1
|
Nałęcz-Jawecki G, Mielniczek J, Wawryniuk M, Giebułtowicz J, Drobniewska A. The Microbial Assay for Risk Assessment (MARA) in the Assessment of the Antimicrobial Activity of Ofloxacin and Its Photoproducts. Int J Mol Sci 2025; 26:2595. [PMID: 40141235 PMCID: PMC11942207 DOI: 10.3390/ijms26062595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Ofloxacin is one of the most commonly used antibacterial substances in the world. Like most medicines, it ends up in the environment through municipal sewage and undergoes various transformations, e.g., photodegradation. The aim of this study was an extensive analysis of ofloxacin photodegradation in both pure antibiotic and a commercial eye drop forms. In this study, a sunlight simulator, chromatographic methods of quantitative and qualitative determination, and biological methods for the evaluation of toxicity (Microbial Assay for Risk Assessment (MARA), Microtox® and Spirotox) were used. The results showed that ofloxacin decomposed almost completely over 2 h of irradiation. Based on the high resolution mass spectrometry, 22 photoproducts were identified. The most sensitive strain of bacteria in the MARA test (Delftia acidovorans) responded at a concentration of 7.6 µg L-1 of ofloxacin. The antibacterial activity of the irradiated samples was higher than that predicted based on the ofloxacin concentration. This suggests that the resulting photoproducts may have a bacteriostatic effect. The results of additional acute toxicity tests indicate the formation of toxic photoproducts, so it is reasonable to use other organisms that are not focused on a specific target. Such actions may allow for the capture of other, unexpected effects of formed photoproducts.
Collapse
Affiliation(s)
- Grzegorz Nałęcz-Jawecki
- Department of Toxicology and Food Science, Medical University of Warsaw, 02-091 Warszawa, Poland (A.D.)
| | - Jakub Mielniczek
- Department of Toxicology and Food Science, Medical University of Warsaw, 02-091 Warszawa, Poland (A.D.)
| | - Milena Wawryniuk
- Department of Toxicology and Food Science, Medical University of Warsaw, 02-091 Warszawa, Poland (A.D.)
| | - Joanna Giebułtowicz
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, 02-091 Warszawa, Poland;
| | - Agata Drobniewska
- Department of Toxicology and Food Science, Medical University of Warsaw, 02-091 Warszawa, Poland (A.D.)
| |
Collapse
|
2
|
Dhakshinamoorthy V, Vishali SPR, Elumalai S, Perumal E. Acute exposure to environmentally relevant concentrations of pharmaceutical pollutants induces neurobehavioral toxicity in zebrafish ( Danio rerio). Drug Chem Toxicol 2025; 48:37-50. [PMID: 39072487 DOI: 10.1080/01480545.2024.2382451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Pharmaceutical waste from point and non-point sources enters, persists, or disseminates in the environment and is known as environmentally persistent pharmaceutical pollutants. Understanding the impacts of pharmaceutical pollutants on the environment and health is essential. This study investigates the behavioral impacts of pharmaceutical pollutants on aquatic organisms and delineates the possible nexus of oxidative stress. The male zebrafish were exposed to four major representative pharmaceutical pollutants, viz., acetaminophen, carbamazepine, metformin, and trimethoprim at environmentally relevant concentrations individually as well as in a mixture for seven days. Substantial alterations in social interaction, aggressive nature, novel tank exploration, and light and dark zone preferences were recorded and the degree varied to different pharmaceutical pollutants. The activity of oxidative stress markers, superoxide dismutase, glutathione-S-transferase, and catalase, was found to be suppressed to 66-20%, 42-25%, and 59-20% respectively with the elevated malondialdehyde generation (180-260%) compared to control. The activity level of acetylcholine esterase was found to be increased to 200-500% across all treatment groups. Despite the synergistic impacts of pharmaceutical pollutants on the whole system that could not be ascertained, this comprehensive study highlights their toxicity nature to induce neurobehavioral toxicity in zebrafish through oxidative stress mechanisms and altered cholinergic systems.
Collapse
Affiliation(s)
- Vasanth Dhakshinamoorthy
- Department of Nanobiotechnology, Molecular Environmental Toxicology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
- PG Research Department of Biotechnology, Microbiology & Bioinformatics, National College (Autonomous), Trichy, India
| | - S P R Vishali
- PG Research Department of Biotechnology, Microbiology & Bioinformatics, National College (Autonomous), Trichy, India
| | - Sriramakrishnan Elumalai
- PG Research Department of Biotechnology, Microbiology & Bioinformatics, National College (Autonomous), Trichy, India
| | - Ekambaram Perumal
- Department of Biotechnology, Molecular Toxicology Laboratory, Bharathiar University, Coimbatore, India
| |
Collapse
|
3
|
Li X, Zeng L, Jiang H, Sui J, Shuang B, Zhu L, Tang J, Dai Y. Sorption of tetracycline antibiotics by microplastics, associated mechanisms, and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178054. [PMID: 39693669 DOI: 10.1016/j.scitotenv.2024.178054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
In this study, we selected polyvinyl chloride (PVC), polyethylene (PE), and polystyrene (PS) as representative microplastics (MPs) to systematically investigate the sorption behavior of tetracycline (TC) antibiotics by MPs. Scanning electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, and adsorption experiments were applied to assess the sorption behavior of MPs. The results demonstrated that the sorption of TC by MPs was most favorable under neutral conditions, where a modest increase in the salt ion concentration enhanced the adsorption of TC by MPs. The saturation adsorption capacities for PVC, PE, and PS for TC were determined as 121.95 μg/g, 81.301 μg/g, and 178.57 μg/g, respectively. The strength of TC sorption by MPs followed the order of: PS > PVC > PE. Analysis of the sorption behavior of TC by MPs showed that the adsorption of TC by PE was weak and it readily desorbed, and thus their interaction will not lead to excessive compound pollution. By contrast, the adsorption of TC was high by PVC and PS, and they were not readily desorbed.
Collapse
Affiliation(s)
- Xiang Li
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Lingling Zeng
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Huating Jiang
- School of Environmental Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Jia Sui
- College of Life Sciences, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Bao Shuang
- College of Life Sciences, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Liya Zhu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Junqian Tang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China.
| |
Collapse
|
4
|
Adeola AO, Paramo L, Fuoco G, Naccache R. Emerging hazardous chemicals and biological pollutants in Canadian aquatic systems and remediation approaches: A comprehensive status report. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176267. [PMID: 39278485 DOI: 10.1016/j.scitotenv.2024.176267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Emerging contaminants can be natural or synthetic materials, as well as materials of a chemical, or biological origin; these materials are typically not controlled or monitored in the environment. Canada is home to nearly 7 % of the world's renewable water supply and a wide range of different kinds of water systems, including the Great Lake, rivers, canals, gulfs, and estuaries. Although the majority of these pollutants are present in trace amounts (μg/L - ng/L concentrations), several studies have reported their detrimental impact on both human health and the biota. In Canadian aquatic environments, concentrations of pharmaceuticals (as high as 115 μg/L), pesticides (as high as 1.95 μg/L), bioavailable heavy metals like dissolved mercury (as high as 135 ng/L), and hydrocarbon/crude oil spills (as high as 4.5 million liters) have been documented. Biological threats such as genetic materials of the contagious SARS-CoV-2 virus have been reported in the provinces of Québec, Ontario, Saskatchewan and Manitoba provinces, as well as in the Nunavut territory, with a need for more holistic research. These toxins and emerging pollutants are associated with nefarious short and long-term health effects, with the potential for bioaccumulation in the environment. Hence, this Canadian-focused report provides the footprints for water and environmental sustainability, in light of this emerging threat to the environment and society. Several remediation pathways/tools that have been explored by Canadian researchers, existing challenges and prospects are also discussed. The review concludes with preventive measures and strategies for managing the inventory of emerging contaminants in the environment.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
| | - Luis Paramo
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Gianluca Fuoco
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Rafik Naccache
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
5
|
Cao G, Zhang J, Wang W, Wu P, Ru Y, Cai Z. Mass spectrometry analysis of a ubiquitous tire rubber-derived quinone in the environment. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Korkmaz NE, Savun-Hekimoğlu B, Aksu A, Burak S, Caglar NB. Occurrence, sources and environmental risk assessment of pharmaceuticals in the Sea of Marmara, Turkey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152996. [PMID: 35031378 DOI: 10.1016/j.scitotenv.2022.152996] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
In the present study, the occurrence and spatial distribution of selected eleven pharmaceuticals were investigated in the Sea of Marmara, Turkey. Samples were collected from different depths of the nine stations in April and October 2019. Pharmaceuticals were analyzed using liquid-liquid and solid-phase extraction (SPE) methods followed by high-performance liquid chromatography (HPLC). All target pharmaceutical compounds were detected at least once in the study area. Gemfibrozil, which belongs to the lipid regulatory group, was the most frequently detected in seawater at high concentrations (<0.016-9.71 μg/L). Ibuprofen (<0.015-2.13 μg/L) and 17α-ethynylestradiol (<0.010-3.55 μg/L) were identified as the other frequently detected pharmaceuticals. In addition, the presence of these selected compounds in April was higher than in October. According to the risk assessment results, naproxen, diclofenac, clofibric acid, gemfibrozil, 17β-estradiol, and 17α-ethynylestradiol represent a high risk to aquatic organisms in the Sea of Marmara. These findings underline the importance of continued monitoring of these compounds as relevant organic contaminants in the study area to take appropriate measures to protect the ecosystem and, ultimately, human health.
Collapse
Affiliation(s)
- Nagihan E Korkmaz
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Başak Savun-Hekimoğlu
- Istanbul University, Institute of Marine Sciences and Management, Department of Marine Environment, Istanbul, Turkey
| | - Abdullah Aksu
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Selmin Burak
- Istanbul University, Institute of Marine Sciences and Management, Department of Marine Environment, Istanbul, Turkey
| | - Nuray Balkis Caglar
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey.
| |
Collapse
|
7
|
Osorio V, Cruz-Alcalde A, Pérez S. Nitrosation and nitration of diclofenac and structurally related nonsteroidal anti-inflammatory drugs (NSAIDs) in nitrifying activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150533. [PMID: 34597575 DOI: 10.1016/j.scitotenv.2021.150533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DCF) is a highly consumed non-steroidal anti-inflammatory drug that is excreted partially metabolized and is poorly removed during wastewater treatment. Previous findings demonstrated that DCF in wastewater treatment plants (WWTP) is partially removed to nitro/nitroso compounds. The reactive nitrogen species, that are microbially produced during nitrification in the activated sludge of WWTP, were suspected to be involved in the transformation of DCF. Therefore, here, we investigated the molecular features governing such biotransformation and the role played by nitrifying bacteria by biodegradation experiments at lab scale in enriched nitrifying sludge bioreactors spiked with DCF and other structurally related non-steroidal anti-inflammatory drugs (NSAIDs). We provided evidence of the incorporation of NO/NO2 groups into DCF originated from ammonia by isotopically labelled biodegradation experiments. Nitroso and nitro-derivatives were tentatively identified for all NSAIDs studied and biotransformation mechanisms were proposed. Our findings from biodegradation experiments performed under different incubation conditions suggested that biotransformation of DCF and its related NSAIDs might not only be microbially mediated by ammonia oxidizing bacteria, but other nitrifiers co-occurring in the activated sludge as ammonia oxidizing archaea and nitrite oxidizing bacteria. Follow-up studies should be conducted to disentangle such complex behaviour in order to improve removal of these contaminants in WWTPs.
Collapse
Affiliation(s)
- Victoria Osorio
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Department of Chemistry, University of Girona, c/ Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| | | | - Sandra Pérez
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
8
|
Dos S Grignet R, Barros MGA, Panatta AAS, Bernal SPF, Ottoni JR, Passarini MRZ, da C S Gonçalves C. Medicines as an emergent contaminant: the review of microbial biodegration potential. Folia Microbiol (Praha) 2022; 67:157-174. [PMID: 34978661 DOI: 10.1007/s12223-021-00941-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022]
Abstract
Emerging environmental contaminants, such as medicine waste, are of great concern to the scientific community and to the local environmental and health departments because of their potential long-term effects and ecotoxicological risk. Besides the prolonged use of medicines for the development of modern society, the elucidation of their effect on the ecosystem is relatively recent. Medicine waste and its metabolites can, for instance, cause alterations in microbial dynamics and disturb fish behavior. Bioremediation is an efficient and eco-friendly technology that appears as a suitable alternative to conventional methods of water waste and sludge treatment and has the capacity to remove or reduce the presence of emerging contaminants. Thus, this review has the objective of compiling information on environmental contamination by common medicines and their microbial biodegradation, focusing on five therapeutic classes: analgesics, antibiotics, antidepressants, non-steroidal anti-inflammatory drugs (NSAIDs), and contraceptives. Their effects in the environment will also be analyzed, as well as the possible routes of degradation by microorganisms.
Collapse
Affiliation(s)
- Rosane Dos S Grignet
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Maria G A Barros
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Andressa A S Panatta
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Suzan P F Bernal
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Julia R Ottoni
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Michel R Z Passarini
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Caroline da C S Gonçalves
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil.
| |
Collapse
|
9
|
Ciftcioglu B, Demirkaya E, Salih E, Soylu D, Ozyildiz G, Zengin GE, Guven D, Topuz E, Pala-Ozkok I, Insel G, Cokgor E, Tas DO. Insights into the acute effect of anti-inflammatory drugs on activated sludge systems with high solids retention time. ENVIRONMENTAL TECHNOLOGY 2021; 42:3920-3931. [PMID: 32406326 DOI: 10.1080/09593330.2020.1761456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The increase in the occurrence of the pharmaceuticals in the environmental compartments is becoming emerging concern as it reflects their inefficient treatment in the wastewater treatment plants which are the main sources of these micropollutants. Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most commonly prescribed and frequently detected pain medications in wastewater treatment plants. A lab scale sequencing batch reactor (SBR) was operated for seven months and acute inhibitory effect of NSAIDs on activated sludge was tested with respirometry. Culture amendment with different concentrations of NSAIDs in the presence as well as absence of nitrification inhibitor resulted in considerable variation in the oxygen uptake rate (OUR) profiles. The decrease in OUR and nitrate production rate governed with reduced heterotrophic and nitrification activity. The kinetics of half saturation for growth and maximum autotrophic growth rates are determined to be affected negatively by the acute impact of anti-inflammatory pharmaceuticals even at the environmentally relevant concentrations. High removal of tested NSAIDs was observed even for the first time introduce with these compounds.
Collapse
Affiliation(s)
- Bengisu Ciftcioglu
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Esma Demirkaya
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Esra Salih
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Dilsad Soylu
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Goksin Ozyildiz
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Gulsum Emel Zengin
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Didem Guven
- Faculty of Civil Engineering, Applied Biopolymer and Bioplastics Production Technologies Research Center, Istanbul Technical University, Istanbul, Turkey
| | - Emel Topuz
- Faculty of Engineering, Environmental Engineering Department, Gebze Technical University, Kocaeli, Turkey
| | - Ilke Pala-Ozkok
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
- Faculty of Science and Technology, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Güçlü Insel
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Emine Cokgor
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Didem Okutman Tas
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
10
|
Pharmaceutical Compounds in Aquatic Environments-Occurrence, Fate and Bioremediation Prospective. TOXICS 2021; 9:toxics9100257. [PMID: 34678953 PMCID: PMC8537644 DOI: 10.3390/toxics9100257] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
Various contaminants of emerging concern (CECs) have been detected in different ecosystems, posing a threat to living organisms and the environment. Pharmaceuticals are among the many CECs that enter the environment through different pathways, with wastewater treatment plants being the main input of these pollutants. Several technologies for the removal of these pollutants have been developed through the years, but there is still a lack of sustainable technologies suitable for being applied in natural environments. In this regard, solutions based on natural biological processes are attractive for the recovery of contaminated environments. Bioremediation is one of these natural-based solutions and takes advantage of the capacity of microorganisms to degrade different organic pollutants. Degradation of pollutants by native microorganisms is already known to be an important detoxification mechanism that is involved in natural attenuation processes that occur in the environment. Thus, bioremediation technologies based on the selection of natural degrading bacteria seem to be a promising clean-up technology suitable for application in natural environments. In this review, an overview of the occurrence and fate of pharmaceuticals is carried out, in which bioremediation tools are explored for the removal of these pollutants from impacted environments.
Collapse
|
11
|
Vieira Y, Lima EC, Foletto EL, Dotto GL. Microplastics physicochemical properties, specific adsorption modeling and their interaction with pharmaceuticals and other emerging contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141981. [PMID: 32911167 DOI: 10.1016/j.scitotenv.2020.141981] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
This review discusses the imminent threat that microplastics (MPs) associated with pharmaceuticals represent to the aquatic environment and public health. We initially focused upon recognizing and stressing that MPs are ubiquitous pollutants. The influence of environmental factors, such as pH, mechanical stress, and photodegradation, are examined, aiming to elucidate how both substances might associate, what are their simultaneous degradation pathways and, to understand the interactions between MPs and pharmaceuticals. Mathematical tools, such as modeling and simulations, are presented in detail, aiming to improve how information is interpreted. Furthermore, it is exhibited that MPs sorption and interaction behavior towards organic contaminants play an important role in understanding its dynamics in the environment, as well as their possible interactions with pharmaceuticals that are summarized. At last, MPs and pharmaceuticals toxicity and bioaccumulation are presented.
Collapse
Affiliation(s)
- Yasmin Vieira
- Department of Chemistry, Federal University of Santa Maria (UFSM), Av. Roraima, 1000-13, 97105-900 Santa Maria, RS, Brazil
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Edson Luiz Foletto
- Chemical Engineering Department, Federal University of Santa Maria (UFSM), Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil
| | - Guilherme Luiz Dotto
- Department of Chemistry, Federal University of Santa Maria (UFSM), Av. Roraima, 1000-13, 97105-900 Santa Maria, RS, Brazil; Chemical Engineering Department, Federal University of Santa Maria (UFSM), Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
Sadutto D, Picó Y. Sample Preparation to Determine Pharmaceutical and Personal Care Products in an All-Water Matrix: Solid Phase Extraction. Molecules 2020; 25:E5204. [PMID: 33182304 PMCID: PMC7664861 DOI: 10.3390/molecules25215204] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
Pharmaceuticals and personal care products (PPCPs) are abundantly used by people, and some of them are excreted unaltered or as metabolites through urine, with the sewage being the most important source to their release to the environment. These compounds are in almost all types of water (wastewater, surface water, groundwater, etc.) at concentrations ranging from ng/L to µg/L. The isolation and concentration of the PPCPs from water achieves the appropriate sensitivity. This step is mostly based on solid-phase extraction (SPE) but also includes other approaches (dispersive liquid-liquid microextraction (DLLME), buckypaper, SPE using multicartridges, etc.). In this review article, we aim to discuss the procedures employed to extract PPCPs from any type of water sample prior to their determination via an instrumental analytical technique. Furthermore, we put forward not only the merits of the different methods available but also a number of inconsistencies, divergences, weaknesses and disadvantages of the procedures found in literature, as well as the systems proposed to overcome them and to improve the methodology. Environmental applications of the developed techniques are also discussed. The pressing need for new analytical innovations, emerging trends and future prospects was also considered.
Collapse
Affiliation(s)
- Daniele Sadutto
- Food and Environmental Safety Research Group, Desertification Research Centre—CIDE (CSIC-UV-GV), University of Valencia (SAMA-UV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group, Desertification Research Centre—CIDE (CSIC-UV-GV), University of Valencia (SAMA-UV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Spain
| |
Collapse
|
13
|
Maksimović V, Goločorbin-Kon S, Mikov M, Cvejić J, Pavlović-Popović Z, Vukmirović S. New horizons of methotrexate application. ACTA ACUST UNITED AC 2020. [DOI: 10.5937/pomc17-24188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Methotrexate is an anti-inflammatory and anticancer drug that has been used in the treatment of various oncological and inflammatory diseases (such as rheumatoid arthritis, inflammatory bowel disease, psoriasis, sarcoidosis, etc.). Scientists are working on finding optimal formulation that will maintain its efficacy and improve safety and nanoparticles have shown to be carriers with great potential as they protect the drug from degradation while at the same time they increase absorption. In vivo and in vitro studies of numerous nanoparticle preparations have showed that they generally have appropriate characteristics and can be carriers for targeted delivery of methotrexate to the tissues affected by disease. Topical preparations of methotrexate, mainly for the treatment of psoriasis, have also been assessed in various research and have showed promising results. Further research is warranted by the obtained results and will hopefully lead to new methotrexate formulations that will be approved by regulatory authorities and used instead of existing ones to improve efficacy of the drug and patients' safety.
Collapse
|