1
|
Ambati S, Choudhury QJ, Peter JA, Moremen KW, Chapla DG, Lewis ZA, Lin X, Meagher RB. Siglec-targeted liposomes to identify sialoglycans present on fungal pathogens. Antimicrob Agents Chemother 2025; 69:e0172024. [PMID: 40084878 PMCID: PMC11963605 DOI: 10.1128/aac.01720-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/16/2025] [Indexed: 03/16/2025] Open
Abstract
The sialic acid Ig-like lectins Siglec-3 and Siglec-15 are pathogen receptors that bind sialic acid-modified glycoproteins, best characterized in metastatic cancers. Because fungi produce sialoglycans and sialo-glycoproteins, we wondered if Siglecs had the potential for targeted delivery of antifungal drugs. We purified the extracellular V-region Ig-like C2 ligand-binding domains and stalk regions of SIG3 and SIG15. We floated the two polypeptides on the surface of liposomes loaded with amphotericin B (AmB) and labeled with rhodamine B to prepare SIG3-Ls and SIG15-Ls. Using these two reagents, we explored the sialoglycans of two evolutionarily distant and deadly human fungal pathogens, the Mucormycete Rhizopus delemar and the Ascomycete Aspergillus fumigatus. We found that SIG3-Ls and SIG15-Ls localized in a continuous layer over the cell wall surface of germ tubes and hyphae of both fungal species and to the conidia of A. fumigatus. Binding was Neu5Ac-specific and appeared confined to N-linked sialoglycans on fungal proteins. SIG3 and SIG15 proteins bound to diverse sialo-glycoproteins extracted from the hyphae of both species. SIG3-Ls and SIG15-Ls delivering sub-micromolar concentrations of AmB were moderately more effective at inhibiting and/or killing both species relative to control liposomes. We discuss the roles that sialo-glycoproteins may play in fungal pathogens.
Collapse
Affiliation(s)
- Suresh Ambati
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | | | - Jesse Ann Peter
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Kelley W. Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Digantkumar Gopaldas Chapla
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Zachary A. Lewis
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
2
|
Rij M, Kayacan Y, Bernardi B, Wendland J. Re-routing MAP kinase signaling for penetration peg formation in predator yeasts. PLoS Pathog 2024; 20:e1012503. [PMID: 39213444 PMCID: PMC11392346 DOI: 10.1371/journal.ppat.1012503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Saccharomycopsis yeasts are natural organic sulfur auxotrophs due to lack of genes required for the uptake and assimilation of sulfate/sulfite. Starvation for methionine induces a shift to a predatory, mycoparasitic life strategy that is unique amongst ascomycetous yeasts. Similar to fungal plant pathogens that separated from Saccharomycopsis more than 400 million years ago, a specialized infection structure called penetration peg is used for prey cell invasion. Penetration pegs are highly enriched with chitin. Here we demonstrate that an ancient and conserved MAP kinase signaling pathway regulates penetration peg formation and successful predation in the predator yeast S. schoenii. Deletion of the MAP kinase gene SsKIL1, a homolog of the Saccharomyces cerevisiae ScKSS1/ScFUS3 and the rice blast Magnaporthe oryzae MoPMK1 genes, as well as deletion of the transcription factor SsSTE12 generate non-pathogenic mutants that fail to form penetration pegs. Comparative global transcriptome analyses using RNAseq indicate loss of the SsKil1-SsSte12-dependent predation response in the mutant strains, while a methionine starvation response is still executed. Within the promoter sequences of genes upregulated during predation we identified a cis-regulatory element similar to the ScSte12 pheromone response element. Our results indicate that, re-routing MAP-kinase signaling by re-wiring Ste12 transcriptional control towards predation specific genes contributed to the parallel evolution of this predacious behaviour in predator yeasts. Consequently, we found that SsSTE12 is dispensable for mating.
Collapse
Affiliation(s)
- Mareike Rij
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Yeseren Kayacan
- Research Group of Microbiology (MICR)-Functional Yeast Genomics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Beatrice Bernardi
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- Research Group of Microbiology (MICR)-Functional Yeast Genomics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- Research Group of Microbiology (MICR)-Functional Yeast Genomics, Vrije Universiteit Brussel, Brussels, Belgium
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
3
|
Impact of model assumptions on the inference of the evolution of ectomycorrhizal symbiosis in fungi. Sci Rep 2022; 12:22043. [PMID: 36543862 PMCID: PMC9772227 DOI: 10.1038/s41598-022-26514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Ectomycorrhiza (ECM) is a symbiotic relation between plant and fungi that is essential for nutrient uptake of many stand forming trees. There are two conflicting views about the evolution of ECM in fungi suggesting (1) relatively few transitions to ECM followed by reversals to non-ECM, or (2) many independent origins of ECM and no reversals. In this study, we compare these, and other, hypotheses and test the impact of different models on inference. We assembled a dataset of five marker gene sequences (nuc58, nucLSU, nucSSU, rpb1, and rpb2) and 2,174 fungal taxa covering the three subphyla: Agaricomycotina, Mucoromycotina and Pezizomycotina. The fit of different models, including models with variable rates in clades or through time, to the pattern of ECM fungal taxa was tested in a Bayesian framework, and using AIC and simulations. We find that models implementing variable rates are a better fit than models without rate shift, and that the conclusion about the relative rate between ECM and non-ECM depend largely on whether rate shifts are allowed or not. We conclude that standard constant-rate ancestral state reconstruction models are not adequate for the analysis of the evolution of ECM fungi, and may give contradictory results to more extensive analyses.
Collapse
|
4
|
Choudhury QJ, Ambati S, Lewis ZA, Meagher RB. Targeted Delivery of Antifungal Liposomes to Rhizopus delemar. J Fungi (Basel) 2022; 8:jof8040352. [PMID: 35448583 PMCID: PMC9026866 DOI: 10.3390/jof8040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Mucormycosis (a.k.a. zygomycosis) is an often-life-threatening disease caused by fungi from the ancient fungal division Mucoromycota. Globally, there are nearly a million people with the disease. Rhizopus spp., and R. delemar (R. oryzae, R. arrhizus) in particular, are responsible for most of the diagnosed cases. Pulmonary, rhino-orbito-cerebral, and invasive mucormycosis are most effectively treated with amphotericin B (AmB) and particularly with liposomal formulations (e.g., AmBisome®). However, even after antifungal therapy, there is still a 50% mortality rate. Hence, there is a critical need to improve therapeutics for mucormycosis. Targeting AmB-loaded liposomes (AmB-LLs) with the pathogen receptor Dectin-1 (DEC1-AmB-LLs) to the beta-glucans expressed on the surface of Aspergillus fumigatus and Candida albicans lowers the effective dose required to kill cells relative to untargeted AmB-LLs. Because Dectin-1 is an immune receptor for R. delemar infections and may bind it directly, we explored the Dectin-1-mediated delivery of liposomal AmB to R. delemar. DEC1-AmB-LLs bound 100- to 1000-fold more efficiently to the exopolysaccharide matrix of R. delemar germlings and mature hyphae relative to AmB-LLs. DEC1-AmB-LLs delivering sub-micromolar concentrations of AmB were an order of magnitude more efficient at inhibiting and/or killing R. delemar than AmB-LLs. Targeted antifungal drug-loaded liposomes have the potential to improve the treatment of mucormycosis.
Collapse
Affiliation(s)
- Quanita J. Choudhury
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (Q.J.C.); (Z.A.L.)
| | - Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
| | - Zachary A. Lewis
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (Q.J.C.); (Z.A.L.)
| | - Richard B. Meagher
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
- Correspondence:
| |
Collapse
|
5
|
Ambati S, Pham T, Lewis ZA, Lin X, Meagher RB. DC-SIGN targets amphotericin B-loaded liposomes to diverse pathogenic fungi. Fungal Biol Biotechnol 2021; 8:22. [PMID: 34952645 PMCID: PMC8709943 DOI: 10.1186/s40694-021-00126-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Life-threatening invasive fungal infections are treated with antifungal drugs such as Amphotericin B (AmB) loaded liposomes. Our goal herein was to show that targeting liposomal AmB to fungal cells with the C-type lectin pathogen recognition receptor DC-SIGN improves antifungal activity. DC-SIGN binds variously crosslinked mannose-rich and fucosylated glycans and lipomannans that are expressed by helminth, protist, fungal, bacterial and viral pathogens including three of the most life-threatening fungi, Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans. Ligand recognition by human DC-SIGN is provided by a carbohydrate recognition domain (CRD) linked to the membrane transit and signaling sequences. Different combinations of the eight neck repeats (NR1 to NR8) expressed in different protein isoforms may alter the orientation of the CRD to enhance its binding to different glycans. RESULTS We prepared two recombinant isoforms combining the CRD with NR1 and NR2 in isoform DCS12 and with NR7 and NR8 in isoform DCS78 and coupled them to a lipid carrier. These constructs were inserted into the membrane of pegylated AmB loaded liposomes AmB-LLs to produce DCS12-AmB-LLs and DCS78-AmB-LLs. Relative to AmB-LLs and Bovine Serum Albumin coated BSA-AmB-LLs, DCS12-AmB-LLs and DCS78-AmB-LLs bound more efficiently to the exopolysaccharide matrices produced by A. fumigatus, C. albicans and C. neoformans in vitro, with DCS12-AmB-LLs performing better than DCS78-AmB-LLs. DCS12-AmB-LLs inhibited and/or killed all three species in vitro significantly better than AmB-LLs or BSA-AmB-LLs. In mouse models of invasive candidiasis and pulmonary aspergillosis, one low dose of DCS12-AmB-LLs significantly reduced the fungal burden in the kidneys and lungs, respectively, several-fold relative to AmB-LLs. CONCLUSIONS DC-SIGN's CRD specifically targeted antifungal liposomes to three highly evolutionarily diverse pathogenic fungi and enhanced the antifungal efficacy of liposomal AmB both in vitro and in vivo. Targeting significantly reduced the effective dose of antifungal drug, which may reduce drug toxicity, be effective in overcoming dose dependent drug resistance, and more effectively kill persister cells. In addition to fungi, DC-SIGN targeting of liposomal packaged anti-infectives have the potential to alter treatment paradigms for a wide variety of pathogens from different kingdoms including protozoans, helminths, bacteria, and viruses which express its cognate ligands.
Collapse
Affiliation(s)
- Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| | - Tuyetnhu Pham
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Richard B Meagher
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
6
|
El Baidouri F, Zalar P, James TY, Gladfelter AS, Amend A. Evolution and Physiology of Amphibious Yeasts. Annu Rev Microbiol 2021; 75:337-357. [PMID: 34351793 DOI: 10.1146/annurev-micro-051421-121352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the emergence of the first fungi some 700 million years ago, unicellular yeast-like forms have emerged multiple times in independent lineages via convergent evolution. While tens to hundreds of millions of years separate the independent evolution of these unicellular organisms, they share remarkable phenotypic and metabolic similarities, and all have streamlined genomes. Yeasts occur in every aquatic environment yet examined. Many species are aquatic; perhaps most are amphibious. How these species have evolved to thrive in aquatic habitats is fundamental to understanding functions and evolutionary mechanisms in this unique group of fungi. Here we review the state of knowledge of the physiological and ecological diversity of amphibious yeasts and their key evolutionary adaptations enabling survival in aquatic habitats. We emphasize some genera previously thought to be exclusively terrestrial. Finally, we discuss the ability of many yeasts to survive in extreme habitats and how this might lend insight into ecological plasticity, including amphibious lifestyles. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Fouad El Baidouri
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii 96822, USA; , .,Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Polona Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Anthony Amend
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii 96822, USA; ,
| |
Collapse
|
7
|
Shen XX, Steenwyk JL, LaBella AL, Opulente DA, Zhou X, Kominek J, Li Y, Groenewald M, Hittinger CT, Rokas A. Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota. SCIENCE ADVANCES 2020; 6:eabd0079. [PMID: 33148650 PMCID: PMC7673691 DOI: 10.1126/sciadv.abd0079] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/21/2020] [Indexed: 05/14/2023]
Abstract
Ascomycota, the largest and most well-studied phylum of fungi, contains three subphyla: Saccharomycotina (budding yeasts), Pezizomycotina (filamentous fungi), and Taphrinomycotina (fission yeasts). Despite its importance, we lack a comprehensive genome-scale phylogeny or understanding of the similarities and differences in the mode of genome evolution within this phylum. By examining 1107 genomes from Saccharomycotina (332), Pezizomycotina (761), and Taphrinomycotina (14) species, we inferred a robust genome-wide phylogeny that resolves several contentious relationships and estimated that the Ascomycota last common ancestor likely originated in the Ediacaran period. Comparisons of genomic properties revealed that Saccharomycotina and Pezizomycotina differ greatly in their genome properties and enabled inference of the direction of evolutionary change. The Saccharomycotina typically have smaller genomes, lower guanine-cytosine contents, lower numbers of genes, and higher rates of molecular sequence evolution compared with Pezizomycotina. These results provide a robust evolutionary framework for understanding the diversity and ecological lifestyles of the largest fungal phylum.
Collapse
Affiliation(s)
- Xing-Xing Shen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Jacek Kominek
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Chris T Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
8
|
Fačkovcová Z, Slovák M, Vďačný P, Melichárková A, Zozomová-Lihová J, Guttová A. Spatio-temporal formation of the genetic diversity in the Mediterranean dwelling lichen during the Neogene and Quaternary epochs. Mol Phylogenet Evol 2019; 144:106704. [PMID: 31821879 DOI: 10.1016/j.ympev.2019.106704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 01/06/2023]
Abstract
Genetic patterns of lichenized fungi often display a mosaic-like and difficult to interpret structure blurring their evolutionary history. The genetic diversity and phylogeographic pattern of a mycobiont of the predominantly Mediterranean dwelling lichen Solenopsora candicans were investigated on the base of extensive sampling (361 individuals, 77 populations) across its entire distribution range. We tested whether the genetic pattern of S. candicans mirrors paleoclimatic and paleogeological events in the Mediterranean and adjacent regions. The divergence time estimates indicated a Tertiary origin for S. candicans, with formation of intraspecific diversity initiated in the Late Miocene. The distribution of the most divergent haplotypes, mostly of a pre-Pleistocene origin, was restricted to the eastern or western extremities of the Mediterranean exhibiting Kiermack disjunction. The population genetic diversity analyses indicated multiple diversity centres and refugia for S. candicans across the entire Mediterranean Basin. While the south Mediterranean regions harboured both the Tertiary and Quaternary born diversity, conforming to the 'cumulative refugia' paradigm, the Apennine and Balkan Peninsulas in the north hosted mostly younger Pleistocene haplotypes and lineages. The recent population expansion of S. candicans might have occurred in the middle Pleistocene with a population burst in the Apennine and Balkan peninsulas. The presence of unique haplotypes in Central Europe indicates the existence of extra-Mediterranean microrefugia. This study presents the first comprehensive lichen phylogeography from the Mediterranean region and simultaneously reports for the first time the glacial survival of a warm-adapted lichen in the temperate zone.
Collapse
Affiliation(s)
- Zuzana Fačkovcová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia.
| | - Marek Slovák
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia; Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic
| | - Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Andrea Melichárková
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| | - Judita Zozomová-Lihová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| | - Anna Guttová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| |
Collapse
|
9
|
Abstract
Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.
Collapse
|
10
|
Honegger R, Edwards D, Axe L, Strullu-Derrien C. Fertile Prototaxites taiti: a basal ascomycete with inoperculate, polysporous asci lacking croziers. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170146. [PMID: 29254969 PMCID: PMC5745340 DOI: 10.1098/rstb.2017.0146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2017] [Indexed: 12/30/2022] Open
Abstract
The affinities of Prototaxites have been debated ever since its fossils, some attaining tree-trunk proportions, were discovered in Canadian Lower Devonian rocks in 1859. Putative assignations include conifers, red and brown algae, liverworts and fungi (some lichenised). Detailed anatomical investigation led to the reconstruction of the type species, P. logani, as a giant sporophore (basidioma) of an agaricomycete (= holobasidiomycete), but evidence for its reproduction remained elusive. Tissues associated with P. taiti in the Rhynie chert plus charcoalified fragments from southern Britain are investigated here to describe the reproductive characters and hence affinities of Prototaxites Thin sections and peels (Pragian Rhynie chert, Aberdeenshire) were examined using light and confocal microscopy; Přídolí and Lochkovian charcoalified samples (Welsh Borderland) were liberated from the rock and examined with scanning electron microscopy. Prototaxites taiti possessed a superficial hymenium comprising an epihymenial layer, delicate septate paraphyses, inoperculate polysporic asci lacking croziers and a subhymenial layer composed predominantly of thin-walled hyphae and occasional larger hyphae. Prototaxites taiti combines features of extant Taphrinomycotina (Neolectomycetes lacking croziers) and Pezizomycotina (epihymenial layer secreted by paraphyses) but is not an ancestor of the latter. Brief consideration is given to its nutrition and potential position in the phylogeny of the Ascomycota.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.
Collapse
Affiliation(s)
- Rosmarie Honegger
- Institute of Plant and Microbiology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Dianne Edwards
- School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Lindsey Axe
- School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | | |
Collapse
|
11
|
Antoneli F, Passos FM, Lopes LR, Briones MRS. A Kolmogorov-Smirnov test for the molecular clock based on Bayesian ensembles of phylogenies. PLoS One 2018; 13:e0190826. [PMID: 29300759 PMCID: PMC5754089 DOI: 10.1371/journal.pone.0190826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/20/2017] [Indexed: 11/19/2022] Open
Abstract
Divergence date estimates are central to understand evolutionary processes and depend, in the case of molecular phylogenies, on tests of molecular clocks. Here we propose two non-parametric tests of strict and relaxed molecular clocks built upon a framework that uses the empirical cumulative distribution (ECD) of branch lengths obtained from an ensemble of Bayesian trees and well known non-parametric (one-sample and two-sample) Kolmogorov-Smirnov (KS) goodness-of-fit test. In the strict clock case, the method consists in using the one-sample Kolmogorov-Smirnov (KS) test to directly test if the phylogeny is clock-like, in other words, if it follows a Poisson law. The ECD is computed from the discretized branch lengths and the parameter λ of the expected Poisson distribution is calculated as the average branch length over the ensemble of trees. To compensate for the auto-correlation in the ensemble of trees and pseudo-replication we take advantage of thinning and effective sample size, two features provided by Bayesian inference MCMC samplers. Finally, it is observed that tree topologies with very long or very short branches lead to Poisson mixtures and in this case we propose the use of the two-sample KS test with samples from two continuous branch length distributions, one obtained from an ensemble of clock-constrained trees and the other from an ensemble of unconstrained trees. Moreover, in this second form the test can also be applied to test for relaxed clock models. The use of a statistically equivalent ensemble of phylogenies to obtain the branch lengths ECD, instead of one consensus tree, yields considerable reduction of the effects of small sample size and provides a gain of power.
Collapse
Affiliation(s)
- Fernando Antoneli
- Laboratório de Genômica Evolutiva e Biocomplexidade, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, UNIFESP, São Paulo, SP, Brazil
- Departamento de Informática em Saúde, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. José Leal Prado, São Paulo, SP, Brazil
| | - Fernando M. Passos
- Laboratório de Genômica Evolutiva e Biocomplexidade, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, UNIFESP, São Paulo, SP, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luciano R. Lopes
- Laboratório de Genômica Evolutiva e Biocomplexidade, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, UNIFESP, São Paulo, SP, Brazil
- Departamento de Informática em Saúde, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. José Leal Prado, São Paulo, SP, Brazil
| | - Marcelo R. S. Briones
- Laboratório de Genômica Evolutiva e Biocomplexidade, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, UNIFESP, São Paulo, SP, Brazil
- Departamento de Informática em Saúde, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. José Leal Prado, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
12
|
|
13
|
Renny M, Acosta MC, Cofré N, Domínguez LS, Bidartondo MI, Sérsic AN. Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae). ANNALS OF BOTANY 2017; 119:1279-1294. [PMID: 28398457 PMCID: PMC5604589 DOI: 10.1093/aob/mcx023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/14/2017] [Indexed: 05/30/2023]
Abstract
Background and Aims Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora 's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Methods Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Key Results Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Conclusions Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern.
Collapse
Affiliation(s)
- Mauricio Renny
- Instituto Multidisciplinario de Biología Vegetal, IMBIV, UNC-CONICET, Edificio de Investigaciones Biológicas y Tecnológicas, Vélez Sársfield 1611, 5000 Córdoba, Argentina
| | - M. Cristina Acosta
- Instituto Multidisciplinario de Biología Vegetal, IMBIV, UNC-CONICET, Edificio de Investigaciones Biológicas y Tecnológicas, Vélez Sársfield 1611, 5000 Córdoba, Argentina
| | - Noelia Cofré
- Instituto Multidisciplinario de Biología Vegetal, IMBIV, UNC-CONICET, Edificio de Investigaciones Biológicas y Tecnológicas, Vélez Sársfield 1611, 5000 Córdoba, Argentina
| | - Laura S. Domínguez
- Instituto Multidisciplinario de Biología Vegetal, IMBIV, UNC-CONICET, Edificio de Investigaciones Biológicas y Tecnológicas, Vélez Sársfield 1611, 5000 Córdoba, Argentina
| | - Martin I. Bidartondo
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew TW9 3DS, UK
| | - Alicia N. Sérsic
- Instituto Multidisciplinario de Biología Vegetal, IMBIV, UNC-CONICET, Edificio de Investigaciones Biológicas y Tecnológicas, Vélez Sársfield 1611, 5000 Córdoba, Argentina
| |
Collapse
|
14
|
Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nat Ecol Evol 2017; 1:141. [PMID: 28812648 DOI: 10.1038/s41559-017-0141] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/15/2017] [Indexed: 11/09/2022]
Abstract
Fungi have recently been found to comprise a significant part of the deep biosphere in oceanic sediments and crustal rocks. Fossils occupying fractures and pores in Phanerozoic volcanics indicate that this habitat is at least 400 million years old, but its origin may be considerably older. A 2.4-billion-year-old basalt from the Palaeoproterozoic Ongeluk Formation in South Africa contains filamentous fossils in vesicles and fractures. The filaments form mycelium-like structures growing from a basal film attached to the internal rock surfaces. Filaments branch and anastomose, touch and entangle each other. They are indistinguishable from mycelial fossils found in similar deep-biosphere habitats in the Phanerozoic, where they are attributed to fungi on the basis of chemical and morphological similarities to living fungi. The Ongeluk fossils, however, are two to three times older than current age estimates of the fungal clade. Unless they represent an unknown branch of fungus-like organisms, the fossils imply that the fungal clade is considerably older than previously thought, and that fungal origin and early evolution may lie in the oceanic deep biosphere rather than on land. The Ongeluk discovery suggests that life has inhabited submarine volcanics for more than 2.4 billion years.
Collapse
|
15
|
Affiliation(s)
- John W. Taylor
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, California 94720-3102
| | - Mary L. Berbee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| |
Collapse
|
16
|
Chang Y, Wang S, Sekimoto S, Aerts AL, Choi C, Clum A, LaButti KM, Lindquist EA, Yee Ngan C, Ohm RA, Salamov AA, Grigoriev IV, Spatafora JW, Berbee ML. Phylogenomic Analyses Indicate that Early Fungi Evolved Digesting Cell Walls of Algal Ancestors of Land Plants. Genome Biol Evol 2015; 7:1590-601. [PMID: 25977457 PMCID: PMC4494064 DOI: 10.1093/gbe/evv090] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As decomposers, fungi are key players in recycling plant material in global carbon cycles. We hypothesized that genomes of early diverging fungi may have inherited pectinases from an ancestral species that had been able to extract nutrients from pectin-containing land plants and their algal allies (Streptophytes). We aimed to infer, based on pectinase gene expansions and on the organismal phylogeny, the geological timing of the plant-fungus association. We analyzed 40 fungal genomes, three of which, including Gonapodya prolifera, were sequenced for this study. In the organismal phylogeny from 136 housekeeping loci, Rozella diverged first from all other fungi. Gonapodya prolifera was included among the flagellated, predominantly aquatic fungal species in Chytridiomycota. Sister to Chytridiomycota were the predominantly terrestrial fungi including zygomycota I and zygomycota II, along with the ascomycetes and basidiomycetes that comprise Dikarya. The Gonapodya genome has 27 genes representing five of the seven classes of pectin-specific enzymes known from fungi. Most of these share a common ancestry with pectinases from Dikarya. Indicating functional and sequence similarity, Gonapodya, like many Dikarya, can use pectin as a carbon source for growth in pure culture. Shared pectinases of Dikarya and Gonapodya provide evidence that even ancient aquatic fungi had adapted to extract nutrients from the plants in the green lineage. This implies that 750 million years, the estimated maximum age of origin of the pectin-containing streptophytes represents a maximum age for the divergence of Chytridiomycota from the lineage including Dikarya.
Collapse
Affiliation(s)
- Ying Chang
- Department of Botany, University of British Columbia, Vancouver, British Columbia
| | - Sishuo Wang
- Department of Botany, University of British Columbia, Vancouver, British Columbia
| | - Satoshi Sekimoto
- Department of Botany, University of British Columbia, Vancouver, British Columbia NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, Chiba, Japan
| | | | - Cindy Choi
- DOE Joint Genome Institute, Walnut Creek, California
| | - Alicia Clum
- DOE Joint Genome Institute, Walnut Creek, California
| | | | | | - Chew Yee Ngan
- DOE Joint Genome Institute, Walnut Creek, California
| | - Robin A Ohm
- DOE Joint Genome Institute, Walnut Creek, California
| | | | | | | | - Mary L Berbee
- Department of Botany, University of British Columbia, Vancouver, British Columbia
| |
Collapse
|
17
|
Kandasamy MK, McKinney EC, Roy E, Meagher RB. Ascomycete fungal actins differentially support plant spatial cell and organ development. Cytoskeleton (Hoboken) 2015; 72:80-92. [PMID: 25428798 DOI: 10.1002/cm.21198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/18/2014] [Accepted: 11/23/2014] [Indexed: 01/18/2023]
Abstract
Actin interacts with a wide variety of cytoplasmic and nuclear proteins to support spatial development in nearly all eukaryotes. Null mutations in plant vegetative actins produce dramatically altered cell, tissue, and organ morphologies. Animal cytoplasmic actins (e.g., human HsACTB, HsACTG1) and some ancestral protist actins fully suppress these mutant phenotypes suggesting that some animal, plant, and protist actins share functional competence for spatial development. Considering that fungi have a phylogenetic origin closer to animals than plants, we were interested to explore whether the fungal actins may have this same capacity to function in plants and support development. We ectopically expressed actins from four highly divergent ascomycete fungi in two different Arabidopsis double vegetative actin null mutants. We found that expression of actin from the earliest diverging ascomycete subphyla, the archiascomycete Schizosaccharomyces pombe, qualitatively and quantitatively suppressed the root cell polarity and root organ developmental defects of act8/act7 mutants and the root-hairless cell elongation phenotype of act2/act8 mutants. Interestingly, the actin from the pyrenomycete Neurospora crassa was modestly effective in the suppression of vegetative actin mutant phenotypes. In contrast, actins from the saccharomycetes Saccharomyces cerevisiae and Candida albicans were unable to support any aspect of plant development, and moreover induced severe dwarfism and sterility. These data imply that basal fungi inherited an actin with full competence for spatial development from their protist ancestor and maintained it via non-progressive sequence evolution, while the later more derived fungal species lost these activities.
Collapse
Affiliation(s)
- Muthugapatti K Kandasamy
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, Georgia; Biomedical Microscopy Core, Coverdell Center, University of Georgia, Athens, Georgia
| | | | | | | |
Collapse
|
18
|
Beimforde C, Feldberg K, Nylinder S, Rikkinen J, Tuovila H, Dörfelt H, Gube M, Jackson DJ, Reitner J, Seyfullah LJ, Schmidt AR. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol Phylogenet Evol 2014; 78:386-98. [PMID: 24792086 DOI: 10.1016/j.ympev.2014.04.024] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 12/12/2013] [Accepted: 04/21/2014] [Indexed: 12/18/2022]
Abstract
The phylum Ascomycota is by far the largest group in the fungal kingdom. Ecologically important mutualistic associations such as mycorrhizae and lichens have evolved in this group, which are regarded as key innovations that supported the evolution of land plants. Only a few attempts have been made to date the origin of Ascomycota lineages by using molecular clock methods, which is primarily due to the lack of satisfactory fossil calibration data. For this reason we have evaluated all of the oldest available ascomycete fossils from amber (Albian to Miocene) and chert (Devonian and Maastrichtian). The fossils represent five major ascomycete classes (Coniocybomycetes, Dothideomycetes, Eurotiomycetes, Laboulbeniomycetes, and Lecanoromycetes). We have assembled a multi-gene data set (18SrDNA, 28SrDNA, RPB1 and RPB2) from a total of 145 taxa representing most groups of the Ascomycota and utilized fossil calibration points solely from within the ascomycetes to estimate divergence times of Ascomycota lineages with a Bayesian approach. Our results suggest an initial diversification of the Pezizomycotina in the Ordovician, followed by repeated splits of lineages throughout the Phanerozoic, and indicate that this continuous diversification was unaffected by mass extinctions. We suggest that the ecological diversity within each lineage ensured that at least some taxa of each group were able to survive global crises and rapidly recovered.
Collapse
Affiliation(s)
- Christina Beimforde
- Courant Research Centre Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany.
| | - Kathrin Feldberg
- Systematic Botany and Mycology, Faculty of Biology, University of Munich (LMU), Menzinger Str. 67, 80638 Munich, Germany
| | - Stephan Nylinder
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden
| | - Jouko Rikkinen
- Department of Biosciences, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland
| | - Hanna Tuovila
- Department of Biosciences, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland
| | - Heinrich Dörfelt
- Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Matthias Gube
- Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany; Department of Soil Science of Temperate Ecosystems, Büsgen Institute, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Daniel J Jackson
- Courant Research Centre Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
| | - Joachim Reitner
- Courant Research Centre Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
| | - Leyla J Seyfullah
- Courant Research Centre Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
| | - Alexander R Schmidt
- Courant Research Centre Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Wang YY, Liu B, Zhang XY, Zhou QM, Zhang T, Li H, Yu YF, Zhang XL, Hao XY, Wang M, Wang L, Wei JC. Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota). BMC Genomics 2014; 15:34. [PMID: 24438332 PMCID: PMC3897900 DOI: 10.1186/1471-2164-15-34] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/14/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Lichen is a classic mutualistic organism and the lichenization is one of the fungal symbioses. The lichen-forming fungus Endocarpon pusillum is living in symbiosis with the green alga Diplosphaera chodatii Bialsuknia as a lichen in the arid regions. RESULTS 454 and Illumina technologies were used to sequence the genome of E. pusillum. A total of 9,285 genes were annotated in the 37.5 Mb genome of E. pusillum. Analyses of the genes provided direct molecular evidence for certain natural characteristics, such as homothallic reproduction and drought-tolerance. Comparative genomics analysis indicated that the expansion and contraction of some protein families in the E. pusillum genome reflect the specific relationship with its photosynthetic partner (D. chodatii). Co-culture experiments using the lichen-forming fungus E. pusillum and its algal partner allowed the functional identification of genes involved in the nitrogen and carbon transfer between both symbionts, and three lectins without signal peptide domains were found to be essential for the symbiotic recognition in the lichen; interestingly, the ratio of the biomass of both lichen-forming fungus and its photosynthetic partner and their contact time were found to be important for the interaction between these two symbionts. CONCLUSIONS The present study lays a genomic analysis of the lichen-forming fungus E. pusillum for demonstrating its general biological features and the traits of the interaction between this fungus and its photosynthetic partner D. chodatii, and will provide research basis for investigating the nature of its drought resistance and symbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | | |
Collapse
|
20
|
Phylogenetic analysis of the angiosperm-floricolous insect–yeast association: Have yeast and angiosperm lineages co-diversified? Mol Phylogenet Evol 2013; 68:161-75. [DOI: 10.1016/j.ympev.2013.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/21/2013] [Accepted: 04/02/2013] [Indexed: 11/20/2022]
|
21
|
Prieto M, Wedin M. Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS One 2013; 8:e65576. [PMID: 23799026 PMCID: PMC3683012 DOI: 10.1371/journal.pone.0065576] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/26/2013] [Indexed: 11/28/2022] Open
Abstract
Establishing the dates for the origin and main diversification events in the phylogeny of Ascomycota is among the most crucial remaining goals in understanding the evolution of Fungi. There have been several analyses of divergence times in the fungal tree of life in the last two decades, but most have yielded contrasting results for the origin of the major lineages. Moreover, very few studies have provided temporal estimates for a large set of clades within Ascomycota. We performed molecular dating to estimate the divergence times of most of the major groups of Ascomycota. To account for paleontological uncertainty, we included alternative fossil constraints as different scenarios to enable a discussion of the effect of selection of fossils. We used data from 6 molecular markers and 121 extant taxa within Ascomycota. Our various 'relaxed clock' scenarios suggest that the origin and diversification of the Pezizomycotina occurred in the Cambrian. The main lineages of lichen-forming Ascomycota originated at least as early as the Carboniferous, with successive radiations in the Jurassic and Cretaceous generating the diversity of the main modern groups. Our study provides new information about the timing of the main diversification events in Ascomycota, including estimates for classes, orders and families of both lichenized and non-lichenized Ascomycota, many of which had not been previously dated.
Collapse
Affiliation(s)
- María Prieto
- Department of Botany, Swedish Museum of Natural History, Stockholm, Sweden.
| | | |
Collapse
|
22
|
Bonito G, Smith ME, Nowak M, Healy RA, Guevara G, Cázares E, Kinoshita A, Nouhra ER, Domínguez LS, Tedersoo L, Murat C, Wang Y, Moreno BA, Pfister DH, Nara K, Zambonelli A, Trappe JM, Vilgalys R. Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PLoS One 2013; 8:e52765. [PMID: 23300990 PMCID: PMC3534693 DOI: 10.1371/journal.pone.0052765] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/22/2012] [Indexed: 11/18/2022] Open
Abstract
Truffles have evolved from epigeous (aboveground) ancestors in nearly every major lineage of fleshy fungi. Because accelerated rates of morphological evolution accompany the transition to the truffle form, closely related epigeous ancestors remain unknown for most truffle lineages. This is the case for the quintessential truffle genus Tuber, which includes species with socio-economic importance and esteemed culinary attributes. Ecologically, Tuber spp. form obligate mycorrhizal symbioses with diverse species of plant hosts including pines, oaks, poplars, orchids, and commercially important trees such as hazelnut and pecan. Unfortunately, limited geographic sampling and inconclusive phylogenetic relationships have obscured our understanding of their origin, biogeography, and diversification. To address this problem, we present a global sampling of Tuberaceae based on DNA sequence data from four loci for phylogenetic inference and molecular dating. Our well-resolved Tuberaceae phylogeny shows high levels of regional and continental endemism. We also identify a previously unknown epigeous member of the Tuberaceae--the South American cup-fungus Nothojafnea thaxteri (E.K. Cash) Gamundí. Phylogenetic resolution was further improved through the inclusion of a previously unrecognized Southern hemisphere sister group of the Tuberaceae. This morphologically diverse assemblage of species includes truffle (e.g. Gymnohydnotrya spp.) and non-truffle forms that are endemic to Australia and South America. Southern hemisphere taxa appear to have diverged more recently than the Northern hemisphere lineages. Our analysis of the Tuberaceae suggests that Tuber evolved from an epigeous ancestor. Molecular dating estimates Tuberaceae divergence in the late Jurassic (~156 million years ago), with subsequent radiations in the Cretaceous and Paleogene. Intra-continental diversification, limited long-distance dispersal, and ecological adaptations help to explain patterns of truffle evolution and biodiversity.
Collapse
Affiliation(s)
- Gregory Bonito
- Deparment of Biology, Duke University, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Honegger R, Edwards D, Axe L. The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. THE NEW PHYTOLOGIST 2013; 197:264-275. [PMID: 23110612 DOI: 10.1111/nph.12009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/20/2012] [Indexed: 05/12/2023]
Abstract
Lichenization is assumed to be a very ancient mode of fungal nutrition, but fossil records are rare. Here we describe two fragments of exceptionally preserved, probably charred, lichen thalli with internal stratification. Cyanolichenomycites devonicus has a cyanobacterial and Chlorolichenomycites salopensis a unicellular, presumably green algal photobiont. Fruiting bodies are missing. Cyanolichenomycites devonicus forms asexual spores in a pycnidium. All specimens were examined with scanning electron microscopy techniques. The fossils were extracted by maceration. Extant lichens and free-living cyanobacteria were either experimentally charcoalified for comparison or conventionally prepared. Based on their septate hyphal structure, both specimens are tentatively interpreted as representatives of the Pezizomycotina (Ascomycota). Their presence in 415 million yr (Myr) old rocks from the Welsh Borderland predates existing Late Cretaceous records of pycnidial conidiomata by some 325 Myr and Triassic records of lichens with broadly similar organization by some 195 Myr. These fossils represent the oldest known record of lichens with symbionts and anatomy as typically found in morphologically advanced taxa today. The latter does not apply to Winfrenatia reticulata, the enigmatic crustose lichen fossil from the Lower Devonian, nor to presumed lichen-like organisms such as the Cambrian Farghera robusta or to the Lower Devonian Spongiophyton minutissimum.
Collapse
Affiliation(s)
- Rosmarie Honegger
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| | - Dianne Edwards
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Lindsey Axe
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, CF10 3AT, UK
| |
Collapse
|
24
|
Apostolaki A, Harispe L, Calcagno-Pizarelli AM, Vangelatos I, Sophianopoulou V, Arst HN, Peñalva MA, Amillis S, Scazzocchio C. Aspergillus nidulans CkiA is an essential casein kinase I required for delivery of amino acid transporters to the plasma membrane. Mol Microbiol 2012; 84:530-49. [PMID: 22489878 PMCID: PMC3491690 DOI: 10.1111/j.1365-2958.2012.08042.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Type I casein kinases are highly conserved among Eukaryotes. Of the two Aspergillus nidulans casein kinases I, CkiA is related to the δ/ε mammalian kinases and to Saccharomyces cerevisiæ Hrr25p. CkiA is essential. Three recessive ckiA mutations leading to single residue substitutions, and downregulation using a repressible promoter, result in partial loss-of-function, which leads to a pleiotropic defect in amino acid utilization and resistance to toxic amino acid analogues. These phenotypes correlate with miss-routing of the YAT plasma membrane transporters AgtA (glutamate) and PrnB (proline) to the vacuole under conditions that, in the wild type, result in their delivery to the plasma membrane. Miss-routing to the vacuole and subsequent transporter degradation results in a major deficiency in the uptake of the corresponding amino acids that underlies the inability of the mutant strains to catabolize them. Our findings may have important implications for understanding how CkiA, Hrr25p and other fungal orthologues regulate the directionality of transport at the ER-Golgi interface.
Collapse
Affiliation(s)
- Angeliki Apostolaki
- Institut de Génétique et Microbiologie, Université Paris-Sud (XI), UMR 8621 CNRS 91450 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Amo de Paz G, Cubas P, Divakar PK, Lumbsch HT, Crespo A. Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis. PLoS One 2011; 6:e28161. [PMID: 22174775 PMCID: PMC3234259 DOI: 10.1371/journal.pone.0028161] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/02/2011] [Indexed: 11/19/2022] Open
Abstract
There is a long-standing debate on the extent of vicariance and long-distance dispersal events to explain the current distribution of organisms, especially in those with small diaspores potentially prone to long-distance dispersal. Age estimates of clades play a crucial role in evaluating the impact of these processes. The aim of this study is to understand the evolutionary history of the largest clade of macrolichens, the parmelioid lichens (Parmeliaceae, Lecanoromycetes, Ascomycota) by dating the origin of the group and its major lineages. They have a worldwide distribution with centers of distribution in the Neo- and Paleotropics, and semi-arid subtropical regions of the Southern Hemisphere. Phylogenetic analyses were performed using DNA sequences of nuLSU and mtSSU rDNA, and the protein-coding RPB1 gene. The three DNA regions had different evolutionary rates: RPB1 gave a rate two to four times higher than nuLSU and mtSSU. Divergence times of the major clades were estimated with partitioned BEAST analyses allowing different rates for each DNA region and using a relaxed clock model. Three calibrations points were used to date the tree: an inferred age at the stem of Lecanoromycetes, and two dated fossils: Parmelia in the parmelioid group, and Alectoria. Palaeoclimatic conditions and the palaeogeological area cladogram were compared to the dated phylogeny of parmelioid. The parmelioid group diversified around the K/T boundary, and the major clades diverged during the Eocene and Oligocene. The radiation of the genera occurred through globally changing climatic condition of the early Oligocene, Miocene and early Pliocene. The estimated divergence times are consistent with long-distance dispersal events being the major factor to explain the biogeographical distribution patterns of Southern Hemisphere parmelioids, especially for Africa-Australia disjunctions, because the sequential break-up of Gondwana started much earlier than the origin of these clades. However, our data cannot reject vicariance to explain South America-Australia disjunctions.
Collapse
Affiliation(s)
- Guillermo Amo de Paz
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Paloma Cubas
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Pradeep K. Divakar
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - H. Thorsten Lumbsch
- Department of Botany, The Field Museum, Chicago, Illinois, United States of America
| | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
26
|
Gueidan C, Ruibal C, de Hoog GS, Schneider H. Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 2011; 115:987-96. [PMID: 21944211 DOI: 10.1016/j.funbio.2011.04.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/18/2011] [Accepted: 04/22/2011] [Indexed: 12/14/2022]
Abstract
Non-lichenized rock-inhabiting fungi (RIF) are slow-growing melanized ascomycetes colonizing rock surfaces in arid environments. They possess adaptations, which allow them to tolerate extreme abiotic conditions, such as high UV radiations and extreme temperatures. They belong to two separate lineages, one consisting in the sister classes Dothideomycetes and Arthoniomycetes (Dothideomyceta), and the other consisting in the order Chaetothyriales (Eurotiomycetes). Because RIF often form early diverging groups in Chaetothyriales and Dothideomyceta, the ancestors of these two lineages were suggested to most likely be rock-inhabitants. The lineage of RIF related to the Chaetothyriales shows a much narrower phylogenetic spectrum than the lineage of RIF related to Dothideomyceta, suggesting a much more ancient origin for the latter. Our study aims at investigating the times of origin of RIF using a relaxed clock model and several fossil and secondary calibrations. Our results show that the RIF in Dothideomyceta evolved in the late Devonian, much earlier than the RIF in Chaetothyriales, which originated in the middle Triassic. The origin of the chaetothyrialean RIF correlates well with a period of recovery after the Permian-Triassic mass extinction and an expansion of arid landmasses. The period preceding the diversification of the RIF related to Dothideomyceta (Silurian--Devonian) is also characterized by large arid landmasses, but temperatures were much cooler than during the Triassic. The paleoclimate record provides a good explanation for the diversification of fungi subjected to abiotic stresses and adapted to life on rock surfaces in nutrient-poor habitats.
Collapse
Affiliation(s)
- Cécile Gueidan
- Department of Botany, The Natural History Museum, SW7 5BD London, United Kingdom.
| | | | | | | |
Collapse
|
27
|
Feau N, Decourcelle T, Husson C, Desprez-Loustau ML, Dutech C. Finding single copy genes out of sequenced genomes for multilocus phylogenetics in non-model fungi. PLoS One 2011; 6:e18803. [PMID: 21533204 PMCID: PMC3076447 DOI: 10.1371/journal.pone.0018803] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/18/2011] [Indexed: 11/17/2022] Open
Abstract
Historically, fungal multigene phylogenies have been reconstructed based on a small number of commonly used genes. The availability of complete fungal genomes has given rise to a new wave of model organisms that provide large number of genes potentially useful for building robust gene genealogies. Unfortunately, cross-utilization of these resources to study phylogenetic relationships in the vast majority of non-model fungi (i.e. “orphan” species) remains an unexamined question. To address this problem, we developed a method coupled with a program named “PHYLORPH” (PHYLogenetic markers for ORPHans). The method screens fungal genomic databases (107 fungal genomes fully sequenced) for single copy genes that might be easily transferable and well suited for studies at low taxonomic levels (for example, in species complexes) in non-model fungal species. To maximize the chance to target genes with informative regions, PHYLORPH displays a graphical evaluation system based on the estimation of nucleotide divergence relative to substitution type. The usefulness of this approach was tested by developing markers in four non-model groups of fungal pathogens. For each pathogen considered, 7 to 40% of the 10–15 best candidate genes proposed by PHYLORPH yielded sequencing success. Levels of polymorphism of these genes were compared with those obtained for some genes traditionally used to build fungal phylogenies (e.g. nuclear rDNA, β-tubulin, γ-actin, Elongation factor EF-1α). These genes were ranked among the best-performing ones and resolved accurately taxa relationships in each of the four non-model groups of fungi considered. We envision that PHYLORPH will constitute a useful tool for obtaining new and accurate phylogenetic markers to resolve relationships between closely related non-model fungal species.
Collapse
Affiliation(s)
- Nicolas Feau
- INRA, UMR1202, BIOGECO (Biodiversité Gènes et Communautés), Cestas, France.
| | | | | | | | | |
Collapse
|
28
|
Leal JA, Prieto A, Bernabé M, Hawksworth DL. An assessment of fungal wall heteromannans as a phylogenetically informative character in ascomycetes. FEMS Microbiol Rev 2010; 34:986-1014. [DOI: 10.1111/j.1574-6976.2010.00225.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Eisosome organization in the filamentous ascomycete Aspergillus nidulans. EUKARYOTIC CELL 2010; 9:1441-54. [PMID: 20693301 DOI: 10.1128/ec.00087-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eisosomes are subcortical organelles implicated in endocytosis and have hitherto been described only in Saccharomyces cerevisiae. They comprise two homologue proteins, Pil1 and Lsp1, which colocalize with the transmembrane protein Sur7. These proteins are universally conserved in the ascomycetes. We identify in Aspergillus nidulans (and in all members of the subphylum Pezizomycotina) two homologues of Pil1/Lsp1, PilA and PilB, originating from a duplication independent from that extant in the subphylum Saccharomycotina. In the aspergilli there are several Sur7-like proteins in each species, including one strict Sur7 orthologue (SurG in A. nidulans). In A. nidulans conidiospores, but not in hyphae, the three proteins colocalize at the cell cortex and form tightly packed punctate structures that appear different from the clearly distinct eisosome patches observed in S. cerevisiae. These structures are assembled late during the maturation of conidia. In mycelia, punctate structures are present, but they are composed only of PilA, while PilB is diffused in the cytoplasm and SurG is located in vacuoles and endosomes. Deletion of each of the genes does not lead to any obvious growth phenotype, except for moderate resistance to itraconazole. We could not find any obvious association between mycelial (PilA) eisosome-like structures and endocytosis. PilA and SurG are necessary for conidial eisosome organization in ways that differ from those for their S. cerevisiae homologues. These data illustrate that conservation of eisosomal proteins within the ascomycetes is accompanied by a striking functional divergence.
Collapse
|
30
|
Novikova O, Smyshlyaev G, Blinov A. Evolutionary genomics revealed interkingdom distribution of Tcn1-like chromodomain-containing Gypsy LTR retrotransposons among fungi and plants. BMC Genomics 2010; 11:231. [PMID: 20377908 PMCID: PMC2864245 DOI: 10.1186/1471-2164-11-231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 04/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background Chromodomain-containing Gypsy LTR retrotransposons or chromoviruses are widely distributed among eukaryotes and have been found in plants, fungi and vertebrates. The previous comprehensive survey of chromoviruses from mosses (Bryophyta) suggested that genomes of non-seed plants contain the clade which is closely related to the retrotransposons from fungi. The origin, distribution and evolutionary history of this clade remained unclear mainly due to the absence of information concerning the diversity and distribution of LTR retrotransposons in other groups of non-seed plants as well as in fungal genomes. Results In present study we preformed in silico analysis of chromodomain-containing LTR retrotransposons in 25 diverse fungi and a number of plant species including spikemoss Selaginella moellendorffii (Lycopodiophyta) coupled with an experimental survey of chromodomain-containing Gypsy LTR retrotransposons from diverse non-seed vascular plants (lycophytes, ferns, and horsetails). Our mining of Gypsy LTR retrotransposons in genomic sequences allowed identification of numerous families which have not been described previously in fungi. Two new well-supported clades, Galahad and Mordred, as well as several other previously unknown lineages of chromodomain-containing Gypsy LTR retrotransposons were described based on the results of PCR-mediated survey of LTR retrotransposon fragments from ferns, horsetails and lycophytes. It appeared that one of the clades, namely Tcn1 clade, was present in basidiomycetes and non-seed plants including mosses (Bryophyta) and lycophytes (genus Selaginella). Conclusions The interkingdom distribution is not typical for chromodomain-containing LTR retrotransposons clades which are usually very specific for a particular taxonomic group. Tcn1-like LTR retrotransposons from fungi and non-seed plants demonstrated high similarity to each other which can be explained by strong selective constraints and the 'retained' genes theory or by horizontal transmission.
Collapse
Affiliation(s)
- Olga Novikova
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia.
| | | | | |
Collapse
|
31
|
|
32
|
Lücking R, Huhndorf S, Pfister DH, Plata ER, Lumbsch HT. Fungi evolved right on track. Mycologia 2009; 101:810-22. [PMID: 19927746 DOI: 10.3852/09-016] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dating of fungal divergences with molecular clocks thus far has yielded highly inconsistent results. The origin of fungi was estimated at between 660 million and up to 2.15 billion y ago, and the divergence of the two major lineages of higher fungi, Ascomycota and Basidiomycota, at between 390 million y and up to 1.5 billion y ago. Assuming that these inconsistencies stem from various causes, we reassessed the systematic placement of the most important fungal fossil, Paleopyrenomycites, and recalibrated internally unconstrained, published molecular clock trees by applying uniform calibration points. As a result the origin of fungi was re-estimated at between 760 million and 1.06 billion y ago and the origin of the Ascomycota at 500-650 million y ago. These dates are much more consistent than previous estimates, even if based on the same phylogenies and molecular clock trees, and they are also much better in line with the fossil record of fungi and plants and the ecological interdependence between filamentous fungi and land plants. Our results do not provide evidence to suggest the existence of ancient protolichens as an alternative to explain the ecology of early terrestrial fungi in the absence of land plants.
Collapse
Affiliation(s)
- Robert Lücking
- Department of Botany, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605-2496, USA.
| | | | | | | | | |
Collapse
|
33
|
Comparative Evolutionary Histories of Fungal Chitinases. Evol Biol 2009. [DOI: 10.1007/978-3-642-00952-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Merckx V, Bidartondo MI. Breakdown and delayed cospeciation in the arbuscular mycorrhizal mutualism. Proc Biol Sci 2008; 275:1029-35. [PMID: 18270159 PMCID: PMC2600904 DOI: 10.1098/rspb.2007.1622] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/24/2008] [Accepted: 01/25/2008] [Indexed: 11/12/2022] Open
Abstract
The ancient arbuscular mycorrhizal association between the vast majority of plants and the fungal phylum Glomeromycota is a dominant nutritional mutualism worldwide. In the mycorrhizal mutualism, plants exchange photosynthesized carbohydrates for mineral nutrients acquired by fungi from the soil. This widespread cooperative arrangement is broken by 'cheater' plant species that lack the ability to photosynthesize and thus become dependent upon three-partite linkages (cheater-fungus-photosynthetic plant). Using the first fine-level coevolutionary analysis of mycorrhizas, we show that extreme fidelity towards fungi has led cheater plants to lengthy evolutionary codiversification. Remarkably, the plants' evolutionary history closely mirrors that of their considerably older mycorrhizal fungi. This demonstrates that one of the most diffuse mutualistic networks is vulnerable to the emergence, persistence and speciation of highly specific cheaters.
Collapse
Affiliation(s)
- Vincent Merckx
- Laboratory of Plant Systematics, K. U. Leuven, Kasteelpark Arenberg 31, PO Box 2437, 3001 Leuven, Belgium.
| | | |
Collapse
|
35
|
Karlsson M, Stenlid J. Comparative evolutionary histories of the fungal chitinase gene family reveal non-random size expansions and contractions due to adaptive natural selection. Evol Bioinform Online 2008; 4:47-60. [PMID: 19204807 PMCID: PMC2614207 DOI: 10.4137/ebo.s604] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gene duplication and loss play an important role in the evolution of novel functions and for shaping an organism's gene content. Recently, it was suggested that stress-related genes frequently are exposed to duplications and losses, while growth-related genes show selection against change in copy number. The fungal chitinase gene family constitutes an interesting case study of gene duplication and loss, as their biological roles include growth and development as well as more stress-responsive functions. We used genome sequence data to analyze the size of the chitinase gene family in different fungal taxa, which range from 1 in Batrachochytrium dendrobatidis and Schizosaccharomyces pombe to 20 in Hypocrea jecorina and Emericella nidulans, and to infer their phylogenetic relationships. Novel chitinase subgroups are identified and their phylogenetic relationships with previously known chitinases are discussed. We also employ a stochastic birth and death model to show that the fungal chitinase gene family indeed evolves non-randomly, and we identify six fungal lineages where larger-than-expected expansions (Pezizomycotina, H. jecorina, Gibberella zeae, Uncinocarpus reesii, E. nidulans and Rhizopus oryzae), and two contractions (Coccidioides immitis and S. pombe) potentially indicate the action of adaptive natural selection. The results indicate that antagonistic fungal-fungal interactions are an important process for soil borne ascomycetes, but not for fungal species that are pathogenic in humans. Unicellular growth is correlated with a reduction of chitinase gene copy numbers which emphasizes the requirement of the combined action of several chitinases for filamentous growth.
Collapse
Affiliation(s)
- Magnus Karlsson
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, P.O. 7026, SE-75007, Uppsala, Sweden.
| | | |
Collapse
|
36
|
Schuster A, Kubicek CP, Friedl MA, Druzhinina IS, Schmoll M. Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genomics 2007; 8:449. [PMID: 18053205 PMCID: PMC2234433 DOI: 10.1186/1471-2164-8-449] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 12/04/2007] [Indexed: 11/30/2022] Open
Abstract
Background In fungi, light is primarily known to influence general morphogenesis and both sexual and asexual sporulation. In order to expand the knowledge on the effect of light in fungi and to determine the role of the light regulatory protein ENVOY in the implementation of this effect, we performed a global screen for genes, which are specifically effected by light in the fungus Hypocrea jecorina (anamorph Trichoderma reesei) using Rapid Subtraction Hybridization (RaSH). Based on these data, we analyzed whether these genes are influenced by ENVOY and if overexpression of ENVOY in darkness would be sufficient to execute its function. Results The cellular functions of the detected light responsive genes comprised a variety of roles in transcription, translation, signal transduction, metabolism, and transport. Their response to light with respect to the involvement of ENVOY could be classified as follows: (i) ENVOY-mediated upregulation by light; (ii) ENVOY-independent upregulation by light; (iii) ENVOY-antagonized upregulation by light; ENVOY-dependent repression by light; (iv) ENVOY-independent repression by light; and (v) both positive and negative regulation by ENVOY of genes not responsive to light in the wild-type. ENVOY was found to be crucial for normal growth in light on various carbon sources and is not able to execute its regulatory function if overexpressed in the darkness. Conclusion The different responses indicate that light impacts fungi like H. jecorina at several cellular processes, and that it has both positive and negative effects. The data also emphasize that ENVOY has an apparently more widespread cellular role in this process than only in modulating the response to light.
Collapse
Affiliation(s)
- Andrè Schuster
- Division of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, A-1060 Wien, Austria.
| | | | | | | | | |
Collapse
|
37
|
Hane JK, Lowe RGT, Solomon PS, Tan KC, Schoch CL, Spatafora JW, Crous PW, Kodira C, Birren BW, Galagan JE, Torriani SFF, McDonald BA, Oliver RP. Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. THE PLANT CELL 2007; 19:3347-68. [PMID: 18024570 PMCID: PMC2174895 DOI: 10.1105/tpc.107.052829] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/11/2007] [Accepted: 10/15/2007] [Indexed: 05/18/2023]
Abstract
Stagonospora nodorum is a major necrotrophic fungal pathogen of wheat (Triticum aestivum) and a member of the Dothideomycetes, a large fungal taxon that includes many important plant pathogens affecting all major crop plant families. Here, we report the acquisition and initial analysis of a draft genome sequence for this fungus. The assembly comprises 37,164,227 bp of nuclear DNA contained in 107 scaffolds. The circular mitochondrial genome comprises 49,761 bp encoding 46 genes, including four that are intron encoded. The nuclear genome assembly contains 26 classes of repetitive DNA, comprising 4.5% of the genome. Some of the repeats show evidence of repeat-induced point mutations consistent with a frequent sexual cycle. ESTs and gene prediction models support a minimum of 10,762 nuclear genes. Extensive orthology was found between the polyketide synthase family in S. nodorum and Cochliobolus heterostrophus, suggesting an ancient origin and conserved functions for these genes. A striking feature of the gene catalog was the large number of genes predicted to encode secreted proteins; the majority has no meaningful similarity to any other known genes. It is likely that genes for host-specific toxins, in addition to ToxA, will be found among this group. ESTs obtained from axenic mycelium grown on oleate (chosen to mimic early infection) and late-stage lesions sporulating on wheat leaves were obtained. Statistical analysis shows that transcripts encoding proteins involved in protein synthesis and in the production of extracellular proteases, cellulases, and xylanases predominate in the infection library. This suggests that the fungus is dependant on the degradation of wheat macromolecular constituents to provide the carbon skeletons and energy for the synthesis of proteins and other components destined for the developing pycnidiospores.
Collapse
MESH Headings
- Ascomycota/genetics
- DNA, Mitochondrial/genetics
- Expressed Sequence Tags
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Genome, Fungal/genetics
- Host-Parasite Interactions
- Multigene Family
- Phylogeny
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/genetics
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Triticum/microbiology
Collapse
Affiliation(s)
- James K Hane
- Australian Centre for Necrotrophic Fungal Pathogens, Murdoch University, WA 6150, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Britton T, Anderson CL, Jacquet D, Lundqvist S, Bremer K. Estimating Divergence Times in Large Phylogenetic Trees. Syst Biol 2007; 56:741-52. [PMID: 17886144 DOI: 10.1080/10635150701613783] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
A new method, PATHd8, for estimating ultrametric trees from trees with edge (branch) lengths proportional to the number of substitutions is proposed. The method allows for an arbitrary number of reference nodes for time calibration, each defined either as absolute age, minimum age, or maximum age, and the tree need not be fully resolved. The method is based on estimating node ages by mean path lengths from the node to the leaves but correcting for deviations from a molecular clock suggested by reference nodes. As opposed to most existing methods allowing substitution rate variation, the new method smoothes substitution rates locally, rather than simultaneously over the whole tree, thus allowing for analysis of very large trees. The performance of PATHd8 is compared with other frequently used methods for estimating divergence times. In analyses of three separate data sets, PATHd8 gives similar divergence times to other methods, the largest difference being between crown group ages, where unconstrained nodes get younger ages when analyzed with PATHd8. Overall, chronograms obtained from other methods appear smoother, whereas PATHd8 preserves more of the heterogeneity seen in the original edge lengths. Divergence times are most evenly spread over the chronograms obtained from the Bayesian implementation and the clock-based Langley-Fitch method, and these two methods produce very similar ages for most nodes. Evaluations of PATHd8 using simulated data suggest that PATHd8 is slightly less precise compared with penalized likelihood, but it gives more sensible answers for extreme data sets. A clear advantage with PATHd8 is that it is more or less instantaneous even with trees having several thousand leaves, whereas other programs often run into problems when analyzing trees with hundreds of leaves. PATHd8 is implemented in freely available software.
Collapse
Affiliation(s)
- Tom Britton
- Department of Mathematics, Stockholm University, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
39
|
Slot JC, Hallstrom KN, Matheny PB, Hibbett DS. Diversification of NRT2 and the Origin of Its Fungal Homolog. Mol Biol Evol 2007; 24:1731-43. [PMID: 17513882 DOI: 10.1093/molbev/msm098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the origin and diversification of the high-affinity nitrate transporter NRT2 in fungi and other eukaryotes using Bayesian and maximum parsimony methods. To assess the higher-level relationships and origins of NRT2 in eukaryotes, we analyzed 200 amino acid sequences from the Nitrate/Nitrite Porter (NNP) Family (to which NRT2 belongs), including 55 fungal, 41 viridiplantae (green plants), 11 heterokonts (stramenopiles), and 87 bacterial sequences. To assess evolution of NRT2 within fungi and other eukaryotes, we analyzed 116 amino acid sequences of NRT2 from 58 fungi, 40 viridiplantae (green plants), 1 rhodophyte, and 5 heterokonts, rooted with 12 bacterial sequences. Our results support a single origin of eukaryotic NRT2 from 1 of several clades of mostly proteobacterial NNP transporters. The phylogeny of bacterial NNP transporters does not directly correspond with bacterial taxonomy, apparently due to ancient duplications and/or horizontal gene transfer events. The distribution of NRT2 in the eukaryotes is patchy, but the NRT2 phylogeny nonetheless supports the monophyly of major groups such as viridiplantae, flowering plants, monocots, and eudicots, as well as fungi, ascomycetes, basidiomycetes, and agaric mushrooms. At least 1 secondary origin of eukaryotic NRT2 via horizontal transfer to the fungi is suggested, possibly from a heterokont donor. Our analyses also suggest that there has been a horizontal transfer of nrt2 from a basidiomycete fungus to an ascomycete fungus and reveal a duplication of nrt2 in the ectomycorrhizal mushroom genus, Hebeloma.
Collapse
Affiliation(s)
- Jason C Slot
- Department of Biology, Clark University, MA, USA.
| | | | | | | |
Collapse
|
40
|
Yang Y, Yang E, An Z, Liu X. Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc Natl Acad Sci U S A 2007; 104:8379-84. [PMID: 17494736 PMCID: PMC1895958 DOI: 10.1073/pnas.0702770104] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Indexed: 11/18/2022] Open
Abstract
Among fungi, the basic life strategies are saprophytism, parasitism, and predation. Fungi in Orbiliaceae (Ascomycota) prey on animals by means of specialized trapping structures. Five types of trapping devices are recognized, but their evolutionary origins and divergence are not well understood. Based on comprehensive phylogenetic analysis of nucleotide sequences of three protein-coding genes (RNA polymerase II subunit gene, rpb2; elongation factor 1-alpha gene, ef1-alpha; and ss tubulin gene, bt) and ribosomal DNA in the internal transcribed spacer region, we have demonstrated that the initial trapping structure evolved along two lineages yielding two distinct trapping mechanisms: one developed into constricting rings and the other developed into adhesive traps. Among adhesive trapping devices, the adhesive network separated from the others early and evolved at a steady and gentle speed. The adhesive knob evolved through stalk elongation, with a final development of nonconstricting rings. Our data suggest that the derived adhesive traps are at a highly differentiated stage. The development of trapping devices is felicitous proof of adaptive evolution.
Collapse
Affiliation(s)
- Ying Yang
- Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences 3A Datun Rd, Chaoyang District, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Ence Yang
- Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences 3A Datun Rd, Chaoyang District, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Zhiqiang An
- Merck Research Laboratories, WP26A-4000, 770 Sumneytown Pike, West Point, PA 19486-0004
| | - Xingzhong Liu
- Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences 3A Datun Rd, Chaoyang District, Beijing 100101, China
| |
Collapse
|
41
|
Woolfit M, Rozpedowska E, Piskur J, Wolfe KH. Genome survey sequencing of the wine spoilage yeast Dekkera (Brettanomyces) bruxellensis. EUKARYOTIC CELL 2007; 6:721-33. [PMID: 17277171 PMCID: PMC1865652 DOI: 10.1128/ec.00338-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 01/19/2007] [Indexed: 11/20/2022]
Abstract
The hemiascomycete yeast Dekkera bruxellensis, also known as Brettanomyces bruxellensis, is a major cause of wine spoilage worldwide. Wines infected with D. bruxellensis develop distinctive, unpleasant aromas due to volatile phenols produced by this species, which is highly ethanol tolerant and facultatively anaerobic. Despite its importance, however, D. bruxellensis has been poorly genetically characterized until now. We performed genome survey sequencing of a wine strain of D. bruxellensis to obtain 0.4x coverage of the genome. We identified approximately 3,000 genes, whose products averaged 49% amino acid identity to their Saccharomyces cerevisiae orthologs, with similar intron contents. Maximum likelihood phylogenetic analyses suggest that the relationship between D. bruxellensis, S. cerevisiae, and Candida albicans is close to a trichotomy. The estimated rate of chromosomal rearrangement in D. bruxellensis is slower than that calculated for C. albicans, while its rate of amino acid evolution is somewhat higher. The proteome of D. bruxellensis is enriched for transporters and genes involved in nitrogen and lipid metabolism, among other functions, which may reflect adaptations to its low-nutrient, high-ethanol niche. We also identified an adenyl deaminase gene that has high similarity to a gene in bacteria of the Burkholderia cepacia species complex and appears to be the result of horizontal gene transfer. These data provide a resource for further analyses of the population genetics and evolution of D. bruxellensis and of the genetic bases of its physiological capabilities.
Collapse
Affiliation(s)
- Megan Woolfit
- Department of Genetics, Smurfit Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | |
Collapse
|
42
|
Gogarten JP, Hilario E. Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BMC Evol Biol 2006; 6:94. [PMID: 17101053 PMCID: PMC1654191 DOI: 10.1186/1471-2148-6-94] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 11/13/2006] [Indexed: 12/02/2022] Open
Abstract
Self splicing introns and inteins that rely on a homing endonuclease for propagation are parasitic genetic elements. Their life-cycle and evolutionary fate has been described through the homing cycle. According to this model the homing endonuclease is selected for function only during the spreading phase of the parasite. This phase ends when the parasitic element is fixed in the population. Upon fixation the homing endonuclease is no longer under selection, and its activity is lost through random processes. Recent analyses of these parasitic elements with functional homing endonucleases suggest that this model in its most simple form is not always applicable. Apparently, functioning homing endonuclease can persist over long evolutionary times in populations and species that are thought to be asexual or nearly asexual. Here we review these recent findings and discuss their implications. Reasons for the long-term persistence of a functional homing endonuclease include: More recombination (sexual and as a result of gene transfer) than previously assumed for these organisms; complex population structures that prevent the element from being fixed; a balance between active spreading of the homing endonuclease and a decrease in fitness caused by the parasite in the host organism; or a function of the homing endonuclease that increases the fitness of the host organism and results in purifying selection for the homing endonuclease activity, even after fixation in a local population. In the future, more detailed studies of the population dynamics of the activity and regulation of homing endonucleases are needed to decide between these possibilities, and to determine their relative contributions to the long term survival of parasitic genes within a population. Two outstanding publications on the amoeba Naegleria group I intron (Wikmark et al. BMC Evol Biol 2006, 6:39) and the PRP8 inteins in ascomycetes (Butler et al.BMC Evol Biol 2006, 6:42) provide important stepping stones towards integrated studies on how these parasitic elements evolve through time together with, or despite, their hosts.
Collapse
Affiliation(s)
- J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-31258, USA
| | - Elena Hilario
- HortResearch, 120 Mt. Albert Road, Private Bag 92 169, Mt. Albert, Auckland, New Zealand
| |
Collapse
|
43
|
Cavalier-Smith T. Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 2006; 361:969-1006. [PMID: 16754610 PMCID: PMC1578732 DOI: 10.1098/rstb.2006.1842] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This synthesis has three main parts. The first discusses the overall tree of life and nature of the last common ancestor (cenancestor). I emphasize key steps in cellular evolution important for ordering and timing the major evolutionary innovations in the history of the biosphere, explaining especially the origins of the eukaryote cell and of bacterial flagella and cell envelope novelties. Second, I map the tree onto the fossil record and discuss dates of key events and their biogeochemical impact. Finally, I present a broad synthesis, discussing evidence for a three-phase history of life. The first phase began perhaps ca 3.5 Gyr ago, when the origin of cells and anoxic photosynthesis generated the arguably most primitive prokaryote phylum, Chlorobacteria (= Chloroflexi), the first negibacteria with cells bounded by two acyl ester phospholipid membranes. After this 'chlorobacterial age' of benthic anaerobic evolution protected from UV radiation by mineral grains, two momentous quantum evolutionary episodes of cellular innovation and microbial radiation dramatically transformed the Earth's surface: the glycobacterial revolution initiated an oxygenic 'age of cyanobacteria' and, as the ozone layer grew, the rise of plankton; immensely later, probably as recently as ca 0.9 Gyr ago, the neomuran revolution ushered in the 'age of eukaryotes', Archaebacteria (arguably the youngest bacterial phylum), and morphological complexity. Diversification of glycobacteria ca 2.8 Gyr ago, predominantly inhabiting stratified benthic mats, I suggest caused serial depletion of 13C by ribulose 1,5-bis-phosphate caboxylase/oxygenase (Rubisco) to yield ultralight late Archaean organic carbon formerly attributed to methanogenesis plus methanotrophy. The late origin of archaebacterial methanogenesis ca 720 Myr ago perhaps triggered snowball Earth episodes by slight global warming increasing weathering and reducing CO2 levels, to yield runaway cooling; the origin of anaerobic methane oxidation ca 570 Myr ago reduced methane flux at source, stabilizing Phanerozoic climates. I argue that the major cellular innovations exhibit a pattern of quantum evolution followed by very rapid radiation and then substantial stasis, as described by Simpson. They yielded organisms that are a mosaic of extremely conservative and radically novel features, as characterized by De Beer's phrase 'mosaic evolution'. Evolution is not evenly paced and there are no real molecular clocks.
Collapse
|
44
|
Abstract
Large-scale comparative genomics in harness with proteomics has substantiated fundamental features of eukaryote cellular evolution. The evolutionary trajectory of modern eukaryotes is distinct from that of prokaryotes. Data from many sources give no direct evidence that eukaryotes evolved by genome fusion between archaea and bacteria. Comparative genomics shows that, under certain ecological settings, sequence loss and cellular simplification are common modes of evolution. Subcellular architecture of eukaryote cells is in part a physical-chemical consequence of molecular crowding; subcellular compartmentation with specialized proteomes is required for the efficient functioning of proteins.
Collapse
Affiliation(s)
- C G Kurland
- Department of Microbial Ecology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
45
|
Kassavetis GA, Driscoll R, Geiduschek EP. Mapping the Principal Interaction Site of the Brf1 and Bdp1 Subunits of Saccharomyces cerevisiae TFIIIB. J Biol Chem 2006; 281:14321-9. [PMID: 16551611 DOI: 10.1074/jbc.m601702200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Brf1 subunit of the central RNA polymerase (pol) III transcription initiation factor TFIIIB is bipartite; its N-terminal TFIIB-related half is principally responsible for recruiting pol III to the promoter and for promoter opening near the transcriptional start site, whereas its pol III-specific C-terminal half contributes most of the affinities that hold the three subunits of TFIIIB together. Here, the principal attachment site of Brf1 for the Bdp1 subunit of TFIIIB has been mapped by a combination of structure-informed, site-directed mutagenesis and photochemical protein-DNA cross-linking. A 66-amino acid segment of Brf1 is shown to serve as a two-sided adhesive surface, with the side chains projecting away from its extended interface with TATA-binding protein anchoring Bdp1 binding. An extensive collection of N-terminal, C-terminal, and internal deletion proteins has been used to demarcate the interacting Bdp1 domain to a 66-amino acid segment that includes the SANT domain of this subunit and is phylogenetically the most conserved region of Bdp1.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
46
|
Thon MR, Pan H, Diener S, Papalas J, Taro A, Mitchell TK, Dean RA. The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biol 2006; 7:R16. [PMID: 16507177 PMCID: PMC1431731 DOI: 10.1186/gb-2006-7-2-r16] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/16/2006] [Accepted: 01/31/2006] [Indexed: 11/16/2022] Open
Abstract
Analysis of the Magnaporthe oryzae chromosome 7 and comparison with syntenic regions in other fungal genomes suggests that transposable elements create localized segments with increased rates of chromosomal rearrangements, gene duplications and gene evolution. Background Transposable elements are abundant in the genomes of many filamentous fungi, and have been implicated as major contributors to genome rearrangements and as sources of genetic variation. Analyses of fungal genomes have also revealed that transposable elements are largely confined to distinct clusters within the genome. Their impact on fungal genome evolution is not well understood. Using the recently available genome sequence of the plant pathogenic fungus Magnaporthe oryzae, combined with additional bacterial artificial chromosome clone sequences, we performed a detailed analysis of the distribution of transposable elements, syntenic blocks, and other features of chromosome 7. Results We found significant levels of conserved synteny between chromosome 7 and the genomes of other filamentous fungi, despite more than 200 million years of divergent evolution. Transposable elements are largely restricted to three clusters located in chromosomal segments that lack conserved synteny. In contradiction to popular evolutionary models and observations from other model organism genomes, we found a positive correlation between recombination rate and the distribution of transposable element clusters on chromosome 7. In addition, the transposable element clusters are marked by more frequent gene duplications, and genes within the clusters have greater sequence diversity to orthologous genes from other fungi. Conclusion Together, these data suggest that transposable elements have a profound impact on the M. oryzae genome by creating localized segments with increased rates of chromosomal rearrangements, gene duplications and gene evolution.
Collapse
Affiliation(s)
- Michael R Thon
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Huaqin Pan
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27695, USA
| | - Stephen Diener
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27695, USA
| | - John Papalas
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27695, USA
| | - Audrey Taro
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27695, USA
| | - Thomas K Mitchell
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27695, USA
| | - Ralph A Dean
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|