprince
- Inserm U1239, NorDiC, Laboratoire de Différenciation et Communication Neuroendocrine, Endocrine et Germinale, Université de Rouen-Normandie, 76000 Rouen, France
- Inserm US51, HeRacLeS, Université de Rouen-Normandie, 76000 Rouen, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS-80054, 45071 Orléans, France
| | - Laurence Jouvensal
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS-80054, 45071 Orléans, France
| | - Valentine Barassé
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Michel Treilhou
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Arnaud Billet
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Elsa Bonnafé
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| |
Collapse
|
38
|
Bhattacharjee B, Basak M, Das G, Ramesh A. Quinoxaline-based membrane-targeting therapeutic material: Implications in rejuvenating antibiotic and curb MRSA invasion in an in vitro bone cell infection model. BIOMATERIALS ADVANCES 2023; 148:213359. [PMID: 36963341 DOI: 10.1016/j.bioadv.2023.213359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/04/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Manifestation of resistance in methicillin-resistant Staphylococcus aureus (MRSA) against multiple antibiotics demands an effective strategy to counter the menace of the pathogen. To address this challenge, the current study explores quinoxaline-based synthetic ligands as an adjuvant material to target MRSA in a combination therapy regimen. Amongst the tested ligands (C1-C4), only C2 was bactericidal against the MRSA strain S. aureus 4 s, with a minimum inhibitory concentration (MIC) of 32 μM. C2 displayed a membrane-directed activity and could effectively hinder MRSA biofilm formation. A quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that C2 downregulated expression of the regulator gene agrC and reduced the fold change in the expression of adhesin genes fnbA and cnbA in MRSA in a dose-dependent manner. C2 enabled a 4-fold reduction in the MIC of ciprofloxacin (CPX) and in presence of 10 μM C2 and 8.0 μM CPX, growth of MRSA was arrested. Furthermore, a combination of 10 μM C2 and 12 μM CPX could strongly inhibit MRSA biofilm formation and reduce biofilm metabolic activity. The minimum biofilm inhibitory concentration (MBIC) of CPX against S. aureus 4 s biofilm was reduced and a synergy resulted between C2 and CPX. In a combinatorial treatment regimen, C2 could prevent emergence of CPX resistance and arrest growth of MRSA till 360 generations. C2 could also be leveraged in combination treatment (12 μM CPX and 10 μM C2) to target MRSA in an in vitro bone cell infection model, wherein MRSA cell adhesion and invasion onto cultured MG-63 cells was only ~17 % and ~ 0.37 %, respectively. The combinatorial treatment regimen was also biocompatible as the viability of MG-63 cells was high (~ 91 %). Thus, C2 is a promising adjuvant material to counter antibiotic-refractory therapy and mitigate MRSA-mediated bone cell infection.
Collapse
Affiliation(s)
- Basu Bhattacharjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Megha Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
39
|
Zharkova MS, Komlev AS, Filatenkova TA, Sukhareva MS, Vladimirova EV, Trulioff AS, Orlov DS, Dmitriev AV, Afinogenova AG, Spiridonova AA, Shamova OV. Combined Use of Antimicrobial Peptides with Antiseptics against Multidrug-Resistant Bacteria: Pros and Cons. Pharmaceutics 2023; 15:291. [PMID: 36678918 PMCID: PMC9863607 DOI: 10.3390/pharmaceutics15010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial peptides (AMPs) are acknowledged as a promising template for designing new antimicrobials. At the same time, existing toxicity issues and limitations in their pharmacokinetics make topical application one of the less complicated routes to put AMPs-based therapeutics into actual medical practice. Antiseptics are one of the common components for topical treatment potent against antibiotic-resistant pathogens but often with toxicity limitations of their own. Thus, the interaction of AMPs and antiseptics is an interesting topic that is also less explored than combined action of AMPs and antibiotics. Herein, we analyzed antibacterial, antibiofilm, and cytotoxic activity of combinations of both membranolytic and non-membranolytic AMPs with a number of antiseptic agents. Fractional concentration indices were used as a measure of possible effective concentration reduction achievable due to combined application. Cases of both synergistic and antagonistic interaction with certain antiseptics and surfactants were identified, and trends in the occurrence of these types of interaction were discussed. The data may be of use for AMP-based drug development and suggest that the topic requires further attention for successfully integrating AMPs-based products in the context of complex treatment. AMP/antiseptic combinations show promise for creating topical formulations with improved activity, lowered toxicity, and, presumably, decreased chances of inducing bacterial resistance. However, careful assessment is required to avoid AMP neutralization by certain antiseptic classes in either complex drug design or AMP application alongside other therapeutics/care products.
Collapse
Affiliation(s)
- Maria S. Zharkova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Aleksey S. Komlev
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Tatiana A. Filatenkova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Maria S. Sukhareva
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Elizaveta V. Vladimirova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Andrey S. Trulioff
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Dmitriy S. Orlov
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Alexander V. Dmitriev
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Anna G. Afinogenova
- St. Petersburg Pasteur Institute, 14 Mira Street, St. Petersburg 197101, Russia
| | - Anna A. Spiridonova
- Department of Clinical Microbiology, Pavlov First Saint Petersburg State Medical University, 6/8 Lev Tolstoy Street, St. Petersburg 197022, Russia
| | - Olga V. Shamova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
- Department of Biochemistry, Saint Petersburg State University, 7/9 Universitetskaya Embankment, St. Petersburg 199034, Russia
| |
Collapse
|
40
|
Ali DA, Domínguez Mercado L, Findlay BL, Badia A, DeWolf C. Opposites Attract: Electrostatically Driven Loading of Antimicrobial Peptides into Phytoglycogen Nanocarriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:53-63. [PMID: 36525622 DOI: 10.1021/acs.langmuir.2c01794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antimicrobial peptides, such as GL13K, have a high binding selectivity toward bacterial membranes, while not affecting healthy mammalian cells at therapeutic concentrations. However, delivery of these peptides is challenging since they are susceptible to proteolytic hydrolysis and exhibit poor cellular uptake. A protective nanocarrier is thus proposed to overcome these obstacles. We investigate the potential to employ biodegradable phytoglycogen nanoparticles as carriers for GL13K using a simple loading protocol based on electrostatic association rather than chemical conjugation, eliminating the need for control of chemical cleavage for release of the peptide in situ. Both the native (quasi-neutral) and carboxymethylated (anionic) phytoglycogen were evaluated for their colloidal stability, loading capacity, and release characteristics. We show that the anionic nanophytoglycogen carries a greater cationic GL13K load and exhibits slower release kinetics than native nanophytoglycogen. Isotope exchange measurements demonstrate that the antimicrobial peptide is entrapped in the pores of the dendritic-like macromolecule, which should provide the necessary protection for delivery. Importantly, the nanoformulations are active against a Pseudomonas aeruginosa clinical isolate at concentrations comparable to those of the free peptide and representative, small molecule antibiotics. The colloidal nanocarrier preserves peptide stability and antimicrobial activity, even after long periods of storage (at least 8 months).
Collapse
Affiliation(s)
- Dalia A Ali
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QuebecH4B 1R6, Canada
- Centre for NanoScience Research, Concordia University, Montreal, QuebecH4B 1R6, Canada
- FRQNT Centre Québécois sur les Matériaux Fonctionnels─Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, QuebecH3A 0G4, Canada
- Faculty of Pharmacy, Alexandria University, Alexandria5424041, Egypt
| | - Laura Domínguez Mercado
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QuebecH4B 1R6, Canada
| | - Brandon L Findlay
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QuebecH4B 1R6, Canada
| | - Antonella Badia
- FRQNT Centre Québécois sur les Matériaux Fonctionnels─Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, QuebecH3A 0G4, Canada
- Département de Chimie, Université de Montréal, Complexe des sciences, C.P. 6128, succursale Centre-ville, Montréal, QuebecH3C 3J7, Canada
| | - Christine DeWolf
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QuebecH4B 1R6, Canada
- Centre for NanoScience Research, Concordia University, Montreal, QuebecH4B 1R6, Canada
- FRQNT Centre Québécois sur les Matériaux Fonctionnels─Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, QuebecH3A 0G4, Canada
| |
Collapse
|
41
|
Dahan S, Aibinder P, Khalfin B, Moran-Gilad J, Rapaport H. Hybrid Hydrogels of FKF-Peptide Assemblies and Gelatin for Sustained Antimicrobial Activity. ACS Biomater Sci Eng 2023; 9:352-362. [PMID: 36521024 DOI: 10.1021/acsbiomaterials.2c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The growing resistance of pathogenic bacteria to conventional antibiotics promotes the development of new antimicrobial agents, including peptides. Hydrogels composed of antimicrobial peptides (AMPs) may be applied as topical treatments for skin infection and wound regeneration. The unique antimicrobial and ultrashort-peptide FKF (Phe-Lys-Phe) was recently demonstrated to form bactericidal hydrogels. Here, we sought to improve the cyto-biocompatibility of FKF by combining FKF hydrogels with gelatin. Homogeneous hybrid hydrogels of FKF:gelatin were developed based on a series of self-assembly steps that involved mixing solutions of the two components with no covalent cross-linkers. The hydrogels were characterized for their structural features, dissolution, cyto-biocompatibility, and antibacterial properties. These hybrid hydrogels first release the antibacterial FKF assemblies, leaving the gelatinous fraction of the hydrogel to serve as a scaffold for tissue regeneration. Sponges of these hybrid hydrogels, obtained by lyophilization and rehydrated prior to application, exhibited enhanced antimicrobial activity compared to the hydrogels' formulations.
Collapse
Affiliation(s)
- Shahar Dahan
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva8410501, Israel
| | - Polina Aibinder
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva8410501, Israel
| | - Boris Khalfin
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O.B. 653, Beer-Sheva8410501, Israel
| | - Jacob Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O.B. 653, Beer-Sheva8410501, Israel
| | - Hanna Rapaport
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva8410501, Israel.,Ilse Katz Institute for Nano-Science and Technology (IKI), Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva8410501, Israel
| |
Collapse
|
42
|
Zhu M, Hu X, Liu H, Tian J, Yang J, Li L, Luo B, Zhou C, Lu L. Antibacterial peptide encapsulation and sustained release from chitosan-based delivery system. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
43
|
Pereira ACC, Aguiar APS, Araujo LMP, Dantas LO, Mayer MPA, Karygianni L, Thurnheer T, Pinheiro ET. Antibiofilm Activity of LL-37 Peptide and D-Amino Acids Associated with Antibiotics Used in Regenerative Endodontics on an Ex Vivo Multispecies Biofilm Model. Life (Basel) 2022; 12:life12111686. [PMID: 36362840 PMCID: PMC9695550 DOI: 10.3390/life12111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
The antimicrobial peptide LL-37 and D-amino acids (D-AAs) have been proposed as antibiofilm agents. Therefore, this study aimed to test the antimicrobial effect of antibiofilm agents associated with antibiotics used in regenerative endodontic procedures (the triple antibiotic paste—TAP: ciprofloxacin + metronidazole + minocycline). An endodontic-like biofilm model grown on bovine dentin discs was used in this study. After 21-day growth, the biofilms were treated with 1 mg/mL TAP, 10 μM LL-37, an association of LL-37 + TAP, 40 mM D-AAs solution, an association of D-AAs + TAP, and phosphate-buffered saline (negative control). Colony forming unit (CFU) data were analyzed by two-way ANOVA and Tukey’s multiple comparison test (p < 0.05). LL-37 + TAP showed the best antibacterial activity (7-log10 CFU/mL ± 0.5), reaching a 1 log reduction of cells in relation to the negative control (8-log10 CFU/mL ± 0.7) (p < 0.05). In turn, no significant reduction in bacterial cells was observed with TAP, LL-37, D-AAs, and D-AAs + TAP compared to the negative control. In conclusion, the combination of antibiotics and LL-37 peptide showed mild antibacterial activity, while the combination of antibiotics and D-AAs showed no activity against complex biofilms.
Collapse
Affiliation(s)
- Ana C. C. Pereira
- Department of Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Alana P. S. Aguiar
- Department of Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Leticia M. P. Araujo
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Larissa O. Dantas
- Department of Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marcia P. A. Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lamprini Karygianni
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, 8032 Zürich, Switzerland
| | - Thomas Thurnheer
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, 8032 Zürich, Switzerland
| | - Ericka T. Pinheiro
- Department of Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence:
| |
Collapse
|
44
|
Ghimire J, Guha S, Nelson BJ, Morici LA, Wimley WC. The Remarkable Innate Resistance of Burkholderia bacteria to Cationic Antimicrobial Peptides: Insights into the Mechanism of AMP Resistance. J Membr Biol 2022; 255:503-511. [PMID: 35435452 PMCID: PMC9576820 DOI: 10.1007/s00232-022-00232-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/24/2022] [Indexed: 12/29/2022]
Abstract
Gram-negative bacteria belonging to the genus Burkholderia are remarkably resistant to broad-spectrum, cationic, antimicrobial peptides (AMPs). It has been proposed that this innate resistance is related to changes in the outer membrane lipopolysaccharide (OM LPS), including the constitutive, essential modification of outer membrane Lipid A phosphate groups with cationic 4-amino-4-deoxy-arabinose. This modification reduces the overall negative charge on the OM LPS which may change the OM structure and reduce the binding, accumulation, and permeation of cationic AMPs. Similarly, the Gram-negative pathogen Pseudomonas aeruginosa can quickly become resistant to many AMPs by multiple mechanisms, frequently, including activation of the arn operon, which leads, transiently, to the same modification of Lipid A. We recently discovered a set of synthetically evolved AMPs that do not invoke any resistance in P. aeruginosa over multiple passages and thus are apparently not inhibited by aminorabinosylation of Lipid A in P. aeruginosa. Here we test these resistance-avoiding peptides, within a set of 18 potent AMPs, against Burkholderia thailandensis. We find that none of the AMPs tested have measurable activity against B. thailandensis. Some were inactive at concentrations as high as 150 μM, despite all having sterilizing activity at ≤ 10 μM against a panel of common, human bacterial pathogens, including P. aeruginosa. We speculate that the constitutive modification of Lipid A in members of the Burkholderia genus is only part of a broader set of modifications that change the architecture of the OM to provide such remarkable levels of resistance to cationic AMPs.
Collapse
Affiliation(s)
- Jenisha Ghimire
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Shantanu Guha
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Benjamin J. Nelson
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Lisa A. Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - William C. Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112,To whom correspondence should be addressed at
| |
Collapse
|
45
|
Kumari S, Morrow MR, Booth V. Role of lipopolysaccharide in antimicrobial and cell penetrating peptide membrane interactions probed by deuterium NMR of whole cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022:184053. [PMID: 36155053 DOI: 10.1016/j.bbamem.2022.184053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Understanding how non-lipid components of bacteria affect antimicrobial peptide (AMP)-induced membrane disruption is important for a comprehensive understanding of AMP mechanisms and informing AMP-based drug development. This study investigates how lipopolysaccharide (LPS) affects membrane disruption by the AMP MSI-78 and compares the results to the effect of TP2, a cell-penetrating peptide that crosses membrane bilayers without permeabilizing them. We destabilize the LPS layer of Escherichia coli (E. coli) cells via chelation of the stabilizing divalent cations. 2H NMR spectra of E. coli demonstrate that EDTA concentrations of 2.5 mM and 9.0 mM alone have very minor effects on lipid acyl chain order. Interestingly, we find that E. coli pre-treated with 9.0 mM EDTA before treatment with MSI-78 are more sensitive to AMP-induced acyl chain disruption, indicating that intact LPS reduces MSI-78-induced membrane disruption in E. coli. Surprisingly, we also found that at the level of 2H NMR, the peptide-induced acyl chain disruption is similar for MSI-78 and TP2, although MSI-78 permeabilizes the bilayer and TP2 does not. Furthermore, LPS disruption appears to protect the bacteria from TP2, although it sensitizes them to MSI-78.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Biochemistry, Memorial University of Newfoundland and Labrador, St. John's, NL A1B 3X9, Canada
| | - Michael R Morrow
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland and Labrador, St. John's, NL A1B 3X7, Canada
| | - Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland and Labrador, St. John's, NL A1B 3X9, Canada; Department of Physics and Physical Oceanography, Memorial University of Newfoundland and Labrador, St. John's, NL A1B 3X7, Canada.
| |
Collapse
|
46
|
Maleš M, Zoranić L. Simulation Study of the Effect of Antimicrobial Peptide Associations on the Mechanism of Action with Bacterial and Eukaryotic Membranes. MEMBRANES 2022; 12:891. [PMID: 36135911 PMCID: PMC9502835 DOI: 10.3390/membranes12090891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Antimicrobial peptides (AMPs) can be directed to specific membranes based on differences in lipid composition. In this study, we performed atomistic and coarse-grained simulations of different numbers of the designed AMP adepantin-1 with a eukaryotic membrane, cytoplasmic Gram-positive and Gram-negative membranes, and an outer Gram-negative membrane. At the core of adepantin-1's behavior is its amphipathic α-helical structure, which was implemented in its design. The amphipathic structure promotes rapid self-association of peptide in water or upon binding to bacterial membranes. Aggregates initially make contact with the membrane via positively charged residues, but with insertion, the hydrophobic residues are exposed to the membrane's hydrophobic core. This adaptation alters the aggregate's stability, causing the peptides to diffuse in the polar region of the membrane, mostly remaining as a single peptide or pairing up to form an antiparallel dimer. Thus, the aggregate's proposed role is to aid in positioning the peptide into a favorable conformation for insertion. Simulations revealed the molecular basics of adepantin-1 binding to various membranes, and highlighted peptide aggregation as an important factor. These findings contribute to the development of novel anti-infective agents to combat the rapidly growing problem of bacterial resistance to antibiotics.
Collapse
Affiliation(s)
- Matko Maleš
- Faculty of Maritime Studies, University of Split, 21000 Split, Croatia
| | - Larisa Zoranić
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia
| |
Collapse
|
47
|
Bargel H, Trossmann VT, Sommer C, Scheibel T. Bioselectivity of silk protein-based materials and their bio-inspired applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:902-921. [PMID: 36127898 PMCID: PMC9475208 DOI: 10.3762/bjnano.13.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Adhesion to material surfaces is crucial for almost all organisms regarding subsequent biological responses. Mammalian cell attachment to a surrounding biological matrix is essential for maintaining their survival and function concerning tissue formation. Conversely, the adhesion and presence of microbes interferes with important multicellular processes of tissue development. Therefore, tailoring bioselective, biologically active, and multifunctional materials for biomedical applications is a modern focus of biomaterial research. Engineering biomaterials that stimulate and interact with cell receptors to support binding and subsequent physiological responses of multicellular systems attracted much interest in the last years. Further to this, the increasing threat of multidrug resistance of pathogens against antibiotics to human health urgently requires new material concepts for preventing microbial infestation and biofilm formation. Thus, materials exhibiting microbial repellence or antimicrobial behaviour to reduce inflammation, while selectively enhancing regeneration in host tissues are of utmost interest. In this context, protein-based materials are interesting candidates due to their natural origin, biological activity, and structural properties. Silk materials, in particular those made of spider silk proteins and their recombinant counterparts, are characterized by extraordinary properties including excellent biocompatibility, slow biodegradation, low immunogenicity, and non-toxicity, making them ideally suited for tissue engineering and biomedical applications. Furthermore, recombinant production technologies allow for application-specific modification to develop adjustable, bioactive materials. The present review focusses on biological processes and surface interactions involved in the bioselective adhesion of mammalian cells and repellence of microbes on protein-based material surfaces. In addition, it highlights the importance of materials made of recombinant spider silk proteins, focussing on the progress regarding bioselectivity.
Collapse
Affiliation(s)
- Hendrik Bargel
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Vanessa T Trossmann
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Christoph Sommer
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
- Bayreuth Center of Material Science and Engineering (BayMat), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bayreuth Center of Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
48
|
Ramakrishnan R, Singh AK, Singh S, Chakravortty D, Das D. Enzymatic dispersion of biofilms: An emerging biocatalytic avenue to combat biofilm-mediated microbial infections. J Biol Chem 2022; 298:102352. [PMID: 35940306 PMCID: PMC9478923 DOI: 10.1016/j.jbc.2022.102352] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/01/2023] Open
Abstract
Drug resistance by pathogenic microbes has emerged as a matter of great concern to mankind. Microorganisms such as bacteria and fungi employ multiple defense mechanisms against drugs and the host immune system. A major line of microbial defense is the biofilm, which comprises extracellular polymeric substances that are produced by the population of microorganisms. Around 80% of chronic bacterial infections are associated with biofilms. The presence of biofilms can increase the necessity of doses of certain antibiotics up to 1000-fold to combat infection. Thus, there is an urgent need for strategies to eradicate biofilms. Although a few physicochemical methods have been developed to prevent and treat biofilms, these methods have poor efficacy and biocompatibility. In this review, we discuss the existing strategies to combat biofilms and their challenges. Subsequently, we spotlight the potential of enzymes, in particular, polysaccharide degrading enzymes, for biofilm dispersion, which might lead to facile antimicrobial treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Reshma Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ashish Kumar Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Simran Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Debasis Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
49
|
Kumari S, Morrow MR, Booth V. Role of lipopolysaccharide in antimicrobial and cell penetrating peptide membrane interactions probed by deuterium NMR of whole cells. BBA ADVANCES 2022; 2:100057. [PMID: 37082590 PMCID: PMC10074874 DOI: 10.1016/j.bbadva.2022.100057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Understanding how non-lipid components of bacteria affect antimicrobial peptide (AMP)-induced membrane disruption is important for a comprehensive understanding of AMP mechanisms and informing AMP-based drug development. This study investigates how lipopolysaccharide (LPS) affects membrane disruption by the AMP MSI-78 and compares the results to the effect of TP2, a cell-penetrating peptide that crosses membrane bilayers without permeabilizing them. We destabilize the LPS layer of Escherichia coli (E. coli) cells via chelation of the stabilizing divalent cations. 2H NMR spectra of E. coli demonstrate that EDTA concentrations of 2.5 mM and 9.0 mM alone have very minor effects on lipid acyl chain order. Interestingly, we find that E. coli pre-treated with 9.0 mM EDTA before treatment with MSI-78 are more sensitive to AMP-induced acyl chain disruption, indicating that intact LPS reduces MSI-78-induced membrane disruption in E. coli. Surprisingly, we also found that at the level of 2H_NMR, the peptide-induced acyl chain disruption is similar for MSI-78 and TP2, although MSI-78 permeabilizes the bilayer and TP2 does not. Furthermore, LPS disruption appears to protect the bacteria from TP2, although it sensitizes them to MSI-78.
Collapse
|
50
|
Membranolytic Mechanism of Amphiphilic Antimicrobial β-Stranded [KL]n Peptides. Biomedicines 2022; 10:biomedicines10092071. [PMID: 36140173 PMCID: PMC9495826 DOI: 10.3390/biomedicines10092071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Amphipathic peptides can act as antibiotics due to membrane permeabilization. KL peptides with the repetitive sequence [Lys-Leu]n-NH2 form amphipathic β-strands in the presence of lipid bilayers. As they are known to kill bacteria in a peculiar length-dependent manner, we suggest here several different functional models, all of which seem plausible, including a carpet mechanism, a β-barrel pore, a toroidal wormhole, and a β-helix. To resolve their genuine mechanism, the activity of KL peptides with lengths from 6–26 amino acids (plus some inverted LK analogues) was systematically tested against bacteria and erythrocytes. Vesicle leakage assays served to correlate bilayer thickness and peptide length and to examine the role of membrane curvature and putative pore diameter. KL peptides with 10–12 amino acids showed the best therapeutic potential, i.e., high antimicrobial activity and low hemolytic side effects. Mechanistically, this particular window of an optimum β-strand length around 4 nm (11 amino acids × 3.7 Å) would match the typical thickness of a lipid bilayer, implying the formation of a transmembrane pore. Solid-state 15N- and 19F-NMR structure analysis, however, showed that the KL backbone lies flat on the membrane surface under all conditions. We can thus refute any of the pore models and conclude that the KL peptides rather disrupt membranes by a carpet mechanism. The intriguing length-dependent optimum in activity can be fully explained by two counteracting effects, i.e., membrane binding versus amyloid formation. Very short KL peptides are inactive, because they are unable to bind to the lipid bilayer as flexible β-strands, whereas very long peptides are inactive due to vigorous pre-aggregation into β-sheets in solution.
Collapse
|