1
|
Kumar R, Kumari P, Kumar R. Central Nervous System Response Against Ionizing Radiation Exposure: Cellular, Biochemical, and Molecular Perspectives. Mol Neurobiol 2025:10.1007/s12035-025-04712-z. [PMID: 39875779 DOI: 10.1007/s12035-025-04712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Gamma radiation is known to induce several detrimental effects on the nervous system. The hippocampus region, specifically the dentate gyrus (DG) and subventricular zone (SVZ), have been identified as a radiation-sensitive neurogenic niche. Radiation alters the endogenous redox status of neural stem cells (NSCs) and other proliferative cells, especially in the hippocampus region, leading to oxidative stress, neuroinflammation, and cell death. Planned (i.e., radiotherapy of brain tumor patients) or unplanned radiation exposure (i.e., accidental radiation exposure) can induce nonspecific damage to neuronal tissues, resulting in chronic or acute radiation syndrome. Although anatomical alterations in the neuronal tissues have been reported at higher doses of gamma radiation, biochemical and molecular perturbations may be evident even at much lower radiation doses. They may manifest in the form of neuronal deficits and cognitive impairment. In the present review, several molecular events and signaling pathways, such as oxidative stress, neuroinflammation, apoptosis, cognition, neuroplasticity, and neurotoxicity induced in neuronal cells upon ionizing radiation exposure, are reviewed. Furthermore, brain-specific radioprotectors and mitigators that protect normal neuronal cells and tissues against ionizing radiation during radiotherapy of cancer patients or nuclear emergencies are also discussed.
Collapse
Affiliation(s)
- Ravi Kumar
- Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Pratibha Kumari
- Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Raj Kumar
- Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
2
|
Witzmann K, Raschke F, Wesemann T, Löck S, Funer F, Linn J, Troost EGC. Diffusion decrease in normal-appearing white matter structures following photon or proton irradiation indicates differences in regional radiosensitivity. Radiother Oncol 2024; 199:110459. [PMID: 39069087 DOI: 10.1016/j.radonc.2024.110459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Radio(chemo)therapy (RCT) as part of the standard treatment of glioma patients, inevitably leads to radiation exposure of the tumor-surrounding normal-appearing (NA) tissues. The effect of radiotherapy on the brain microstructure can be assessed by magnetic resonance imaging (MRI) using diffusion tensor imaging (DTI). The aim of this study was to analyze regional DTI changes of white matter (WM) structures and to determine their dose- and time-dependency. METHODS As part of a longitudinal prospective clinical study (NCT02824731), MRI data of 23 glioma patients treated with proton or photon beam therapy were acquired at three-monthly intervals until 36 months following irradiation. Mean, radial and axial diffusivity (MD, RD, AD) as well as fractional anisotropy (FA) were investigated in the NA tissue of 15 WM structures and their dependence on radiation dose, follow-up time and distance to the clinical target volume (CTV) was analyzed in a multivariate linear regression model. Due to the small and non-comparable patient numbers for proton and photon beam irradiation, a separate assessment of the findings per treatment modality was not performed. RESULTS Four WM structures (i.e., internal capsule, corona radiata, posterior thalamic radiation, and superior longitudinal fasciculus) showed statistically significantly decreased RD and MD after RT, whereas AD decrease and FA increase occurred less frequently. The posterior thalamic radiation showed the most pronounced changes after RCT [i.e., ΔRD = -8.51 % (p = 0.012), ΔMD = -6.14 % (p = 0.012)]. The DTI changes depended significantly on mean dose and time. CONCLUSION Significant changes in DTI for WM substructures were found even at low radiation doses. These findings may prompt new radiation dose constraints sparing the vulnerable structures from damage and subsequent side-effects.
Collapse
Affiliation(s)
- Katharina Witzmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Raschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tim Wesemann
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Fabian Funer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jennifer Linn
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G C Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
3
|
Hocking MC, Schultz RT, Yerys BE, Minturn JE, Fantozzi P, Herrington JD. White matter connectivity and social functioning in survivors of pediatric brain tumor. J Neurooncol 2024; 169:247-256. [PMID: 38837018 PMCID: PMC11341593 DOI: 10.1007/s11060-024-04724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVE Survivors of pediatric brain tumors (SPBT) are at risk for social deficits, fewer friendships, and poor peer relations. SPBT also experience reduced brain connectivity via microstructural disruptions to white matter from neurological insults. Research with other populations implicates white matter connectivity as a key contributor to poor social functioning. This case-controlled diffusion-weighted imaging study evaluated structural connectivity in SPBT and typically developing controls (TDC) and associations between metrics of connectivity and social functioning. METHODS Diffusion weighted-imaging results from 19 SPBT and 19 TDC were analyzed using probabilistic white matter tractography. Survivors were at least 5 years post-diagnosis and 2 years off treatment. Graph theory statistics measured group differences across several connectivity metrics, including average strength, global efficiency, assortativity, clustering coefficient, modularity, and betweenness centrality. Analyses also evaluated the effects of neurological risk on connectivity among SPBT. Correlational analyses evaluated associations between connectivity and indices of social behavior. RESULTS SPBT demonstrated reduced global connectivity compared to TDC. Several medical factors (e.g., chemotherapy, recurrence, multimodal therapy) were related to decreased connectivity across metrics of integration (e.g., average strength, global efficiency) in SPBT. Connectivity metrics were related to peer relationship quality and social challenges in the SPBT group and to social challenges in the total sample. CONCLUSIONS Microstructural white matter connectivity is diminished in SPBT and related to neurological risk and peer relationship quality. Additional neuroimaging research is needed to evaluate associations between brain connectivity metrics and social functioning in SPBT.
Collapse
Affiliation(s)
- Matthew C Hocking
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- The University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert T Schultz
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin E Yerys
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania, Philadelphia, PA, USA
| | - Jane E Minturn
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Fantozzi
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John D Herrington
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Johnson BJ, Barcus RA, Olson JD, Lipford ME, Andrews RN, Dugan GO, Tooze JA, Kim J, Deycmar S, Whitlow CT, Cline JM. Total-Body Irradiation Alters White Matter Volume and Microstructural Integrity in Rhesus Macaques. Int J Radiat Oncol Biol Phys 2024; 119:208-218. [PMID: 37972714 DOI: 10.1016/j.ijrobp.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Long-term survivors of brain irradiation can experience irreversible injury and cognitive impairment. T1-weighted and diffusion tensor magnetic resonance imaging (MRI) are used to evaluate brain volume and white matter (WM) microstructure in neurodevelopmental and neurodegenerative conditions. The goal of this study was to evaluate the long-term effects of single-dose total-body irradiation (TBI) or TBI with 5% partial-body sparing on brain volumetrics and WM integrity in macaques. METHODS AND MATERIALS We used MRI scans from a cohort of male rhesus macaques (age range, 3.6-22.8 years) to compare global and regional brain volumes and WM diffusion in survivors of TBI (T1-weighted, n = 137; diffusion tensor imaging, n = 121; dose range, 3.5-10 Gy) with unirradiated controls (T1-weighted, n = 48; diffusion tensor imaging, n = 38). RESULTS In all regions of interest, radiation affected age-related changes in fractional anisotropy, which tended to increase across age in both groups but to a lesser extent in the irradiated group (interaction P < .01). Depending on the region of interest, mean diffusivity decreased or remained the same across age in unirradiated animals, whereas it increased or did not change in irradiated animals. The increases in mean diffusivity were driven by changes in radial diffusivity, which followed similar trends across age. Axial diffusivity did not differ by irradiation status. Age-related changes in relative volumes in controls reflected normal trends in humans, with increasing WM and decreasing gray matter until middle age. Cerebrospinal fluid (CSF) volume did not differ across age in controls. WM volume was lower and CSF volume was higher in young irradiated macaques. WM volume was similar between groups, and CSF volume lower in older irradiated macaques. Gray matter volume was unaffected by radiation. CONCLUSIONS TBI results in delayed WM expansion and long-term disruption of WM integrity. Diffusion changes suggest that myelin injury in WM is a hallmark of late-delayed radiation-induced brain injury.
Collapse
Affiliation(s)
- Brendan J Johnson
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| | - Richard A Barcus
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - John D Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Megan E Lipford
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Rachel N Andrews
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Greg O Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Janet A Tooze
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jeongchul Kim
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Simon Deycmar
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
5
|
Whitaker AM, Wood ZB, Hawthorne K, Mendoza L. Assessing learning and memory among patients with pediatric brain tumor (PBT): a comparison of measures. Child Neuropsychol 2024; 30:551-562. [PMID: 37395295 DOI: 10.1080/09297049.2023.2229026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Patients with pediatric brain tumor (PBT) can have memory deficits due to tumor location, medical complications, and treatment. The main objective of this study was to investigate whether the California Verbal Learning Test-Children's Version (CVLT-C; 1994) and briefer Child and Adolescent Memory Profile (ChAMP; 2015) similarly identify such deficits. Seventy-five patients with PBT ages 8-16 (x ‾ = 13.1 years, SD = 2.1) were administered the ChAMP or CVLT-C. Rote verbal learning, long-term retrieval, and recognition were analyzed using standardized z-scores. Analyses of differences between measures did not reach statistical significance. Both measures indicated significant downward shifts across free retrieval trials from normative means, with scores approximately 1/3 (ChAMP) to 1/2 (CVLT-C) SD below means across learning and long-term retrieval trials. Scores on recognition trials did not differ significantly from the normative mean. Post-hoc analyses using a subset of the sample who received cranial irradiation (n = 45) similarly found no significant differences between memory measures. Additional post-hoc examination of proportion of participants falling within or below the "below average" range (≤8th percentile) revealed comparable performance between the two measures, whereas the proportion of participants falling at or below 1.5 SDs below the mean on retrieval trials was lower using ChAMP Lists as compared to the CVLT-C. Given the ChAMP is less demanding in terms of time and effort and utilizes more updated and representative normative data, this study supports the ChAMP as a useful tool to evaluate learning and memory within this population.
Collapse
Affiliation(s)
- Ashley M Whitaker
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zachary B Wood
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Kelsey Hawthorne
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Leanne Mendoza
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Mohammadi M, Banisharif S, Moradi F, Zamanian M, Tanzifi G, Ghaderi S. Brain diffusion MRI biomarkers after oncology treatments. Rep Pract Oncol Radiother 2024; 28:823-834. [PMID: 38515826 PMCID: PMC10954263 DOI: 10.5603/rpor.98728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/04/2023] [Indexed: 03/23/2024] Open
Abstract
In addition to providing a measurement of the tumor's size and dimensions, magnetic resonance imaging (MRI) provides excellent noninvasive radiographic detection of tumor location. The MRI technique is an important modality that has been shown to be useful in the prognosis, diagnosis, treatment planning, and evaluation of response and recurrence in solid cancers. Diffusion-weighted imaging (DWI) is an imaging technique that quantifies water mobility. This imaging approach is good for identifying sub-voxel microstructure of tissues, correlates with tumor cellularity, and has been proven to be valuable in the early assessment of cytotoxic treatment for a variety of malignancies. Diffusion tensor imaging (DTI) is an MRI method that assesses the preferred amount of water transport inside tissues. This enables precise measurements of water diffusion, which changes according to the direction of white matter fibers, their density, and myelination. This measurement corresponds to some related variables: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), and others. DTI biomarkers can detect subtle changes in white matter microstructure and integrity following radiation therapy (RT) or chemoradiotherapy, which may have implications for cognitive function and quality of life. In our study, these indices were evaluated after brain chemoradiotherapy.
Collapse
Affiliation(s)
- Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Banisharif
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Fatemeh Moradi
- Department of Energy Engineering & Physics, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Maryam Zamanian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Ghazal Tanzifi
- Department of Nuclear Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Perlow HK, Nalin AP, Ritter AR, Addington M, Ward A, Liu M, Nappi C, Blakaj DM, Beyer SJ, Thomas EM, Grecula JC, Raval RR, Kotecha R, Boulter D, Dawson EL, Zoller W, Palmer JD. Advancing Beyond the Hippocampus to Preserve Cognition for Patients With Brain Metastases: Dosimetric Results From a Phase 2 Trial of Memory-Avoidance Whole Brain Radiation Therapy. Adv Radiat Oncol 2024; 9:101337. [PMID: 38405310 PMCID: PMC10885551 DOI: 10.1016/j.adro.2023.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/18/2023] [Indexed: 02/27/2024] Open
Abstract
Purpose Recent advances to preserve neurocognitive function in patients treated for brain metastases include stereotactic radiosurgery, hippocampal avoidance whole brain radiation therapy (WBRT), and memantine administration. The hippocampus, corpus callosum, fornix, and amygdala are key neurocognitive substructures with a low propensity for brain metastases. Herein, we report our preliminary experience using a "memory-avoidance" WBRT (MA-WBRT) approach that spares these substructures for patients with >15 brain metastases. Methods and Materials Ten consecutive patients treated with MA-WBRT on a phase 2 clinical trial were reviewed. In each patient, the hippocampi, amygdalae, corpus callosum, and fornix were contoured. Patients were not eligible for MA-WBRT if they had metastases in these substructures. A memory-avoidance region was created using a 5-mm volumetric expansion around these substructures. Hotspots were avoided in the hypothalamus and pituitary gland. Coverage of brain metastases was prioritized over memory avoidance dose constraints. Dose constraints for these avoidance structures included a D100% ≤ 9 Gy and D0.03 cm3 ≤ 16 Gy (variation acceptable to 20 Gy). LINAC-based volumetric modulated arc therapy plans were generated for a prescription dose of 30 Gy in 10 fractions. Results On average, the memory avoidance structure volume was 37.1 cm3 (range, 25.2-44.6 cm3), occupying 2.5% of the entire whole brain target volume. All treatment plans met the D100% dose constraint, and 8 of 10 plans met the D0.03 cm3 constraint, with priority given to tumor coverage for the remaining 2 cases. Target coverage (D98% > 25 Gy) and homogeneity (D2% ≤ 37.5 Gy) were achieved for all plans. Conclusions Modern volumetric modulated arc therapy techniques allow for sparing of the hippocampus, amygdala, corpus callosum, and fornix with good target coverage and homogeneity. After enrollment is completed, quality of life and cognitive data will be evaluated to assess the efficacy of MA-WBRT to mitigate declines in quality of life and cognition after whole brain radiation.
Collapse
Affiliation(s)
- Haley K. Perlow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ansel P. Nalin
- College of Medicine, The Ohio State University, Columbus, Ohio
| | - Alex R. Ritter
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Mark Addington
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Aubrie Ward
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Michal Liu
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Collin Nappi
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Dukagjin M. Blakaj
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sasha J. Beyer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Evan M. Thomas
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - John C. Grecula
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Raju R. Raval
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Daniel Boulter
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Erica L. Dawson
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Wesley Zoller
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Joshua D. Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
8
|
Kim TH, Cho J, Kang SG, Moon JH, Suh CO, Park YW, Chang JH, Yoon HI. High Radiation Dose to the Fornix Causes Symptomatic Radiation Necrosis in Patients with Anaplastic Oligodendroglioma. Yonsei Med J 2024; 65:1-9. [PMID: 38154474 PMCID: PMC10774647 DOI: 10.3349/ymj.2023.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 12/30/2023] Open
Abstract
PURPOSE Surgery, radiotherapy (RT), and chemotherapy have prolonged the survival of patients with anaplastic oligodendroglioma. However, whether RT induces long-term toxicity remains unknown. We analyzed the relationship between the RT dose to the fornix and symptomatic radiation necrosis (SRN). MATERIALS AND METHODS A total of 67 patients treated between 2009 and 2019 were analyzed. SRN was defined according to the following three criteria: 1) radiographic findings, 2) symptoms attributable to the lesion, and 3) treatment resulting in symptom improvement. Various contours, including the fornix, were delineated. Univariate and multivariate analyses of the relationship between RT dose and SRN, as well as receiver operating characteristic curve analysis for cut-off values, were performed. RESULTS The most common location was the frontal lobe (n=40, 60%). Gross total resection was performed in 38 patients (57%), and 42 patients (63%) received procarbazine, lomustine, and vincristine chemotherapy. With a median follow-up of 42 months, the median overall and progression-free survival was 74 months. Sixteen patients (24%) developed SRN. In multivariate analysis, age and maximum dose to the fornix were associated with the development of SRN. The cut-off values for the maximum dose to the fornix and age were 59 Gy (equivalent dose delivered in 2 Gy fractions) and 46 years, respectively. The rate of SRN was higher in patients whose maximum dose to the fornix was >59 Gy (13% vs. 43%, p=0.005). CONCLUSION The maximum dose to the fornix was a significant factor for SRN development. While fornix sparing may help maintain neurocognitive function, additional studies are needed.
Collapse
Affiliation(s)
- Tae Hyung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Department of Radiation Oncology, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Yonsei University College of Medicine, Seoul, Korea
| | - Chang-Ok Suh
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Yonsei University College of Medicine, Seoul, Korea.
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Mash LE, Kahalley LS, Raghubar KP, Goodrich-Hunsaker NJ, Abildskov TJ, De Leon LA, MacLeod M, Stancel H, Parsons K, Biekman B, Desai NK, Grosshans DR, Paulino AC, Chu ZD, Whitehead WE, Okcu MF, Chintagumpala M, Wilde EA. Cognitive Sparing in Proton versus Photon Radiotherapy for Pediatric Brain Tumor Is Associated with White Matter Integrity: An Exploratory Study. Cancers (Basel) 2023; 15:1844. [PMID: 36980730 PMCID: PMC10047305 DOI: 10.3390/cancers15061844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Radiotherapy for pediatric brain tumors is associated with reduced white matter structural integrity and neurocognitive decline. Superior cognitive outcomes have been reported following proton radiotherapy (PRT) compared to photon radiotherapy (XRT), presumably due to improved sparing of normal brain tissue. This exploratory study examined the relationship between white matter change and late cognitive effects in pediatric brain tumor survivors treated with XRT versus PRT. Pediatric brain tumor survivors treated with XRT (n = 10) or PRT (n = 12) underwent neuropsychological testing and diffusion weighted imaging >7 years post-radiotherapy. A healthy comparison group (n = 23) was also recruited. Participants completed age-appropriate measures of intellectual functioning, visual-motor integration, and motor coordination. Tractography was conducted using automated fiber quantification (AFQ). Fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) were extracted from 12 tracts of interest. Overall, both white matter integrity (FA) and neuropsychological performance were lower in XRT patients while PRT patients were similar to healthy control participants with respect to both FA and cognitive functioning. These findings support improved long-term outcomes in PRT versus XRT. This exploratory study is the first to directly support for white matter integrity as a mechanism of cognitive sparing in PRT.
Collapse
Affiliation(s)
- Lisa E. Mash
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX 77030, USA
- Psychology Service, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Lisa S. Kahalley
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Kimberly P. Raghubar
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX 77030, USA
- Psychology Service, Texas Children’s Hospital, Houston, TX 77030, USA
| | | | - Tracy J. Abildskov
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Luz A. De Leon
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX 77030, USA
- Psychology Service, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Marianne MacLeod
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX 77030, USA
- Psychology Service, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Heather Stancel
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX 77030, USA
- Psychology Service, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Kelley Parsons
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX 77030, USA
- Psychology Service, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Brian Biekman
- Department of Psychology, University of Houston, Houston, TX 77204, USA
| | - Nilesh K. Desai
- Department of Radiology, Division of Neuroradiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R. Grosshans
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Arnold C. Paulino
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zili D. Chu
- Department of Radiology, Division of Neuroradiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Mehmet Fatih Okcu
- Department of Pediatrics, Division of Hematology Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Murali Chintagumpala
- Department of Pediatrics, Division of Hematology Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elisabeth A. Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Pediatrics, Division of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Perez WD, Perez-Torres CJ. Neurocognitive and radiological changes after cranial radiation therapy in humans and rodents: a systematic review. Int J Radiat Biol 2023; 99:119-137. [PMID: 35511499 DOI: 10.1080/09553002.2022.2074167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Radiation-induced brain injury is a common long-term side effect for brain cancer survivors, leading to a reduced quality of life. Although there is growing research pertaining to this topic, the relationship between cognitive and radiologically detected lesions of radiation-induced brain injury in humans remains unclear. Furthermore, clinically translatable similarities between rodent models and human findings are also undefined. The objective of this review is to then identify the current evidence of radiation-induced brain injury in humans and to compare these findings to current rodent models of radiation-induced brain injury. METHODS This review includes an examination of the current literature on cognitive and radiological characteristics of radiation-induced brain injury in humans and rodents. A thorough search was conducted on PubMed, Web of Science, and Scopus to identify studies that performed cognitive assessments and magnetic resonance imaging techniques on either humans or rodents after cranial radiation therapy. A qualitative synthesis of the data is herein reported. RESULTS A total of 153 studies pertaining to cognitively or radiologically detected radiation injury of the brain are included in this systematic review; 106 studies provided data on humans while 47 studies provided data on rodents. Cognitive deficits in humans manifest across multiple domains after brain irradiation. Radiological evidence in humans highlight various neuroimaging-detectable changes post-irradiation. It is unclear, however, whether these findings reflect ground truth or research interests. Additionally, rodent models do not comprehensively reproduce characteristics of cognitive and radiological injury currently identified in humans. CONCLUSION This systematic review demonstrates that associations between and within cognitive and radiological radiation-induced brain injuries often rely on the type of assessment. Well-designed studies that evaluate the spectrum of potential injury are required for a precise understanding of not only the clinical significance of radiation-induced brain injury in humans, but also how to replicate injury development in pre-clinical models.
Collapse
Affiliation(s)
- Whitney D Perez
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Carlos J Perez-Torres
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
11
|
Cox E, Tseng J, Bells S, Dockstader C, Laughlin S, Bouffet E, de Medeiros C, Mabbott DJ. Neural and cognitive function in a pediatric brain injury model: The impact of task complexity. Cortex 2022; 155:307-321. [DOI: 10.1016/j.cortex.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/26/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
|
12
|
Dinkel JG, Lahmer G, Mennecke A, Hock SW, Richter-Schmidinger T, Fietkau R, Distel L, Putz F, Dörfler A, Schmidt MA. Effects of Hippocampal Sparing Radiotherapy on Brain Microstructure-A Diffusion Tensor Imaging Analysis. Brain Sci 2022; 12:brainsci12070879. [PMID: 35884686 PMCID: PMC9312994 DOI: 10.3390/brainsci12070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Hippocampal-sparing radiotherapy (HSR) is a promising approach to alleviate cognitive side effects following cranial radiotherapy. Microstructural brain changes after irradiation have been demonstrated using Diffusion Tensor Imaging (DTI). However, evidence is conflicting for certain parameters and anatomic structures. This study examines the effects of radiation on white matter and hippocampal microstructure using DTI and evaluates whether these may be mitigated using HSR. A total of 35 tumor patients undergoing a prospective randomized controlled trial receiving either conventional or HSR underwent DTI before as well as 6, 12, 18, 24, and 30 (±3) months after radiotherapy. Fractional Anisotropy (FA), Mean Diffusivity (MD), Axial Diffusivity (AD), and Radial Diffusivity (RD) were measured in the hippocampus (CA), temporal, and frontal lobe white matter (TL, FL), and corpus callosum (CC). Longitudinal analysis was performed using linear mixed models. Analysis of the entire patient collective demonstrated an overall FACC decrease and RDCC increase compared to baseline in all follow-ups; ADCC decreased after 6 months, and MDCC increased after 12 months (p ≤ 0.001, 0.001, 0.007, 0.018). ADTL decreased after 24 and 30 months (p ≤ 0.004, 0.009). Hippocampal FA increased after 6 and 12 months, driven by a distinct increase in ADCA and MDCA, with RDCA not increasing until 30 months after radiotherapy (p ≤ 0.011, 0.039, 0.005, 0.040, 0.019). Mean radiation dose correlated positively with hippocampal FA (p < 0.001). These findings may indicate complex pathophysiological changes in cerebral microstructures after radiation, insufficiently explained by conventional DTI models. Hippocampal microstructure differed between patients undergoing HSR and conventional cranial radiotherapy after 6 months with a higher ADCA in the HSR subgroup (p ≤ 0.034).
Collapse
Affiliation(s)
- Johannes G. Dinkel
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Godehard Lahmer
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Angelika Mennecke
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Stefan W. Hock
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Tanja Richter-Schmidinger
- Psychiatrische und Psychotherapeutische Klinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Rainer Fietkau
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Luitpold Distel
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Florian Putz
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Arnd Dörfler
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Manuel A. Schmidt
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
- Correspondence:
| |
Collapse
|
13
|
Al Dahhan NZ, Cox E, Nieman BJ, Mabbott DJ. Cross-translational models of late-onset cognitive sequelae and their treatment in pediatric brain tumor survivors. Neuron 2022; 110:2215-2241. [PMID: 35523175 DOI: 10.1016/j.neuron.2022.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Pediatric brain tumor treatments have a high success rate, but survivors are at risk of cognitive sequelae that impact long-term quality of life. We summarize recent clinical and animal model research addressing pathogenesis or evaluating candidate interventions for treatment-induced cognitive sequelae. Assayed interventions encompass a broad range of approaches, including modifications to radiotherapy, modulation of immune response, prevention of treatment-induced cell loss or promotion of cell renewal, manipulation of neuronal signaling, and lifestyle/environmental adjustments. We further emphasize the potential of neuroimaging as a key component of cross-translation to contextualize laboratory research within broader clinical findings. This cross-translational approach has the potential to accelerate discovery to improve pediatric cancer survivors' long-term quality of life.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Cox
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Brian J Nieman
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
14
|
Dünger L, Seidlitz A, Jentsch C, Platzek I, Kotzerke J, Beuthien-Baumann B, Baumann M, Krause M, Troost EGC, Raschke F. Reduced diffusion in white matter after radiotherapy with photons and protons. Radiother Oncol 2021; 164:66-72. [PMID: 34537290 DOI: 10.1016/j.radonc.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Radio(chemo)therapy is standard in the adjuvant treatment of glioblastoma. Inevitably, brain tissue surrounding the target volume is also irradiated, potentially causing acute and late side-effects. Diffusion imaging has been shown to be a sensitive method to detect early changes in the cerebral white matter (WM) after radiation. The aim of this work was to assess possible changes in the mean diffusivity (MD) of WM after radio(chemo)therapy using Diffusion-weighted imaging (DWI) and to compare these effects between patients treated with proton and photon irradiation. MATERIALS AND METHODS 70 patients with glioblastoma underwent adjuvant radio(chemo)therapy with protons (n = 20) or photons (n = 50) at the University Hospital Dresden. MRI follow-ups were performed at three-monthly intervals and in this study were evaluated until 33 months after the end of therapy. Relative white matter MD changes between baseline and all follow-up visits were calculated in different dose regions. RESULTS We observed a significant decrease of MD (p < 0.05) in WM regions receiving more than 20 Gy. MD reduction was progressive with dose and time after radio(chemo)therapy (maximum: -7.9 ± 1.2% after 24 months, ≥50 Gy). In patients treated with photons, significant reductions of MD in the entire WM (p < 0.05) were seen at all time points. Conversely, in proton patients, whole brain MD did not change significantly. CONCLUSIONS Irradiation leads to measurable MD reduction in white matter, progressing with both increasing dose and time. Treatment with protons reduces this effect most likely due to a lower total dose in the surrounding white matter. Further investigations are needed to assess whether those MD changes correlate with known radiation induced side-effects.
Collapse
Affiliation(s)
- L Dünger
- ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft mbH, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - A Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - C Jentsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - I Platzek
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - J Kotzerke
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - M Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Heidelberg, Germany
| | - M Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - E G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - F Raschke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
15
|
Sleurs C, Jacobs S, Counsell SJ, Christiaens D, Tournier JD, Sunaert S, Van Beek K, Uyttebroeck A, Deprez S, Batalle D, Lemiere J. Brain network hubs and cognitive performance of survivors of childhood infratentorial tumors. Radiother Oncol 2021; 161:118-125. [PMID: 34102233 DOI: 10.1016/j.radonc.2021.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Childhood infratentorial tumor patients frequently suffer from long-term cognitive deficits. As each constituent of their treatment can lead to neurotoxicity, cascade effects can lead to profound reorganization of the underlying brain network, the so-called 'connectome'. However, to date, few studies have assessed the relationship between brain network topology, the functional role of network hubs (i.e. highly connected regions), and neurocognitive outcomes in adult survivors of childhood infratentorial tumors. METHODS In this cross-sectional study, childhood infratentorial tumor survivors (n = 21: pilocytic astrocytoma (n = 8), ependymoma (n = 1) and medulloblastoma (n = 12)) and healthy controls (n = 21) were recruited. Using multishell diffusion-weighted MRI, microstructural organization and topology of supratentorial white matter was investigated; using a voxel-based approach, a fixel-based analysis, and a graph theoretical approach. In addition, neurocognitive subscales of the WAIS-IV intelligence test, and their relationship with nodal strength and network efficiency metrics were assessed. RESULTS Similar to earlier studies, we observed widespread decreases in fractional anisotropy (FA) in patients compared to controls, based on voxel-based analyses. In addition, the fixel-based analyses dissociated macro- from microstructural changes, which were encountered in in infratentorial versus supratentorial brain areas, respectively. Finally, regional reorganization (i.e. differences in local efficiency) occurred mainly in hubs, which suggests a specific vulnerability of these areas. These hubs were not only mostly affected, but also most strongly correlated with the intelligence subscales. CONCLUSION This study suggests that network hubs are functionally important for intellectual outcomes in infratentorial tumor survivors. Furthermore, these regions could be the primary targets of treatment toxicity. Validation of this specific hypothesis in larger samples is required.
Collapse
Affiliation(s)
| | - Sandra Jacobs
- Department of Oncology, KU Leuven, Belgium; Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Belgium
| | - Serena J Counsell
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom; Department of Imaging and Pathology, KU Leuven, Belgium
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom
| | - Stefan Sunaert
- Department of Radiology, University Hospitals Leuven, Belgium; Department of Imaging and Pathology, KU Leuven, Belgium
| | - Karen Van Beek
- Department of Radiotherapy, University Hospitals Leuven, Belgium
| | - Anne Uyttebroeck
- Department of Oncology, KU Leuven, Belgium; Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Belgium
| | - Sabine Deprez
- Department of Imaging and Pathology, KU Leuven, Belgium
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Jurgen Lemiere
- Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Belgium
| |
Collapse
|
16
|
Gorbunov NV, Kiang JG. Brain Damage and Patterns of Neurovascular Disorder after Ionizing Irradiation. Complications in Radiotherapy and Radiation Combined Injury. Radiat Res 2021; 196:1-16. [PMID: 33979447 PMCID: PMC8297540 DOI: 10.1667/rade-20-00147.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Exposure to ionizing radiation, mechanical trauma, toxic chemicals or infections, or combinations thereof (i.e., combined injury) can induce organic injury to brain tissues, the structural disarrangement of interactive networks of neurovascular and glial cells, as well as on arrays of the paracrine and systemic destruction. This leads to subsequent decline in cognitive capacity and decompensation of mental health. There is an ongoing need for improvement in mitigating and treating radiation- or combined injury-induced brain injury. Cranial irradiation per se can cause a multifactorial encephalopathy that occurs in a radiation dose- and time-dependent manner due to differences in radiosensitivity among the various constituents of brain parenchyma and vasculature. Of particular concern are the radiosensitivity and inflammation susceptibility of: 1. the neurogenic and oligodendrogenic niches in the subependymal and hippocampal domains; and 2. the microvascular endothelium. Thus, cranial or total-body irradiation can cause a plethora of biochemical and cellular disorders in brain tissues, including: 1. decline in neurogenesis and oligodendrogenesis; 2. impairment of the blood-brain barrier; and 3. ablation of vascular capillary. These changes, along with cerebrovascular inflammation, underlie different stages of encephalopathy, from the early protracted stage to the late delayed stage. It is evident that ionizing radiation combined with other traumatic insults such as penetrating wound, burn, blast, systemic infection and chemotherapy, among others, can exacerbate the radiation sequelae (and vice versa) with increasing severity of neurogenic and microvascular patterns of radiation brain damage.
Collapse
Affiliation(s)
| | - Juliann G. Kiang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
17
|
Kesler SR, Sleurs C, McDonald BC, Deprez S, van der Plas E, Nieman BJ. Brain Imaging in Pediatric Cancer Survivors: Correlates of Cognitive Impairment. J Clin Oncol 2021; 39:1775-1785. [PMID: 33886371 DOI: 10.1200/jco.20.02315] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shelli R Kesler
- School of Nursing, Department of Diagnostic Medicine, Dell School of Medicine, Livestrong Cancer Institutes, Austin, TX
| | - Charlotte Sleurs
- Department of Oncology, Catholic University of Leuven, Leuven, Belgium.,Leuven Cancer Institute, Leuven, Belgium
| | - Brenna C McDonald
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Center for Neuroimaging, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN
| | - Sabine Deprez
- Leuven Cancer Institute, Leuven, Belgium.,Department of Imaging and Pathology, Catholic University of Leuven, Leuven, Belgium
| | - Ellen van der Plas
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Brian J Nieman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada.,Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
18
|
Witzmann K, Raschke F, Troost EGC. MR Image Changes of Normal-Appearing Brain Tissue after Radiotherapy. Cancers (Basel) 2021; 13:cancers13071573. [PMID: 33805542 PMCID: PMC8037886 DOI: 10.3390/cancers13071573] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Radiotherapy is one of the most important treatment options against cancer. Irradiation of cancerous tissue either directly destroys the cancer cells or damages them such that they cannot reproduce. One side-effect of radiotherapy is that tumor-surrounding normal tissue is inevitably also irradiated, albeit at a lower dose. The resulting long-term damage can significantly affect cognitive performance and quality of life. Many studies investigated the effect of irradiation on normal-appearing brain tissues and some of these correlated imaging findings with functional outcome. This article provides an overview of the examination of radiation-induced injuries using conventional and enhanced MRI methods and summarizes conclusions about the underlying tissue changes. Radiation-induced morphologic, microstructural, vascular, and metabolic tissue changes have been observed, in which the effect of irradiation was evident in terms of decreased perfusion and neuronal health as well as increased diffusion and atrophy. Abstract Radiotherapy is part of the standard treatment of most primary brain tumors. Large clinical target volumes and physical characteristics of photon beams inevitably lead to irradiation of surrounding normal brain tissue. This can cause radiation-induced brain injury. In particular, late brain injury, such as cognitive dysfunction, is often irreversible and progressive over time, resulting in a significant reduction in quality of life. Since 50% of patients have survival times greater than six months, radiation-induced side effects become more relevant and need to be balanced against radiation treatment given with curative intent. To develop adequate treatment and prevention strategies, the underlying cause of radiation-induced side-effects needs to be understood. This paper provides an overview of radiation-induced changes observed in normal-appearing brains measured with conventional and advanced MRI techniques and summarizes the current findings and conclusions. Brain atrophy was observed with anatomical MRI. Changes in tissue microstructure were seen on diffusion imaging. Vascular changes were examined with perfusion-weighted imaging and susceptibility-weighted imaging. MR spectroscopy revealed decreasing N-acetyl aspartate, indicating decreased neuronal health or neuronal loss. Based on these findings, multicenter prospective studies incorporating advanced MR techniques as well as neurocognitive function tests should be designed in order to gain more evidence on radiation-induced sequelae.
Collapse
Affiliation(s)
- Katharina Witzmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Raschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G. C. Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Correspondence:
| |
Collapse
|
19
|
Voshart DC, Wiedemann J, van Luijk P, Barazzuol L. Regional Responses in Radiation-Induced Normal Tissue Damage. Cancers (Basel) 2021; 13:cancers13030367. [PMID: 33498403 PMCID: PMC7864176 DOI: 10.3390/cancers13030367] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Normal tissue side effects remain a major concern in radiotherapy. The improved precision of radiation dose delivery of recent technological developments in radiotherapy has the potential to reduce the radiation dose to organ regions that contribute the most to the development of side effects. This review discusses the contribution of regional variation in radiation responses in several organs. In the brain, various regions were found to contribute to radiation-induced neurocognitive dysfunction. In the parotid gland, the region containing the major ducts was found to be critical in hyposalivation. The heart and lung were each found to exhibit regional responses while also mutually affecting each other's response to radiation. Sub-structures critical for the development of side effects were identified in the pancreas and bladder. The presence of these regional responses is based on a non-uniform distribution of target cells or sub-structures critical for organ function. These characteristics are common to most organs in the body and we therefore hypothesize that regional responses in radiation-induced normal tissue damage may be a shared occurrence. Further investigations will offer new opportunities to reduce normal tissue side effects of radiotherapy using modern and high-precision technologies.
Collapse
Affiliation(s)
- Daniëlle C. Voshart
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Julia Wiedemann
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Peter van Luijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: (P.v.L.); (L.B.)
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: (P.v.L.); (L.B.)
| |
Collapse
|
20
|
Semmel ES, Quadri TR, King TZ. Oral processing speed as a key mechanism in the relationship between neurological risk and adaptive functioning in survivors of pediatric brain tumors. Pediatr Blood Cancer 2020; 67:e28575. [PMID: 32813316 DOI: 10.1002/pbc.28575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE Brain tumor (BT) survivors are at risk for difficulties with adaptive functioning (AF). Recent work has associated neurological risk with poorer AF outcomes using the Neurological Predictor Scale (NPS), a quantification of neurological risk factors. Survivors also have poorer attention, processing speed, and working memory, which are all important for AF. The current study examined whether these cognitive constructs explain the relationship between the NPS and AF in survivors. METHODS Ninety-five adult BT survivors and 135 healthy controls were recruited from the Atlanta area. The Oral Symbol Digits Modalities test was used to measure processing speed, Digit Span Backward assessed working memory, and Digit Span Forward measured attention. Informants completed the Scales of Independent Behavior (SIB-R) to measure AF. Group differences and correlations were assessed, and the PROCESS macro for SPSS tested indirect effects. RESULTS Survivors were significantly lower on AF and cognitive measures compared with controls. Attention span and processing speed had significant indirect effects in relationship between NPS and AF individually, but processing speed was the only variable with a significant indirect effect when all cognitive variables were included in the model. The NPS and processing speed together account for approximately 39% of variance in AF outcomes. CONCLUSIONS BT survivors in our sample have lower AF than controls, and processing speed appears to be particularly important in explaining the relationship between neurological risk and AF. In the future, the development of interventions aimed at increasing young adult independence should target both cognitive processing speed and AF skills.
Collapse
Affiliation(s)
- Eric S Semmel
- Department of Psychology and Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Tobiloba R Quadri
- Department of Psychology and Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Tricia Z King
- Department of Psychology and Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
21
|
Sakaguchi Y, Natsume J, Kidokoro H, Tanaka M, Okai Y, Ito Y, Yamamoto H, Ohno A, Nakata T, Nakane T, Kawai H, Taoka T, Muramatsu H, Naganawa S, Takahashi Y. Change of White Matter Integrity in Children With Hematopoietic Stem Cell Transplantation. Pediatr Neurol 2020; 111:78-84. [PMID: 32951667 DOI: 10.1016/j.pediatrneurol.2020.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Advances in hematopoietic stem cell transplantation have improved the survival rate of malignant diseases and congenital immunodeficiencies. It has become important to assess long-term complications in survivors. To assess neurological abnormalities in children treated by transplantation, diffusion tensor imaging was performed. METHODS Forty children who underwent head diffusion tensor imaging before and after their first transplantation were enrolled. Patients with brain lesions on conventional MRI were excluded. Fractional anisotropy and mean diffusivity were compared between patients and 28 control subjects using tract-based spatial statistics. The Strengths and Difficulties Questionnaire was administered as a behavioral evaluation after transplantation, and diffusion tensor images of patients with and without behavioral abnormalities were compared. RESULTS The age of patients and controls was 0 to 19 years and 0 to 16 years, respectively. The date of diffusion tensor imaging was 10 to 57 days before and 40 to 153 days after transplantation. Tract-based spatial statistics showed fractional anisotropy reduction in widespread white matter in patients before and after transplantation. Mean diffusivity was high before transplantation and normalized after transplantation. Analysis comparing before and after hematopoietic stem cell transplantation shows no difference in fractional anisotropy and a higher mean diffusivity before hematopoietic stem cell transplantation. In patients with behavioral abnormalities, low fractional anisotropy and high mean diffusivity remained after transplantation. CONCLUSIONS Longitudinal diffusion tensor imaging showed white matter abnormalities in children without conventional MRI abnormalities, which were related to behavioral problems after transplantation. Diffusion tensor imaging is useful for behavioral assessment in children undergoing transplantation.
Collapse
Affiliation(s)
- Yoko Sakaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Japan; Department of Developmental Disability Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Masaharu Tanaka
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Okai
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Hiroyuki Yamamoto
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Atsuko Ohno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Nakata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisashi Kawai
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
Long-term cognitive outcome in adult survivors of an early childhood posterior fossa brain tumour. Int J Clin Oncol 2020; 25:1763-1773. [PMID: 32642850 PMCID: PMC7498491 DOI: 10.1007/s10147-020-01725-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/11/2020] [Indexed: 12/05/2022]
Abstract
Purpose Posterior fossa brain tumours (PFT) and their treatment in young children are often associated with subsequent cognitive impairment. However, reported follow-up periods rarely exceed 10 years. This study reports very long-term cognitive consequences of surviving an early childhood PFT. Methods 62 adult survivors of a PFT, ascertained from a national register, diagnosed before 5 years of age, and a sibling control, received a single IQ assessment an average of 32 years (range 18–53) after initial diagnosis, using the Weschler Abbreviated Scale of Intelligence. Regression models were fitted to survivor–sibling pair differences on verbal and performance IQ (VIQ and PIQ) scores to investigate whether increasing time between PFT diagnosis and follow-up IQ assessment contributed to survivor–sibling IQ differences. Results At follow-up, survivors had, on average, VIQ 15 points and PIQ 19 points lower than their siblings. There was no significant effect of time since diagnosis on survivor–sibling VIQ difference. Survivors who received radiotherapy showed no significant effect of time since diagnosis on survivor–sibling PIQ difference. Survivors who did not receive radiotherapy demonstrated a trend for it to reduce. Conclusions VIQ and PIQ deficits persist in adulthood, suggesting the effect of a fixed injury imposing on cognitive development, rather than an ongoing pathological process. Implications for cancer survivors The findings will help parents and others supporting survivors of an early life PFT to identify and plan for possible cognitive outcomes, and highlight the importance of early interventions to optimize cognitive function during the developmental period. Electronic supplementary material The online version of this article (10.1007/s10147-020-01725-7) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Goldschmidt E, Fellows-Mayle W, Wolfe R, Niranjan A, Flickinger JC, Lunsford LD, Gerszten PC. Radiosurgery to the spinal dorsal root ganglion induces fibrosis and inhibits satellite glial cell activation while preserving axonal neurotransmission. J Neurosurg Spine 2020; 32:790-798. [PMID: 32005015 DOI: 10.3171/2019.11.spine191176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/25/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Stereotactic radiosurgery (SRS) has been used to treat trigeminal neuralgia by targeting the cisternal segment of the trigeminal nerve, which in turn triggers changes in the gasserian ganglion. In the lumbar spine, the dorsal root ganglion (DRG) is responsible for transmitting pain sensitivity and is involved in the pathogenesis of peripheral neuropathic pain. Therefore, radiosurgery to the DRG might improve chronic peripheral pain. This study evaluated the clinical and histological effects of high-dose radiosurgery to the DRG in a rodent model. METHODS Eight Sprague-Dawley rats received either 40- or 80-Gy SRS to the fifth and sixth lumbar DRGs using the Leksell Gamma Knife Icon. Animals were euthanized 3 months after treatment, and the lumbar spine was dissected and taken for analysis. Simple histology was used to assess collagen deposition and inflammatory response. GFAP, Neu-N, substance P, and internexin were used as a measure of peripheral glial activation, neurogenesis, pain-specific neurotransmission, and neurotransmission in general, respectively. The integrity of the spinothalamic tract was assessed by means of the von Frey test. RESULTS The animals did not exhibit any signs of motor or sensory deficits during the experimentation period. Edema, fibrosis, and vascular sclerotic changes were present on the treated, but not the control, side. SRS reduced the expression of GFAP without affecting the expression of Neu-N, substance P, or internexin. The von Frey sensory perception elicited equivalent results for the control side and both radiosurgical doses. CONCLUSIONS SRS did not alter sensory or motor function but reduced the activation of satellite glial cells, a pathway for DRG-mediated pain perpetuation. Radiosurgery provoked changes equivalent to the effects of focal radiation on the trigeminal ganglion after SRS for trigeminal neuralgia, suggesting that radiosurgery could be successful in relieving radiculopathic pain.
Collapse
Affiliation(s)
| | | | - Rachel Wolfe
- 2University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | | | - John C Flickinger
- Departments of1Neurosurgery and
- 3Radiation Oncology, University of Pittsburgh Medical Center; and
| | - L Dade Lunsford
- Departments of1Neurosurgery and
- 3Radiation Oncology, University of Pittsburgh Medical Center; and
| | - Peter C Gerszten
- Departments of1Neurosurgery and
- 3Radiation Oncology, University of Pittsburgh Medical Center; and
| |
Collapse
|
24
|
Raschke F, Wesemann T, Wahl H, Appold S, Krause M, Linn J, Troost EGC. Reduced diffusion in normal appearing white matter of glioma patients following radio(chemo)therapy. Radiother Oncol 2019; 140:110-115. [PMID: 31265941 DOI: 10.1016/j.radonc.2019.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND PURPOSE Standard treatment of high grade gliomas includes gross tumour resection followed by radio(chemo)therapy. Radiotherapy inevitably leads to irradiation of normal brain tissue. The goal of this prospective, longitudinal study was to use MRI to quantify normal appearing white and grey matter changes following radiation treatment as a function of dose and time after radiotherapy. MATERIALS AND METHODS Pre-radiotherapy (proton or photon therapy) MRI and follow-up MRIs collected in 3 monthly intervals thereafter were analysed for 22 glioma patients and included diffusion tensor imaging, quantitative T1, T2* and proton density mapping. Abnormal tissue was excluded from analysis. MR signal changes were quantified within different dose bin regions for grey and white matter and subsequently for whole brain white matter. RESULTS We found significant reductions in mean diffusivity, radial diffusivity, axial diffusivity and T2* in normal appearing white matter regions receiving a radiation dose as low as 10-20 Gy within the observational period of up to 18 months. The magnitude of these changes increased with the received radiation dose and progressed with time after radiotherapy. Whole brain white matter also showed a significant reduction in radial diffusivity as a function of radiation dose and time after radiotherapy. No significant changes were observed in grey matter. CONCLUSION Diffusion tensor imaging and T2* imaging revealed normal appearing white matter changes following radiation treatment. The changes were dose dependant and progressed over time. Further work is needed to understand the underlying tissue changes and to correlate the observed diffusion changes with late brain malfunctions.
Collapse
Affiliation(s)
- F Raschke
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden -Rossendorf (HZDR), Dresden, Germany.
| | - T Wesemann
- Institute of Neuroradiology, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität, Dresden, Germany
| | - H Wahl
- Institute of Neuroradiology, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität, Dresden, Germany
| | - S Appold
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - M Krause
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden -Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Linn
- Institute of Neuroradiology, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität, Dresden, Germany
| | - E G C Troost
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden -Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Aleksonis HA, Wier R, Pearson MM, Cannistraci CJ, Anderson AW, Kuttesch JF, Compas BE, Hoskinson KR. Associations among diffusion tensor imaging and neurocognitive function in survivors of pediatric brain tumor: A pilot study. APPLIED NEUROPSYCHOLOGY-CHILD 2019; 10:111-122. [PMID: 31146596 DOI: 10.1080/21622965.2019.1613993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to determine associations among neurocognitive outcomes and white matter integrity in the inferior fronto-occipital fasciculus (IFOF), uncinate fasciculus (UF), and genu of the corpus callosum (gCC) in survivors of pediatric brain tumor and healthy controls (HCs). Eleven survivors (ages 8-16; >2 years post-treatment) and 14 HCs underwent MRI; diffusion tensor imaging tractography (DSI Studio) was used to assess white matter integrity. Participants completed neuropsychological assessment of overall cognitive ability, executive function, processing speed, divided attention, and memory. As previously reported, survivors performed significantly worse than HCs on measures of overall IQ, working memory, processing speed, and executive function (ps < .01), but not on measures of long-delay memory. Mean fractional anisotropy was significantly lower in survivors than HC in the right IFOF, left UF, and gCC (ps < .05). Correlations with the total sample revealed a number of significant positive associations among white matter tracts and scores on neurocognitive measures. Survivors show deficits on measures of cognitive function and decreased white matter integrity compared to HCs. Results revealed a more general pattern of associations among white matter pathways and neurocognitive outcomes than initially hypothesized. It is possible that survivors with diffuse pathology from treatment effects (i.e., hydrocephalus or posterior fossa syndrome) show more general decreases in cognitive functioning and white matter integrity. Additional research with a larger and more diverse group of survivors is needed to better understand white matter integrity and neurocognitive outcome associations in this population.
Collapse
Affiliation(s)
- Holly A Aleksonis
- Center for Biobehavioral Health, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Ryan Wier
- Center for Biobehavioral Health, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Matthew M Pearson
- Institute for Neurology and Neurosurgery, Sacred Heart Medical Group, Pensacola, Florida, USA
| | - Christopher J Cannistraci
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA
| | - John F Kuttesch
- Pediatric Hematology and Oncology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Bruce E Compas
- Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, USA
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
26
|
Liu Y, Chen L, Zeng J, Li W, Zeng S, Ye B, Liang Z. Proliferation of Bilateral Nerve Fibers Following Thalamic Infarction Contributes to Neurological Function Recovery: A Diffusion Tensor Imaging (DTI) Study. Med Sci Monit 2018; 24:1464-1472. [PMID: 29525809 PMCID: PMC5859668 DOI: 10.12659/msm.909071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 02/16/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the reorganization in ipsilesional and contralesional thalamic radiation fibers after unilateral focal thalamic stroke in sensory disturbance patients. MATERIAL AND METHODS We recruited 12 patients with acute unilateral thalamic infarction and sensory disturbance and 12 healthy age- and sex-matched controls. All patients underwent diffusion tensor imaging (DTI) and were assessed with National Institutes of Health stroke scale (NIHSS), Barthel index (BI), and paragraph 8 of NIHSS (NIHSS8) at 1 week (W1), 4 weeks (W4), 3 months (M3), and 6 months (M6) after thalamic infraction. The relationship between FA changes and the clinical scores changes were then examined. RESULTS NIHSS and NIHSS8 scores decreased while BI scores increased gradually from W1 to M6 in patients, but not in controls. FA values of the patients gradually increased in ipsilesional and contralesional thalamic radiation fibers from W1 to M6. In addition, the FA values in patients were significantly higher at M3 and M6 compared to W1. No significant changes were observed in the controls. Regarding the relationship between FA changes and the clinical scores changes, the FA increases were negatively correlated with NIHSS and NIHSS8 decrease while FA increases were positively correlated with BI increases. CONCLUSIONS Our results indicate that reorganization occurred after unilateral focal thalamic infarct not only in ipsilesional, but also in contralesional thalamic radiation fibers in patients with sensory disturbance. In addition, the results suggested that the reorganization can support and promote stroke restoration.
Collapse
Affiliation(s)
- Yayuan Liu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guanxi, P.R. China
| | - Li Chen
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guanxi, P.R. China
| | - Jinseng Zeng
- Department of Neurology and Stroke Center, The First Affiliated Hospital, SunYat-sen University, Guanzhou, Guangdong, P.R. China
| | - Wenmei Li
- Department of Radiology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guanxi, P.R. China
| | - Sudan Zeng
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guanxi, P.R. China
| | - Bin Ye
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guanxi, P.R. China
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guanxi, P.R. China
| |
Collapse
|