1
|
Cebekhulu S, Gómez-Arias A, Matu A, Alom J, Valverde A, Caraballo MA, Ololade O, Schneider P, Castillo J. Role of indigenous microbial communities in the mobilization of potentially toxic elements and rare-earth elements from alkaline mine waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133504. [PMID: 38310848 DOI: 10.1016/j.jhazmat.2024.133504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
This study aims to evaluate the role of indigenous microorganisms in the mobilization of potentially toxic elements (PTE) and rare-earth elements (REE), the influence of the bioavailability of carbon sources that might boost microbial leaching, and the generation of neutral/alkaline mine drainage from alkaline tailings. These tailings, with significant concentrations of total organic carbon (TOC), were mainly colonized by bacteria belonging to the genera Sphingomonas, Novosphingobium and Solirubrobacter, and fungi of the genera Alternaria, Sarocladium and Aspergillus. Functionality analysis suggests the capability of these microorganisms to leach PTE and REE. Bio-/leaching tests confirmed the generation of neutral mine drainage, the influence of organic substrate, and the leaching of higher concentrations of PTE and REE due to the production of organic acids and siderophores by indigenous microorganisms. In addition, this study offers some insights into a sustainable alternative for reprocessing PMC alkaline tailings to recover REE.
Collapse
Affiliation(s)
- S Cebekhulu
- Centre for Environmental Management, University of the Free State, Bloemfontein, Republic of South Africa
| | - A Gómez-Arias
- Department of Chemistry, University of the Free State, Bloemfontein, Republic of South Africa
| | - A Matu
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Republic of South Africa
| | - J Alom
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Republic of South Africa
| | - A Valverde
- Instituto de Recursos Naturales y Agrobiologıa de Salamanca (IRNASA, CSIC), Salamanca, Spain
| | - M A Caraballo
- Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain; Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
| | - O Ololade
- Centre for Environmental Management, University of the Free State, Bloemfontein, Republic of South Africa
| | - P Schneider
- Department for Water, Environment, Civil Engineering and Safety, University of Applied Sciences Magdeburg-Stendal, Magdeburg, Germany
| | - J Castillo
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Republic of South Africa.
| |
Collapse
|
2
|
Nosalova L, Willner J, Fornalczyk A, Saternus M, Sedlakova-Kadukova J, Piknova M, Pristas P. Diversity, heavy metals, and antibiotic resistance in culturable heterotrophic bacteria isolated from former lead–silver–zinc mine heap in Tarnowskie Gory (Silesia, Poland). Arch Microbiol 2023; 205:26. [DOI: 10.1007/s00203-022-03369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
|
3
|
Wang H, Chen Q, Liu R, Zhang Y, Zhang Y. Synthesis and application of starch-stablized Fe-Mn/biochar composites for the removal of lead from water and soil. CHEMOSPHERE 2022; 305:135494. [PMID: 35764108 DOI: 10.1016/j.chemosphere.2022.135494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Starch-stablized and Fe/Mn bimetals modified biochar derived from corn straw (SFM@CBC and SFM@CBC-350) were firstly prepared, characterized (FTIR, XRD, SEM, EDS, BET and XPS), and applied in Pb removal from water and soil. SFM@CBC and SFM@CBC-350 displayed highly effective adsorption performance of Pb2+ from wastewater with the maximum adsorption capacity of 170.91 mg g-1 and 190.17 mg g-1, respectively, which were much greater than that of FM@CBC (149.25 mg g-1) and CBC (101.10 mg g-1). Studies of adsorption kinetics, isotherms and thermodynamics indicated that the absorption of Pb2+ by SFM@CBC and SFM@CBC-350 was spontaneous and endothermic reaction, and it was controlled by monolayer chemisorption. The mechanism studies indicated that Pb2+ removal involved with multiple mechanism, including complexation (dominant process confirmed by XPS analysis), physical adsorption, electrostatic attraction, and cation exchange. The reusability test demonstrated that SFM@CBC and SFM@CBC-350 had very good stability and reusability. In addition, in order to further explore Pb removal performance of the modified biochar, SFM@CBC-350 was used in soil-ryegrass pot systems. Compared with the controls, the addition of SFM@CBC-350 reduced Pb content in soil and ryegrass, increased the biomass and total chlorophyll content, reduced the activity of antioxidant enzymes (CAT, SOD, MDA and POD) and ROS fluorescence intensity of ryegrass, thus alleviating Pb stress of ryegrass. Besides, the addition of SFM@CBC-350 could increase the richness and diversity of soil microorganisms, which was beneficial to the growth of ryegrass. Hence, SFM@CBC-350 has the potential of being used as a green, efficient and promising adsorbent in Pb removal from wastewater and soil.
Collapse
Affiliation(s)
- Hai Wang
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China; Jianhu Provincial Wetland Park Management Committee, Shaoxing, 312000, Zhejiang, PR China.
| | - Qian Chen
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Renrong Liu
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Yichan Zhang
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, PR China
| | - Yaohong Zhang
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China.
| |
Collapse
|
4
|
Shahraki A, Mohammadi-Sichani M, Ranjbar M. Identification of lead-resistant rhizobacteria of Carthamus tinctorius and their effects on lead absorption of Sunflower. J Appl Microbiol 2021; 132:3073-3080. [PMID: 34897903 DOI: 10.1111/jam.15410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
AIMS Using rhizobacteria as plant growth-promoting agents for improving heavy-metal phytoremediation processes in contaminated soil has attracted a lot of attention mainly because of their eco-friendliness. The aim of this study was the evaluation of lead phytoremediation by Carthamus tinctorius improved with the isolated and molecularly identified lead-resistant rhizobacteria. METHODS AND RESULTS Rhizobacteria were isolated from C. tinctorius root and was identified using macroscopic and microscopic characteristics, biochemical testing and PCR. Then, the indole acetic acid production and phosphate-solubilizing activity were determined. Finally, the amount of lead in the plant was measured by atomic absorption method. Five strains of Bacillus cereus, Bacillus muralis, Bacillus sp., Pseudomonas fluorescens and Brevibacterium frigoritolerans with the ability of mineral phosphate solubilizing, high levels of indole acetic acid production and resistance to lead were isolated from the rhizosphere of C. tinctorius. The amount of produced indole acetic acid and the level of phosphate solubilizing by the isolates were 7.1-69.54 µg ml-1 and 91-147.3 µg ml-1 respectively. Lead assimilation in aerial part of safflower ranged from 925 to 2175 ppm. P. fluorescens and B. cereus strains had the highest effect on Lead assimilation with 2175 and 1862 ppm respectively. CONCLUSIONS The results showed that different bacterial treatments influenced the rate of lead absorption by C. tinctorius exposed to lead stress. SIGNIFICANCE AND IMPACT OF THE STUDY Use of rhizosphere isolates of C. tinctorius can improve phytoremediation capability and lead absorption in lead-contaminated soil.
Collapse
Affiliation(s)
- Atefeh Shahraki
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | | | - Monireh Ranjbar
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
5
|
Yu X, Zhao J, Liu X, Sun L, Tian J, Wu N. Cadmium Pollution Impact on the Bacterial Community Structure of Arable Soil and the Isolation of the Cadmium Resistant Bacteria. Front Microbiol 2021; 12:698834. [PMID: 34367100 PMCID: PMC8339475 DOI: 10.3389/fmicb.2021.698834] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms play an important role in the remediation of cadmium pollution in the soil and their diversity can be affected by cadmium. In this study, the bacterial community in arable soil samples collected from two near geographical sites, with different degrees of cadmium pollution at three different seasons, were characterized using Illumina MiSeq sequencing. The result showed that cadmium is an important factor to affect the bacterial diversity and the microbial communities in the high cadmium polluted area (the site H) had significant differences compared with low cadmium polluted area (the site L). Especially, higher concentrations of Cd significantly increased the abundance of Proteobacteria and Gemmatimonas whereas decreased the abundance of Nitrospirae. Moreover, 42 Cd-resistant bacteria were isolated from six soil samples and evaluated for potential application in Cd bioremediation. Based on their Cd-MIC [minimum inhibitory concentration (MIC) of Cd2+], Cd2+ removal rate and 16S rDNA gene sequence analyses, three Burkholderia sp. strains (ha-1, hj-2, and ho-3) showed very high tolerance to Cd (5, 5, and 6 mM) and exhibited high Cd2+ removal rate (81.78, 79.37, and 63.05%), six Bacillus sp. strains (151-5,151-6,151-13, 151-20, and 151-21) showed moderate tolerance to Cd (0.8, 0.4, 0.8, 0.4, 0.6, and 0.4 mM) but high Cd2+ removal rate (84.78, 90.14, 82.82, 82.39, 81.79, and 84.17%). Those results indicated that Burkholderia sp. belonging to the phylum Proteobacteria and Bacillus sp. belonging to the phylum Firmicutes have developed a resistance for cadmium and may play an important role in Cd-contaminated soils. Our study provided baseline data for bacterial communities in cadmium polluted soils and concluded that Cd-resistant bacteria have potential for bioremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Xiaoxia Yu
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, China
| | - JinTong Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - LiXin Sun
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Zhao C, Shang D, Zou Y, Du Y, Wang Q, Xu F, Ren L, Kong Q. Changes in electricity production and microbial community evolution in constructed wetland-microbial fuel cell exposed to wastewater containing Pb(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139127. [PMID: 32438162 DOI: 10.1016/j.scitotenv.2020.139127] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Two constructed wetland microbial fuel cell (CW-MFC) devices, experimental group (EG, with 5 mg/L Pb(II) addition) and control group (CG) were built to explore the changes in power generation, wastewater purification and microbial community structure under Pb(II) stress. The voltage of EG (343.16 ± 12.14 mV) was significantly higher (p < 0.01) than that of CG (295.49 ± 13.91 mV), and the highest power density of the EG and CG were 7.432 mW·m-2 and 3.873 mW·m-2, respectively. There was no significant difference in the removal of common pollutants between these groups except for the NH4+-N removal efficiency, which was probably caused by the inhibition of the bioactivity of Comamonas (AOB) in the anode of the experimental group by Pb(II). Pb(II) was effectively removed by CW-MFC (84.86 ± 3%), and the abundant amount of fulvic acid-like matter in the extracellular polymeric substance (EPS) of the EG contributed to its removal. The presence of Pb(II) had a negative effect on both microbial community diversity and species richness. The abundance of a lead resistance gene, pbrT, decreased with long-term Pb(II) pressure. This is evidence of microbial adaptation to Pb(II).
Collapse
Affiliation(s)
- CongCong Zhao
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - DaWei Shang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Institute of Environment and Ecology, Shandong Normal University, Jinan 255014, PR China
| | - YanLing Zou
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Institute of Environment and Ecology, Shandong Normal University, Jinan 255014, PR China
| | - YuanDa Du
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Fei Xu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Liang Ren
- Jiangsu CRRC Environment CO. LTD, Jiangsu Province 215557, China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
7
|
Liu Z, Liu Q, Qi X, Li Y, Zhou G, Dai M, Miao M, Kong Q. Evolution and resistance of a microbial community exposed to Pb(II) wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133722. [PMID: 31401502 DOI: 10.1016/j.scitotenv.2019.133722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the treatment performance of activated sludge on Pb(II)-containing wastewater, including contaminant removal efficiency, extracellular polymeric substances, pbrT gene content and the microbial community. The average removal efficiencies of ammonia nitrogen, chemical oxygen demand, total phosphorus, total nitrogen and Pb(II) were 40% ± 4%, 91% ± 3%, 95% ± 3%, 51% ± 5% and 92% ± 9% during the stable operation stage, respectively. Moreover, the extracellular polymeric substance -protein contents increased significantly from day 0 to day 60 (p < 0.05). The most abundant fluorescent component in extracellular polymeric substances was a humic acid-like substance, and its fluorescence intensity increased significantly from day 0 to day 60 (p < 0.05). Adsorption of negatively charged organic functional groups in extracellular polymeric substances was identified as a major component of the removal of Pb(II). Most of the denitrifying bacteria associated with nitrogen removal showed an increasing trend during the acclimation stage, which may have resulted in high total nitrogen removal efficiency. In addition, pbrT uptake protein was found to be responsible for the uptake of Pb(II) into cells. The abundance of the pbrT gene showed a downward trend (p < 0.05) after adding Pb(II), probably because expression of the pbrT gene was inhibited under Pb(II) stress. Sphingopyxis containing the pbrT gene was the dominant resistance genus, and its relative abundance increased significantly (p < 0.05) from day 0 to day 60. This study provided a theoretical basis for the treatment of Pb(II)-containing wastewater.
Collapse
Affiliation(s)
- Zhaosheng Liu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Editorial Office of China's Population, Resources and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Qi Liu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Xiaoyu Qi
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Yexuan Li
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Guangqing Zhou
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Mingsheng Miao
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
8
|
Margaryan A, Panosyan H, Mamimin C, Trchounian A, Birkeland NK. Insights into the Bacterial Diversity of the Acidic Akhtala Mine Tailing in Armenia Using Molecular Approaches. Curr Microbiol 2019; 76:462-469. [DOI: 10.1007/s00284-019-01640-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/24/2019] [Indexed: 11/30/2022]
|
9
|
Lasota S, Stephan I, Horn MA, Otto W, Noll M. Copper in Wood Preservatives Delayed Wood Decomposition and Shifted Soil Fungal but Not Bacterial Community Composition. Appl Environ Microbiol 2019; 85:e02391-18. [PMID: 30530712 PMCID: PMC6365821 DOI: 10.1128/aem.02391-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/01/2018] [Indexed: 12/17/2022] Open
Abstract
Copper-based fungicides are routinely used for wood and plant protection, which can lead to an enrichment of copper-tolerant microbial communities in soil. To investigate the effect of such wood preservatives on the soil fungal and bacterial community compositions, five different vineyard and fruit-growing soil environments were evaluated using incubation studies over time. Pine sapwood specimens were impregnated with either water or different biocide treatment solutions containing a mixture of copper, triazoles, and quaternary ammonium compounds (CuTriQAC), a mixture of triazoles and quaternary ammonium compounds (TriQAC), or copper alone (Cu). Specimens were incubated in soil from each sample site for 8, 16, 24, and 32 weeks. The effects of preservative treatment on the modulus of elasticity (MOE) of the wood specimens and on the soil fungal as well as bacterial community composition at the soil-wood interface were assessed by quantitative PCR and amplicon sequencing of the fungal internal transcribed spacer (ITS) region and bacterial 16S rRNA gene. Specimens impregnated with CuTriQAC and Cu showed decreased MOE and reduced fungal and bacterial copy numbers over time compared to those impregnated with water and TriQAC. Fungal but not bacterial community composition was significantly affected by wood preservative treatment. The relative abundance of members of the family Trichocomaceae compared to other genera increased in the presence of the Cu and CuTriQAC treatments at three sites, suggesting these to be Cu-tolerant fungi. In conclusion, the copper-containing treatments resulted in marginally increased MOE, lowered microbial gene copy numbers compared to those in the TriQAC and water treatments, and thus enhanced wood protection against soil microbial wood degradation.IMPORTANCE Copper-containing rather than TRIQAC formulations are efficient wood preservatives irrespective of the origin and composition of the soil microbial communities. However, some fungi appear to be naturally insensitive to copper and should be the focus of future wood preservative formulations to facilitate the life span of wooden construction in contact with soil while also minimizing the overall environmental impact.
Collapse
Affiliation(s)
- Sandra Lasota
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Ina Stephan
- Bundesanstalt für Materialforschung und -prüfung, Division 4.1, Biodeterioration and Reference Organisms, Berlin, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University of Hannover, Hannover, Germany
| | - Wolfgang Otto
- Institute of Informatics, University of Leipzig, Leipzig, Germany
| | - Matthias Noll
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, Coburg, Germany
| |
Collapse
|
10
|
Luo Y, Wu Y, Wang H, Xing R, Zheng Z, Qiu J, Yang L. Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018. [PMID: 29541981 DOI: 10.1007/s11356-018-1573-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.
Collapse
Affiliation(s)
- Youfa Luo
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
- Institute of Applied Ecology, Guizhou University, Guiyang, 550025, China.
| | - Hu Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Rongrong Xing
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Zhilin Zheng
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jing Qiu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Lian Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
11
|
Kou S, Vincent G, Gonzalez E, Pitre FE, Labrecque M, Brereton NJB. The Response of a 16S Ribosomal RNA Gene Fragment Amplified Community to Lead, Zinc, and Copper Pollution in a Shanghai Field Trial. Front Microbiol 2018; 9:366. [PMID: 29545788 PMCID: PMC5838024 DOI: 10.3389/fmicb.2018.00366] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/16/2018] [Indexed: 11/27/2022] Open
Abstract
Industrial and agricultural activities have caused extensive metal contamination of land throughout China and across the globe. The pervasive nature of metal pollution can be harmful to human health and can potentially cause substantial negative impact to the biosphere. To investigate the impact of anthropogenic metal pollution found in high concentrations in industrial, agricultural, and urban environments, 16S ribosomal RNA gene amplicon sequencing was used to track change in the amplified microbial community after metal contamination in a large-scale field experiment in Shanghai. A total of 1,566 operational taxonomic units (OTUs) identified from 448,108 sequences gathered from 20 plots treated as controls or with lead, zinc, copper, or all three metals. Constrained Analysis of Principal Coordinates ordination did not separate control and lead treatment but could separate control/lead, zinc, copper, and three metal treatment. DESeq2 was applied to identify 93 significantly differentially abundant OTUs varying in 211 pairwise instances between the treatments. Differentially abundant OTUs representing genera or species belonging to the phyla Chloroflexi, Cyanobacteria, Firmicutes, Latescibacteria, and Planctomycetes were almost universally reduced in abundance due to zinc, copper, or three metal treatment; with three metal treatment abolishing the detection of some OTUs, such as Leptolyngbya, Desmonostoc muscorum, and Microcoleus steenstrupii. The greatest increases due to metal treatment were observed in Bacteroidetes, Actinobacteria, Chlamydiae, Nitrospirae, and Proteobacteria (α, β, δ, and γ); the most (relative) abundant being uncharacterized species within the genera Methylobacillus, Solirubrobacter, and Ohtaekwangia. Three metal treatment alone resulted in identification of 22 OTUs (genera or species) which were not detected in control soil, notably including Yonghaparkia alkaliphila, Pedobacter steynii, Pseudolabrys taiwanensis, Methylophilus methylotrophus, Nitrosospira, and Lysobacter mobilis. The capacity to track alterations of an amplified microbial community at high taxonomic resolution using modern bioinformatic approaches, as well as identifying where that resolution is lost for technical or biological reasons, provides an insight into the complexity of the microbial world resisting anthropogenic pollution. While functional assessment of uncharacterized organisms within environmental samples is technically challenging, an important step is observing those organisms able to tolerate extreme stress and to recognize the extent to which important amplifiable community members still require characterization.
Collapse
Affiliation(s)
- Shumeng Kou
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Gilles Vincent
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill University and Genome Quebec Innovation Centre, Montréal, QC, Canada
| | - Frederic E. Pitre
- Institut de Recherche en Biologie Végétale, Montreal Botanical Garden, Montréal, QC, Canada
| | - Michel Labrecque
- Institut de Recherche en Biologie Végétale, Montreal Botanical Garden, Montréal, QC, Canada
| | | |
Collapse
|
12
|
Sayyadi S, Ahmady-Asbchin S, Kamali K, Tavakoli N. Thermodynamic, equilibrium and kinetic studies on biosorption of Pb +2 from aqueous solution by Bacillus pumilus sp. AS1 isolated from soil at abandoned lead mine. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Zhang X, Yang H, Cui Z. Mucor circinelloides: efficiency of bioremediation response to heavy metal pollution. Toxicol Res (Camb) 2017; 6:442-447. [PMID: 30090512 DOI: 10.1039/c7tx00110j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/08/2017] [Indexed: 11/21/2022] Open
Abstract
Mucor circinelloides, selected from mine tailings for heavy metal bioremediation, was characterized at the genetic level by internal transcribed spacer (ITS) analysis. M. circinelloides was first applied for the absorption of heavy metals {Fe(iii), Mn(ii), Cu(ii), Zn(ii), and Pb(ii)}. The minimal inhibitory concentration test showed that M. circinelloides could tolerate relatively high concentrations of heavy metals. M. circinelloides could uptake 79.5%, 44.1%, 62.5%, 56.5%, and 85.5% of Fe(iii), Mn(ii), Cu(ii), Zn(ii), and Pb(ii), respectively, from the initial concentration of 20 mg L-1 under optimum conditions (pH 8; 30 °C). Monitoring the change in ATPase activity at certain intervals indicated that the mechanism of bioremediation was directly related to the energy consumption. M. circinelloides will be widely used for in-situ remediation in special environment because of strong vitality and excellent bioremediation efficiency.
Collapse
Affiliation(s)
- Xu Zhang
- School of Environmental Science and Engineering , Shandong University , Ji'nan 250100 , China .
| | - Huanhuan Yang
- School of Life Science , Shandong University , Ji'nan 250100 , China
| | - Zhaojie Cui
- School of Environmental Science and Engineering , Shandong University , Ji'nan 250100 , China .
| |
Collapse
|
14
|
Soil-covered strategy for ecological restoration alters the bacterial community structure and predictive energy metabolic functions in mine tailings profiles. Appl Microbiol Biotechnol 2016; 101:2549-2561. [DOI: 10.1007/s00253-016-7969-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 11/26/2022]
|
15
|
Zelaya-Molina LX, Hernández-Soto LM, Guerra-Camacho JE, Monterrubio-López R, Patiño-Siciliano A, Villa-Tanaca L, Hernández-Rodríguez C. Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings. MICROBIAL ECOLOGY 2016; 72:324-346. [PMID: 27138047 DOI: 10.1007/s00248-016-0771-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Mine tailings are man-made environments characterized by low levels of organic carbon and assimilable nitrogen, as well as moderate concentrations of heavy metals. For the introduction of nitrogen into these environments, a key role is played by ammonia-oligotrophic/diazotrophic heavy metal-resistant guilds. In mine tailings from Zacatecas, Mexico, Serratia liquefaciens was the dominant heterotrophic culturable species isolated in N-free media from bulk mine tailings as well as the rhizosphere, roots, and aerial parts of pioneer plants. S. liquefaciens strains proved to be a meta-population with high intraspecific genetic diversity and a potential to respond to these extreme conditions. The phenotypic and genotypic features of these strains reveal the potential adaptation of S. liquefaciens to oligotrophic and nitrogen-limited mine tailings with high concentrations of heavy metals. These features include ammonia-oligotrophic growth, nitrogen fixation, siderophore and indoleacetic acid production, phosphate solubilization, biofilm formation, moderate tolerance to heavy metals under conditions of diverse nitrogen availability, and the presence of zntA, amtB, and nifH genes. The acetylene reduction assay suggests low nitrogen-fixing activity. The nifH gene was harbored in a plasmid of ∼60 kb and probably was acquired by a horizontal gene transfer event from Klebsiella variicola.
Collapse
Affiliation(s)
- Lily X Zelaya-Molina
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Luis M Hernández-Soto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Jairo E Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Ricardo Monterrubio-López
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Alfredo Patiño-Siciliano
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico.
| |
Collapse
|
16
|
From lithotroph- to organotroph-dominant: directional shift of microbial community in sulphidic tailings during phytostabilization. Sci Rep 2015; 5:12978. [PMID: 26268667 PMCID: PMC4534789 DOI: 10.1038/srep12978] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/16/2015] [Indexed: 12/02/2022] Open
Abstract
Engineering microbial diversity to enhance soil functions may improve the success of direct revegetation in sulphidic mine tailings. Therefore, it is essential to explore how remediation and initial plant establishment can alter microbial communities, and, which edaphic factors control these changes under field conditions. A long-term revegetation trial was established at a Pb-Zn-Cu tailings impoundment in northwest Queensland. The control and amended and/or revegetated treatments were sampled from the 3-year-old trial. In total, 24 samples were examined using pyrosequencing of 16S rRNA genes and various chemical properties. The results showed that the microbial diversity was positively controlled by soil soluble Si and negatively controlled by soluble S, total Fe and total As, implying that pyrite weathering posed a substantial stress on microbial development in the tailings. All treatments were dominated by typical extremophiles and lithotrophs, typically Truepera, Thiobacillus, Rubrobacter; significant increases in microbial diversity, biomass and frequency of organotrophic genera (typically Nocardioides and Altererythrobacter) were detected in the revegetated and amended treatment. We concluded that appropriate phytostabilization options have the potential to drive the microbial diversity and community structure in the tailings toward those of natural soils, however, inherent environmental stressors may limit such changes.
Collapse
|
17
|
Hong C, Si Y, Xing Y, Li Y. Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10788-99. [PMID: 25761991 DOI: 10.1007/s11356-015-4186-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/29/2015] [Indexed: 05/19/2023]
Abstract
Mine activities leaked heavy metals into surrounding soil and may affected indigenous microbial communities. In the present study, the diversity and composition of the bacterial community in soil collected from three regions which have different pollution degree, heavy pollution, moderate pollution, and non-pollution, within the catchment of Chao River in Beijing City, were compared using the Illumina MiSeq sequencing technique. Rarefaction results showed that the polluted area had significant higher bacterial alpha diversity than those from unpolluted area. Principal component analysis (PCA) showed that microbial communities in the polluted areas had significant differences compared with the unpolluted area. Moreover, PCA at phylum level and Matastats results demonstrated that communities in locations shared similar phyla diversity, indicating that the bacterial community changes under metal pollution were not reflected on phyla structure. At genus level, the relative abundance of dominant genera changed in sites with degrees of pollution. Genera Bradyrhizobium, Rhodanobacter, Reyranella, and Rhizomicrobium significantly decreased with increasing pollution degree, and their dominance decreased, whereas several genera (e.g., Steroidobacter, Massilia, Arthrobacter, Flavisolibacter, and Roseiflexus) increased and became new dominant genera in the heavily metal-polluted area. The potential resistant bacteria, found within the genera of Thiobacillus, Pseudomonas, Arthrobacter, Microcoleus, Leptolyngbya, and Rhodobacter, are less than 2.0 % in the indigenous bacterial communities, which play an important role in soil ecosystem. This effort to profile the background diversity may set the first stage for better understanding the mechanism underlying the community structure changes under in situ mild heavy metal pollution.
Collapse
Affiliation(s)
- Chen Hong
- School of Civil and Environmental Engineering, and Key Laboratory of Metal and Mine Efficiently Exploiting and Safety, Ministry of Education, University of Science and Technology Beijing, 100083, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
18
|
Luo X, Zeng XC, He Z, Lu X, Yuan J, Shi J, Liu M, Pan Y, Wang YX. Isolation and characterization of a radiation-resistant bacterium from Taklamakan Desert showing potent ability to accumulate Lead (II) and considerable potential for bioremediation of radioactive wastes. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1915-1921. [PMID: 25182517 DOI: 10.1007/s10646-014-1325-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2014] [Indexed: 06/03/2023]
Abstract
Radioactive wastes always contain radioactive substances and a lot of Pb compound and other heavy metals, which severely contaminate soils and groundwater. Thus, search for radiation-resistant microorganisms that are capable of sequestering Pb contaminants from the contaminated sites is urgently needed. However, very few such microorganisms have been found so far. In the present study, we discovered a novel Gram-negative bacterium from the arid Taklamakan desert, which can strongly resist both radiation and Pb(2+). Phylogenetic and phenotypic analysis indicated that this bacterial strain is closely affiliated with Microvirga aerilata, and was thus referred to as Microvirga aerilata LM (=CCTCC AB 208311). We found that M. aerilata LM can effectively accumulate Pb and form intracellular precipitations. It also keeps similar ability to remove Pb(2+) under radioactive stress. Our data suggest that M. aerilata LM may offer an effective and eco-friendly in situ approach to remove soluble Pb contaminants from radioactive wastes.
Collapse
Affiliation(s)
- Xuesong Luo
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430074, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schmalenberger A, O'Sullivan O, Gahan J, Cotter PD, Courtney R. Bacterial communities established in bauxite residues with different restoration histories. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7110-7119. [PMID: 23745718 DOI: 10.1021/es401124w] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bauxite residue is the alkaline byproduct generated when alumina is extracted from bauxite ores and is commonly deposited in impoundments. These sites represent hostile environments with increased salinity and alkalinity and little prospect of revegetation when left untreated. This study reports the establishment of bacterial communities in bauxite residues with and without restoration amendments (compost and gypsum addition, revegetation) in samples taken in 2009 and 2011 from 0 to 10 cm depth. DNA fingerprint analysis of bacterial communities based on 16S rRNA gene fragments revealed a significant separation of the untreated site and the amended sites in both sampling years. 16S amplicon analysis (454 FLX pyrosequencing) revealed significantly lower alpha diversities in the unamended in comparison to the amended sites and hierarchical clustering separated the unamended site from the amended sites. The taxonomic analysis revealed that the restoration resulted in the accumulation of bacterial populations typical for soils including Acidobacteriaceae, Nitrosomonadaceae, and Caulobacteraceae. In contrast, the unamended site was dominated by taxonomic groups including Beijerinckiaceae, Xanthomonadaceae, Acetobacteraceae, and Chitinophagaceae, repeatedly associated with alkaline salt lakes and sediments. While bacterial communities developed in the initially sterile bauxite residue, only the restoration treatments created diverse soil-like bacterial communities alongside diverse vegetation on the surface.
Collapse
|
20
|
Bondici VF, Lawrence JR, Khan NH, Hill JE, Yergeau E, Wolfaardt GM, Warner J, Korber DR. Microbial communities in low permeability, high pH uranium mine tailings: characterization and potential effects. J Appl Microbiol 2013; 114:1671-86. [PMID: 23448257 DOI: 10.1111/jam.12180] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
AIMS To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability. METHODS AND RESULTS To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture-based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple-metal resistant, with 15% exhibiting dual-metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, P < 0·05) between multiple-metal resistance of the isolates and their enzyme expression profile. Of the isolates tested, 17 reduced amorphous iron, 22 reduced molybdate and seven oxidized arsenite. Based on next generation sequencing, tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0-20 m) and middle (20-40 m) tailings zones being highly significant (P < 0·01) from the lower zone (40-60 m) and the difference in diversity of the upper and middle tailings zone being significant (P < 0·05). Phylotypes closely related to well-known sulfate-reducing and iron-reducing bacteria were identified with low abundance, yet relatively high diversity. CONCLUSIONS The presence of a population of metabolically-diverse, metal-resistant micro-organisms within the tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long-term geochemistry of the tailings. SIGNIFICANCE AND IMPACT OF THE STUDY This study is the first investigation of the diversity and functional potential of micro-organisms present in low permeability, high pH uranium mine tailings.
Collapse
Affiliation(s)
- V F Bondici
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bacterial Community Structure from the Perspective of the Uranium Ore Deposits of Domiasiat in India. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40011-013-0164-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Substrate utilization of stress tolerant methylotrophs isolated from revegetated heavy metal polluted coalmine spoil. World J Microbiol Biotechnol 2012. [DOI: 10.1007/s11274-012-1219-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Ghosh S, Moitra M, Woolverton CJ, Leff LG. Effects of remediation on the bacterial community of an acid mine drainage impacted stream. Can J Microbiol 2012; 58:1316-26. [DOI: 10.1139/w2012-110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acid mine drainage (AMD) represents a global threat to water resources, and as such, remediation of AMD-impacted streams is a common practice. During this study, we examined bacterial community structure and environmental conditions in a low-order AMD-impacted stream before, during, and after remediation. Bacterial community structure was examined via polymerase chain reaction amplification of 16S rRNA genes followed by denaturing gradient gel electrophoresis. Also, bacterial abundance and physicochemical data (including metal concentrations) were collected and relationships to bacterial community structure were determined using BIO-ENV analysis. Remediation of the study stream altered environmental conditions, including pH and concentrations of some metals, and consequently, the bacterial community changed. However, remediation did not necessarily restore the stream to conditions found in the unimpacted reference stream; for example, bacterial abundances and concentrations of some elements, such as sulfur, magnesium, and manganese, were different in the remediated stream than in the reference stream. BIO-ENV analysis revealed that changes in pH and iron concentration, associated with remediation, primarily explained temporal alterations in bacterial community structure. Although the sites sampled in the remediated stream were in relatively close proximity to each other, spatial variation in community composition suggests that differences in local environmental conditions may have large impacts on the microbial assemblage.
Collapse
Affiliation(s)
- Suchismita Ghosh
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Moumita Moitra
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | - Laura G. Leff
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
24
|
Structure analysis of bacterial community and their heavy-metal resistance determinants in the heavy-metal-contaminated soil sample. Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-012-0123-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Delavat F, Lett MC, Lièvremont D. Novel and unexpected bacterial diversity in an arsenic-rich ecosystem revealed by culture-dependent approaches. Biol Direct 2012; 7:28. [PMID: 22963335 PMCID: PMC3443666 DOI: 10.1186/1745-6150-7-28] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/17/2012] [Indexed: 11/17/2022] Open
Abstract
Background Acid Mine Drainages (AMDs) are extreme environments characterized by very acid conditions and heavy metal contaminations. In these ecosystems, the bacterial diversity is considered to be low. Previous culture-independent approaches performed in the AMD of Carnoulès (France) confirmed this low species richness. However, very little is known about the cultured bacteria in this ecosystem. The aims of the study were firstly to apply novel culture methods in order to access to the largest cultured bacterial diversity, and secondly to better define the robustness of the community for 3 important functions: As(III) oxidation, cellulose degradation and cobalamine biosynthesis. Results Despite the oligotrophic and acidic conditions found in AMDs, the newly designed media covered a large range of nutrient concentrations and a pH range from 3.5 to 9.8, in order to target also non-acidophilic bacteria. These approaches generated 49 isolates representing 19 genera belonging to 4 different phyla. Importantly, overall diversity gained 16 extra genera never detected in Carnoulès. Among the 19 genera, 3 were previously uncultured, one of them being novel in databases. This strategy increased the overall diversity in the Carnoulès sediment by 70% when compared with previous culture-independent approaches, as specific phylogenetic groups (e.g. the subclass Actinobacteridae or the order Rhizobiales) were only detected by culture. Cobalamin auxotrophy, cellulose degradation and As(III)-oxidation are 3 crucial functions in this ecosystem, and a previous meta- and proteo-genomic work attributed each function to only one taxon. Here, we demonstrate that other members of this community can also assume these functions, thus increasing the overall community robustness. Conclusions This work highlights that bacterial diversity in AMDs is much higher than previously envisaged, thus pointing out that the AMD system is functionally more robust than expected. The isolated bacteria may be part of the rare biosphere which remained previously undetected due to molecular biases. No matter their current ecological relevance, the exploration of the full diversity remains crucial to decipher the function and dynamic of any community. This work also underlines the importance to associate culture-dependent and -independent approaches to gain an integrative view of the community function. Reviewers This paper was reviewed by Sándor Pongor, Eugene V. Koonin and Brett Baker (nominated by Purificacion Lopez-Garcia).
Collapse
Affiliation(s)
- François Delavat
- UMR7156 Université de Strasbourg/CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | | | | |
Collapse
|
26
|
Jackson TA, Muir DCG. Mass-dependent and mass-independent variations in the isotope composition of mercury in a sediment core from a lake polluted by emissions from the combustion of coal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 417-418:189-203. [PMID: 22265602 DOI: 10.1016/j.scitotenv.2011.12.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
A dated sediment core from a lake polluted with mercury (Hg), other heavy metals, and arsenic (As) from coal-burning power plants was analysed to test the hypothesis that power plant emissions have distinctive Hg isotope signatures which may be preserved in sediments but are altered by natural processes. Coal and fly ash were also analysed. The research yielded evidence for mass-dependent and mass-independent fractionation of Hg isotopes (MDF and MIF, respectively) by combustion and flue gas reactions in the power plants and natural processes in the lake. Power plant pollution and earlier pollution attributable to domestic coal burning produced a characteristic isotope signature indicative of depletion in lighter isotopes by MDF and enrichment in (199)Hg and (201)Hg by MIF, suggesting loss of isotopically light gaseous Hg(0) and reactions of Hg with free radicals at the sources of pollution; but coal and fly ash data showed that combustion imparted a different signature to the ash, corroborating chemical evidence that reactive gaseous Hg(II), not particulate Hg(II), was the principal Hg fraction deposited in the lake. Moreover, the core data imply alteration of the anthropogenic isotope signature by microbially mediated MDF and MIF, with alteration of the microbial activities themselves by toxic effects of As and metals from the emissions. Effects of metals on isotope fractionation increased with the stability constants and ligand field stabilisation energies of metal complexes, suggesting inhibition of microbial enzymes and metal binding by microbial carrier molecules. The importance of fractionation by natural (possibly microbial) processes is also indicated by depletion in (199)Hg and (201)Hg owing to MIF in sediments predating local pollution. In brief, the isotope signature of the polluted sediment is probably the net result of abiotic reactions at the sources of pollution, microbial activities in the lake, and effects of toxic pollutants on the microflora.
Collapse
Affiliation(s)
- Togwell A Jackson
- Aquatic Ecosystem Protection Research Division, Water Science & Technology Directorate, Environment Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, PO Box 5050, Burlington, Ontario, Canada L7R 4A6.
| | | |
Collapse
|
27
|
Schippers KJ, Sipkema D, Osinga R, Smidt H, Pomponi SA, Martens DE, Wijffels RH. Cultivation of sponges, sponge cells and symbionts: achievements and future prospects. ADVANCES IN MARINE BIOLOGY 2012; 62:273-337. [PMID: 22664125 DOI: 10.1016/b978-0-12-394283-8.00006-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Marine sponges are a rich source of bioactive compounds with pharmaceutical potential. Since biological production is one option to supply materials for early drug development, the main challenge is to establish generic techniques for small-scale production of marine organisms. We analysed the state of the art for cultivation of whole sponges, sponge cells and sponge symbionts. To date, cultivation of whole sponges has been most successful in situ; however, optimal conditions are species specific. The establishment of sponge cell lines has been limited by the inability to obtain an axenic inoculum as well as the lack of knowledge on nutritional requirements in vitro. Approaches to overcome these bottlenecks, including transformation of sponge cells and using media based on yolk, are elaborated. Although a number of bioactive metabolite-producing microorganisms have been isolated from sponges, and it has been suggested that the source of most sponge-derived bioactive compounds is microbial symbionts, cultivation of sponge-specific microorganisms has had limited success. The current genomics revolution provides novel approaches to cultivate these microorganisms.
Collapse
Affiliation(s)
- Klaske J Schippers
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Haldar S, Roy Choudhury S, Sengupta S. Genetic and functional diversities of bacterial communities in the rhizosphere of Arachis hypogaea. Antonie van Leeuwenhoek 2011; 100:161-70. [DOI: 10.1007/s10482-011-9570-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
|
29
|
Mandic-Mulec I, Prosser JI. Diversity of Endospore-forming Bacteria in Soil: Characterization and Driving Mechanisms. SOIL BIOLOGY 2011. [DOI: 10.1007/978-3-642-19577-8_2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Stout LM, Dodova EN, Tyson JF, Nüsslein K. Phytoprotective influence of bacteria on growth and cadmium accumulation in the aquatic plant Lemna minor. WATER RESEARCH 2010; 44:4970-4979. [PMID: 20732704 DOI: 10.1016/j.watres.2010.07.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/23/2010] [Accepted: 07/26/2010] [Indexed: 05/29/2023]
Abstract
Certain plants are known to accumulate heavy metals, and can be used in remediation of polluted soil or water. Plant-associated bacteria, especially those that are metal tolerant, may enhance the total amount of metal accumulated by the plant, but this process is still unclear. In this study, we investigated metal enhancement vs. exclusion by plants, and the phytoprotective role plant-associated bacteria might provide to plants exposed to heavy metal. We isolated cadmium-tolerant bacteria from the roots of the aquatic plant Lemna minor grown in heavy metal-polluted waters, and tested these isolates for tolerance to cadmium. The efficiency of plants to accumulate heavy metal from their surrounding environment was then tested by comparing L. minor plants grown with added metal tolerant bacteria to plants grown axenically to determine, whether bacteria associated with these plants increase metal accumulation in the plant. Unexpectedly, cadmium tolerance was not seen in all bacterial isolates that had been exposed to cadmium. Axenic plants accumulated slightly more cadmium than plants inoculated with bacterial isolates. Certain isolates promoted root growth, but overall, addition of bacterial strains did not enhance plant cadmium uptake, and in some cases, inhibited cadmium accumulation by plants. This suggests that bacteria serve a phytoprotective role in their relationship with Lemna minor, preventing toxic cadmium from entering plants.
Collapse
Affiliation(s)
- Lisa M Stout
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA
| | | | | | | |
Collapse
|
31
|
Belén Hinojosa M, Carreira JA, García-Ruíz R, Rodríguez-Maroto JM, Daniell TJ, Griffiths BS. Plant treatment, pollutant load, and soil type effects in rhizosphere ecology of trace element polluted soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:970-981. [PMID: 20385407 DOI: 10.1016/j.ecoenv.2010.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 01/13/2010] [Accepted: 01/16/2010] [Indexed: 05/29/2023]
Abstract
Re-vegetation of trace element contaminated soils can alter the pH and chelating capacity in the rhizosphere, increasing the mobility of pollutants, which, in turn, may impact on rhizosphere ecology. In this study a short-term pot experiment was carried out in order to investigate the multi-factorial effects of: buffering capacity (sandy-loam and loam soils); pollutant load (0%, 1.3%, and 4% of pyrite sludge), and the presence/absence of plant (Lolium perenne L. and Medicago sativa L.) on the mobility of trace elements, soil biochemical functionality (hydrolase activities), and biological diversity (bacterial and nematode communities). The experiment was carried out with representative soils from the Guadiamar basin (SW Spain), an area where the Aznalcóllar mining spill affected over 4000ha. Results indicated that the development of rhizospheres in polluted soils (coarse-textured) increases the mobilization of trace elements. In general the presence of roots has stimulatory effects on soil quality indicators such as hydrolase activities and both bacterial and nematode communities. However, the presence of high amount of metals interferes with these beneficial effects. This study provided evidence about the complexity of the impact of growing plants on trace element polluted soils. Trace element mobilization, hydrolase activities and bacterial and nematode communities in the rhizosphere are dependent on plant species, soil type, and pollution dose.
Collapse
Affiliation(s)
- M Belén Hinojosa
- Dpto Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, 23071 Jaén, Spain.
| | | | | | | | | | | |
Collapse
|
32
|
Navarro-Noya YE, Jan-Roblero J, González-Chávez MDC, Hernández-Gama R, Hernández-Rodríguez C. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils. Antonie van Leeuwenhoek 2010; 97:335-49. [PMID: 20084459 DOI: 10.1007/s10482-010-9413-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 01/04/2010] [Indexed: 10/19/2022]
Abstract
In this study, the bacterial communities associated with the rhizospheres of pioneer plants Bahia xylopoda and Viguiera linearis were explored. These plants grow on silver mine tailings with high concentration of heavy metals in Zacatecas, Mexico. Metagenomic DNAs from rhizosphere and bulk soil were extracted to perform a denaturing gradient gel electrophoresis analysis (DGGE) and to construct 16S rRNA gene libraries. A moderate bacterial diversity and twelve major phylogenetic groups including Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Firmicutes, Verrucomicrobia, Nitrospirae and Actinobacteria phyla, and divisions TM7, OP10 and OD1 were recognized in the rhizospheres. Only 25.5% from the phylotypes were common in the rhizosphere libraries and the most abundant groups were members of the phyla Acidobacteria and Betaproteobacteria (Thiobacillus spp., Nitrosomonadaceae). The most abundant groups in bulk soil library were Acidobacteria and Actinobacteria, and no common phylotypes were shared with the rhizosphere libraries. Many of the clones detected were related with chemolithotrophic and sulfur-oxidizing bacteria, characteristic of an environment with a high concentration of heavy metal-sulfur complexes, and lacking carbon and organic energy sources.
Collapse
Affiliation(s)
- Yendi E Navarro-Noya
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, IPN, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico, D.F., Mexico.
| | | | | | | | | |
Collapse
|
33
|
Influence of acid mine drainage on microbial communities in stream and groundwater samples at Guryong Mine, South Korea. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s00254-008-1663-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Almeida WI, Vieira RP, Cardoso AM, Silveira CB, Costa RG, Gonzalez AM, Paranhos R, Medeiros JA, Freitas FA, Albano RM, Martins OB. Archaeal and bacterial communities of heavy metal contaminated acidic waters from zinc mine residues in Sepetiba Bay. Extremophiles 2008; 13:263-71. [PMID: 19089530 DOI: 10.1007/s00792-008-0214-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 11/17/2008] [Indexed: 11/24/2022]
Abstract
Mining of metallic sulfide ore produces acidic water with high metal concentrations that have harmful consequences for aquatic life. To understand the composition and structure of microbial communities in acid mine drainage (AMD) waters associated with Zn mine tailings, molecular diversity of 16S genes was examined using a PCR, cloning, and sequencing approach. A total of 78 operational taxonomic units (OTUs) were obtained from samples collected at five different sites in and around mining residues in Sepetiba Bay, Brazil. We analyzed metal concentration, physical, chemical, and microbiological parameters related to prokaryotic diversity in low metal impacted compared to highly polluted environments with Zn at level of gram per liter and Cd-Pb at level of microgram per liter. Application of molecular methods for community structure analyses showed that Archaea and Bacteria groups present a phylogenetic relationship with uncultured environmental organisms. Phylogenetic analysis revealed that bacteria present at the five sites fell into seven known divisions, alpha-Proteobacteria (13.4%), beta-Proteobacteria (16.3%), gamma-Proteobacteria (4.3%), Sphingobacteriales (4.3%), Actinobacteria (3.2%) Acidobacteria (2.1%), Cyanobacteria (11.9%), and unclassified bacteria (44.5%). Almost all archaeal clones were related to uncultivated Crenarchaeota species, which were shared between high impacted and low impacted waters. Rarefaction curves showed that bacterial groups are more diverse than archaeal groups while the overall prokaryotic biodiversity is lower in high metal impacted environments than in less polluted habitats. Knowledge of this microbial community structure will help in understanding prokaryotic diversity, biogeography, and the role of microorganisms in zinc smelting AMD generation and perhaps it may be exploited for environmental remediation procedures in this area.
Collapse
Affiliation(s)
- Welington I Almeida
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco D, subsolo, sala 5, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang HB, Xu CW, Wang MM, Li T, Zhao ZW. Quantitatively evaluating mistaken clone assignments by RFLP analysis of 16S rRNA genes: a case study. Can J Microbiol 2008; 54:479-82. [DOI: 10.1139/w08-031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We quantitatively evaluated the errors of clone assignment based on the restriction fragment length polymorphism (RFLP) pattern of 16S rRNA genes. Eighty clones were randomly selected from a 16S rRNA gene library and were categorized into 35 operational taxonomic units (OTU) based on their indistinguishable enzyme restriction patterns of 3 tetrameric restriction enzymes RsaI, BsuRI, and HinfI. All of these clones were then sequenced and were reassigned into 36–53 OTUs using the DOTUR program when sequence similarities of 95%–100% were used. The number of the identically assigned clones ranged from 53 to 61 and the percentage varied from 66.3% to 76.3%. The Shannon–Weaver index for the bacterial community observed by RFLP analysis was 2.75, equal to that estimated by DOTUR at a 97% sequence similarity. Compared with clones assigned with the DOTUR program at a 97% sequence similarity, only 61 clones (76.3%) were correctly assigned by RFLP analysis. Six clones (7.5%) were assigned mistakenly at the phylum level, and the positions of 13 clones (16.2%) were phylogenetically different at a lower taxonomic rank.
Collapse
Affiliation(s)
- Han-Bo Zhang
- Laboratory of Conservation and Utilization for Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, People’s Republic of China
- Department of Biology, Yunnan University, Kunming, Yunnan Province 650091, People’s Republic of China
| | - Chan-Wen Xu
- Laboratory of Conservation and Utilization for Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, People’s Republic of China
- Department of Biology, Yunnan University, Kunming, Yunnan Province 650091, People’s Republic of China
| | - Miao-Miao Wang
- Laboratory of Conservation and Utilization for Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, People’s Republic of China
- Department of Biology, Yunnan University, Kunming, Yunnan Province 650091, People’s Republic of China
| | - Tao Li
- Laboratory of Conservation and Utilization for Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, People’s Republic of China
- Department of Biology, Yunnan University, Kunming, Yunnan Province 650091, People’s Republic of China
| | - Zhi-Wei Zhao
- Laboratory of Conservation and Utilization for Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, People’s Republic of China
- Department of Biology, Yunnan University, Kunming, Yunnan Province 650091, People’s Republic of China
| |
Collapse
|