1
|
Kijpornyongpan T, Noble MC, Piątek M, Lutz M, Aime MC. Elucidation of intragenomic variation of ribosomal DNA sequences in the enigmatic fungal genus Ceraceosorus, including a newly described species Ceraceosorus americanus. IMA Fungus 2024; 15:42. [PMID: 39736709 PMCID: PMC11687029 DOI: 10.1186/s43008-024-00172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025] Open
Abstract
Multicopy nuclear ribosomal DNA (rDNA) genes have been used as markers for fungal identification for three decades. The rDNA sequences in a genome are thought to be homogeneous due to concerted evolution. However, intragenomic variation of rDNA sequences has recently been observed in many fungi, which may make fungal identification and species abundance estimation based on these loci problematic. Ceraceosorus is an enigmatic genus in the smut lineage Ustilaginomycotina for which very limited distribution data exist. Our previous research demonstrated intragenomic variation in the internal transcribed spacer (ITS1-5.8S-ITS2) region of two Ceraceosorus species. In this study, we described the fourth known species of Ceraceosorus, C. americanus, isolated from an asymptomatic rosemary leaf collected in Louisiana, USA. This is the first report of this genus in the Americas. We then selected all four known Ceraceosorus species, plus exemplar smut fungi representing all major lineages of subphylum Ustilaginomycotina, to examine sequence heterogeneity in three regions of the rDNA repeat (partial 18S, ITS, and partial 28S regions). Three methods were used: PCR-cloning-Sanger sequencing, targeted amplicon high-throughput sequencing, and whole-genome shotgun high-throughput sequencing. Our results show that Ceraceosorus is the only sampled fungal genus in Ustilaginomycotina with significant intragenomic variation at the ITS, with up to 25 nucleotide variant sites in the ITS1-5.8S-ITS2 region and 2.6% divergence among analyzed ITS haplotypes. We found many conflicting patterns across the three detection methods, with up to 27 conflicting variant sites recorded from a single individual. At least 40% of the conflicting patterns are possibly due to PCR-cloning-sequencing errors, as the corresponding variant sites were not observed in the other detection methods. Based on our data and the literature, we evaluated the characteristics and advantages/disadvantages of each detection method. Finally, a model for how intragenomic variation in the rDNA copies within a genome may arise is presented.
Collapse
Affiliation(s)
| | - Mary Claire Noble
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Marcin Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Matthias Lutz
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Remias D, Procházková L, Nedbalová L, Benning LG, Lutz S. Novel insights in cryptic diversity of snow and glacier ice algae communities combining 18S rRNA gene and ITS2 amplicon sequencing. FEMS Microbiol Ecol 2023; 99:fiad134. [PMID: 37880981 PMCID: PMC10659120 DOI: 10.1093/femsec/fiad134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Melting snow and glacier surfaces host microalgal blooms in polar and mountainous regions. The aim of this study was to determine the dominant taxa at the species level in the European Arctic and the Alps. A standardized protocol for amplicon metabarcoding using the 18S rRNA gene and ITS2 markers was developed. This is important because previous biodiversity studies have been hampered by the dominance of closely related algal taxa in snow and ice. Due to the limited resolution of partial 18S rRNA Illumina sequences, the hypervariable ITS2 region was used to further discriminate between the genotypes. Our results show that red snow was caused by the cosmopolitan Sanguina nivaloides (Chlamydomonadales, Chlorophyta) and two as of yet undescribed Sanguina species. Arctic orange snow was dominated by S. aurantia, which was not found in the Alps. On glaciers, at least three Ancylonema species (Zygnematales, Streptophyta) dominated. Golden-brown blooms consisted of Hydrurus spp. (Hydrurales, Stramenophiles) and these were mainly an Arctic phenomenon. For chrysophytes, only the 18S rRNA gene but not ITS2 sequences were amplified, showcasing how delicate the selection of eukaryotic 'universal' primers for community studies is and that primer specificity will affect diversity results dramatically. We propose our approach as a 'best practice'.
Collapse
Affiliation(s)
- Daniel Remias
- Paris Lodron University of Salzburg, Department of Ecology and Biodiversity, Hellbrunnerstr. 34, 5020 Salzburg, Austria
- University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Praha, Czech Republic
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Praha, Czech Republic
| | - Liane G Benning
- German Research Centre for Geoscience, GFZ, 14473 Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - Stefanie Lutz
- German Research Centre for Geoscience, GFZ, 14473 Potsdam, Germany
| |
Collapse
|
3
|
Bradshaw MJ, Aime MC, Rokas A, Maust A, Moparthi S, Jellings K, Pane AM, Hendricks D, Pandey B, Li Y, Pfister DH. Extensive intragenomic variation in the internal transcribed spacer region of fungi. iScience 2023; 26:107317. [PMID: 37529098 PMCID: PMC10387565 DOI: 10.1016/j.isci.2023.107317] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
Fungi are among the most biodiverse organisms in the world. Accurate species identification is imperative for studies on fungal ecology and evolution. The internal transcribed spacer (ITS) rDNA region has been widely accepted as the universal barcode for fungi. However, several recent studies have uncovered intragenomic sequence variation within the ITS in multiple fungal species. Here, we mined the genome of 2414 fungal species to determine the prevalence of intragenomic variation and found that the genomes of 641 species, about one-quarter of the 2414 species examined, contained multiple ITS copies. Of those 641 species, 419 (∼65%) contained variation among copies revealing that intragenomic variation is common in fungi. We proceeded to show how these copies could result in the erroneous description of hundreds of fungal species and skew studies evaluating environmental DNA (eDNA) especially when making diversity estimates. Additionally, many genomes were found to be contaminated, especially those of unculturable fungi.
Collapse
Affiliation(s)
- Michael J. Bradshaw
- Harvard University Herbaria and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - M. Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Autumn Maust
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Swarnalatha Moparthi
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Keila Jellings
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Alexander M. Pane
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dylan Hendricks
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Binod Pandey
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Donald H. Pfister
- Harvard University Herbaria and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
La Torre RD, Ramos D, Mejía MD, Neyra E, Loarte E, Orjeda G. Survey of Lichenized Fungi DNA Barcodes on King George Island (Antarctica): An Aid to Species Discovery. J Fungi (Basel) 2023; 9:jof9050552. [PMID: 37233263 DOI: 10.3390/jof9050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 05/27/2023] Open
Abstract
DNA barcoding is a powerful method for the identification of lichenized fungi groups for which the diversity is already well-represented in nucleotide databases, and an accurate, robust taxonomy has been established. However, the effectiveness of DNA barcoding for identification is expected to be limited for understudied taxa or regions. One such region is Antarctica, where, despite the importance of lichens and lichenized fungi identification, their genetic diversity is far from characterized. The aim of this exploratory study was to survey the lichenized fungi diversity of King George Island using a fungal barcode marker as an initial identification tool. Samples were collected unrestricted to specific taxa in coastal areas near Admiralty Bay. Most samples were identified using the barcode marker and verified up to the species or genus level with a high degree of similarity. A posterior morphological evaluation focused on samples with novel barcodes allowed for the identification of unknown Austrolecia, Buellia, and Lecidea s.l. species. These results contribute to better represent the lichenized fungi diversity in understudied regions such as Antarctica by increasing the richness of the nucleotide databases. Furthermore, the approach used in this study is valuable for exploratory surveys in understudied regions to guide taxonomic efforts towards species recognition and discovery.
Collapse
Affiliation(s)
- Renato Daniel La Torre
- Laboratorio de Genómica y Bioinformática para la Biodiversidad, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, German Amezaga 375, Lima 15081, Peru
- Dirección de Investigación en Glaciares, Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña, Centenario 2656, Huaraz 02002, Peru
| | - Daniel Ramos
- Herbario Sur Peruano-Instituto Científico Michael Owen Dillon, Jorge Chavez 610, Arequipa 04001, Peru
| | - Mayra Doris Mejía
- Dirección de Investigación en Glaciares, Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña, Centenario 2656, Huaraz 02002, Peru
| | - Edgar Neyra
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, Lima 15102, Peru
- Unidad de Investigación Genómica, Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, Lima 15102, Peru
| | - Edwin Loarte
- Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Centenario 200, Huaraz 02002, Peru
| | - Gisella Orjeda
- Laboratorio de Genómica y Bioinformática para la Biodiversidad, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, German Amezaga 375, Lima 15081, Peru
| |
Collapse
|
5
|
Gueidan C, Li L. A long-read amplicon approach to scaling up the metabarcoding of lichen herbarium specimens. MycoKeys 2022; 86:195-212. [PMID: 35153530 PMCID: PMC8828592 DOI: 10.3897/mycokeys.86.77431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/24/2022] [Indexed: 01/04/2023] Open
Abstract
Reference sequence databases are critical to the accurate detection and identification of fungi in the environment. As repositories of large numbers of well-curated specimens, herbaria and fungal culture collections have the material resources to generate sequence data for large number of taxa, and could therefore allow filling taxonomic gaps often present in reference sequence databases. Financial resources to do that are however often lacking, so that recent efforts have focused on decreasing sequencing cost by increasing the number of multiplexed samples per sequencing run while maintaining high sequence quality. Following a previous study that aimed at decreasing sequencing cost for lichen specimens by generating fungal ITS barcodes for 96 specimens using PacBio amplicon sequencing, we present a method that further decreases lichen specimen metabarcoding costs. A total of 384 mixed DNA extracts obtained from lichen herbarium specimens, mostly from the four genera Buellia, Catillaria, Endocarpon and Parmotrema, were used to generate new fungal ITS sequences using a Sequel I sequencing platform and the PacBio M13 barcoded primers. The average success rate across all taxa was high (86.5%), with particularly high rates for the crustose saxicolous taxa (Buellia, Catillaria and others; 93.3%) and the terricolous squamulose taxa (Endocarpon and others; 96.5%). On the other hand, the success rate for the foliose genus Parmotrema was lower (60.4%). With this taxon sampling, greater specimen age did not appear to impact sequencing success. In fact, the 1966–1980 collection date category showed the highest success rate (97.3%). Compared to the previous study, the abundance-based sequence denoising method showed some limitations, but the cost of generating ITS barcodes was further decreased thanks to the higher multiplexing level. In addition to contributing new ITS barcodes for specimens of four interesting lichen genera, this study further highlights the potential and challenges of using new sequencing technologies on collection specimens to generate DNA sequences for reference databases.
Collapse
|
6
|
Dal Forno M, Lawrey JD, Sikaroodi M, Gillevet PM, Schuettpelz E, Lücking R. Extensive photobiont sharing in a rapidly radiating cyanolichen clade. Mol Ecol 2020; 30:1755-1776. [PMID: 33080083 DOI: 10.1111/mec.15700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023]
Abstract
Recent studies have uncovered remarkable diversity in Dictyonema s.lat. basidiolichens, here recognized as subtribe Dictyonemateae. This group includes five genera and 148 species, but hundreds more await description. The photobionts of these lichens belong to Rhizonema, a recently resurrected cyanobacterial genus known by a single species. To further investigate photobiont diversity within Dictyonemateae, we generated 765 new cyanobacterial sequences from 635 specimens collected from 18 countries. The ITS barcoding locus supported the recognition of 200 mycobiont (fungal) species among these samples, but the photobiont diversity was comparatively low. Our analyses revealed three main divisions of Rhizonema, with two repeatedly recovered as monophyletic (proposed as new species), and the third mostly paraphyletic. The paraphyletic lineage corresponds to R. interruptum and partnered with mycobionts from all five genera in Dictyonemateae. There was no evidence of photobiont-mycobiont co-speciation, but one of the monophyletic lineages of Rhizonema appears to partner predominantly with one of the two major clades of Cora (mycobiont) with samples collected largely from the northern Andes. Molecular clock estimations indicate the Rhizonema species are much older than the fungal species in the Dictyonemateae, suggesting that these basidiolichens obtained their photobionts from older ascolichen lineages and the photobiont variation in extant lineages of Dictyonemateae is the result of multiple photobiont switches. These results support the hypothesis of lichens representing "fungal farmers," in which diverse mycobiont lineages associate with a substantially lower diversity of photobionts by sharing those photobionts best suited for the lichen symbiosis among multiple and often unrelated mycobiont lineages.
Collapse
Affiliation(s)
- Manuela Dal Forno
- Botanical Research Institute of Texas, Fort Worth, TX, USA.,Department of Botany, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - James D Lawrey
- Department of Biology, George Mason University, Fairfax, VA, USA
| | | | | | - Eric Schuettpelz
- Department of Botany, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Robert Lücking
- Botanical Garden and Botanical Museum Berlin, Berlin, Germany.,Research Associate, Science & Education, The Field Museum, Chicago, IL, USA
| |
Collapse
|
7
|
Škaloud P, Škaloudová M, Jadrná I, Bestová H, Pusztai M, Kapustin D, Siver PA. Comparing Morphological and Molecular Estimates of Species Diversity in the Freshwater Genus Synura (Stramenopiles): A Model for Understanding Diversity of Eukaryotic Microorganisms. JOURNAL OF PHYCOLOGY 2020; 56:574-591. [PMID: 32065394 DOI: 10.1111/jpy.12978] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
We performed a comparison of molecular and morphological diversity in a freshwater colonial genus Synura (Chrysophyceae, Stramenopiles), using the island of Newfoundland (Canada) as a case study. We examined the morphological species diversity in collections from 79 localities, and compared these findings to diversity based on molecular characters for 150 strains isolated from the same sites. Of 27 species or species-level lineages identified, only one third was recorded by both molecular and morphological techniques, showing both approaches are complementary in estimating species diversity within this genus. Eight taxa, each representing young evolutionary lineages, were recovered only by sequencing of isolated colonies, whereas ten species were recovered only microscopically. Our complex investigation, involving both morphological and molecular examinations, indicates that our knowledge of Synura diversity is still poor, limited only to a few well-studied areas. We revealed considerable cryptic diversity within the core S. petersenii and S. leptorrhabda lineages. We further resolved the phylogenetic position of two previously described taxa, S. kristiansenii and S. petersenii f. praefracta, propose species-level status for S. petersenii f. praefracta, and describe three new species, S. vinlandica, S. fluviatilis, and S. cornuta. Our findings add to the growing body of literature detailing distribution patterns observed in the genus, ranging from cosmopolitan species, to highly restricted taxa, to species such as S. hibernica found along coastal regions on multiple continents. Finally, our study illustrates the usefulness of combining detailed morphological information with gene sequence data to examine species diversity within chrysophyte algae.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Magda Škaloudová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Iva Jadrná
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Helena Bestová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Martin Pusztai
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Dmitry Kapustin
- Institute of Plant Physiology, Russian Academy of Sciences, Botanical Street 35, 127276, Moscow, Russia
| | - Peter A Siver
- Department of Botany, Connecticut College, New London, 06320-4196, Connecticut, USA
| |
Collapse
|
8
|
Evidence of Intra-individual SSU Polymorphisms in Dark-spored Myxomycetes (Amoebozoa). Protist 2019; 170:125681. [PMID: 31586669 DOI: 10.1016/j.protis.2019.125681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 11/24/2022]
Abstract
The nuclear small subunit rRNA gene (SSU or 18S) is a marker frequently used in phylogenetic and barcoding studies in Amoebozoa, including Myxomycetes. Despite its common usage and the confirmed existence of divergent copies of ribosomal genes in other protists, the potential presence of intra-individual SSU variability in Myxomycetes has never been studied before. Here we investigated the pattern of nucleotide polymorphism in the 5' end fragment of SSU by cloning and sequencing a total of 238 variants from eight specimens, each representing a species of the dark-spored orders Stemonitidales and Physarales. After excluding singletons, a relatively low SSU intra-individual variability was found but our data indicate that this might be a widely distributed phenomenon in Myxomycetes as all samples analyzed possessed various ribotypes. To determine if the occurrence of multiple SSU variants within a single specimen has a negative effect on the circumscription of species boundaries, we conducted phylogenetic analyses that revealed that clone variation may be detrimental for inferring phylogenetic relationships among some of the specimens analyzed. Despite that intra-individual variability should be assessed in additional taxa, our results indicate that special care should be taken for species identification when working with closely related species.
Collapse
|
9
|
Gueidan C, Elix JA, McCarthy PM, Roux C, Mallen-Cooper M, Kantvilas G. PacBio amplicon sequencing for metabarcoding of mixed DNA samples from lichen herbarium specimens. MycoKeys 2019; 53:73-91. [PMID: 31205446 PMCID: PMC6557899 DOI: 10.3897/mycokeys.53.34761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
The detection and identification of species of fungi in the environment using molecular methods heavily depends on reliable reference sequence databases. However, these databases are largely incomplete in terms of taxon coverage, and a significant effort is required from herbaria and living fungal collections for the mass-barcoding of well-identified and well-curated fungal specimens or strains. Here, a PacBio amplicon sequencing approach is applied to recent lichen herbarium specimens for the sequencing of the fungal ITS barcode, allowing a higher throughput sample processing than Sanger sequencing, which often required the use of cloning. Out of 96 multiplexed samples, a full-length ITS sequence of the target lichenised fungal species was recovered for 85 specimens. In addition, sequences obtained for co-amplified fungi gave an interesting insight into the diversity of endolichenic fungi. Challenges encountered at both the laboratory and bioinformatic stages are discussed, and cost and quality are compared with Sanger sequencing. With increasing data output and reducing sequencing cost, PacBio amplicon sequencing is seen as a promising approach for the generation of reference sequences for lichenised fungi as well as the characterisation of lichen-associated fungal communities.
Collapse
Affiliation(s)
- Cécile Gueidan
- Australian National Herbarium, National Research Collections Australia, CSIRO-NCMI, Canberra, ACT, 2601, Australia Australian National Herbarium Canberra Australia
| | - John A Elix
- Research School of Chemistry, Building 137, Australian National University, Canberra, ACT, 2601, Australia Australian National University Canberra Australia
| | - Patrick M McCarthy
- 64 Broadsmith St, Scullin, ACT, 2614, Australia Unaffilaited Canberra Australia
| | - Claude Roux
- 390 chemin des Vignes vieilles, 84120 Mirabeau, France Unaffilaited Mirabeau France
| | - Max Mallen-Cooper
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Kensington, NSW, 2052, Australia University of New South Wales Sydney Sydney Australia
| | - Gintaras Kantvilas
- 64 Broadsmith St, Scullin, ACT, 2614, Australia Unaffilaited Canberra Australia
| |
Collapse
|
10
|
Nawaz A, Purahong W, Lehmann R, Herrmann M, Totsche KU, Küsel K, Wubet T, Buscot F. First insights into the living groundwater mycobiome of the terrestrial biogeosphere. WATER RESEARCH 2018; 145:50-61. [PMID: 30118976 DOI: 10.1016/j.watres.2018.07.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/02/2018] [Accepted: 07/27/2018] [Indexed: 05/15/2023]
Abstract
Although fungi play important roles in biogeochemical cycling in aquatic ecosystems and have received a great deal of attention, much remains unknown about the living fractions of fungal communities in aquifers of the terrestrial subsurface in terms of diversity, community dynamics, functional roles, the impact of environmental factors and presence of fungal pathogens. Here we address this gap in knowledge by using RNA-based high throughput pair-end illumina sequencing analysis of fungal internal transcribed spacer (ITS) gene markers, to target the living fractions of groundwater fungal communities from fractured alternating carbonate-/siliciclastic-rock aquifers of the Hainich Critical Zone Exploratory. The probed levels of the hillslope multi-storey aquifer system differ primarily in their oxygen and nitrogen content due to their different connections to the surface. We discovered highly diverse living fungal communities (384 Operational Taxonomic Units, OTUs) with different taxonomic affiliations and ecological functions. The observed fungal communities primarily belonged to three phyla: Ascomycota, Basidiomycota and Chytridiomycota. Perceived dynamics in the composition of living fungal communities were significantly shaped by the concentration of ammonium in the moderately agriculturally impacted aquifer system. Apart from fungal saprotrophs, we also detected living plant and animal pathogens for the first time in this aquifer system. This work also demonstrates that the RNA-based high throughput pair-end illumina sequencing method can be used in future for water quality monitoring in terms of living fungal load and subsequent risk assessments. In general, this study contributes towards the growing knowledge of aquatic fungi in terrestrial subsurface biogeosphere.
Collapse
Affiliation(s)
- Ali Nawaz
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Halle (Saale), Germany; Department of Biology, University of Leipzig, Leipzig, Germany.
| | - Witoon Purahong
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany
| | - Robert Lehmann
- Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Martina Herrmann
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743, Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Kai Uwe Totsche
- Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743, Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Tesfaye Wubet
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - François Buscot
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
11
|
Ke CC, Lin YH, Wang YY, Wu YY, Chen MF, Ku WC, Chiang HS, Lai TH. TBC1D21 Potentially Interacts with and Regulates Rap1 during Murine Spermatogenesis. Int J Mol Sci 2018; 19:ijms19113292. [PMID: 30360518 PMCID: PMC6274753 DOI: 10.3390/ijms19113292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 12/18/2022] Open
Abstract
Few papers have focused on small guanosine triphosphate (GTP)-binding proteins and their regulation during spermatogenesis. TBC1D21 genes (also known as male germ cell RAB GTPase-activating protein MGCRABGAP) are related to sterility, as determined through cDNA microarray testing of human testicular tissues exhibiting spermatogenic defects. TBC1D21 is a protein specifically expressed in the testes that exhibits specific localizations of elongating and elongated spermatids during mammalian spermiogenesis. Furthermore, through co-immunoprecipitation (co-IP) and nano liquid chromatography–tandem mass spectrometry (nano LC–MS/MS), Rap1 has been recognized as a potential TBC1D21 interactor. This study determined the possible roles of Rap1 and TBC1D21 during mammalian spermiogenesis. First, the binding ability between Rap1 and TBC1D21 was verified using co-IP. Second, the stronger signals of Rap1 expressed in elongating and elongated murine spermatids extracted from testicular sections, namely spermatogonia, spermatocytes, and round spermatids, were compared. Third, Rap1 and TBC1D21 exhibited similar localizations at postacrosomal regions of spermatids and at the midpieces of mature sperms, through isolated male germ cells. Fourth, the results of an activating Rap1 pull-down assay indicated that TBC1D21 overexpression inactivates Rap1 activity in cell models. In conclusion, TBC1D21 may interact with and potentially regulate Rap1 during murine spermatogenesis.
Collapse
Affiliation(s)
- Chih-Chun Ke
- PhD Program in Nutrition & Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
- Department of Urology, En Chu Kong Hospital, New Taipei City 23702, Taiwan.
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Ya-Yun Wang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Ying-Yu Wu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan County 33305, Taiwan.
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Han-Sun Chiang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Tsung-Hsuan Lai
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 10630, Taiwan.
- Institute of Systems Biology and Bioinformatics, National Central University, Jhongli City, Taoyuan County 32001, Taiwan.
| |
Collapse
|
12
|
Lücking R, Hawksworth DL. Formal description of sequence-based voucherless Fungi: promises and pitfalls, and how to resolve them. IMA Fungus 2018; 9:143-166. [PMID: 30018876 PMCID: PMC6048566 DOI: 10.5598/imafungus.2018.09.01.09] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 05/15/2018] [Indexed: 11/25/2022] Open
Abstract
There is urgent need for a formal nomenclature of sequence-based, voucherless Fungi, given that environmental sequencing has accumulated more than one billion fungal ITS reads in the Sequence Read Archive, about 1,000 times as many as fungal ITS sequences in GenBank. These unnamed Fungi could help to bridge the gap between 115,000 to 140,000 currently accepted and 2.2 to 3.8 million predicted species, a gap that cannot realistically be filled using specimen or culture-based inventories. The Code never aimed at placing restrictions on the nature of characters chosen for taxonomy, and the requirement for physical types is now becoming a constraint on the advancement of science. We elaborate on the promises and pitfalls of sequence-based nomenclature and provide potential solutions to major concerns of the mycological community. Types of sequence-based taxa, which by default lack a physical specimen or culture, could be designated in four alternative ways: (1) the underlying sample ('bag' type), (2) the DNA extract, (3) fluorescent in situ hybridization (FISH), or (4) the type sequence itself. Only (4) would require changes to the Code and the latter would be the most straightforward approach, complying with three of the five principal functions of types better than physical specimens. A fifth way, representation of the sequence in an illustration, has been ruled as unacceptable in the Code. Potential flaws in sequence data are analogous to flaws in physical types, and artifacts are manageable if a stringent analytical approach is applied. Conceptual errors such as homoplasy, intragenomic variation, gene duplication, hybridization, and horizontal gene transfer, apply to all molecular approaches and cannot be used as a specific argument against sequence-based nomenclature. The potential impact of these phenomena is manageable, as phylogenetic species delimitation has worked satisfactorily in Fungi. The most serious shortcoming of sequence-based nomenclature is the likelihood of parallel classifications, either by describing taxa that already have names based on physical types, or by using different markers to delimit species within the same lineage. The probability of inadvertently establishing sequence-based species that have names available is between 20.4 % and 1.5 % depending on the number of globally predicted fungal species. This compares favourably to a historical error rate of about 30 % based on physical types, and this rate could be reduced to practically zero by adding specific provisions to this approach in the Code. To avoid parallel classifications based on different markers, sequence-based nomenclature should be limited to a single marker, preferably the fungal ITS barcoding marker; this is possible since sequence-based nomenclature does not aim at accurate species delimitation but at naming lineages to generate a reference database, independent of whether these lineages represent species, closely related species complexes, or infraspecies. We argue that clustering methods are inappropriate for sequence-based nomenclature; this approach must instead use phylogenetic methods based on multiple alignments, combined with quantitative species recognition methods. We outline strategies to obtain higher-level phylogenies for ITS-based, voucherless species, including phylogenetic binning, 'hijacking' species delimitation methods, and temporal banding. We conclude that voucherless, sequence-based nomenclature is not a threat to specimen and culture-based fungal taxonomy, but a complementary approach capable of substantially closing the gap between known and predicted fungal diversity, an approach that requires careful work and high skill levels.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Strasse 6–8, 14195 Berlin, Germany
| | - David L. Hawksworth
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; and Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey TW9 3DS, UK; Jilin Agricultural University, Changchun, Jilin Province,130118 China
| |
Collapse
|
13
|
Lücking R, Kirk PM, Hawksworth DL. Sequence-based nomenclature: a reply to Thines et al. and Zamora et al. and provisions for an amended proposal "from the floor" to allow DNA sequences as types of names. IMA Fungus 2018; 9:185-198. [PMID: 30018879 PMCID: PMC6048568 DOI: 10.5598/imafungus.2018.09.01.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
We reply to two recently published, multi-authored opinion papers by opponents of sequence-based nomenclature, namely Zamora et al. (IMA Fungus9: 167-175,2018) and Thines et al. (IMA Fungus9: 177-183, 2018). While we agree with some of the principal arguments brought forward by these authors, we address misconceptions and demonstrate that some of the presumed evidence presented in these papers has been wrongly interpreted. We disagree that allowing sequences as types would fundamentally alter the nature of types, since a similar nature of abstracted features as type is already allowed in the Code (Art. 40.5), namely an illustration. We also disagree that there is a high risk of introducing artifactual taxa, as this risk can be quantified at well below 5 %, considering the various types of high-throughput sequencing errors. Contrary to apparently widespread misconceptions, sequence-based nomenclature cannot be based on similarity-derived OTUs and their consensus sequences, but must be derived from rigorous, multiple alignment-based phylogenetic methods and quantitative, single-marker species recognition algorithms, using original sequence reads; it is therefore identical in its approach to single-marker studies based on physical types, an approach allowed by the Code. We recognize the limitations of the ITS as a single fungal barcoding marker, but point out that these result in a conservative approach, with "false negatives" surpassing "false positives"; a desirable feature of sequence-based nomenclature. Sequence-based nomenclature does not aim at accurately resolving species, but at naming sequences that represent unknown fungal lineages so that these can serve as a means of communication, so ending the untenable situation of an exponentially growing number of unlabeled fungal sequences that fill online repositories. The risks are outweighed by the gains obtained by a reference library of named sequences spanning the full array of fungal diversity. Finally, we elaborate provisions in addition to our original proposal to amend the Code that would take care of the issues brought forward by opponents to this approach. In particular, taking up the idea of the Candidatus status of invalid, provisional names in prokaryote nomenclature, we propose a compromise that would allow valid publication of voucherless, sequence-based names in a consistent manner, but with the obligate designation as "nom. seq." (nomen sequentiae). Such names would not have priority over specimen- or culture-based names unless either epitypified with a physical type or adopted for protection on the recommendation of a committee of the International Commission on the Taxonomy of Fungi following evaluation based on strict quality control of the underlying studies based on established rules or recommendations.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6-8, D-14195 Berlin, Germany
| | - Paul M. Kirk
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Biodiversity Informatics & Spatial Analysis, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - David L. Hawksworth
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Jilin Agricultural University, Chanchung, Jilin province, 130118 China
| |
Collapse
|
14
|
Abstract
The nuclear ribosomal DNA (rDNA) is considered as a paradigm of concerted evolution. Components of the rDNA tandem repeats (45S) are widely used in phylogenetic studies of different organisms and the internal transcribed spacer (ITS) region was recently selected as a fungal DNA bar code. However, rRNA pseudogenes, as one kind of escape from concerted evolution, were reported in a wide range of organisms, especially in plants and animals. Moreover, large numbers of 5S rRNA pseudogenes were identified in several filamentous ascomycetes. To study whether rDNA evolves in a strict concerted manner and test whether rRNA pseudogenes exist in more species of ascomycetes, intragenomic rDNA polymorphisms were analyzed using whole genome sequences. Divergent rDNA paralogs were found to coexist within a single genome in seven filamentous ascomycetes examined. A great number of paralogs were identified as pseudogenes according to the mutation and secondary structure analyses. Phylogenetic analyses of the three rRNA coding regions of the 45S rDNA repeats, i.e., 18S, 5.8S, and 28S, revealed an interspecies clustering pattern of those different rDNA paralogs. The identified rRNA pseudogenic sequences were validated using specific primers designed. Mutation analyses revealed that the repeat-induced point (RIP) mutation was probably responsible for the formation of those rRNA pseudogenes.
Collapse
|
15
|
Hawksworth DL, Lücking R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0052-2016. [PMID: 28752818 PMCID: PMC11687528 DOI: 10.1128/microbiolspec.funk-0052-2016] [Citation(s) in RCA: 514] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 11/20/2022] Open
Abstract
The question of how many species of Fungi there are has occasioned much speculation, with figures mostly posited from around half a million to 10 million, and in one extreme case even a sizable portion of the spectacular number of 1 trillion. Here we examine new evidence from various sources to derive an updated estimate of global fungal diversity. The rates and patterns in the description of new species from the 1750s show no sign of approaching an asymptote and even accelerated in the 2010s after the advent of molecular approaches to species delimitation. Species recognition studies of (semi-)cryptic species hidden in morpho-species complexes suggest a weighted average ratio of about an order of magnitude for the number of species recognized after and before such studies. New evidence also comes from extrapolations of plant:fungus ratios, with information now being generated from environmental sequence studies, including comparisons of molecular and fieldwork data from the same sites. We further draw attention to undescribed species awaiting discovery in biodiversity hot spots in the tropics, little-explored habitats (such as lichen-inhabiting fungi), and material in collections awaiting study. We conclude that the commonly cited estimate of 1.5 million species is conservative and that the actual range is properly estimated at 2.2 to 3.8 million. With 120,000 currently accepted species, it appears that at best just 8%, and in the worst case scenario just 3%, are named so far. Improved estimates hinge particularly on reliable statistical and phylogenetic approaches to analyze the rapidly increasing amount of environmental sequence data.
Collapse
Affiliation(s)
- David L Hawksworth
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom, and Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
16
|
Dal Forno M, Bungartz F, Yánez-Ayabaca A, Lücking R, Lawrey JD. High levels of endemism among Galapagos basidiolichens. FUNGAL DIVERS 2017. [DOI: 10.1007/s13225-017-0380-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Purahong W, Pietsch KA, Lentendu G, Schöps R, Bruelheide H, Wirth C, Buscot F, Wubet T. Characterization of Unexplored Deadwood Mycobiome in Highly Diverse Subtropical Forests Using Culture-independent Molecular Technique. Front Microbiol 2017; 8:574. [PMID: 28469600 PMCID: PMC5395659 DOI: 10.3389/fmicb.2017.00574] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/20/2017] [Indexed: 12/27/2022] Open
Abstract
The deadwood mycobiome, also known as wood-inhabiting fungi (WIF), are among the key players in wood decomposition, having a large impact on nutrient cycling in forest soils. However, our knowledge of WIF richness and distribution patterns in different forest biomes is limited. Here, we used pyrotag sequencing of the fungal internal transcribed spacer (ITS2) region to characterize the deadwood mycobiome of two tree species with greatly different wood characteristics (Schima superba and Pinus massoniana) in a Chinese subtropical forest ecosystem. Specifically, we tested (i) the effects of tree species and wood quality properties on WIF OTU richness and community composition; (ii) the role of biotic and abiotic factors in shaping the WIF communities; and (iii) the relationship between WIF OTU richness, community composition and decomposition rates. Due to different wood chemical properties, we hypothesized that the WIF communities derived from the two tree species would be correlated differently with biotic and abiotic factors. Our results show that deadwood in subtropical forests harbors diverse fungal communities comprising six ecological functional groups. We found interesting colonization patterns for this subtropical biome, where Resinicium spp. were highly detected in both broadleaved and coniferous deadwood. In addition, the members of Xylariales were frequently found in Schima. The two deadwood species differed significantly in WIF OTU richness (Pinus > Schima) and community composition (P < 0.001). Variations in WIF community composition of both tree species were significantly explained by wood pH and ecological factors (biotic: deadwood species, basal area and abiotic: soil pH), but the WIF communities derived from each tree species correlated differently with abiotic factors. Interestingly, we found that deadwood decomposition rate significantly correlated with WIF communities and negatively correlated with WIF OTU richness. We conclude that the pattern of WIF OTU richness and community composition are controlled by multiple interacting biotic and abiotic factors. Overall, our study provides an in-depth picture of the deadwood mycobiome in this subtropical forest. Furthermore, by comparing our results to results from temperate and boreal forests we contribute to a better understanding of patterns of WIF communities across different biomes and geographic locations.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental ResearchHalle, Germany
| | - Katherina A Pietsch
- Department of Systematic Botany and Functional Biodiversity, University of LeipzigLeipzig, Germany
| | - Guillaume Lentendu
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental ResearchHalle, Germany.,Department of Ecology, Technical University of KaiserslauternKaiserslautern, Germany
| | - Ricardo Schöps
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental ResearchHalle, Germany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-WittenbergHalle, Germany.,German Centre for Integrative Biodiversity Research (iDiv)Leipzig, Germany
| | - Christian Wirth
- Department of Systematic Botany and Functional Biodiversity, University of LeipzigLeipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv)Leipzig, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental ResearchHalle, Germany.,German Centre for Integrative Biodiversity Research (iDiv)Leipzig, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental ResearchHalle, Germany.,German Centre for Integrative Biodiversity Research (iDiv)Leipzig, Germany
| |
Collapse
|
18
|
Dal-Forno M, Lücking R, Bungartz F, Yánez-Ayabaca A, Marcelli MP, Spielmann AA, Coca LF, Chaves JL, Aptroot A, Sipman HJM, Sikaroodi M, Gillevet P, Lawrey JD. From one to six: unrecognized species diversity in the genus Acantholichen (lichenized Basidiomycota: Hygrophoraceae). Mycologia 2017; 108:38-55. [DOI: 10.3852/15-060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/02/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Manuela Dal-Forno
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia 22030-4444
| | - Robert Lücking
- Science & Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605, and Botanischer Garten und Botanisches Museum, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | - Frank Bungartz
- Biodiversity Assessment, Charles Darwin Foundation (AISBL), Puerto Ayora, Santa Cruz, Galápagos, Ecuador
| | | | - Marcelo P. Marcelli
- Instituto de Botânica, Núcleo de Pesquisa em Micologia, Av. Miguel Stéfano 3687, São Paulo/SP, CEP 04301-902, Brazil
| | - Adriano A. Spielmann
- Laboratório de Botânica/Liquenologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Caixa Postal 549, CEP 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Luis Fernando Coca
- Herbario Universidad de Caldas, Edificio Bicentenario, Manizales, A.A. 275, Caldas, Colombia
| | - José Luis Chaves
- Laboratorio de Hongos, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica
| | - Andre Aptroot
- ABL Herbarium, G.v.d. Veenstraat 107, NL-3762 XK Soest, The Netherlands
| | - Harrie J. M. Sipman
- Botanischer Garten und Botanisches Museum, Freie Universität, Königin-Luise-Straße 6-8, D-14195 Berlin, Germany
| | | | - Patrick Gillevet
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia 22030-4444
| | - James D. Lawrey
- Department of Biology, George Mason University, Fairfax, Virginia 22030-4444
| |
Collapse
|
19
|
Turbo-taxonomy to assemble a megadiverse lichen genus: seventy new species of Cora (Basidiomycota: Agaricales: Hygrophoraceae), honouring David Leslie Hawksworth’s seventieth birthday. FUNGAL DIVERS 2016. [DOI: 10.1007/s13225-016-0374-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Mark K, Cornejo C, Keller C, Flück D, Scheidegger C. Barcoding lichen-forming fungi using 454 pyrosequencing is challenged by artifactual and biological sequence variation. Genome 2016; 59:685-704. [DOI: 10.1139/gen-2015-0189] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although lichens (lichen-forming fungi) play an important role in the ecological integrity of many vulnerable landscapes, only a minority of lichen-forming fungi have been barcoded out of the currently accepted ∼18 000 species. Regular Sanger sequencing can be problematic when analyzing lichens since saprophytic, endophytic, and parasitic fungi live intimately admixed, resulting in low-quality sequencing reads. Here, high-throughput, long-read 454 pyrosequencing in a GS FLX+ System was tested to barcode the fungal partner of 100 epiphytic lichen species from Switzerland using fungal-specific primers when amplifying the full internal transcribed spacer region (ITS). The present study shows the potential of DNA barcoding using pyrosequencing, in that the expected lichen fungus was successfully sequenced for all samples except one. Alignment solutions such as BLAST were found to be largely adequate for the generated long reads. In addition, the NCBI nucleotide database—currently the most complete database for lichen-forming fungi—can be used as a reference database when identifying common species, since the majority of analyzed lichens were identified correctly to the species or at least to the genus level. However, several issues were encountered, including a high sequencing error rate, multiple ITS versions in a genome (incomplete concerted evolution), and in some samples the presence of mixed lichen-forming fungi (possible lichen chimeras).
Collapse
Affiliation(s)
- Kristiina Mark
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Switzerland
- Institute of Botany and Ecology, University of Tartu, Estonia
| | - Carolina Cornejo
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Switzerland
| | - Christine Keller
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Switzerland
| | - Daniela Flück
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Switzerland
| | - Christoph Scheidegger
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Switzerland
| |
Collapse
|
21
|
Pereira TJ, Baldwin JG. Contrasting evolutionary patterns of 28S and ITS rRNA genes reveal high intragenomic variation in Cephalenchus (Nematoda): Implications for species delimitation. Mol Phylogenet Evol 2016; 98:244-60. [PMID: 26926945 DOI: 10.1016/j.ympev.2016.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/20/2016] [Accepted: 02/20/2016] [Indexed: 01/05/2023]
Abstract
Concerted evolution is often assumed to be the evolutionary force driving multi-family genes, including those from ribosomal DNA (rDNA) repeat, to complete homogenization within a species, although cases of non-concerted evolution have been also documented. In this study, sequence variation of 28S and ITS ribosomal RNA (rRNA) genes in the genus Cephalenchus is assessed at three different levels, intragenomic, intraspecific, and interspecific. The findings suggest that not all Cephalenchus species undergo concerted evolution. High levels of intraspecific polymorphism, mostly due to intragenomic variation, are found in Cephalenchus sp1 (BRA-01). Secondary structure analyses of both rRNA genes and across different species show a similar substitution pattern, including mostly compensatory (CBC) and semi-compensatory (SBC) base changes, thus suggesting the functionality of these rRNA copies despite the variation found in some species. This view is also supported by low sequence variation in the 5.8S gene in relation to the flanking ITS-1 and ITS-2 as well as by the existence of conserved motifs in the former gene. It is suggested that potential cross-fertilization in some Cephalenchus species, based on inspection of female reproductive system, might contribute to both intragenomic and intraspecific polymorphism of their rRNA genes. These results reinforce the potential implications of intragenomic and intraspecific genetic diversity on species delimitation, especially in biodiversity studies based solely on metagenetic approaches. Knowledge of sequence variation will be crucial for accurate species diversity estimation using molecular methods.
Collapse
Affiliation(s)
- Tiago José Pereira
- Department of Nematology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA.
| | - James Gordon Baldwin
- Department of Nematology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA.
| |
Collapse
|
22
|
Ryberg M. Molecular operational taxonomic units as approximations of species in the light of evolutionary models and empirical data from Fungi. Mol Ecol 2015; 24:5770-7. [DOI: 10.1111/mec.13444] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Martin Ryberg
- Systematic Biology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| |
Collapse
|
23
|
Větrovský T, Kolařík M, Žifčáková L, Zelenka T, Baldrian P. Therpb2gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol Ecol Resour 2015; 16:388-401. [DOI: 10.1111/1755-0998.12456] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 07/28/2015] [Accepted: 08/14/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Tomáš Větrovský
- Institute of Microbiology of the ASCR, v.v.i.; Vídeňská 1083 14220 Praha 4 Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology of the ASCR, v.v.i.; Vídeňská 1083 14220 Praha 4 Czech Republic
| | - Lucia Žifčáková
- Institute of Microbiology of the ASCR, v.v.i.; Vídeňská 1083 14220 Praha 4 Czech Republic
| | - Tomáš Zelenka
- Institute of Microbiology of the ASCR, v.v.i.; Vídeňská 1083 14220 Praha 4 Czech Republic
| | - Petr Baldrian
- Institute of Microbiology of the ASCR, v.v.i.; Vídeňská 1083 14220 Praha 4 Czech Republic
| |
Collapse
|
24
|
Majaneva M, Hyytiäinen K, Varvio SL, Nagai S, Blomster J. Bioinformatic Amplicon Read Processing Strategies Strongly Affect Eukaryotic Diversity and the Taxonomic Composition of Communities. PLoS One 2015; 10:e0130035. [PMID: 26047335 PMCID: PMC4457843 DOI: 10.1371/journal.pone.0130035] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/16/2015] [Indexed: 11/19/2022] Open
Abstract
Amplicon read sequencing has revolutionized the field of microbial diversity studies. The technique has been developed for bacterial assemblages and has undergone rigorous testing with mock communities. However, due to the great complexity of eukaryotes and the numbers of different rDNA copies, analyzing eukaryotic diversity is more demanding than analyzing bacterial or mock communities, so studies are needed that test the methods of analyses on taxonomically diverse natural communities. In this study, we used 20 samples collected from the Baltic Sea ice, slush and under-ice water to investigate three program packages (UPARSE, mothur and QIIME) and 18 different bioinformatic strategies implemented in them. Our aim was to assess the impact of the initial steps of bioinformatic strategies on the results when analyzing natural eukaryotic communities. We found significant differences among the strategies in resulting read length, number of OTUs and estimates of diversity as well as clear differences in the taxonomic composition of communities. The differences arose mainly because of the variable number of chimeric reads that passed the pre-processing steps. Singleton removal and denoising substantially lowered the number of errors. Our study showed that the initial steps of the bioinformatic amplicon read processing strategies require careful consideration before applying them to eukaryotic communities.
Collapse
Affiliation(s)
- Markus Majaneva
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
- * E-mail:
| | - Kirsi Hyytiäinen
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Sirkka Liisa Varvio
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Satoshi Nagai
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Yokohama, Japan
| | - Jaanika Blomster
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Abstract
The number of Fungi is estimated at between 1.5 and 3 million. Lichenized species are thought to make up a comparatively small portion of this figure, with unrecognized species richness hidden among little-studied, tropical microlichens. Recent findings, however, suggest that some macrolichens contain a large number of unrecognized taxa, increasing known species richness by an order of magnitude or more. Here we report the existence of at least 126 species in what until recently was believed to be a single taxon: the basidiolichen fungus Dictyonema glabratum, also known as Cora pavonia. Notably, these species are not cryptic but morphologically distinct. A predictive model suggests an even larger number, with more than 400 species. These results call into question species concepts in presumably well-known macrolichens and demonstrate the need for accurately documenting such species richness, given the importance of these lichens in endangered ecosystems such as paramos and the alarming potential for species losses throughout the tropics.
Collapse
|