1
|
Čakmak D, Perović V, Pavlović D, Matić M, Jakšić D, Tanirbergenov S, Pavlović P. Development of optimisation methods to identify sources of pollution and assess potential health risks in the vicinity of antimony mines. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:73. [PMID: 39932624 PMCID: PMC11814042 DOI: 10.1007/s10653-025-02369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
After elevated levels of lead (Pb) were found in the blood of children living near the antimony (Sb) mine and battery smelter in Zajača, Republic Serbia, studies were carried out to determine the health risk assessment (HRA) effects of the soil. In this study, for the first time a combination of Network Analysis, CoDA (Compositional Data Analysis) and receptor modelling was used to determine the geopedological and atmospheric origin of PTEs in soil and their historical significance. It was found that arsenic (As) and Pb are the main pollutants in the area. The largest contribution to the environmental risk (Er) was made by Pb. In addition to perception methods Network Analysis (NA) was used to determine the source of pollution and, for the first time, the strength of the positive and negative connections of the network nodes of the mutual influence of PTE. Lead pollution was found to originate from two sources: historical and present, and As was found to originate from a wider area. For the child population, an unacceptable risk for the occurrence of chronic diseases with a probability of 95% was found, with As and Pb accounting for the highest percentage. Similarly, As has the greatest impact on occurrence of cancer at the unacceptable risk level, while Pb is at the notable risk level. The historical exposure to Pb is slightly lower and the difference is slightly more pronounced for total pollution for HRA.
Collapse
Affiliation(s)
- Dragan Čakmak
- Department of Ecology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia.
| | - Veljko Perović
- Department of Ecology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Dragana Pavlović
- Department of Ecology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Marija Matić
- Department of Ecology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Darko Jakšić
- Institute of Agricultural Economics, Volgina 15, 11060, Belgrade, Serbia
| | - Samat Tanirbergenov
- Department of Agrochemistry and Soil Ecology, U.Uspanov Kazakh Research Institute of Soil Science and Agrochemistry, 75 Al-Farabi Ave, 050060, Almaty, Kazakhstan
| | - Pavle Pavlović
- Department of Ecology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| |
Collapse
|
2
|
Roy A, Bhattacharya T, Kumari M, Kumar A. Exploring heavy metal dynamics and risks from dust and soil in urban cities of Jharkhand, India. Sci Rep 2024; 14:32101. [PMID: 39738644 PMCID: PMC11685825 DOI: 10.1038/s41598-024-83574-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Jharkhand is a minerally prosperous state with geogenic and industrial origins of metals. This study assesses the seasonal variation of pseudo-total metal contents (Cr, Ni, Pb, Zn, Mn, Cu, Fe, Mg, Al) and related contamination and risks in indoor dust, street dust, and soils of four major cities of Jharkhand. Across cities and seasons, Zn, Cu, and Pb were the most common pollutants. Indoor dust showed higher metal concentrations than street dust and soil, suggesting their indoor origins. Geo-accumulation indices indicated significant Cu contamination, followed by Pb and Zn. Street dust exhibited notable enrichment in Zn and Pb in all cities except Dhanbad, where Cu contamination was substantial. Ecological risk indices peaked during summer in street dusts of Ranchi and Bokaro (for Pb) and during monsoons in soils of Jamshedpur and Dhanbad (for Cu). Based on chemical sequential extractions, the mobilities of Mg, Mn, Zn, and Cu were high, while Pb had moderate mobility. The probable sources of immediate concern were vehicles and paints, wire, electroplating, metal casting, and steel manufacturing industries. The findings emphasize the urgent need for implementing stringent regulations to mitigate metal emissions and ensure compliance with environmental standards.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Tanushree Bhattacharya
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Mala Kumari
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Abhishek Kumar
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| |
Collapse
|
3
|
Samani M, Ahlawat YK, Golchin A, Alikhani HA, Baybordi A, Mishra S. Modified diatomite for soil remediation and its implications for heavy metal absorption in Calendula officinalis. BMC PLANT BIOLOGY 2024; 24:357. [PMID: 38698319 PMCID: PMC11067082 DOI: 10.1186/s12870-024-05068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Among different adsorbents, natural and inorganic compounds such as diatomite are important and advantageous in terms of high efficiency and cost-effectiveness, and function in stabilizing heavy metals in the environment. Calendula officinalis, a plant known as a high accumulator of heavy metals, was cultivated in soil treated with varying concentrations of modified diatomite to demonstrate the efficiency of modified diatomite in stabilizating of heavy metals in soils, RESULTS: The modification of diatomite aimed to enhance Calendula officinalis adsorptive properties, particularly towards heavy metals such as lead (Pb), Zinc (Zn), Chromium (Cr), Nickle (Ni), and Copper (Cu), common contaminants in industrial soils. The experimental design included both control and treated soil samples, with assessments at regular intervals. Modified diatomite significantly decreased the bioaccumulation of heavy metals in contaminated soils except Zn, evidenced by decreased DTPA extractable heavy metals in soil and also heavy metal concentrations in plant tissues. Using 10% modified diatomite decreased 91% Pb and Cu, 78% Cr, and 79% Ni concentration of plants compared to the control treatment. The highest concentration of Zn in plant tissue was observed in 2.5% modified diatomite treatment. Remarkably, the application of modified diatomite also appeared to improve the nutrient profile of the soil, leading to enhanced uptake of key nutrients like phosphorus (P) 1.18%, and potassium (K) 79.6% in shoots and 82.3% in roots in Calendula officinalis. Consequently, treated plants exhibited improved growth characteristics, including shoots and roots height of 16.98% and 12.8% respectively, and shoots fresh and dry weight of 48.5% and 50.2% respectively., compared to those in untreated, contaminated soil. CONCLUSION The findings suggest promising implications for using such amendments in ecological restoration and sustainable agriculture, particularly in areas impacted by industrial pollution.
Collapse
Affiliation(s)
- Maryam Samani
- Soil Science Department, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Yogesh K Ahlawat
- Centre of Research Impact and Outreach, Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
- Centre of Research Impact and Outreach, Chitkara University, Baddi, Himachal Pradesh, India.
- Department of Agriculture sciences , Sharda University, Agra, Uttar Pradesh, 282002, India.
| | - Ahmad Golchin
- Soil Science Department, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Hossein Ali Alikhani
- Soil Science Department, Faculty of Agriculture, University of Tehran, Tehran, Iran
| | - Ahmad Baybordi
- Soil and Water Research Department, East Azerbaijan Agriculture and Natural Resources Research and Education Center, AREEO, Tabriz, Iran
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, 281406, India
| |
Collapse
|
4
|
Verma A, Yadav S, Kumar R. Geochemical fractionation, bioavailability, ecological and human health risk assessment of metals in topsoils of an emerging industrial cluster near New Delhi. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9041-9066. [PMID: 36932290 DOI: 10.1007/s10653-023-01536-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Urban spaces have become sink for metal-rich waste, particularly in unorganized industrial clusters and metro-cities. Geochemical distribution of metals in different forms and their mobility and bioavailability in topsoils of Bhiwadi Industrial Cluster (BIC) near New Delhi are studies following m-BCR-SEP. Contamination factor (Cf), risk assessment code (RAC), ecological risk assessment (Er), and carcinogenic and non-carcinogenic health risk (HRA) were calculated to assess health and environmental risks. Residual fraction (F4) contained considerable amounts of Cd (57.2%), Cr (81.5%), Fe (86.1%), Mn (62.5%), Ni (58.3%), and V (71.4%). Pb was present in reducible fraction (F2; 52.8%), whereas Cu was distributed in F2 (33.3%) and F4 (31.6%). Zn showed equal distribution in acid exchangeable (F1; 33.9%) and oxidizable fraction (F3; 32.5%). High Cf was observed for Zn (0.9-20.9), Cu (0.46-17) and Pb (0.2-9.9). RAC indicated high risk of Cd, Cu, Mn, Ni, and Zn due to their high mobility and toxicity. High potential bioavailability of Cu, Pb, and Zn (> 65%) was found in samples collected near to metal casting, electroplating, and automobile part manufacturing industries. Considerable to extremely high ecological risk was observed for Cd, low to high risk for Cu, low risk to moderate risk for Cr, Mn, Ni, Zn, and Pb. All topsoil samples were in low to very high-risk range for metals. Ingestion was major pathway of metals followed by dermal and inhalation. Children were more prone to non-carcinogenic risks (hazardous index: 3.6). Topsoils had high carcinogenic risk to exposed population for Cd, Cr, Ni, and Pb.
Collapse
Affiliation(s)
- Anju Verma
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudesh Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Rakesh Kumar
- Department of Environmental Sciences, University of Jammu, Jammu, 180006, India
| |
Collapse
|
5
|
Zainab N, Mehmood S, Amna Shafiq-Ur-Rehman, Munir A, Tanveer ZI, Nisa ZU, Imran M, Javed MT, Chaudhary HJ. Health risk assessment and bioaccumulation of potentially toxic metals from water, soil, and forages near coal mines of district Chakwal, Punjab, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5441-5466. [PMID: 37029254 DOI: 10.1007/s10653-023-01531-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Water, forages, and soil contamination with potentially toxic metals (PTMs) through anthropogenic activities has become a significant environmental concern. It is crucial to find out the level of PTMs in water, soil, and forages near industrial areas. The PTMs enter the body of living organisms through these sources and have become a potential risk for humans and animals. Therefore, the present study aims at the health risk assessment of PTMs and their accumulation in soil, water, and forages of three tehsils (Kallar Kahar, Choa Saidan Shah, and Chakwal) in district Chakwal. Samples of wastewater, soil, and forages were collected from various sites of district Chakwal. PTMs detected in the present study were cadmium (Cd), chromium (Cr), lead (Pb), zinc (Zn), cobalt (Co), copper (Cu), and nickel (Ni), and their levels were measured through atomic absorption spectrophotometer (AAs GF95 graphite furnace auto sampler). Pollution load index (PLI), bio concentration factor (BCF), soil enrichment factors (EF), daily intake value (DIM), and health risk index (HRI) in sheep, cow, and buffalo were also analyzed. The results revealed that the mean concentration (mg/L) of Cd (0.72-0.91 mg/L), Cr (1.84-2.23 mg/L), Pb (0.95-3.22 mg/L), Co (0.74-2.93 mg/L), Cu (0.84-1.96 mg/L), and Ni (1.39-4.39 mg/L) in wastewater samples was higher than permissible limits set by WHO, NEQS, WWF, USEPA, and Pakistan in all three tehsils of district Chakwal. Similarly, in soil samples, concentrations of Cd (1.21-1.95 mg/kg), Cr (38.1-56.4 mg/kg), and Ni (28.3-55.9 mg/kg) were higher than their respective threshold values. The mean concentration of PTMs in forage samples (Parthenium hysterophorus, Mentha spicata, Justicia adhatoda, Calotropis procera, Xanthium strumarium, Amaranthaceae sp.) showed that maximum values of Cd (5.35-7.55 mg/kg), Cr (5.47-7.51 mg/kg), Pb (30-36 mg/kg), and Ni (12.6-57.5 mg/kg) were beyond their safe limit set for forages. PLI, BCF, and EF were > 1.0 for almost all the PTMs. The DIM and HRI for sheep were less than < 1.0 but for cows and buffalo were > 1.0. The current study showed that soil, water, and forages near coal mines area are contaminated with PTMs which enter the food chain and pose significant harm to humans and animals. In order to prevent their dangerous concentration in the food chain, regular assessment of PTMs present in soil, forages, irrigating water, and food is recommended.
Collapse
Affiliation(s)
- Nida Zainab
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Shehzad Mehmood
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Environmental Sciences, Comsats University Islamabad, Vehari, 61100, Pakistan
| | - Amna Shafiq-Ur-Rehman
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Department of Botany, University of Okara, Okara, 53900, Pakistan
- Department of Botany, Rawalpindi Women University, 6Th Road Satellite Town, Rawalpindi, Pakistan
| | - Adeela Munir
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | | | - Zaib Un Nisa
- Cotton Research Institute, Multan, Punjab, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, Comsats University Islamabad, Vehari, 61100, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | | |
Collapse
|
6
|
Kolawole TO, Oyelami CA, Olajide-Kayode JO, Jimoh MT, Fomba KW, Anifowose AJ, Akinde SB. Contamination and risk surveillance of potentially toxic elements in different land-use urban soils of Osogbo, Southwestern Nigeria. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4603-4629. [PMID: 36881244 DOI: 10.1007/s10653-023-01518-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The concentrations of potentially toxic elements (PTEs) and their contamination indices were determined in urban soil from five different land-use zones, namely municipal solid waste landfill (MWL), industrial area (INA), heavy traffic area (TRA), residential area with commercial activities (RCA), and farmland (FAL) in Osogbo Metropolis. Ecological and human health risk assessments were also evaluated. Based on the average concentrations, the highest values of As, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn were found at INA, while the maximum concentrations of Ba, Cd, and Co were observed at MWL. The average enrichment factor (EF) values of Cd, Cu, Pb, and Zn showed very high to extremely high enrichment in the soils of INA, MWL, TRA, and RCA, while the EF values of Ba, Co, Cr, Fe, Ni, and V were significantly to moderately enriched in the aforementioned land-use zones. This trend was consistent with the average contamination factor (Cf) values of Cd, Cu, Pb, and Zn, which indicated considerable to very high contamination at INA, MWL, TRA, and RCA. However, Cf values of Ba, Co, Cr, Fe, Ni, and V had moderate contamination variously at the different land-use zones. Furthermore, the potential ecological risk factor (Eri) values for all the PTEs were < 40, which indicated low Eri, except for Cd and to some extent Pb. The Eri value of Cd was high to very high at MWL, INA, TRA, and RCA, and low at FAL, while Eri of Pb was only moderate at INA. Assessment of health quotient (HQ) of non-carcinogenic health risks was within acceptable limit (< 1) for most of the PTEs in the different zones for adults and children, except the maximum HQ value of Pb at INA (HQ = 1.0), which was beyond the acceptable limit for children. The carcinogenic risk was within the acceptable limit (1.0 × 10-6) in all the zones, except INA. This may pose health challenges to children in the vicinity of the pollution sources. Continuous monitoring of PTEs to reduce exposure to PTE should be considered.
Collapse
Affiliation(s)
- Tesleem O Kolawole
- Department of Geological Sciences, Osun State University, Osogbo, Nigeria.
| | | | | | - Mustapha T Jimoh
- Department of Earth Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Khanneh W Fomba
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Adebanjo J Anifowose
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| | - Sunday B Akinde
- Department of Microbiology, Osun State University, Osogbo, Nigeria
| |
Collapse
|
7
|
Aradhi KK, Dasari BM, Banothu D, Manavalan S. Spatial distribution, sources and health risk assessment of heavy metals in topsoil around oil and natural gas drilling sites, Andhra Pradesh, India. Sci Rep 2023; 13:10614. [PMID: 37391457 PMCID: PMC10313719 DOI: 10.1038/s41598-023-36580-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023] Open
Abstract
Soils are usually the interface between human activity and environmental components that must be conserved and protected. As a result of rising industrialization and urbanization, activities such as exploration and extraction operations lead to the release of heavy metals into the environment. This study presents distribution of six heavy metals (As, Cr, Cu, Ni, Pb and Zn) in 139 top soil samples collected in and around oil and natural gas drilling sites at a sampling density of 1 site/12 km2. The results indicated the concentration ranged from 0.1 to 16 mg/kg for As, 3-707 mg/kg for Cr, 7-2324 mg/kg for Cu, 14-234 mg/kg for Ni, 9-1664 mg/kg for Pb, and 60-962 mg/kg for Zn. The contamination of soil was estimated on the basis of Index of geo accumulation (Igeo), enrichment factor (Ef), and contamination factor (Cf). Further, spatial distribution pattern maps indicated that the pollution levels for Cu, Cr, Zn, and Ni were higher around drilling sites of the study area relative to other regions. Using exposure factors for the local population and references from the USEPA's integrated database, potential ecological risk indices (PERI) and health risk assessments were made. The hazard index (HI) values of Pb (in adults) and Cr, Pb (in children) exceeded the recommended limit of HI = 1, indicating the non-carcinogenic risks. Total carcinogenic risk (TCR) calculations revealed Cr (in adults) and As, Cr (in children) levels in soils exceeded the threshold value of 1.0E - 04, indicating significant carcinogenic risk due to high metal concentrations in the study area. These results may assist in determining the soil's present state and its effect due to extraction strategies used during drilling process and initiate few remedial techniques, particularly for proper management strategies in farming activities to decrease point and non-point source of contamination.
Collapse
Affiliation(s)
- Keshav Krishna Aradhi
- CSIR-National Geophysical Research Institute (Council of Scientific and Industrial Research), Habsiguda, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Babu Mallesh Dasari
- CSIR-National Geophysical Research Institute (Council of Scientific and Industrial Research), Habsiguda, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dasaram Banothu
- CSIR-National Geophysical Research Institute (Council of Scientific and Industrial Research), Habsiguda, Hyderabad, 500007, India
| | - Satyanarayanan Manavalan
- CSIR-National Geophysical Research Institute (Council of Scientific and Industrial Research), Habsiguda, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Kolawole TO, Ajibade OM, Olajide-Kayode JO, Fomba KW. Level, distribution, ecological, and human health risk assessment of heavy metals in soils and stream sediments around a used-automobile spare part market in Nigeria. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1573-1598. [PMID: 35536448 DOI: 10.1007/s10653-022-01283-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The aim of this research was to assess the distribution, sources, contamination status, ecological risk, and human health risk of heavy metals (HMs) in soil and sediments of a used-automobile spare part market in Nigeria. Forty-three (43) soil samples were collected within a spare part market section (SPMS-17 samples), market-residential section (MRES-10 samples), traffic section (TRAS-10 samples), and non-market residential section (NMRS- 6 samples). Fifteen (15) stream sediments were collected within and around SPMS. Based on average concentrations, HMs (As, Cd, Cr, Cu, Fe, Mo, Pb, and Zn) had their highest values in SPMS, and their minimum values were observed in NMRS. The high concentration was as a result of contributions from anthropogenic activities such as the direct discharge of used-lubricant oil, scrap metals, tire wear, and traffic emission in the environment. However, Al, Co, and Mn were derived from the geology of the area. The same trend was observed in the stream sediment section (STSS), except that in addition to Al, Co and Mn in soils, Cr was also sourced from geogenic activity. There were moderate to high enrichment/contamination factors of the anthropogenically sourced HMs, especially in the soil of SPMS, MRES, TRAS and stream sediments (STSS). Similarly, high potential ecological risk (Eri) and ecological risks (RI) were observed for As, Pb, and Cd in SPMS and STSS, while these were moderate in MRES and TRAS. Assessment of health risks was within acceptable limit for most of the HMs in the different sections for both adults and children, except As, Cd, and Pb in SPMS and STSS, which were beyond the acceptable limit for children. The carcinogenic risk was within the acceptable limit.
Collapse
Affiliation(s)
- T O Kolawole
- Department of Geological Sciences, Osun State University, Osogbo, Nigeria.
| | - O M Ajibade
- Department of Earth Sciences, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - J O Olajide-Kayode
- Department of Geological Sciences, Osun State University, Osogbo, Nigeria
| | - K W Fomba
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| |
Collapse
|
9
|
Metal Fractionation and Leaching in Soils from a Gold Mining Area in the Equatorial Rainforest Zone. J CHEM-NY 2023. [DOI: 10.1155/2023/3542165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
In this article, a modified BCR procedure and a column leaching test were used to examine the bioavailability and mobility of heavy metals in soils collected from a gold mining area in Ghana. The results for the fractionation of Cd, Cr, Fe, and Mn indicated that high percentages of metals were found in the residual fraction. This implies that the concentrations of metals in the soil are stable under normal environmental conditions. The bioavailability of metals in the soils declined in the following order: Mn (92.4%) > Cd (64.6%) > Cr (46.4%) > Fe (39%). However, the concentrations of labile metals may pose no risk to the environment. In the column test, different rainwater conditions (i.e., natural rainwater and acidified rainwater) were used to imitate the leaching potential of the metals in the actual field. The pH of the soil primarily controlled metal migration into deeper layers. Cumulative metal concentrations in the leachates showed that Fe, Mn, and Cd were high in the tested soils but present at low concentrations, except for Cd. Cadmium showed a higher concentration than the WHO guideline for drinking water, and its seepage into deeper layers may affect the quality of groundwater.
Collapse
|
10
|
Verma A, Yadav S. Chemical Speciation, Bioavailability and Human Health Risk Assessment of Metals in Surface Dust from an Industrial Cluster in India. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:267-283. [PMID: 36764952 DOI: 10.1007/s00244-023-00984-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
In this study, distribution of metals in different geochemical forms, their mobility and bioavailability in bulk surface dust samples of Bhiwadi industrial cluster (BIC) in Rajasthan, India, was assessed by modified Community Bureau of Reference (m-BCR) sequential extraction procedure. Potential risk of metals in surface dust to environment and human health was evaluated using Contamination factor (Cf), Mobility Factor (MF) and Risk Assessment Code (RAC), and carcinogenic and non-carcinogenic health risk. Residual fraction contained significant amount of metals as Cd(55.86%), Cr(86.05%), Fe(90.06%), Mn(69.94%), Ni(66.08%), and V(71.80%). Pb(52.43%) was present in reducible fraction, while Cu was equally distributed in reducible (27.66%) and oxidizable (28.20%) fractions. Zn was equally distributed in acid exchangeable (33.15%) and reducible (35.01%) fractions. High Cf values were observed for Zn (1.32-16.98), followed by Pb (0.38-11.23) and Cu (0.26-8.22). RAC indicated high risk of Cd, Mn, Ni and Zn to environment due to their high mobility and toxic nature. Zn, Pb, Cu and Cd showed highest mobility (potential bioavailability) in samples collected around metal casting, electroplating, and automobile part industries. Data indicated that metals can bio-available with the changes in redox conditions in environment. Ingestion was major pathway for carcinogenic and non-carcinogenic health risks followed by dermal and inhalation. Hazardous Index value (6.32) indicated higher susceptibility of children for non-carcinogenic risk as compared to adults. Carcinogenic risk of Cr, Cd, Ni and Pb was higher than acceptable levels in surface dust, suggesting a high risk of cancer to exposed population.
Collapse
Affiliation(s)
- Anju Verma
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudesh Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Du H, Lu X. Contamination and Probabilistic Ecological-Health Risk of Heavy Metal(loid)s in Urban Topsoil of Mianyang, SW China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15126. [PMID: 36429844 PMCID: PMC9691029 DOI: 10.3390/ijerph192215126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal(loid) (HM) pollution in urban topsoil seriously endangers the health of urban residents and urban sustainable development. Compared with large cities, the research on the HM pollution of topsoil in emerging medium-sized industrial cities is quite limited. This study focuses on topsoil HM contamination in Mianyang, which is a representative moderate emerging industrial city in Southwest China. The results indicate that Ba, Cr, Cu, and Zn in the samples were much higher than their background values. The hot spots of Ba, As, Cu, Pb, Co, Cr, and Zn showed an obvious enrichment trend. The potential ecological risk of HMs showed a low ecological risk, which was mainly caused by As. The investigated HMs presented no significant non-carcinogenic hazard to local adult residents, but there were three sampling sites which presented a non-carcinogenic hazard to children; the carcinogenic risks of As, Cr, Co, and Ni were acceptable. In this study, a mixed source of industry and traffic was identified to be the priority anthropogenic source, and Cr and As were identified as the priority elements for further risk control. The findings of our study could be beneficial to decision-makers with regard to taking appropriate measures to control and reduce HM pollution in the Mianyang urban area.
Collapse
Affiliation(s)
- Huaming Du
- School of Resource and Environment Engineering, Mianyang Normal University, Mianyang 621000, China
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
12
|
Du H, Lu X. Spatial distribution and source apportionment of heavy metal(loid)s in urban topsoil in Mianyang, Southwest China. Sci Rep 2022; 12:10407. [PMID: 35729238 PMCID: PMC9213469 DOI: 10.1038/s41598-022-14695-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/10/2022] [Indexed: 12/01/2022] Open
Abstract
Spatial distributions and sources of some commonly concerned heavy metal(loid)s (HMs, As, Ba, Cr, Co, Cu, Ni, Pb, Mn, Zn, and V) in topsoil of Mianyang city, a typical medium-sized emerging industrial city in Southwest China, were determined to explore the influences of anthropogenic activities on the urban environment. The contents of the 10 HMs in 101 topsoil samples were analyzed using an X-ray fluorescence spectrometer, and their sources were analyzed by positive matrix factorization and statistical analysis. The spatial distributions of the HMs and the source contributions were mapped using GIS technology. The results showed that the mean contents of Ba, Cr, Cu, and Zn in the topsoil were significantly higher than their background values. Industrial activities resulted in high contents of Ba, Zn, Cu, and Cr. As, Co, Ni, and V that primarily came from natural sources; Pb, Cr, Cu, and Zn were chiefly derived from a mixed source of industry and traffic; and Ba and Mn primarily originated from industrial sources. Natural sources, mixed sources, and industrial sources contributed 32.6%, 34.4%, and 33.0% of the total HM contents, respectively. Industrial sources and mixed sources of industry and traffic were the main anthropogenic sources of HMs in the urban topsoil and should be the focus of pollution control.
Collapse
Affiliation(s)
- Huaming Du
- School of Resource and Environment Engineering, Mianyang Normal University, Mianyang, 621000, China.,Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
13
|
Bineshpour M, Payandeh K, Nazarpour A, Sabzalipour S. Status, source, human health risk assessment of potential toxic elements (PTEs), and Pb isotope characteristics in urban surface soil, case study: Arak city, Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4939-4958. [PMID: 33210156 DOI: 10.1007/s10653-020-00778-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/04/2020] [Indexed: 05/06/2023]
Abstract
The current study was conducted to assess the level of potentially toxic elements (PTEs) contamination (Cu, Pb, Zn, Cr, As, Cd, and Ni) in surface soils from Arak city. Arak, which is an industrial city, is a prominent center of chemicals, metal/electric, manufacturing factories, and other industries. Forty-three surface soil samples were collected from 0-20 cm after removing the visible surface contamination in the dry season in June 2017. Metal concentrations were found highly variable, ranging from 174-3950 mg/kg for Cu, 181-3740 mg/kg for Pb, 48-186 mg/kg for Zn, 105-1721 mg/kg for Ni, 0.8-0.9 mg/kg for As, 114-1624 mg/kg for Cr, and 3.45-12.36 mg/kg for Cd. The results of geochemical fraction indicated that the main components of Pb, Cr, and Zn at most of the sampling sites are Fe-Mn bound/reducible. Meanwhile, the residual fraction is the dominant fraction of sequence extraction for Ni, Cu, and Cd. Higher values of reducible bound for Pb, Cr, and Zn, as well as a considerable percentage of Ni, Cu, and Cd, imply that the main source of the studied PTEs (except As) in the study area is both anthropogenic and geogenic inputs. The results of principal component analysis (PCA), correlation analysis, enrichment factor (EF), enrichment index (EI), and top enrichment factor (TEF) confirm that Pb, Ni, Cu, Cr, Cd, and Zn had a similar anthropogenic source which is confirmed by geochemical fractionation analysis. Carcinogenic risks (CR) of studied PTEs were estimated to be higher than the target limit of 1.0E-06, for adults and children except for Cr with values of 5.91E-04, and 3.81E-04 for children and adults, respectively. Higher CR values of Cr compared to other PTEs in Arak surface soil demonstrate that living target populations, including children and adults, particularly children, are more at risk of carcinogenic risks of PTEs. 206Pb/207Pb ratios of the collected samples indicated that Pb in Arak surface sample was derived from industrial inputs and deposition, as well as re-suspension vehicle exhaust emission from previously leaded gasoline. The findings concerning the applied end-member contribution of geogenic and industrial and vehicle emission represented that the contribution could vary from 68.0% to 15% (mean: 39.3) for industrial emission, 65% to 19% for vehicle exhaust (mean: 39), and 46% to 10% (mean: 21.6) for geogenic sources.
Collapse
Affiliation(s)
- Meghdad Bineshpour
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Khoshnaz Payandeh
- Department of Soil Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Ahad Nazarpour
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
- Department of Geology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| | - Sima Sabzalipour
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
14
|
Bourliva A, Aidona E, Papadopoulou L, Ferreira da Silva E, Patinha C. Levels, oral bioaccessibility and health risk of sand-bound potentially harmful elements (PHEs) in public playgrounds: Exploring magnetic properties as a pollution proxy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118122. [PMID: 34500396 DOI: 10.1016/j.envpol.2021.118122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/21/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Children in urban environments are exposed to potential harmful elements (PHEs) through variable exposure media. Playing activities in outdoor playgrounds have been considered of high concern due to children's exposure to sand-bound PHEs through unintentional or intentional sand ingestion. Furthermore, the affinity of magnetic particles with dust-bound PHEs in playgrounds has been reported. In this study, playground sands (PG sands) from public playgrounds in the city of Thessaloniki, N. Greece were sampled and the levels, the contamination degree, oral bioaccessibility and exposure assessment of PHEs were evaluated. In addition, low-cost and fast magnetic measurements (i.e. mass specific magnetic susceptibility, χlf) were explored as potential pollution and health risk proxies. Mineralogically, siliceous PG sands dominated, while morphologically angular magnetic particles and Fe-rich "spherules" of anthropogenic origin were revealed and verified by enhanced χlf values. The average total elemental contents exhibited a descending order of Mn > Ba > Cr > Zn > Ni > Pb > Cu > Co > As > Sn > Bi > Cd, however only Cd, Bi, Pb, Cr, As and Zn were presented anthropogenically enhanced. Notable increase on PHEs levels and finer sand fractions were observed with continuous sand use. Anthropogenically derived elements (i.e. Cd and Pb with high Igeo values) exhibited higher bioaccessible fractions in PG sands and considered easily soluble in gastric fluids through ingestion. However, increased risks were found for specific PHEs (especially Pb) only in a worst case exposure scenario of an intentional sand ingestion (pica disorder). Statistical analysis results revealed a linkage of anthropogenic components with sand-bound magnetic particles. Moreover, the recorded high affinity of Pb contents (in an enhanced magnetized sub-set of PG sands) and bioaccessible Cd fractions with χlf provide a preliminary indication on the successful applicability of low-cost and fast magnetic measurements in high impacted playground environments.
Collapse
Affiliation(s)
- A Bourliva
- Department of Geophysics, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| | - E Aidona
- Department of Geophysics, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - L Papadopoulou
- Department of Mineralogy-Petrology-Economic Geology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - E Ferreira da Silva
- GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | - C Patinha
- GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
15
|
Pavlović D, Pavlović M, Perović V, Mataruga Z, Čakmak D, Mitrović M, Pavlović P. Chemical Fractionation, Environmental, and Human Health Risk Assessment of Potentially Toxic Elements in Soil of Industrialised Urban Areas in Serbia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9412. [PMID: 34501997 PMCID: PMC8430938 DOI: 10.3390/ijerph18179412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022]
Abstract
The primary focus of this research was the chemical fractionation of potentially toxic elements (PTEs) and their presence in several industrialised cities in Serbia. Furthermore, their origin, contamination levels, and environmental and human health risks were assessed. The results indicated that the examined soils were characterised by slightly higher Cu, Ni, Pb, and Zn levels than those set by European and national regulations. These elevated Cu, Pb, and Zn concentrations were caused by intensive traffic and proximity to industry, whereas the higher Ni levels were a result of the specific geological substrate of the soil in the study area. The environmental risk was found to be low and there was no enrichment/contamination of the soil with these elements, except in the case of Pb, for which moderate to significant enrichment was found. Lead also poses a potential non-carcinogenic risk to children through ingestion and requires special attention due to the fact that a significant proportion of this element was present in the tested soil samples in a potentially available form. Analysis of the health risks showed that children are more at risk than adults from contaminants and that ingestion is the riskiest exposure route. The carcinogenic risk was within the acceptable limits.
Collapse
Affiliation(s)
- Dragana Pavlović
- Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade 11060, Serbia; (M.P.); (V.P.); (Z.M.); (D.Č.); (M.M.); (P.P.)
| | | | | | | | | | | | | |
Collapse
|
16
|
Pavlović P, Sawidis T, Breuste J, Kostić O, Čakmak D, Đorđević D, Pavlović D, Pavlović M, Perović V, Mitrović M. Fractionation of Potentially Toxic Elements (PTEs) in Urban Soils from Salzburg, Thessaloniki and Belgrade: An Insight into Source Identification and Human Health Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116014. [PMID: 34205068 PMCID: PMC8199883 DOI: 10.3390/ijerph18116014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/01/2023]
Abstract
Concentrations of potentially toxic elements (PTEs) (Al, As, Cd, Cr, Cu, Ni, Pb, and Zn) were measured in topsoil samples collected from parks in the cities of Salzburg (Austria), Thessaloniki (Greece), and Belgrade (Serbia) in order to assess the distribution of PTEs in the urban environment, discriminate natural (lithogenic) and anthropogenic contributions, identify possible sources of pollution, and compare levels of pollution between the cities. An assessment of the health risks caused by exposure to PTEs through different pathways was also conducted. The study revealed that, with the exception of Pb in Salzburg, levels of PTEs in the soils in polluted urban parks were higher than in unpolluted ones, but still lower than those recorded in other European soils. Results of sequential analyses showed that Al, Cr, and Ni were found in residual phases, proving their predominantly lithogenic origin and their low mobility. In contrast, the influence of anthropogenic factors on Cu, Pb, and Zn was evident. Site-dependent variations showed that the highest concentrations of As, Cu, Pb, and Zn of anthropogenic origin were recorded in Salzburg, while the highest levels of Al, Cr, and Ni of lithogenic origin were recorded in Belgrade and Thessaloniki, which reflects the specificity of the geological substrates. Results obtained for the health risk assessment showed that no human health risk was found for either children or adults.
Collapse
Affiliation(s)
- Pavle Pavlović
- Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (O.K.); (D.Č.); (D.P.); (M.P.); (V.P.); (M.M.)
- Correspondence: ; Tel.: +381-11-207-8363
| | - Thomas Sawidis
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Jürgen Breuste
- Department of Geography and Geology, University of Salzburg, 5010 Salzburg, Austria;
| | - Olga Kostić
- Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (O.K.); (D.Č.); (D.P.); (M.P.); (V.P.); (M.M.)
| | - Dragan Čakmak
- Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (O.K.); (D.Č.); (D.P.); (M.P.); (V.P.); (M.M.)
| | - Dragana Đorđević
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Dragana Pavlović
- Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (O.K.); (D.Č.); (D.P.); (M.P.); (V.P.); (M.M.)
| | - Marija Pavlović
- Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (O.K.); (D.Č.); (D.P.); (M.P.); (V.P.); (M.M.)
| | - Veljko Perović
- Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (O.K.); (D.Č.); (D.P.); (M.P.); (V.P.); (M.M.)
| | - Miroslava Mitrović
- Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (O.K.); (D.Č.); (D.P.); (M.P.); (V.P.); (M.M.)
| |
Collapse
|
17
|
Hanousková B, Száková J, Rychlíková E, Najmanová J, Košnář Z, Tlustoš P. The risk assessment of inorganic and organic pollutant levels in an urban area affected by intensive industry. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:68. [PMID: 33462650 DOI: 10.1007/s10661-020-08825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
The city of Litvínov (North Bohemia, Czech Republic) is seriously affected by coal mining, coal processing, and intensive industrial activities. Within the urban area, the potential environmental hazard of risk elements (in soil and vegetation) and polycyclic aromatic hydrocarbons (PAHs, in soils) was estimated using selected environmental and human health hazard indices. In total, 24 sites were sampled, including the city center, residential areas, industrialized zone, and areas close to operating and/or abandoned coal mines. The results showed elevated values of As, Cd, Cu, Ni, Pb, and Zn in soils (the maximum levels of individual pollution indices varied between 3 and 5 for As, Pb, and Zn); the risk assessment code (RAC) values indicated high bioaccessibility of Cd and Zn. The high mobility of Cd was confirmed by their bioaccumulation factors (BAF) in the aboveground biomass of Taraxacum sect. Ruderalia and Polygonum aviculare, reaching up to 1.9 and 2.9, respectively. The Cd content in plants presents a substantial health hazard for herbivores such as Oryctolagus cuniculus living within the urban area. The PAH levels in the soils also showed elevated values; the contents of benzo(a)pyrene exceeded more than 2-fold the indicative values for potential health risk for biota, especially near the abandoned coal mines. The incremental lifetime cancer risks (ILCR) for ingestion of the contaminated soil showed only low or negligible cancerogenic risk, varying between 6.7 × 10-7 and 1.6 × 10-5 for children, and between 9.9 × 10-7 and 2.7 × 10-6 for adults. However, the potential health impact of the inhalation of the contaminated particulate matter should be included in the further research. Although the contamination level in the investigated area does not represent an imminent environmental and health risk, the potential remediation measures should be considered in the future.
Collapse
Affiliation(s)
- Barbora Hanousková
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiřina Száková
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic.
| | - Eva Rychlíková
- Public Health Institute in Usti nad Labem, Prague, Czech Republic
| | - Jana Najmanová
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Zdeněk Košnář
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Pavel Tlustoš
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
| |
Collapse
|
18
|
Hiller E, Filová L, Jurkovič Ľ, Mihaljevič M, Lachká L, Rapant S. Trace elements in two particle size fractions of urban soils collected from playgrounds in Bratislava (Slovakia). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3925-3947. [PMID: 32638253 DOI: 10.1007/s10653-020-00656-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Today, it is proven that the contaminated urban soils are hazardous for the human health. Soil substrates of playgrounds call for special research as they are places where children are directly exposed to soil contaminants. Therefore, the objective of this work was to measure the pseudo-total contents and bioaccessibility of several metals and metalloids (As, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Sn, V, Zn) in two grain sizes (< 150 μm and < 50 μm) of playground soils in Bratislava city (the capital of Slovakia). The content of metal(loid)s in the soils was controlled by a number of factors, with their increased contents (above 75% percentile or higher) at sites influenced by point sources of pollution (industry and agriculture) or at old sites located in the city centre. Cobalt, Cr, Fe, Mn, Ni and V had relatively uniform contents in soils compared to the other elements. As regression modelling with a categorical variable confirmed, the age of urban areas influenced the accumulation of As, Bi, Cd, Cu, Hg, Pb, Sb and Sn in playground soils. Exploratory statistical techniques with compositionally transformed data (principal component analysis, cluster analysis and construction of symmetric coordinates for correlation analysis) divided trace elements into the two main groupings, Co, Cr, Fe, Mn, Ni, V and Bi, Cd, Cu, Hg, Pb, Sb, Sn, Zn. Median concentrations of the elements in smaller soil grains (< 50 μm) were significantly higher than in coarser grains (< 150 μm). Cobalt, Cu, Mn, Pb, Sn and Zn had significantly higher bioaccessible proportions (% of the pseudo-total content) in < 50 μm soil size than in < 150 μm; however, the same order of bioaccessibility was achieved in both grain sizes. The highest bioaccessibility had Cd, Cu, Pb and Zn (~ 40% and more), followed by Co, As, Mn, Sb (18-27%), Hg, Ni, Sn (10-12%) and finally Cr, Fe and V (less than 4%). The hazard index and carcinogenic risk values were higher in < 50 μm than in < 150 μm and significantly decreased in the two soil sizes when the bioaccessibility results were included in the health hazard calculation.
Collapse
Affiliation(s)
- Edgar Hiller
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic.
| | - Lenka Filová
- Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina 1, 842 48, Bratislava, Slovak Republic
| | - Ľubomír Jurkovič
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43, Prague 2, Czech Republic
| | - Lucia Lachká
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Stanislav Rapant
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| |
Collapse
|
19
|
Bi D, Yuan G, Wei J, Xiao L, Feng L. Conversion of Oyster Shell Waste to Amendment for Immobilising Cadmium and Arsenic in Agricultural Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:277-282. [PMID: 32556688 DOI: 10.1007/s00128-020-02906-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
A bulky waste, oyster shell (OS), was calcinated at 400-800°C to produce Ca-rich products (OS400-OS800) to reduce the human health risk of soil cadmium (Cd) and arsenic (As). Thermogravimetric analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET method were used to characterize OS and its calcined products. OS and OS400-OS700 removed little Cd and As from water, whereas OS800 removed 1508 mg Cd or 514 mg As per kg of OS800 from solutions of 1032 mg Cd/L or 257 mg As/L via adsorption and precipitation. Adding OS800 at a 2% dose to a Cd- and As-contaminated soil lowered its exchangeable Cd from 60% to 27%, and reduced Cd content in the edible part of vegetable Bok Choy from 2.80 to 0.048 mg/kg and As from 1.73 to 0.47 mg/kg. Converting OS to soil amendment has the dual benefits to soil remediation and sustainable oyster aquaculture.
Collapse
Affiliation(s)
- Dongxue Bi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodong Yuan
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, Guangdong, China.
| | - Jing Wei
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Liang Xiao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Lirong Feng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| |
Collapse
|
20
|
Čakmak D, Perović V, Kresović M, Pavlović D, Pavlović M, Mitrović M, Pavlović P. Sources and a Health Risk Assessment of Potentially Toxic Elements in Dust at Children's Playgrounds with Artificial Surfaces: A Case Study in Belgrade. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:190-205. [PMID: 31901970 DOI: 10.1007/s00244-019-00702-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
The focus of this research on children's playgrounds with artificial surfaces aimed to establish levels of potentially toxic elements (PTEs) in dust, their origin, and impact on children at 15 playgrounds: 9 on school grounds and 6 on day nurseries in Belgrade (Serbia). Soil samples were taken from the immediate vicinity of the playgrounds to establish the origin of PTEs in the dust samples. Soil analyses revealed the lithogenic origin of Co, Cr, Ni, Fe, Mn, As, Cd, Cu, Pb, and Zn and the anthropogenic origin of As, Cd, Cu, Pb, and Zn. However, in the dust samples, the origin of the elements was different with As, Co, Fe, and Mn originating from the surrounding soil; Cr and Ni levels affected by both atmospheric deposition and the surrounding soil; Cd, Pb, and Zn concentrations impacted by atmospheric deposition; and Cu levels affected by factors of a local character. No noncancer risk was found for any of the individual elements investigated, nor for any of the playgrounds being studied, while a minimal cancer risk was found from As with values greater than 1E-6 at almost all the sites. Based on the results obtained for the spatial distribution of individual PTE levels, it was determined that the surrounding soil and atmospheric deposition have an almost equal impact on noncancer risk values.
Collapse
Affiliation(s)
- Dragan Čakmak
- Department of Ecology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11000, Serbia.
| | - Veljko Perović
- Department of Ecology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11000, Serbia
| | - Mirjana Kresović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, 11080, Serbia
| | - Dragana Pavlović
- Department of Ecology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11000, Serbia
| | - Marija Pavlović
- Department of Ecology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11000, Serbia
| | - Miroslava Mitrović
- Department of Ecology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11000, Serbia
| | - Pavle Pavlović
- Department of Ecology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11000, Serbia
| |
Collapse
|
21
|
Gu JF, Zhou H, Tang HL, Yang WT, Zeng M, Liu ZM, Peng PQ, Liao BH. Cadmium and arsenic accumulation during the rice growth period under in situ remediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:451-459. [PMID: 30639871 DOI: 10.1016/j.ecoenv.2019.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for environmental researchers. The main objective of this study was to investigate the effects and the mechanisms of a combined amendment (hydroxyapatite + zeolite + biochar, HZB) on decreasing Cd and As accumulation in rice. In situ remediation and aqueous solution adsorption experiments were conducted. The results showed that after application of HZB, Cd and As concentrations of the exchangeable fraction and TCLP extraction in soil decreased with the growth of rice plants. Cd concentrations in rice tissues were decreased at the tillering, filling and maturing stages after in situ remediation, while As concentrations in rice tissues were decreased only at the maturing stage. When 8 kg·plot-1 (9000 kg ha-1) HZB was applied, concentrations of Cd and inorganic As in brown rice were decreased to 0.18 and 0.16 mg kg-1, respectively, lower than the levels permissible for grain in China, i.e., 0.2 mg kg-1. Application of HZB reduced Cd accumulation in rice tissues, and the suppression of Cd accumulation was significantly greater than that of As. Furthermore, HZB significantly increased rice grain yield. An aqueous solution adsorption experiment demonstrated that HZB could adsorb and covalently bind Cd and As (V) via -OH, -COOH, -Si-O-Si and CO32- groups to produce carboxylates, silicates and carbonates, thereby promoting in situ immobilization of Cd and As in soil solution.
Collapse
Affiliation(s)
- Jiao-Feng Gu
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| | - Hang Zhou
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| | - Hui-Ling Tang
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Wen-Tao Yang
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Min Zeng
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Zhi-Ming Liu
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Pei-Qin Peng
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| | - Bo-Han Liao
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| |
Collapse
|
22
|
Keshavarzi B, Najmeddin A, Moore F, Afshari Moghaddam P. Risk-based assessment of soil pollution by potentially toxic elements in the industrialized urban and peri-urban areas of Ahvaz metropolis, southwest of Iran. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:365-375. [PMID: 30359903 DOI: 10.1016/j.ecoenv.2018.10.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
The main purpose of this research was to assess the level of contamination, source identification, geochemical fractionation, and health risk of potentially toxic elements (PTEs) in industrial soils from urban and peri-urban areas of Ahvaz city. A total of 92 surface soil samples were gathered and concentrations of sixteen PTEs were measured using aqua regia digestion by an inductively coupled plasma mass spectrometry (ICP-MS). Possible sources of PTEs were quantitatively determined by positive matrix factorization (PMF) receptor model combined with geostatistical analyses and geochemical methods. The results showed that long-term industrial activities have enhanced the levels of some PTEs particularly Pb, Hg, Zn, Mo, Sb, Fe, Cu, and Cd to different extents. Contamination indices including geoaccumulation index, pollution index, and Nemerov integrated pollution index along with multivariate statistical analyses confirmed that steel and iron industries are the most contaminating industries in the study area. The outcomes attained from Kruskal-Wallis test affirmed that there was a significant difference among the concentrations of As, Hg, Mn, Cu, Fe, Pb, Mo, Cd, V, Zn, and Sb in soils around different industrial clusters. Among the studied elements, the highest mobility factors belonged to Zn (81.49%), Pb (76.71%), Cu (71.65%), Hg (66.23%), Mn (62.48%), and Mo (59.27%), respectively. Also, the PMF model showed that steel and iron industries (51.2%) and natural sources (23.4%) are the main sources of PTEs, followed by industrial towns (16.7%) and power plants (8.7%). This is in line with the results of principal component analysis (PCA). Majority of the measured PTEs showed the highest bioavailability in surface soils collected from around the steel and iron industries. Also, based on the outcomes of the health risk assessment model, particular attention should be paid to Hg, Pb, Zn, and Cu in industrial soils of Ahvaz.
Collapse
Affiliation(s)
- Behnam Keshavarzi
- Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz 71454, Iran; Medical Geology Center of Shiraz University, Iran.
| | - Ali Najmeddin
- Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Farid Moore
- Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz 71454, Iran; Medical Geology Center of Shiraz University, Iran
| | | |
Collapse
|