1
|
Fan F, Ren Y, Mao Z, Li B, Yu C, Gao J, Gu Y, Ding J, Li H, Wu QL. Particle-size dependent of bacterial diversity associated with suspended particulate matter continuum in Lake Taihu. FEMS Microbiol Ecol 2025; 101:fiaf038. [PMID: 40205528 PMCID: PMC12005152 DOI: 10.1093/femsec/fiaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/11/2025] Open
Abstract
Suspended particulate matter (SPM) of varying particle sizes is widespread in aquatic ecosystems, providing crucial habitats for bacteria and serving as hotspots for mineralization and nutrient cycling. However, prior studies have typically treated bacteria associated with these particulates as a homogeneous group, overlooking size-related differences in diversity and composition. In this study, we separated the SPM continuum into five size-fractions (0.2, 2, 20, 200, and 500 µm) and investigated bacterial diversity, community assembly, and environmental drivers across four representative regions of Lake Taihu, China, over 1-year period. Using 16S rRNA gene sequencing, we observed particle-size-dependent variations in bacterial diversity. Alpha diversity decreased significantly with increasing particle size, while beta diversity showed a similar trend. Environmental factors influencing species richness varied by particle size, while bacteria associated with smaller particles (0.2, 2, and 20 µm) were more sensitive to environmental factors compared to those associated with larger ones (200 and 500 µm). The role of deterministic processes in community assembly increased with particle size, indicating stronger selection on larger particles. This study enhances our understanding of bacterial diversity in aquatic ecosystems and highlights the importance of particle size in bacterial community dynamics.
Collapse
Affiliation(s)
- Fangwei Fan
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- Sino Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 101400, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yichen Ren
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- School of Ecology and Environment, Anhui Normal University, Wuhu 050031, PR China
| | - Zhendu Mao
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China
| | - Biao Li
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
| | - Chunyan Yu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Jiawei Gao
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Yu Gu
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianing Ding
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huabing Li
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Yuxi 652500, PR China
| | - Qinglong L Wu
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, PR China
- Sino Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 101400, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China
- The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Yuxi 652500, PR China
| |
Collapse
|
2
|
Fujiyoshi S, Yarimizu K, Fuenzalida G, Campos M, Rilling JI, Acuña JJ, Miranda PC, Cascales EK, Perera I, Espinoza-González O, Guzmán L, Jorquera MA, Maruyama F. Monitoring bacterial composition and assemblage in the Gulf of Corcovado, southern Chile: Bacteria associated with harmful algae. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100194. [PMID: 37346179 PMCID: PMC10279789 DOI: 10.1016/j.crmicr.2023.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Harmful Algal Blooms (HABs) have caused damage to the marine environment in Isla San Pedro in the Gulf of Corcovado, Chile. While rising water temperature and artificial eutrophication are the most discussed topics as a cause, marine bacteria is a recent attractive parameter as an algal bloom driver. This study monitored algal and bacterial compositions in the water of Isla San Pedro for one year using microscopy and 16S rRNA metabarcoding analysis, along with physicochemical parameters. The collected data were analyzed with various statistical tools to understand how the particle-associated bacteria (PA) and the free-living (FL) bacteria were possibly involved in algal blooms. Both FL and PA fractions maintained a stable bacterial composition: the FL fraction was dominated by Proteobacteria (α-Proteobacteria and γ-Proteobacteria), and Cyanobacteria dominated the PA fraction. The two fractions contained equivalent bacterial taxonomic richness (c.a. 8,000 Operational Taxonomic Units) and shared more than 50% of OTU; however, roughly 20% was exclusive to each fraction. The four most abundant algal genera in the Isla San Pedro water were Thalassiosira, Skeletonema, Chaetoceros, and Pseudo-nitzchia. Statistical analysis identified that the bacterial species Polycyclovorans algicola was correlated with Pseudo-nitzschia spp., and our monitoring data recorded a sudden increase of particle-associated Polycyclovorans algicola shortly after the increase of Pseudo-nitzschia, suggesting that P. algicola may have regression effect on Pseudo-nitzschia spp. The study also investigated the physicochemical parameter effect on algal-bacterial interactions. Oxygen concentration and chlorophyll-a showed a strong correlation with both FL and PA bacteria despite their assemblage differences, suggesting that the two groups had different mechanisms for interacting with algal species.
Collapse
Affiliation(s)
- So Fujiyoshi
- Microbial Genomics and Ecology, The IDEC Institute, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511, Japan
| | - Kyoko Yarimizu
- Microbial Genomics and Ecology, The IDEC Institute, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511, Japan
| | - Gonzalo Fuenzalida
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 574, Puerto Montt 5480000, Chile
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Buena Vecindad #91, Puerto Montt, Chile
| | - Marco Campos
- Laboratorio de Ecología Microbiana Aplicada (EMAlab), Departamento de Ciencias Quimicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Joaquin-Ignacio Rilling
- Laboratorio de Ecología Microbiana Aplicada (EMAlab), Departamento de Ciencias Quimicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Jacquelinne J. Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMAlab), Departamento de Ciencias Quimicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Pedro Calabrano Miranda
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 574, Puerto Montt 5480000, Chile
| | - Emma-Karin Cascales
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 574, Puerto Montt 5480000, Chile
| | - Ishara Perera
- Microbial Genomics and Ecology, The IDEC Institute, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511, Japan
| | - Oscar Espinoza-González
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 574, Puerto Montt 5480000, Chile
| | - Leonardo Guzmán
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 574, Puerto Montt 5480000, Chile
| | - Milko A. Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMAlab), Departamento de Ciencias Quimicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Fumito Maruyama
- Microbial Genomics and Ecology, The IDEC Institute, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511, Japan
| |
Collapse
|
3
|
Rodrigues-Filho JL, Macêdo RL, Sarmento H, Pimenta VRA, Alonso C, Teixeira CR, Pagliosa PR, Netto SA, Santos NCL, Daura-Jorge FG, Rocha O, Horta P, Branco JO, Sartor R, Muller J, Cionek VM. From ecological functions to ecosystem services: linking coastal lagoons biodiversity with human well-being. HYDROBIOLOGIA 2023; 850:2611-2653. [PMID: 37323646 PMCID: PMC10000397 DOI: 10.1007/s10750-023-05171-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/17/2023]
Abstract
In this review we highlight the relevance of biodiversity that inhabit coastal lagoons, emphasizing how species functions foster processes and services associated with this ecosystem. We identified 26 ecosystem services underpinned by ecological functions performed by bacteria and other microbial organisms, zooplankton, polychaetae worms, mollusks, macro-crustaceans, fishes, birds, and aquatic mammals. These groups present high functional redundancy but perform complementary functions that result in distinct ecosystem processes. Because coastal lagoons are located in the interface between freshwater, marine and terrestrial ecosystems, the ecosystem services provided by the biodiversity surpass the lagoon itself and benefit society in a wider spatial and historical context. The species loss in coastal lagoons due to multiple human-driven impacts affects the ecosystem functioning, influencing negatively the provision of all categories of services (i.e., supporting, regulating, provisioning and cultural). Because animals' assemblages have unequal spatial and temporal distribution in coastal lagoons, it is necessary to adopt ecosystem-level management plans to protect habitat heterogeneity and its biodiversity, ensuring the provision of services for human well-being to multi-actors in the coastal zone.
Collapse
Affiliation(s)
- Jorge L. Rodrigues-Filho
- Laboratório de Ecologia Aplicada e Conservação, Departamento de Engenharia de Pesca e Ciências Biológicas, Universidade Do Estado de Santa Catarina, Laguna, SC Brazil
- Programa de Pós-Graduação em Planejamento Territorial e Desenvolvimento Socioambiental (PPGPLAN)/UDESC/FAED, Universidade do Estado de Santa Catarina, Florianópolis, SC Brazil
| | - Rafael L. Macêdo
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Hugo Sarmento
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
- Graduate Program in Ecology of Inland Water Ecosystems (PEA), State University of Maringá (UEM), Centre of Research in Limnology, Ichthyology and Aquaculture (Nupélia), Maringá, Paraná, Brazil
| | - Victor R. A. Pimenta
- Laboratório de Ecologia Aplicada e Conservação, Departamento de Engenharia de Pesca e Ciências Biológicas, Universidade Do Estado de Santa Catarina, Laguna, SC Brazil
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Cecilia Alonso
- Microbial Ecology of Aquatic Systems Research Group, Centro Universitario Regional del Este, Universidad de la República, Rocha, Uruguay
| | - Clarissa R. Teixeira
- Laboratório de Mamíferos Aquáticos (LAMAQ), Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Whale Habitat, Ecology & Telemetry Laboratory (WHET), Oregon State University (OSU), Newport, OR USA
| | - Paulo R. Pagliosa
- Laboratório de Biodiversidade Costeira, Coordenadoria Especial de Oceanografia, Universidade Federal de Santa Catarina, Florianópolis, SC Brazil
| | - Sérgio A. Netto
- Universidade do Sul de Santa Catarina, UNISUL, Tubarão, Santa Catarina, Brazil
| | - Natália C. L. Santos
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Fábio G. Daura-Jorge
- Laboratório de Mamíferos Aquáticos (LAMAQ), Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Programa de Pós-Graduação em Ecologia (POSECO), Universidade Federal de Santa Catarina (UFSC), Trindade, Florianópolis, Brazil
| | - Odete Rocha
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Paulo Horta
- Laboratório de Ficologia, Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC Brazil
| | - Joaquim O. Branco
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí, Itajaí, SC Brazil
| | - Rodrigo Sartor
- Universidade do Sul de Santa Catarina, UNISUL, Tubarão, Santa Catarina, Brazil
| | - Jean Muller
- Universidade do Sul de Santa Catarina, UNISUL, Tubarão, Santa Catarina, Brazil
| | - Vivian M. Cionek
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí, Itajaí, SC Brazil
| |
Collapse
|
4
|
Shi J, Zuo Y, Qu W, Liu X, Fan Y, Cao P, Wang J. Stochastic processes shape the aggregation of free-living and particle-attached bacterial communities in the Yangtze River Estuary, China. J Basic Microbiol 2022; 62:1514-1525. [PMID: 35835725 DOI: 10.1002/jobm.202100666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
An estuary plays an important role in material and energy exchange between the land and sea, where complex physical, chemical, and biological processes occur. Here, we investigated the assembly processes of free-living (FL) and particle-associated (PA) bacterial communities in two seawater layers at five stations in the Yangtze River Estuary (YRE) by using 16S rRNA sequencing methods. The results indicated that Proteobacteria was the most abundant phylum in the YRE. The α-diversity of PA community was significantly higher than FL community, and analysis of similarity showed significantly different (Global R = 0.2809, p < 0.005). RDA revealed that phosphate (PO4 3- ) was significantly correlated with PA bacterial community abundance (p < 0.05). An ecological null model showed that both PA and FL bacterial communities were mainly influenced by stochastic processes (PA: 100%, FL: 70%), which PA attached to nutrient particles and are less affected by environmental filtration. Dispersal limitation (50%) was the main assembly process of the PA community, while homogeneous selection (30%) and drift (30%) were important processes in the FL community assembly. The available substrate for colonization limits the transformation from FL to PA bacteria. This study would improve our understanding of FL and PA bacterial community structure and factors affecting assembly process in estuarine environments.
Collapse
Affiliation(s)
- Jing Shi
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China
| | - Yaqiang Zuo
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China
| | - Wu Qu
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China
| | - Xuezhu Liu
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China
| | - Yingping Fan
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China
| | - Pinglin Cao
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China
| | - Jianxin Wang
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China
| |
Collapse
|
5
|
LaMontagne MG, Zhang Y, Guillen GJ, Gentry TJ, Allen MS. Hurricane Harvey Impacts on Water Quality and Microbial Communities in Houston, TX Waterbodies. Front Microbiol 2022; 13:875234. [PMID: 35774461 PMCID: PMC9239555 DOI: 10.3389/fmicb.2022.875234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Extreme weather events can temporarily alter the structure of coastal systems and generate floodwaters that are contaminated with fecal indicator bacteria (FIB); however, every coastal system is unique, so identification of trends and commonalities in these episodic events is challenging. To improve our understanding of the resilience of coastal systems to the disturbance of extreme weather events, we monitored water quality, FIB at three stations within Clear Lake, an estuary between Houston and Galveston, and three stations in bayous that feed into the estuary. Water samples were collected immediately before and after Hurricane Harvey (HH) and then throughout the fall of 2017. FIB levels were monitored by culturing E. coli and Enterococci. Microbial community structure was profiled by high throughput sequencing of PCR-amplified 16S rRNA gene fragments. Water quality and FIB data were also compared to historical data for these water body segments. Before HH, salinity within Clear Lake ranged from 9 to 11 practical salinity units (PSU). Immediately after the storm, salinity dropped to < 1 PSU and then gradually increased to historical levels over 2 months. Dissolved inorganic nutrient levels were also relatively low immediately after HH and returned, within a couple of months, to historical levels. FIB levels were elevated immediately after the storm; however, after 1 week, E. coli levels had decreased to what would be acceptable levels for freshwater. Enterococci levels collected several weeks after the storm were within the range of historical levels. Microbial community structure shifted from a system dominated by Cyanobacteria sp. before HH to a system dominated by Proteobacteria and Bacteroidetes immediately after. Several sequences observed only in floodwater showed similarity to sequences previously reported for samples collected following Hurricane Irene. These changes in beta diversity corresponded to salinity and nitrate/nitrite concentrations. Differential abundance analysis of metabolic pathways, predicted from 16S sequences, suggested that pathways associated with virulence and antibiotic resistance were elevated in floodwater. Overall, these results suggest that floodwater generated from these extreme events may have high levels of fecal contamination, antibiotic resistant bacteria and bacteria rarely observed in other systems.
Collapse
Affiliation(s)
- Michael G. LaMontagne
- Department of Biology and Biotechnology, University of Houston – Clear Lake, Houston, TX, United States
| | - Yan Zhang
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - George J. Guillen
- Department of Biology and Biotechnology, University of Houston – Clear Lake, Houston, TX, United States
| | - Terry J. Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Michael S. Allen
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
6
|
Basili M, Techtmann SM, Zaggia L, Luna GM, Quero GM. Partitioning and sources of microbial pollution in the Venice Lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151755. [PMID: 34848267 DOI: 10.1016/j.scitotenv.2021.151755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Microbial pollutants are a serious threat to human and environmental health in coastal areas. Based on the hypothesis that pollution from multiple sources may produce a distinct microbial signature and that microbial pollutants seem to distribute between a free-living and a particle-attached fraction, we investigated the occurrence, partitioning and sources of microbial pollutants in water samples collected in the Venice Lagoon (Italy). The area was taken as a case study of an environment characterized by a long history of industrial pollution and by growing human pressure. We found a variety of pollutants from several sources, with sewage-associated and faecal bacteria accounting for up to 5.98% of microbial communities. Sewage-associated pollutants were most abundant close to the city centre. Faecal pollution was highest in the area of the industrial port and was dominated by human inputs, whereas contamination from animal faeces was mainly detected at the interface with the mainland. Microbial pollutants were almost exclusively associated with the particle-attached fraction. The samples also contained other potential pathogens. Our findings stress the need for monitoring and managing microbial pollution in highly urbanized lagoon and semi-enclosed systems and suggest that management plans to reduce microbial inputs to the waterways should include measures to reduce particulate matter inputs to the lagoon. Finally, High-Throughput Sequencing combined with computational approaches proved critical to assess water quality and appears to be a valuable tool to support the monitoring of waterborne diseases.
Collapse
Affiliation(s)
- Marco Basili
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy
| | - Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Luca Zaggia
- CNR IGG, National Research Council - Institute of Geosciences and Earth Resources, Via G. Gradenigo 6, 35131 Padova, Italy
| | - Gian Marco Luna
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy
| | - Grazia Marina Quero
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy.
| |
Collapse
|
7
|
Deng Y, Liu S, Feng J, Wu Y, Mao C. What drives putative bacterial pathogens removal within seagrass meadows? MARINE POLLUTION BULLETIN 2021; 166:112229. [PMID: 33711607 DOI: 10.1016/j.marpolbul.2021.112229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
To analyze the mechanism of bacterial pathogen removal in seagrass meadows, we compared bacterial pathogens abundance in trapped particles in different seagrass meadows under different intensities of human activities. We compared the particle deposition rates and abundances of bacterial pathogen in Thalassia hemprichii, Enhalus acoroides stands and adjacent unvegetated patches. The bacterial pathogens abundance was much higher in E. acoroides than in adjacent unvegetated patches, however, the trapped particles under T. hemprichii were lower than in nearby unvegetated areas with the exception of the pristine seagrass meadow. These results indicate that seagrass, at least E. acoroides, can remove bacterial pathogens by trapping particles. What is unknown, nevertheless, is how the trapped bacterial pathogens are removed by T. hemprichii. We put forward that antibacterial chemical compounds release from seagrass was stimulated by stress from human activities for inhibition of bacterial pathogen. This putative mechanism needs to be explored in future studies.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya 572100, China.
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Can Mao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
8
|
Hou D, Hong M, Wang K, Yan H, Wang Y, Dong P, Li D, Liu K, Zhou Z, Zhang D. Prokaryotic community succession and assembly on different types of microplastics in a mariculture cage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115756. [PMID: 33162209 DOI: 10.1016/j.envpol.2020.115756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Microplastics have emerged as a new anthropogenic substrate that can readily be colonized by microorganisms. Nevertheless, microbial community succession and assembly among different microplastics in nearshore mariculture cages remains poorly understood. Using an in situ incubation experiment, 16S rRNA gene amplicon sequencing, and the neutral model, we investigated the prokaryotic communities attached to polyethylene terephthalate (PET), polyethylene (PE), and polypropylene (PP) in a mariculture cage in Xiangshan Harbor, China. The α-diversities and compositions of microplastic-attached prokaryotic communities were significantly distinct from free-living and small particle-attached communities in the surrounding water but relatively similar to the large particle-attached communities. Although a distinct prokaryotic community was developed on each type of microplastic, the communities on PE and PP more closely resembled each other. Furthermore, the prokaryotic community dissimilarity among all media (microplastics and water fractions) tended to decrease over time. Hydrocarbon-degrading bacteria Alcanivorax preferentially colonized PE, and the genus Vibrio with opportunistically pathogenic members has the potential to colonize PET. Additionally, neutral processes dominated the prokaryotic community assembly on PE and PP, while selection was more responsible for the prokaryotic assembly on PET. The assembly of Planctomycetaceae and Thaumarchaeota Marine Group I taxa on three microplastics were mainly governed by selection and neutral processes, respectively. Our study provides further understanding of microplastic-associated microbial ecology in mariculture environments.
Collapse
Affiliation(s)
- Dandi Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Man Hong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Kai Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Huizhen Yan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yanting Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Pengsheng Dong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Kai Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Zhiqiang Zhou
- Xiangshan Fisheries Technology Extension Center, Ningbo, 315700, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
9
|
Moon JW, Paradis CJ, Joyner DC, von Netzer F, Majumder EL, Dixon ER, Podar M, Ge X, Walian PJ, Smith HJ, Wu X, Zane GM, Walker KF, Thorgersen MP, Poole Ii FL, Lui LM, Adams BG, De León KB, Brewer SS, Williams DE, Lowe KA, Rodriguez M, Mehlhorn TL, Pfiffner SM, Chakraborty R, Arkin AP, Wall JD, Fields MW, Adams MWW, Stahl DA, Elias DA, Hazen TC. Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer. CHEMOSPHERE 2020; 255:126951. [PMID: 32417512 DOI: 10.1016/j.chemosphere.2020.126951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated areas. This study processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater. Fresh core sediments were compared by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including pollutants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate-reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of potentially hazardous elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments.
Collapse
Affiliation(s)
- Ji-Won Moon
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA; current U.S. Geological Survey, National Minerals Information Center, Reston, VA, USA
| | - Charles J Paradis
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Dominique C Joyner
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Frederick von Netzer
- University of Washington, Department of Civil and Environmental Engineering, Seattle, WA, USA
| | - Erica L Majumder
- University of Missouri, Department of Biochemistry, Columbia, MO, USA
| | - Emma R Dixon
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Mircea Podar
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Xiaoxuan Ge
- University of Georgia, Department of Biochemistry and Molecular Biology, Athens, GA, USA
| | - Peter J Walian
- Lawrence Berkeley National Laboratory, Molecular Biophysics and Integrated Bioimaging, Berkeley, CA, USA
| | - Heidi J Smith
- Montana State University, Center for Biofilm Engineering, Department of Microbiology & Immunology, Bozeman, MT, USA
| | - Xiaoqin Wu
- Lawrence Berkeley National Laboratory, Department of Ecology, Earth and Environmental Sciences Area, Berkeley, CA, USA
| | - Grant M Zane
- University of Missouri, Department of Biochemistry, Columbia, MO, USA
| | - Kathleen F Walker
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Michael P Thorgersen
- University of Georgia, Department of Biochemistry and Molecular Biology, Athens, GA, USA
| | - Farris L Poole Ii
- University of Georgia, Department of Biochemistry and Molecular Biology, Athens, GA, USA
| | - Lauren M Lui
- Lawrence Berkeley National Laboratory Environmental Genomics and Systems Biology, Berkeley, CA, USA
| | - Benjamin G Adams
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Kara B De León
- University of Missouri, Department of Biochemistry, Columbia, MO, USA
| | - Sheridan S Brewer
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Daniel E Williams
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Kenneth A Lowe
- Oak Ridge National Laboratory, Environmental Science Division, Oak Ridge, TN, USA
| | - Miguel Rodriguez
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Tonia L Mehlhorn
- Oak Ridge National Laboratory, Environmental Science Division, Oak Ridge, TN, USA
| | - Susan M Pfiffner
- University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA
| | - Romy Chakraborty
- Lawrence Berkeley National Laboratory, Department of Ecology, Earth and Environmental Sciences Area, Berkeley, CA, USA
| | - Adam P Arkin
- Lawrence Berkeley National Laboratory Environmental Genomics and Systems Biology, Berkeley, CA, USA
| | - Judy D Wall
- University of Missouri, Department of Biochemistry, Columbia, MO, USA
| | - Matthew W Fields
- Montana State University, Center for Biofilm Engineering, Department of Microbiology & Immunology, Bozeman, MT, USA
| | - Michael W W Adams
- University of Georgia, Department of Biochemistry and Molecular Biology, Athens, GA, USA
| | - David A Stahl
- University of Washington, Department of Civil and Environmental Engineering, Seattle, WA, USA
| | - Dwayne A Elias
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Terry C Hazen
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA; University of Tennessee, Departments of Earth & Planetary Sciences, Microbiology, Civil & Environmental Engineering, Methane Center, Knoxville, TN, USA.
| |
Collapse
|
10
|
Samad MS, Lee HJ, Cerbin S, Meima-Franke M, Bodelier PLE. Niche Differentiation of Host-Associated Pelagic Microbes and Their Potential Contribution to Biogeochemical Cycling in Artificially Warmed Lakes. Front Microbiol 2020; 11:582. [PMID: 32390961 PMCID: PMC7190982 DOI: 10.3389/fmicb.2020.00582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
It has been proposed that zooplankton-associated microbes provide numerous beneficial services to their "host". However, there is still a lack of understanding concerning the effect of temperature on the zooplankton microbiome. Furthermore, it is unclear to what extent the zooplankton microbiome differs from free-living and particle-associated (PA) microbes. Here, we explicitly addressed these issues by investigating (1) the differences in free-living, PA, and zooplankton associated microbes and (2) the impact of temperature on these microbes in the water column of a series of lakes artificially warmed by two power plants. High-throughput amplicon sequencing of the 16S rRNA gene showed that diversity and composition of the bacterial community associated to zooplankton, PA, and bacterioplankton varied significantly from one another, grouping in different clusters indicating niche differentiation of pelagic microbes. From the abiotic parameters measured, temperature significantly affected the diversity and composition of all analyzed microbiomes. Two phyla (e.g., Proteobacteria and Bacteroidetes) dominated in zooplankton microbiomes whereas Actinobacteria was the dominant phylum in the bacterioplankton. The microbial species richness and diversity was lower in zooplankton compared to bacterioplankton and PA. Surprisingly, genera of methane-oxidizing bacteria, methylotrophs and nitrifiers (e.g., Nitrobacter) significantly associated with the microbiome of zooplankton and PA. Our study clearly demonstrates niche differentiation of pelagic microbes and their potential link to biogeochemical cycling in freshwater systems.
Collapse
Affiliation(s)
- Md Sainur Samad
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
| | - Hyo Jung Lee
- Department of Biology, Kunsan National University, Gunsan, South Korea
| | - Slawek Cerbin
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marion Meima-Franke
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
| |
Collapse
|
11
|
Hu Y, Xie G, Jiang X, Shao K, Tang X, Gao G. The Relationships Between the Free-Living and Particle-Attached Bacterial Communities in Response to Elevated Eutrophication. Front Microbiol 2020; 11:423. [PMID: 32269552 PMCID: PMC7109266 DOI: 10.3389/fmicb.2020.00423] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
Exploring the relationships between free-living (FL) and particle-attached (PA) bacterial communities can provide insight into their connectivity and the partitioning of biogeochemical processes, which is crucial to understanding the elemental cycles and metabolic pathways in aquatic ecosystems. However, there is still intense debate about that whether FL and PA fractions have the same assemblage. To address this issue, we investigated the extent of similarity between FL and PA bacterial communities along the environmental gradients in Lake Wuli, China. Our results revealed that the west Lake Wuli was slightly eutrophic and the east lake was moderately and highly eutrophic. The alpha-diversity of the FL bacterial communities was significantly lower than that of the PA fraction in the west lake, whereas the alpha-diversity of the two fractions was comparable in the east lake. The beta-diversity of both communities significantly differed in the west lake, whereas it resembled that in the east lake. Moreover, functional prediction analysis highlighted the significantly larger differences of metabolic functions between the FL and PA fractions in the west lake than in the east lake. Suspended particles and carbon resource promote the similarity between the FL and PA fractions. Collectively, our result reveals a convergent succession of aquatic communities along the eutrophic gradient, highlighting that the connectivity between FL and PA bacterial communities is nutrient related.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guijuan Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing, China
| | - Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
12
|
Zhu C, Zhang J, Nawaz MZ, Mahboob S, Al-Ghanim KA, Khan IA, Lu Z, Chen T. Seasonal succession and spatial distribution of bacterial community structure in a eutrophic freshwater Lake, Lake Taihu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:29-40. [PMID: 30877958 DOI: 10.1016/j.scitotenv.2019.03.087] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
In aquatic ecosystems, both phytoplankton and bacteria play pivotal roles. Based on 16S rRNA gene sequencing, considerable research focused on phytoplankton colony attached and free-living bacteria has revealed the close relationship between them, and indicated that the entire bacterial community mediates crucial biogeochemical processes in aquatic ecosystems. However, our understanding of their distribution patterns and response to environmental factors remains poor. Besides, picocyanobacteria, which were omitted from attached bacteria analysis, were reported to be important in cyanobacterial blooms. To explore the spatiotemporal variation of the entire bacterial community with their driving environmental factors and detect the relationships among them, we collected 61 water samples spanning one year and the entire Lake Taihu regions for surveying the entire bacterial community. Our results indicated: 1) seasonal variation of the bacterial community composition was stronger than spatial variation due to the clearly seasonal variation of Microcystis, Synechococcus (pico-cyanobacteria) and other bacteria (Actinomycetales, Pirellulaceae and Sphingobacteriaceae); 2) the spatial distribution of the bacterial community showed that different phyla were dominant in different regions; 3) the bacterial co-occurrence networks varied seasonally and were dominated by Microcystis, ACK-M1, Chthoniobacteraceae, Synechococcus, Pirellulaceae and Pelagibacteraceae; 4) phytoplankton density, chlorophyll a, water temperature and total nitrogen were the major factors that drove the spatiotemporal variation of bacterial community composition. This study revealed the seasonal succession and spatial distribution of the entire bacterial community in Lake Taihu, providing new insights into the relationship between water bloom-forming cyanobacterial species and other bacteria, and their response to environmental factors in eutrophic freshwater ecosystem.
Collapse
Affiliation(s)
- Congmin Zhu
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, Beijing; National Research Center for Information Science and Technnology, Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Artificial Intelligence, State Key Lab of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Junyi Zhang
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Wuxi Environmental Monitoring Centre, Wuxi 214121, China
| | - Muhammad Zohaib Nawaz
- Department of Computer Science, University of Agriculture, Faisalabad 38040, Pakistan; Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan; Wuxi Metagene Science & Technology Co., Ltd, Wuxi, People's Republic of China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Iqrar Ahmad Khan
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan
| | - Zuhong Lu
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Ting Chen
- Institute for Artificial Intelligence, State Key Lab of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; Tsinghua-Fuzhou Institute of Digital Technology, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Xu H, Zhao D, Huang R, Cao X, Zeng J, Yu Z, Hooker KV, Hambright KD, Wu QL. Contrasting Network Features between Free-Living and Particle-Attached Bacterial Communities in Taihu Lake. MICROBIAL ECOLOGY 2018; 76:303-313. [PMID: 29318328 DOI: 10.1007/s00248-017-1131-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/18/2017] [Indexed: 05/22/2023]
Abstract
Free-living (FL) and particle-attached (PA) bacterial communities play critical roles in nutrient cycles, metabolite production, and as a food source in aquatic systems, and while their community composition, diversity, and functions have been well studied, we know little about their community interactions, co-occurrence patterns, and niche occupancy. In the present study, 13 sites in Taihu Lake were selected to study the differences of co-occurrence patterns and niches occupied between the FL and PA bacterial communities using correlation-based network analysis. The results show that both FL and PA bacterial community networks were non-random and significant differences of the network indexes (average path length, clustering coefficient, modularity) were found between the two groups. Furthermore, the PA bacterial community network consisted of more correlations between fewer OTUs, as well as higher average degree, making it more complex. The results of observed (O) to random (R) ratios of intra- or inter-phyla connections indicate more relationships such as cross-feeding, syntrophic, mutualistic, or competitive relationships in the PA bacterial community network. We also found that four OTUs (OTU00074, OTU00755, OTU00079, and OTU00454), which all had important influences on the nutrients cyclings, played different roles in the two networks as connectors or module hubs. Analysis of the relationships between the module eigengenes and environmental variables demonstrated that bacterial groups of the two networks favored quite different environmental conditions. These findings further confirmed the different ecological functions and niches occupied by the FL and PA bacterial communities in the aquatic ecosystem.
Collapse
Affiliation(s)
- Huimin Xu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Rui Huang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xinyi Cao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Zhongbo Yu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Katherine V Hooker
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - K David Hambright
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
14
|
Nnadozie CF, Lin J, Govinden R. Optimisation of protocol for effective detachment and selective recovery of the representative bacteria for extraction of metagenomic DNA from Eucalyptus spp. woodchips. J Microbiol Methods 2018; 148:155-160. [PMID: 29673787 DOI: 10.1016/j.mimet.2018.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
For some environments such as planktonic/aqueous environments, the separation of bacteria cells from eukaryotic cells prior to DNA extraction using filtration is relatively straightforward. However, for woodchips, the bacteria are attached/embedded within the wood matrix, which prevents easy removal of bacterial cells. In this study, a method for the selective extraction of DNA from bacteria inhabiting Eucalyptus spp. woodchips has been developed. The objective was to compare milled and unmilled woodchips processed via three detachment methods, viz., sonication, vortexing and shaking followed by filtration using Teflon filters according to three relevant criteria: DNA yield, DNA purity and quality of DNA. Highest DNA yield was obtained by milling and vortexing for 10 min (77.50 ± 5.17 ng/μl), followed by milling and vortexing for 2 min (61.00 ± 6.56 ng/μl), unmilled and vortexing for 10 min (38.67 ± 5.17 ng/μl) and milled and shaking for 2 h (31.62 ± 5.17 ng/μl). The lowest DNA yield was obtained by using unmilled woodchips and 5 min of sonication treatment (7.00 ± 1.22 ng/μl). There was no significant difference in DNA purity for milled or unmilled woodchips processed via the three detachment methods. Duration of cell detachment treatment did not significantly influence DNA yield and purity. Following optimisation experiments, it was possible to extract bacterial DNA using milled woodchips and 10 minute vortexing devoid of DNA from the host background and other associated eukaryotes and of sufficient quality and quantity for metagenomic analysis.
Collapse
Affiliation(s)
- Chika F Nnadozie
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa.
| | - Johnson Lin
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Roshini Govinden
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
15
|
Christensen GA, Moon J, Veach AM, Mosher JJ, Wymore AM, van Nostrand JD, Zhou J, Hazen TC, Arkin AP, Elias DA. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition. PLoS One 2018; 13:e0194663. [PMID: 29558522 PMCID: PMC5860781 DOI: 10.1371/journal.pone.0194663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/07/2018] [Indexed: 02/01/2023] Open
Abstract
Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion of the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.
Collapse
Affiliation(s)
- Geoff A. Christensen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - JiWon Moon
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Allison M. Veach
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Jennifer J. Mosher
- Marshall University, Biological Sciences, Huntington, West Virginia, United States of America
| | - Ann M. Wymore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | | | - Jizhong Zhou
- University of Oklahoma, Norman, Oklahoma, United States of America
| | - Terry C. Hazen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- University of Tennessee, Knoxville, Tennessee, United States of America
| | - Adam P. Arkin
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- University of California at Berkeley, Berkeley, California, United States of America
| | - Dwayne A. Elias
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
16
|
Marisol GU, Hélène M, Céline L, Claire C, Marc B, Asma SH, Olivier P. Consequences of contamination on the interactions between phytoplankton and bacterioplankton. CHEMOSPHERE 2018; 195:212-222. [PMID: 29268179 DOI: 10.1016/j.chemosphere.2017.12.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/14/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Sediment resuspension can provoke strong water enrichment in nutrients, contaminants, and microorganisms. Microcosm incubations were performed in triplicate for 96 h, with lagoon and offshore waters incubated either with sediment elutriate or with an artificial mixture of contaminants issued from sediment resuspension. Sediment elutriate provoked a strong increase in microbial biomass, with little effects on the phytoplankton and bacterioplankton community structures. Among the pool of contaminants released, few were clearly identified as structuring factors of phytoplankton and bacterioplankton communities, namely simazine, Cu, Sn, Ni, and Cr. Effects were more pronounced in the offshore waters, suggesting a relative tolerance of the lagoon microbial communities to contamination. The impacts of contamination on the microbial community structure were direct or indirect, depending on the nature and the strength of the interactions between phytoplankton and bacterioplankton.
Collapse
Affiliation(s)
- Goni-Urriza Marisol
- CNRS/ Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie Pour L'Environnement et les Materiaux, UMR5254, 64000, Pau, France
| | - Moussard Hélène
- CNRS/ Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie Pour L'Environnement et les Materiaux, UMR5254, 64000, Pau, France; UMR 9190 Marbec IRD-Ifremer-CNRS-Universite de Montpellier, Place Eugene Bataillon, Case 093, 34095, Montpellier Cedex 5, France
| | - Lafabrie Céline
- UMR 9190 Marbec IRD-Ifremer-CNRS-Universite de Montpellier, Place Eugene Bataillon, Case 093, 34095, Montpellier Cedex 5, France
| | - Carre Claire
- UMR 9190 Marbec IRD-Ifremer-CNRS-Universite de Montpellier, Place Eugene Bataillon, Case 093, 34095, Montpellier Cedex 5, France
| | - Bouvy Marc
- UMR 9190 Marbec IRD-Ifremer-CNRS-Universite de Montpellier, Place Eugene Bataillon, Case 093, 34095, Montpellier Cedex 5, France
| | - Sakka Hlaili Asma
- Faculte des Sciences de Bizerte, Universite de Carthage, 7021, Zarzouna, Tunisie
| | - Pringault Olivier
- UMR 9190 Marbec IRD-Ifremer-CNRS-Universite de Montpellier, Place Eugene Bataillon, Case 093, 34095, Montpellier Cedex 5, France; Faculte des Sciences de Bizerte, Universite de Carthage, 7021, Zarzouna, Tunisie.
| |
Collapse
|
17
|
Quero GM, Perini L, Pesole G, Manzari C, Lionetti C, Bastianini M, Marini M, Luna GM. Seasonal rather than spatial variability drives planktonic and benthic bacterial diversity in a microtidal lagoon and the adjacent open sea. Mol Ecol 2017; 26:5961-5973. [PMID: 28926207 DOI: 10.1111/mec.14363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/08/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
Abstract
Coastal lagoons are highly productive ecosystems, which are experiencing a variety of human disturbances at increasing frequency. Bacteria are key ecological players within lagoons, yet little is known about the magnitude, patterns and drivers of diversity in these transitional environments. We carried out a seasonal study in the Venice Lagoon (Italy) and the adjacent sea, to simultaneously explore diversity patterns in different domains (pelagic, benthic) and their spatio-temporal variability, and test the role of environmental gradients in structuring assemblages. Community composition differed between lagoon and open sea, and between domains. The dominant phyla varied temporally, with varying trends for the two domains, suggesting different environmental constraints on the assemblages. The percentage of freshwater taxa within the lagoon increased during higher river run-off, pointing at the lagoon as a dynamic mosaic of microbial taxa that generate the metacommunity across the whole hydrological continuum. Seasonality was more important than spatial variability in shaping assemblages. Network analyses indicated more interactions between several genera and environmental variables in the open sea than the lagoon. Our study provides evidences for a temporally dynamic nature of bacterial assemblages in lagoons and suggests that an interplay of seasonally influenced environmental drivers shape assemblages in these vulnerable ecosystems.
Collapse
Affiliation(s)
| | - Laura Perini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Venezia, Italy
| | - Graziano Pesole
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Consorzio Interuniversitario Biotecnologie (CIB) and Istituto Nazionale Biostrutture e Biosistemi (INBB), Bari, Italy
| | - Caterina Manzari
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - Claudia Lionetti
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - Mauro Bastianini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Venezia, Italy
| | - Mauro Marini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Ancona, Italy
| | - Gian Marco Luna
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Ancona, Italy
| |
Collapse
|
18
|
Zhao D, Xu H, Zeng J, Cao X, Huang R, Shen F, Yu Z. Community composition and assembly processes of the free-living and particle-attached bacteria in Taihu Lake. FEMS Microbiol Ecol 2017; 93:3814240. [DOI: 10.1093/femsec/fix062] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/09/2017] [Indexed: 11/12/2022] Open
|
19
|
Rieck A, Herlemann DPR, Jürgens K, Grossart HP. Particle-Associated Differ from Free-Living Bacteria in Surface Waters of the Baltic Sea. Front Microbiol 2015; 6:1297. [PMID: 26648911 PMCID: PMC4664634 DOI: 10.3389/fmicb.2015.01297] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/06/2015] [Indexed: 11/13/2022] Open
Abstract
Many studies on bacterial community composition (BCC) do not distinguish between particle-associated (PA) and free-living (FL) bacteria or neglect the PA fraction by pre-filtration removing most particles. Although temporal and spatial gradients in environmental variables are known to shape BCC, it remains unclear how and to what extent PA and FL bacterial diversity responds to such environmental changes. To elucidate the BCC of both bacterial fractions related to different environmental settings, we studied surface samples of three Baltic Sea stations (marine, mesohaline, and oligohaline) in two different seasons (summer and fall/winter). Amplicon sequencing of the 16 S rRNA gene revealed significant differences in BCC of both bacterial fractions among stations and seasons, with a particularly high number of PA operational taxonomic units (OTUs at genus-level) at the marine station in both seasons. "Shannon and Simpson indices" showed a higher diversity of PA than FL bacteria at the marine station in both seasons and at the oligohaline station in fall/winter. In general, a high fraction of bacterial OTUs was found exclusively in the PA fraction (52% of total OTUs). These findings indicate that PA bacteria significantly contribute to overall bacterial richness and that they differ from FL bacteria. Therefore, to gain a deeper understanding on diversity and dynamics of aquatic bacteria, PA and FL bacteria should be generally studied independently.
Collapse
Affiliation(s)
- Angelika Rieck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries Stechlin, Germany
| | | | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research Warnemünde Rostock, Germany
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries Stechlin, Germany ; Institute of Biochemistry and Biology, University of Potsdam Potsdam, Germany
| |
Collapse
|
20
|
Maghsoudi E, Fortin N, Greer C, Duy SV, Fayad P, Sauvé S, Prévost M, Dorner S. Biodegradation of multiple microcystins and cylindrospermopsin in clarifier sludge and a drinking water source: Effects of particulate attached bacteria and phycocyanin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:409-417. [PMID: 26122734 DOI: 10.1016/j.ecoenv.2015.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
The effects of particulate attached bacteria (PAB) and phycocyanin on the simultaneous biodegradation of a mixture of microcystin-LR, YR, LY, LW, LF and cylindrospermopsin (CYN) was assessed in clarifier sludge of a drinking water treatment plant (DWTP) and in a drinking water source. The biomass from lake water and clarifier sludge was able to degrade all microcystins (MCs) at initial concentrations of 10µgL(-1) with pseudo-first order reaction half-lives ranging from 2.3 to 8.8 days. CYN was degraded only in the sludge with a biodegradation rate of 1.0×10(-1)d(-1) and a half-life of 6.0 days. This is the first study reporting multiple MCs and CYN biodegradation in the coagulation-flocculation sludge of a DWTP. The removal of PAB from the lake water and the sludge prolonged the lag time substantially, such that no biodegradation of MCLY, LW and LF was observed within 24 days. Biodegradation rates were shown to increase in the presence of C-phycocyanin as a supplementary carbon source for indigenous bacteria, a cyanobacterial product that accompanies cyanotoxins during cyanobacteria blooms. MCs in mixtures degraded more slowly (or not at all) than if they were degraded individually, an important outcome as MCs in the environment are often present in mixtures. The results from this study showed that the majority of the bacterial biomass responsible for the biodegradation of cyanotoxins is associated with particles or biological flocs and there is a potential for extreme accumulation of cyanotoxins within the DWTP during a transient bloom.
Collapse
Affiliation(s)
- Ehsan Maghsoudi
- Polytechnique de Montréal, Civil, Mineral and Mining Engineering Department, P.O. Box 6079, Station Centre- Ville, Montréal, Québec, Canada H3C 3A7.
| | - Nathalie Fortin
- National Research Council Canada, Energy, Mining and Environment, 6100 Royalmount Ave., Montréal, QC, Canada H4P 2R2
| | - Charles Greer
- National Research Council Canada, Energy, Mining and Environment, 6100 Royalmount Ave., Montréal, QC, Canada H4P 2R2
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, C.P. 6128, Centre-Ville, Montréal, QC, Canada H3C 3J7
| | - Paul Fayad
- Department of Chemistry, Université de Montréal, C.P. 6128, Centre-Ville, Montréal, QC, Canada H3C 3J7
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, C.P. 6128, Centre-Ville, Montréal, QC, Canada H3C 3J7
| | - Michèle Prévost
- Polytechnique de Montréal, Civil, Mineral and Mining Engineering Department, P.O. Box 6079, Station Centre- Ville, Montréal, Québec, Canada H3C 3A7
| | - Sarah Dorner
- Polytechnique de Montréal, Civil, Mineral and Mining Engineering Department, P.O. Box 6079, Station Centre- Ville, Montréal, Québec, Canada H3C 3A7
| |
Collapse
|
21
|
Nnadozie CF, Lin J, Govinden R. Selective isolation of bacteria for metagenomic analysis: Impact of membrane characteristics on bacterial filterability. Biotechnol Prog 2015; 31:853-66. [DOI: 10.1002/btpr.2109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/20/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Chika F. Nnadozie
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences; University of KwaZulu-Natal (Westville Campus), Private Bag X54001; Durban 4000, South Africa
| | - Johnson Lin
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences; University of KwaZulu-Natal (Westville Campus), Private Bag X54001; Durban 4000, South Africa
| | - Roshini Govinden
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences; University of KwaZulu-Natal (Westville Campus), Private Bag X54001; Durban 4000, South Africa
| |
Collapse
|
22
|
Padilla CC, Ganesh S, Gantt S, Huhman A, Parris DJ, Sarode N, Stewart FJ. Standard filtration practices may significantly distort planktonic microbial diversity estimates. Front Microbiol 2015; 6:547. [PMID: 26082766 PMCID: PMC4451414 DOI: 10.3389/fmicb.2015.00547] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/13/2015] [Indexed: 02/01/2023] Open
Abstract
Fractionation of biomass by filtration is a standard method for sampling planktonic microbes. It is unclear how the taxonomic composition of filtered biomass changes depending on sample volume. Using seawater from a marine oxygen minimum zone, we quantified the 16S rRNA gene composition of biomass on a prefilter (1.6 μm pore-size) and a downstream 0.2 μm filter over sample volumes from 0.05 to 5 L. Significant community shifts occurred in both filter fractions, and were most dramatic in the prefilter community. Sequences matching Vibrionales decreased from ~40 to 60% of prefilter datasets at low volumes (0.05–0.5 L) to less than 5% at higher volumes, while groups such at the Chromatiales and Thiohalorhabdales followed opposite trends, increasing from minor representation to become the dominant taxa at higher volumes. Groups often associated with marine particles, including members of the Deltaproteobacteria, Planctomycetes, and Bacteroidetes, were among those showing the greatest increase with volume (4 to 27-fold). Taxon richness (97% similarity clusters) also varied significantly with volume, and in opposing directions depending on filter fraction, highlighting potential biases in community complexity estimates. These data raise concerns for studies using filter fractionation for quantitative comparisons of aquatic microbial diversity, for example between free-living and particle-associated communities.
Collapse
Affiliation(s)
- Cory C Padilla
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Sangita Ganesh
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Shelby Gantt
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Alex Huhman
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Darren J Parris
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Neha Sarode
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Frank J Stewart
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| |
Collapse
|
23
|
Tang X, Li L, Shao K, Wang B, Cai X, Zhang L, Chao J, Gao G. Pyrosequencing analysis of free-living and attached bacterial communities in Meiliang Bay, Lake Taihu, a large eutrophic shallow lake in China. Can J Microbiol 2015; 61:22-31. [DOI: 10.1139/cjm-2014-0503] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the relationship between particle-attached (PA, ≥5.0 μm) and free-living (FL, 0.2–5.0 μm) bacterial communities, samplings were collected seasonally from November 2011 to August 2012 in Meiliang Bay, Lake Taihu, China. We used 454 pyrosequencing of 16S rRNA genes to study bacterial diversity and structure of PA and FL communities. The analysis rendered 37 985 highly qualified reads, subsequently assigned to 1755 operational taxonomic units (97% similarity) for the 8 samples. Although 27 high-level taxonomic groups were obtained, the 3 dominant phyla (Proteobacteria, Actinobacteria, and Bacteroidetes) comprised about 75.9% and 82.4% of the PA and FL fractions, respectively. Overall, we found no significant differences between community types, as indicated by ANOSIM R statistics (R = 0.063, P > 0.05) and the Parsimony test (P = 0.222). Dynamics of bacterial communities were correlated with changes in concentrations of total suspended solids (TSS) and total phosphorus (TP). In summer, a significant taxonomic overlap in the 2 size fractions was observed when Cyanobacteria, a major contributor of TSS and TP, dominated in the water, highlighting the potential rapid exchange between PA and FL bacterial populations in large shallow eutrophic lakes.
Collapse
Affiliation(s)
- Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Linlin Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Boweng Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Xianlei Cai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Jianying Chao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection, Nanjing 210042, People’s Republic of China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| |
Collapse
|
24
|
Phylogenetic differences in attached and free-living bacterial communities in a temperate coastal lagoon during summer, revealed via high-throughput 16S rRNA gene sequencing. Appl Environ Microbiol 2014; 80:2071-83. [PMID: 24463966 DOI: 10.1128/aem.02916-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most of what is known about coastal free-living and attached bacterial diversity is based on open coasts, with high particulate and nutrient riverine supply, terrestrial runoffs, and anthropogenic activities. The Magdalen Islands in the Gulf of St. Lawrence (Canada) are dominated by shallow lagoons with small, relatively pristine catchments and no freshwater input apart from rain. Such conditions provided an opportunity to investigate coastal free-living and attached marine bacterial diversity in the absence of confounding effects of steep freshwater gradients. We found significant differences between the two communities and marked temporal patterns in both. Taxonomic richness and diversity were greater in the attached than in the free-living community, increasing over summer, especially within the least abundant bacterial phyla. The highest number of reads fell within the SAR 11 clade (Pelagibacter, Alphaproteobacteria), which dominated free-living communities. The attached communities had deeper phylum-level diversity than the free-living fraction. Distance-based redundancy analysis indicated that the particulate organic matter (POM) concentration was the main variable separating early and late summer samples with salinity and temperature changes also significantly correlated to bacterial community structure. Our approach using high-throughput sequencing detected differences in free-living versus attached bacteria in the absence of riverine input, in keeping with the concept that marine attached communities are distinct from cooccurring free-living taxa. This diversity likely reflects the diverse microhabitats of available particles, implying that the total bacterial diversity in coastal systems is linked to particle supply and variability, with implications for understanding microbial biodiversity in marine systems.
Collapse
|
25
|
Ganesh S, Parris DJ, DeLong EF, Stewart FJ. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. THE ISME JOURNAL 2014; 8:187-211. [PMID: 24030599 PMCID: PMC3869020 DOI: 10.1038/ismej.2013.144] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 01/27/2023]
Abstract
Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2-1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2-1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.
Collapse
Affiliation(s)
- Sangita Ganesh
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Darren J Parris
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Edward F DeLong
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Parsons Laboratory 48, Cambridge, MA, USA
- Center for Microbial Ecology: Research and Education, Honolulu, Hawaii, USA
| | - Frank J Stewart
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
26
|
Crespo BG, Pommier T, Fernández-Gómez B, Pedrós-Alió C. Taxonomic composition of the particle-attached and free-living bacterial assemblages in the Northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. Microbiologyopen 2013; 2:541-52. [PMID: 23723056 PMCID: PMC3948605 DOI: 10.1002/mbo3.92] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/07/2013] [Accepted: 03/15/2013] [Indexed: 11/08/2022] Open
Abstract
Free-living (FL) and particle-attached (PA) bacterial assemblages in the Northwest Mediterranean Sea were studied using pyrosequencing data of the 16S rRNA. We have described and compared the richness, the distribution of Operational Taxonomic Units (OTUs) within the two fractions, the spatial distribution, and the taxonomic composition of FL and PA bacterial assemblages. The number of OTUs in the present work was two orders of magnitude higher than in previous studies. Only 25% of the total OTUs were common to both fractions, whereas 49% OTUs were exclusive to the PA fraction and 26% to the FL fraction. The OTUs exclusively present in PA or FL assemblages were very low in abundance (6% of total abundance). Detection of the rare OTUs revealed the larger richness of PA bacteria that was hidden in previous studies. Alpha-Proteobacteria dominated the FL bacterial assemblage and gamma-Proteobacteria dominated the PA fraction. Bacteroidetes were important in the PA fraction mainly at the coast. The high number of sequences in this study detected additional phyla from the PA fraction, such as Actinobacteria, Firmicutes, and Verrucomicrobia.
Collapse
Affiliation(s)
- Bibiana G Crespo
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, 08003, Barcelona, Spain
| | | | | | | |
Collapse
|
27
|
Sercu B, Jones ADG, Wu CH, Escobar MH, Serlin CL, Knapp TA, Andersen GL, Holden PA. The influence of in situ chemical oxidation on microbial community composition in groundwater contaminated with chlorinated solvents. MICROBIAL ECOLOGY 2013; 65:39-49. [PMID: 22864851 DOI: 10.1007/s00248-012-0092-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/12/2012] [Indexed: 06/01/2023]
Abstract
In situ chemical oxidation with permanganate has become an accepted remedial treatment for groundwater contaminated with chlorinated solvents. This study focuses on the immediate and short-term effects of sodium permanganate (NaMnO(4)) on the indigenous subsurface microbial community composition in groundwater impacted by trichloroethylene (TCE). Planktonic and biofilm microbial communities were studied using groundwater grab samples and reticulated vitreous carbon passive samplers, respectively. Microbial community composition was analyzed by terminal restriction fragment length polymorphism and a high-density phylogenetic microarray (PhyloChip). Significant reductions in microbial diversity and biomass were shown during NaMnO(4) exposure, followed by recovery within several weeks after the oxidant concentrations decreased to <1 mg/L. Bray-Curtis similarities and nonmetric multidimensional scaling showed that microbial community composition before and after NaMnO(4) was similar, when taking into account the natural variation of the microbial communities. Also, 16S rRNA genes of two reductive dechlorinators (Desulfuromonas spp. and Sulfurospirillum spp.) and diverse taxa capable of cometabolic TCE oxidation were detected in similar quantities by PhyloChip across all monitoring wells, irrespective of NaMnO(4) exposure and TCE concentrations. However, minimal biodegradation of TCE was observed in this study, based on oxidized conditions, concentration patterns of chlorinated and nonchlorinated hydrocarbons, geochemistry, and spatiotemporal distribution of TCE-degrading bacteria.
Collapse
Affiliation(s)
- Bram Sercu
- Earth Research Institute, University of California, Santa Barbara, CA 93106-4161, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sercu B, Van De Werfhorst LC, Murray JLS, Holden PA. Terrestrial sources homogenize bacterial water quality during rainfall in two urbanized watersheds in Santa Barbara, CA. MICROBIAL ECOLOGY 2011; 62:574-83. [PMID: 21617896 DOI: 10.1007/s00248-011-9874-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 05/05/2011] [Indexed: 05/13/2023]
Abstract
Microbiological contamination from runoff is a human health concern in urbanized coastal environments, but the contamination sources are often unknown. This study quantified fecal indicator bacteria and compared the distributions of human-specific genetic markers and bacterial community composition during dry and wet weather in urban creeks draining two neighboring watersheds in Santa Barbara, CA. In a prior study conducted during exclusively dry weather, the creeks were contaminated with human waste as indicated by elevated numbers of the human-specific Bacteroidales marker HF183 (Sercu et al. in Environ Sci Technol 43:293-298, 2009). During the storm, fecal indicator bacterial numbers and loads increased orders of magnitude above dry weather conditions. Moreover, bacterial community composition drastically changed during rainfall and differed from dry weather flow by (1) increased bacterial diversity, (2) reduced spatial heterogeneity within and between watersheds, and (3) clone library sequences more related to terrestrial than freshwater taxa. Finally, the spatial patterns of human-associated genetic markers (HF183 and Methanobrevibacter smithii nifH gene) changed during wet weather, and the contribution of surface soils to M. smithii nifH gene detection was suspected. The increased fecal indicator bacteria numbers during wet weather were likely associated with terrestrial sources, instead of human waste sources that dominated during dry weather flow.
Collapse
Affiliation(s)
- Bram Sercu
- Donald Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106-5131, USA.
| | | | | | | |
Collapse
|
29
|
Sakami T. Seasonal and spatial variation of bacterial community structure in river-mouth areas of Gokasho bay, Japan. Microbes Environ 2011; 23:277-84. [PMID: 21558719 DOI: 10.1264/jsme2.me08513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated seasonal and spatial dynamics of the bacterial community in Gokasho bay with denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA gene fragments. The community structure was related to physico-chemical water conditions in the area examined. The bacterial community clustered into three groups: bacteria collected during January-May; those collected from water at the surface in July and September; and those collected from water at the bottom in July and September and from both depths in November. Canonical correspondence analyses indicated that the seasonal variability in bacterial community was associated with water temperature succession. On the other hand, concentrations of particulate organic matter and nitrite plus nitrate were related to the vertical change in community structure in summer and autumn as well as HNF abundance, suggesting that both top-down and bottom-up control affected the community. The influence of salinity was insignificant though bacterial production was related to salinity. No relationship was observed between the variation in community structure and that in hydrolytic enzyme activity. The results indicate that changes in bacterial activity are not coupled with variation in community structure.
Collapse
Affiliation(s)
- Tomoko Sakami
- Tohoku National Fisheries Research Institute, Fisheries Research Agency, 3-27-5, Shinhama, Shiogama, Miyagi, 985-0001 Japan
| |
Collapse
|
30
|
Bahgat M. Diversity of Bacterial Communities in Contrasting Aquatic Environments: Lake Timsah, Egypt. Microbiol Insights 2011. [DOI: 10.4137/mbi.s6948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Effect of pollution on diversity of attached and free-living bacteria in two contrasting stations, namely, Suez Canal and outlet of West Lagoon to Lake Timsah was investigated. Bacillus was the most abundant genus especially in West Lagoon station where higher organic agricultural and municipal loads was discharged. Bacterial species richness differed among water depths and was higher in subsurface samples. In Suez Canal more Gram negative populations were isolated. The possible influences of pollution in the West Lagoon station on the bacterial community composition were discussed.
Collapse
Affiliation(s)
- Magdy Bahgat
- Botany Department, Faculty of Sciences, Port Said University, Port Said, Egypt
| |
Collapse
|
31
|
Cultivation-independent analysis of bacteria in IDEXX Quanti-Tray/2000 fecal indicator assays. Appl Environ Microbiol 2010; 77:627-33. [PMID: 21097584 DOI: 10.1128/aem.01113-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Monitoring microbiological water quality is important for protecting water resources and the health of swimmers. Routine monitoring relies on cultivating fecal indicator bacteria (FIB), frequently using defined substrate technology. Defined substrate technology is designed to specifically enrich for FIB, but a complete understanding of the assay microbiology requires culture-independent analysis of the enrichments. This study aimed to identify bacteria in positive wells of Colilert and Enterolert Quanti-Tray/2000 (IDEXX Laboratories) FIB assays in environmental water samples and to quantify the degree of false-positive results for samples from an urban creek by molecular methods. Pooled Escherichia coli- and Enterococcus-positive Quanti-Tray/2000 enrichments, either from urban creek dry weather flow or municipal sewage, harbored diverse bacterial populations based on 16S rRNA gene sequences and terminal restriction fragment length polymorphism analyses. Target taxa (coliforms or enterococci) and nontarget taxa (Vibrio spp., Shewanella spp., Bacteroidetes, and Clostridium spp.) were identified in pooled and individual positive Colilert and Enterolert wells based on terminal restriction fragments that were in common with those generated in silico from clone sequences. False-positive rates of between 4 and 23% occurred for the urban creek samples, based on the absence of target terminal restriction fragments in individual positive wells. This study suggests that increased selective inhibition of nontarget bacteria could improve the accuracy of the Colilert and Enterolert assays.
Collapse
|
32
|
Amaral-Zettler LA, Rocca JD, Lamontagne MG, Dennett MR, Gast RJ. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:9072-8. [PMID: 19174873 PMCID: PMC2668980 DOI: 10.1021/es801904z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Hurricanes have the potential to alter the structures of coastal ecosystems and generate pathogen-laden floodwaters thatthreaten public health. To examine the impact of hurricanes on urban systems, we compared microbial community structures in samples collected after Hurricane Katrina and before and after Hurricane Rita. We extracted environmental DNA and sequenced small-subunit rRNA (SSU rRNA) gene clone libraries to survey microbial communities in floodwater, water, and sediment samples collected from Lake Charles, Lake Pontchartrain, the 17th Street and Industrial Canals in New Orleans, and raw sewage. Correspondence analysis showed that microbial communities associated with sediments formed one cluster while communities associated with lake and Industrial Canal water formed a second. Communities associated with water from the 17th Street Canal and floodwaters collected in New Orleans showed similarity to communities in raw sewage and contained a number of sequences associated with possible pathogenic microbes. This suggests that a distinct microbial community developed in floodwaters following Hurricane Katrina and that microbial community structures as a whole might be sensitive indicators of ecosystem health and serve as "sentinels" of water quality in the environment.
Collapse
Affiliation(s)
- Linda A Amaral-Zettler
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA.
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Zhang R, Liu B, Lau SCK, Ki JS, Qian PY. Particle-attached and free-living bacterial communities in a contrasting marine environment: Victoria Harbor, Hong Kong. FEMS Microbiol Ecol 2007; 61:496-508. [PMID: 17627779 DOI: 10.1111/j.1574-6941.2007.00353.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Diversity of particle-attached and free-living marine bacteria in Victoria Harbor, Hong Kong, and its adjacent coastal and estuarial environments was investigated using DNA fingerprinting and clone library analysis. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes showed that bacterial communities in three stations of Victoria Harbor were similar, but differed from those in adjacent coastal and estuarine stations. Particle-attached and free-living bacterial community composition differed in the Victoria Harbor area. DNA sequencing of 28 bands from DGGE gel showed Alphaproteobacteria was the most abundant group, followed by the Bacteroidetes, and other Proteobacteria. Bacterial species richness (number of DGGE bands) differed among stations and populations (particle-attached and free-living; bottom and surface). BIOENV analysis indicated that the concentrations of suspended solids were the major contributing parameter for the spatial variation of total bacterial community structure. Samples from representative stations were selected for clone library (548 clones) construction and their phylogenetic distributions were similar to those of sequences from DGGE. Approximately 80% of clones were affiliated to Proteobacteria, Bacteroidetes and Cyanobacteria. The possible influences of dynamic pollution and hydrological conditions in the Victoria Harbor area on the particle-attached and free-living bacterial community structures were discussed.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Biology and Coastal Marine Laboratory, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
35
|
Piccini C, Conde D, Alonso C, Sommaruga R, Pernthaler J. Blooms of single bacterial species in a coastal lagoon of the southwestern Atlantic Ocean. Appl Environ Microbiol 2006; 72:6560-8. [PMID: 17021206 PMCID: PMC1610279 DOI: 10.1128/aem.01089-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We investigated seasonal differences in community structure and activity (leucine incorporation) of the planktonic bacterial assemblage in the freshwater and brackish-water zones of a shallow coastal lagoon of the southwestern Atlantic Ocean. Alphaproteobacteria formed the dominant microbial group in both zones throughout the sampling period. After an intrusion of marine water, members of the SAR11 lineage became abundant in the brackish-water zone. These bacteria were apparently distributed over the lagoon during the following months until they constituted almost 30% of all prokaryotic cells at both sampling sites. At the first sampling date (March 2003) a single alphaproteobacterial species unrelated to SAR11, Sphingomonas echinoides, dominated the microbial assemblages in both zones of the lagoon concomitantly with a bloom of filamentous cyanobacteria. Pronounced maxima of leucine incorporation were observed once in each zone of the lagoon. In the freshwater zone, this highly active microbial assemblage was a mix of the typical bacteria lineages expected in aquatic systems. By contrast, a single bacterial genotype with >99% similarity to the facultative pathogen gammaproteobacterial species Stenotrophomonas maltophilia formed >90% of the bacterial assemblage (>10(7) cell ml(-1)) in the brackish-water zone at the time point of highest bacterial leucine incorporation. Moreover, these bacteria were equally dominant, albeit less active, in the freshwater zone. Thus, the pelagic zone of the studied lagoon harbored repeated short-term blooms of single bacterial species. This finding may have consequences for environmental protection.
Collapse
Affiliation(s)
- Claudia Piccini
- Laboratory of Microbiology, Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
36
|
Cao Y, Cherr GN, Córdova-Kreylos AL, Fan TWM, Green PG, Higashi RM, Lamontagne MG, Scow KM, Vines CA, Yuan J, Holden PA. Relationships between sediment microbial communities and pollutants in two California salt marshes. MICROBIAL ECOLOGY 2006; 52:619-33. [PMID: 17072678 DOI: 10.1007/s00248-006-9093-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Revised: 04/18/2006] [Accepted: 04/21/2006] [Indexed: 05/12/2023]
Abstract
Salt marshes are important ecosystems whose plant and microbial communities can alter terrestrially derived pollutants prior to coastal water discharge. However, knowledge regarding relationships between anthropogenic pollutant levels and salt marsh microbial communities is limited, and salt marshes on the West Coast of the United States are rarely examined. In this study, we investigated the relationships between microbial community composition and 24 pollutants (20 metals and 4 organics) in two California salt marshes. Multivariate ordination techniques were used to assess how bacterial community composition, as determined by terminal restriction fragment length polymorphism and phospholipid fatty acid analyses, was related to pollution. Sea urchin embryo toxicity measurements and plant tissue metabolite profiles were considered two other biometrics of pollution. Spatial effects were strongly manifested across marshes and across channel elevations within marshes. Utilizing partial canonical correspondence analysis, an ordination technique new to microbial ecology, we found that several metals were strongly associated with microbial community composition after accounting for spatial effects. The major patterns in plant metabolite profiles were consistent with patterns across microbial community profiles, but sea urchin embryo assays, which are commonly used to evaluate ecological toxicity, had no identifiable relationships with pollution. Whereas salt marshes are generally dynamic and complex habitats, microbial communities in these marshes appear to be relatively sensitive indicators of toxic pollutants.
Collapse
Affiliation(s)
- Y Cao
- Donald Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106-5131, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Córdova-Kreylos AL, Cao Y, Green PG, Hwang HM, Kuivila KM, Lamontagne MG, Van De Werfhorst LC, Holden PA, Scow KM. Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments. Appl Environ Microbiol 2006; 72:3357-66. [PMID: 16672478 PMCID: PMC1472379 DOI: 10.1128/aem.72.5.3357-3366.2006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 03/02/2006] [Indexed: 11/20/2022] Open
Abstract
The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes.
Collapse
Affiliation(s)
- Ana Lucía Córdova-Kreylos
- Department of Land, Air and Water Resources, 1110 PES Building, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Steinberger RE, Holden PA. Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microbiol 2005; 71:5404-10. [PMID: 16151131 PMCID: PMC1214645 DOI: 10.1128/aem.71.9.5404-5410.2005] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.
Collapse
Affiliation(s)
- R E Steinberger
- Donald Bren School of Environmental Science and Management, University of California-Santa Barbara, Bren Hall, Santa Barbara, CA 93106-5131, USA
| | | |
Collapse
|
39
|
LaMontagne MG, Leifer I, Bergmann S, Van De Werfhorst LC, Holden PA. Bacterial diversity in marine hydrocarbon seep sediments. Environ Microbiol 2004; 6:799-808. [PMID: 15250882 DOI: 10.1111/j.1462-2920.2004.00613.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Marine seeps introduce significant amounts of hydrocarbons into oceans and create unusual habitats for microfauna and -flora. In the vicinity of chronic seeps, microbes likely exert control on carbon quality entering the marine food chain and, in turn, hydrocarbons could influence microbial community composition and diversity. To determine the effects of seep oil on marine sediment bacterial communities, we collected sediment piston cores within an active marine hydrocarbon seep zone in the Coal Oil Point Seep Field, at a depth of 22 m in the Santa Barbara Channel, California. Cores were taken adjacent to an active seep vent in a hydrocarbon volcano, on the edge of the volcano, and at the periphery of the area of active seepage. Bacterial community profiles were determined by terminal restriction fragment length polymorphisms (TRFLPs) of 16S ribosomal genes that were polymerase chain reaction (PCR)-amplified with eubacterial primers. Sediment carbon content and C/N ratio increased with oil content. Terminal restriction fragment length polymorphisms suggested that bacterial communities varied both with depth into sediments and with oil concentration. Whereas the apparent abundance of several peaks correlated positively with hydrocarbon content, overall bacterial diversity and richness decreased with increasing sediment hydrocarbon content. Sequence analysis of a clone library generated from sediments collected at the periphery of the seep suggested that oil-sensitive species belong to the gamma Proteobacteria and Holophaga groups. These sequences were closely related to sequences previously recovered from uncontaminated marine sediments. Our results suggest that seep hydrocarbons exert a strong selective pressure on bacterial communities in marine sediments. This selective pressure could, in turn, control the effects of oil on other biota in the vicinity of marine hydrocarbon seeps.
Collapse
Affiliation(s)
- Michael G LaMontagne
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | |
Collapse
|
40
|
LaMontagne MG, Schimel JP, Holden PA. Comparison of subsurface and surface soil bacterial communities in California grassland as assessed by terminal restriction fragment length polymorphisms of PCR-amplified 16S rRNA genes. MICROBIAL ECOLOGY 2003; 46:216-27. [PMID: 14708746 DOI: 10.1007/s00248-003-1006-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The integrated biomass beneath the surface horizon in unsaturated soils is large and potentially important in nutrient and carbon cycling. Compared to surface soils, the ecology of these subsurface soils is weakly understood, particularly in terms of the composition of bacterial communities. We compared soil bacterial communities along two vertical transects by terminal restriction fragment length polymorphisms (TRFLPs) of PCR-amplified 16S rRNA genes to determine how surface and deep bacterial communities differ. DNA yield from soils collected from two Mediterranean grassland transects decreased exponentially from the surface to 4 m deep. Richness, as assessed by the number of peaks obtained after restriction with HhaI, MspI, RsaI, or HaeIII, and diversity, as assessed by the Shannon diversity indices, were lowest in the deepest sample. Lower diversity at depth is consistent with species-energy theory, which would predict relatively low diversity in the low organic matter horizons. Principal components analysis suggested that, in terms of HhaI and HaeIII generated TRFLPs, bacterial communities differed between depths. The most abundant amplicons cloned from the deepest sample contained sequences with restriction sites consistent with the largest peaks observed in TRFLPs generated from deep samples. These more abundant operational taxonomic units (OTUs) appeared related to Pseudomonas and Variovorax. Several OTUs were more related to each other than any previously described ribotypes. These OTUs showed similarity to bacteria from the divisions Actinobacteria and Firmicutes.
Collapse
Affiliation(s)
- M G LaMontagne
- The Donald Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106-5131, USA.
| | | | | |
Collapse
|