1
|
Sarkar A, Banerjee P, Kar S, Pal A, Mazumdar A. Investigating the influence of blood meal sources on the composition of culturable haemolytic gut bacteria of a wild-caught BTV vector Culicoides oxystoma Kieffer (Diptera: Ceratopogonidae). MEDICAL AND VETERINARY ENTOMOLOGY 2025. [PMID: 39873180 DOI: 10.1111/mve.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Culicoides oxystoma Kieffer (Diptera: Ceratopogonidae) transmits many pathogens, including seven viruses, four protozoa and one nematode. This species has a wide distribution range across northern Afro-tropical, Palearctic, Australian, Indo-Malayan realms with a broad host spectrum, including cattle, buffaloes, sheep, pigs, dogs, horses and even humans. The heterogeneous nature of Culicoides' blood-feeding patterns is well documented, but the influence of various host blood meal sources on gut bacterial composition remains scant. Adult midges were collected during April (2023) by operating UV light traps in cattle, buffalo sheds and poultry farm in Purulia (India). Besides C. oxystoma, eleven Culicoides species were collected across the sheds and farm, seven of which are vectors. Culicoides liui Wirth and Hubert and C. thurmanae Wirth and Hubert are reported from India for the first time. In all the sheds, engorged females of C. oxystoma were ubiquitous. Identification of culturable gut bacteria and the host blood meal of C. oxystoma were done through the polymerase chain reaction (PCR)-based method. Blood meal analysis confirmed the following hosts: cattle, buffaloes and humans. Identification of blood meal of engorged C. oxystoma caught from poultry farm showed positive results for humans but not for birds. Among bacteria, Bacillus cereus was abundant in all of the engorged females. Bacillus paramycoides and Enterococcus faecium were identified from females feeding on cattle and buffaloes' blood, while Alcaligenes faecalis was found in the gut contents of females that fed on cattle and human blood. The gut bacteria Alcaligenes faecalis exhibited alpha haemolytic activity. In contrast, Bacillus sp., B. cereus, B. flexus, B. licheniformis, B. thuringiensis, B. paramycoides, E. faecium, Paenibacillus sp. and Pseudomonas sp. exhibited beta haemolysis. This is the first report on the composition of gut bacteria, with particular emphasis on the haemolytic bacteria of C. oxystoma with different host blood meals. The pathogenic bacteria B. cereus, B. licheniformis and A. faecalis within the females could potentially impact pathogen acquisition and increase the probability of their zoonotic transmissibility.
Collapse
Affiliation(s)
- Ankita Sarkar
- Entomology Research Unit, Department of Zoology, The University of Burdwan, Burdwan, India
| | - Paramita Banerjee
- Entomology Research Unit, Department of Zoology, The University of Burdwan, Burdwan, India
| | - Surajit Kar
- Entomology Research Unit, Department of Zoology, The University of Burdwan, Burdwan, India
| | - Arjun Pal
- Entomology Research Unit, Department of Zoology, The University of Burdwan, Burdwan, India
| | - Abhijit Mazumdar
- Entomology Research Unit, Department of Zoology, The University of Burdwan, Burdwan, India
| |
Collapse
|
2
|
El Yamlahi Y, Bel Mokhtar N, Maurady A, Britel MR, Batargias C, Mutembei DE, Nyingilili HS, Malulu DJ, Malele II, Asimakis E, Stathopoulou P, Tsiamis G. Characterization of the Bacterial Profile from Natural and Laboratory Glossina Populations. INSECTS 2023; 14:840. [PMID: 37999039 PMCID: PMC10671886 DOI: 10.3390/insects14110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Tsetse flies (Glossina spp.; Diptera: Glossinidae) are viviparous flies that feed on blood and are found exclusively in sub-Saharan Africa. They are the only cyclic vectors of African trypanosomes, responsible for human African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT). In this study, we employed high throughput sequencing of the 16S rRNA gene to unravel the diversity of symbiotic bacteria in five wild and three laboratory populations of tsetse species (Glossina pallidipes, G. morsitans, G. swynnertoni, and G. austeni). The aim was to assess the dynamics of bacterial diversity both within each laboratory and wild population in relation to the developmental stage, insect age, gender, and location. Our results indicated that the bacterial communities associated with the four studied Glossina species were significantly influenced by their region of origin, with wild samples being more diverse compared to the laboratory samples. We also observed that the larval microbiota was significantly different than the adults. Furthermore, the sex and the species did not significantly influence the formation of the bacterial profile of the laboratory colonies once these populations were kept under the same rearing conditions. In addition, Wigglesworthia, Acinetobacter, and Sodalis were the most abundant bacterial genera in all the samples, while Wolbachia was significantly abundant in G. morsitans compared to the other studied species. The operational taxonomic unit (OTU) co-occurrence network for each location (VVBD insectary, Doma, Makao, and Msubugwe) indicated a high variability between G. pallidipes and the other species in terms of the number of mutual exclusion and copresence interactions. In particular, some bacterial genera, like Wigglesworthia and Sodalis, with high relative abundance, were also characterized by a high degree of interactions.
Collapse
Affiliation(s)
- Youssef El Yamlahi
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Faculty of Sciences and Technics of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Naima Bel Mokhtar
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Faculty of Sciences and Technics of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco
| | - Mohammed R. Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece;
| | - Delphina E. Mutembei
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Hamisi S. Nyingilili
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Deusdedit J. Malulu
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Imna I. Malele
- Directorate of Research and Technology Development, TVLA, Dar Es Salaam P.O. Box 9254, Tanzania;
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| |
Collapse
|
3
|
Tsakeng CUB, Tanekou TTM, Soffack SF, Tirados I, Noutchih C, Njiokou F, Bigoga JD, Wondji CS. Assessing the Tsetse Fly Microbiome Composition and the Potential Association of Some Bacteria Taxa with Trypanosome Establishment. Microorganisms 2022; 10:1141. [PMID: 35744659 PMCID: PMC9229743 DOI: 10.3390/microorganisms10061141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
The tsetse flies, biological vectors of African trypanosomes, harbour a variety of bacteria involved in their vector competence that may help in developing novel vector control tools. This study provides an inventory of tsetse bacterial communities in Cameroon and explores their possible associations with trypanosome establishment in Glossina palpalis palpalis. High throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene, with subsequent metagenomic, multivariate, and association analyses, were used to investigate the levels and patterns of microbial diversity in four tsetse species. Overall, 31 bacterial genera and four phyla were identified. The primary symbiont Wigglesworthia dominated almost all the samples, with an overall relative abundance of 47.29%, and seemed to be replaced by Serratia or Burkholderia in some G. tachinoides flies. Globally, significant differences were observed in the microbiome diversity and composition among tsetse species and between teneral and non-teneral flies, or between flies displaying or not displaying mature trypanosome infections. In addition, differential abundance testing showed some OTUs, or some bacteria taxa, associated with trypanosome maturation in tsetse flies. These bacteria could be further investigated for an understanding of their mechanism of action and alternatively, transformed and used to block trypanosome development in tsetse flies.
Collapse
Affiliation(s)
- Calmes Ursain Bouaka Tsakeng
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Tito Tresor Melachio Tanekou
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Biological Sciences, Faculty of Science, University of Bamenda, Bamenda P.O. Box 39, Cameroon
| | - Steve Feudjio Soffack
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Inaki Tirados
- Department of Vector Biology, Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK;
| | - Cedrique Noutchih
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
| | - Flobert Njiokou
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Jude Daiga Bigoga
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Charles Sinclair Wondji
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Vector Biology, Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK;
| |
Collapse
|
4
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
5
|
Diversity and dynamics of bacteria at the Chrysomya megacephala pupal stage revealed by third-generation sequencing. Sci Rep 2022; 12:2006. [PMID: 35132164 PMCID: PMC8821589 DOI: 10.1038/s41598-022-06311-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
Characterization of the microbial community is essential for understanding the symbiotic relationships between microbes and host insects. Chrysomya megacephala is a vital resource, a forensic insect, a pollinator, and a vector for enteric bacteria, protozoa, helminths, and viruses. However, research on its microbial community is incomprehensive, particularly at the pupal stage, which comprises approximately half of the entire larval development stage and is important entomological evidence in forensic medicine. For the first time, this study investigated the bacterial communities of C. megacephala pupae at different ages using third-generation sequencing technology. The results showed that C. megacephala has a diverse and dynamic bacterial community. Cluster analysis at ≥ 97% similarity produced 154 operational taxonomic units (OTUs) that belonged to 10 different phyla and were distributed into 15 classes, 28 orders, 50 families, 88 genera, and 130 species. Overall, the number of bacterial OTUs increased with the development of pupae, and the relative abundance of Wolbachia in the Day5 group was significantly lower than that in the other groups. Within the pupal stage, Proteobacteria, Firmicutes, and Bacteroidetes were the dominant phyla of bacteria. At the genus level, Wolbachia and Ignatzschineria coexisted, a rarely known feature. In addition, we found Erysipelothrix rhusiopathiae, the etiological agent of swine erysipelas, which is rarely identified in insects. This study enriches the understanding of the microbial community of C. megacephala and provides a reference for better utilization and control of C. megacephala.
Collapse
|
6
|
Ngambia Freitas FS, Njiokou F, Tsagmo Ngoune JM, Sempere G, Berthier D, Geiger A. Modulation of trypanosome establishment in Glossina palpalis palpalis by its microbiome in the Campo sleeping sickness focus, Cameroon. INFECTION GENETICS AND EVOLUTION 2021; 90:104763. [PMID: 33571685 DOI: 10.1016/j.meegid.2021.104763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to investigate factors involved in vector competence by analyzing whether the diversity and relative abundance of the different bacterial genera inhabiting the fly's gut could be associated with its trypanosome infection status. This was investigated on 160 randomly selected G. p. palpalis flies - 80 trypanosome-infected, 80 uninfected - collected in 5 villages of the Campo trypanosomiasis focus in South Cameroon. Trypanosome species were identified using specific primers, and the V4 region of the 16S rRNA gene of bacteria was targeted for metabarcoding analysis in order to identify the bacteria and determine microbiome composition. A total of 261 bacterial genera were identified of which only 114 crossed two barriers: a threshold of 0.01% relative abundance and the presence at least in 5 flies. The secondary symbiont Sodalis glossinidius was identified in 50% of the flies but it was not considered since its relative abundance was much lower than the 0.01% relative abundance threshold. The primary symbiont Wigglesworthia displayed 87% relative abundance, the remaining 13% were prominently constituted by the genera Spiroplasma, Tediphilus, Acinetobacter and Pseudomonas. Despite a large diversity in bacterial genera and in their abundance observed in micobiome composition, the statistical analyzes of the 160 tsetse flies showed an association with flies' infection status and the sampling sites. Furthermore, tsetse flies harboring Trypanosoma congolense Savanah type displayed a different composition of bacterial flora compared to uninfected flies. In addition, our study revealed that 36 bacterial genera were present only in uninfected flies, which could therefore suggest a possible involvement in flies' refractoriness; with the exception of Cupriavidus, they were however of low relative abundance. Some genera, including Acinetobacter, Cutibacterium, Pseudomonas and Tepidiphilus, although present both in infected and uninfected flies, were found to be associated with uninfected status of tsetse flies. Hence their effective role deserves to be further evaluated in order to determine whether some of them could become targets for tsetse control of fly vector competence and consequently for the control of the disease. Finally, when comparing the bacterial genera identified in tsetse flies collected during 4 epidemiological surveys, 39 genera were found to be common to flies from at least 2 sampling campaigns.
Collapse
Affiliation(s)
- François Sougal Ngambia Freitas
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France; Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | | | - Guilhem Sempere
- CIRAD, UMR INTERTRYP, F-34398 Montpellier, France; South Green Bioinformatics Platform, Biodiversity, CIRAD, INRAE, IRD, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - David Berthier
- CIRAD, UMR INTERTRYP, F-34398 Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France; Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Center for Research on Filariasis and other Tropical Diseases (CRFilMT), P.O. Box 5797, Yaoundé, Cameroon.
| |
Collapse
|
7
|
Duan R, Xu H, Gao S, Gao Z, Wang N. Effects of Different Hosts on Bacterial Communities of Parasitic Wasp Nasonia vitripennis. Front Microbiol 2020; 11:1435. [PMID: 32774328 PMCID: PMC7381354 DOI: 10.3389/fmicb.2020.01435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/03/2020] [Indexed: 01/08/2023] Open
Abstract
Parasitism is a special interspecific relationship in insects. Unlike most other ectoparasites, Nasonia vitripennis spend most of its life cycle (egg, larvae, pupae, and early adult stage) inside the pupae of flies, which is covered with hard puparium. Microbes play important roles in host development and help insect hosts to adapt to various environments. How the microbes of parasitic wasp respond to different fly hosts living in such close relationships motivated this investigation. In this study, we used N. vitripennis and three different fly pupa hosts (Lucilia sericata, Sarcophaga marshalli, and Musca domestica) to address this question, as well as to illustrate the potential transfer of bacteria through the trophic food chains. We found that N. vitripennis from different fly pupa hosts showed distinct microbiota, which means that the different fly hosts could affect the bacterial communities of their parasitic wasps. Some bacteria showed potential horizontal transfer through the trophic food chains, from the food through the fly to the parasitic wasp. We also found that the heritable endosymbiont Wolbachia could transferred from the fly host to the parasite and correlated with the bacterial communities of the corresponding parasitic wasps. Our findings provide new insight to the microbial interactions between parasite and host.
Collapse
Affiliation(s)
- Ruxin Duan
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Heng Xu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Shanshan Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Ningxin Wang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
8
|
Blood meal sources and bacterial microbiome diversity in wild-caught tsetse flies. Sci Rep 2020; 10:5005. [PMID: 32193415 PMCID: PMC7081217 DOI: 10.1038/s41598-020-61817-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/28/2020] [Indexed: 12/02/2022] Open
Abstract
Tsetse flies are the vectors of African trypanosomiasis affecting 36 sub-Saharan countries. Both wild and domestic animals play a crucial role in maintaining the disease-causing parasites (trypanosomes). Thus, the identification of animal reservoirs of trypanosomes is vital for the effective control of African trypanosomiasis. Additionally, the biotic and abiotic factors that drive gut microbiome diversity in tsetse flies are primarily unresolved, especially under natural, field conditions. In this study, we present a comprehensive DNA metabarcoding approach for individual tsetse fly analysis in the identification of mammalian blood meal sources and fly bacterial microbiome composition. We analyzed samples from two endemic foci, Kafue, Zambia collected in June 2017, and Hurungwe, Zimbabwe sampled in April 2014 (pilot study) and detected DNA of various mammals including humans, wild animals, domestic animals and small mammals (rat and bat). The bacterial diversity was relatively similar in flies with different mammalian species DNA, trypanosome infected and uninfected flies, and female and male flies. This study is the first report on bat DNA detection in wild tsetse flies. This study reveals that small mammals such as bats and rats are among the opportunistic blood meal sources for tsetse flies in the wild, and the implication on tsetse biology and ecology needs to be studied.
Collapse
|
9
|
Tsagmo Ngoune JM, Reveillaud J, Sempere G, Njiokou F, Melachio TT, Abate L, Tchioffo MT, Geiger A. The composition and abundance of bacterial communities residing in the gut of Glossina palpalis palpalis captured in two sites of southern Cameroon. Parasit Vectors 2019; 12:151. [PMID: 30940213 PMCID: PMC6444424 DOI: 10.1186/s13071-019-3402-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/20/2019] [Indexed: 01/10/2023] Open
Abstract
Background A number of reports have demonstrated the role of insect bacterial flora on their host’s physiology and metabolism. The tsetse host and vector of trypanosomes responsible for human sleeping sickness (human African trypanosomiasis, HAT) and nagana in animals (African animal trypanosomiasis, AAT) carry bacteria that influence its diet and immune processes. However, the mechanisms involved in these processes remain poorly documented. This underscores the need for increased research into the bacterial flora composition and structure of tsetse flies. The aim of this study was to identify the diversity and relative abundance of bacterial genera in Glossina palpalis palpalis flies collected in two trypanosomiasis foci in Cameroon. Methods Samples of G. p. palpalis which were either negative or naturally trypanosome-positive were collected in two foci located in southern Cameroon (Campo and Bipindi). Using the V3V4 and V4 variable regions of the small subunit of the 16S ribosomal RNA gene, we analyzed the respective bacteriome of the flies’ midguts. Results We identified ten bacterial genera. In addition, we observed that the relative abundance of the obligate endosymbiont Wigglesworthia was highly prominent (around 99%), regardless of the analyzed region. The remaining genera represented approximately 1% of the bacterial flora, and were composed of Salmonella, Spiroplasma, Sphingomonas, Methylobacterium, Acidibacter, Tsukamurella, Serratia, Kluyvera and an unidentified bacterium. The genus Sodalis was present but with a very low abundance. Globally, no statistically significant difference was found between the bacterial compositions of flies from the two foci, and between positive and trypanosome-negative flies. However, Salmonella and Serratia were only described in trypanosome-negative flies, suggesting a potential role for these two bacteria in fly refractoriness to trypanosome infection. In addition, our study showed the V4 region of the small subunit of the 16S ribosomal RNA gene was more efficient than the V3V4 region at describing the totality of the bacterial diversity. Conclusions A very large diversity of bacteria was identified with the discovering of species reported to secrete anti-parasitic compounds or to modulate vector competence in other insects. For future studies, the analyses should be enlarged with larger sampling including foci from several countries. Electronic supplementary material The online version of this article (10.1186/s13071-019-3402-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean Marc Tsagmo Ngoune
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France.,Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Julie Reveillaud
- ASTRE, INRA, CIRAD, University of Montpellier, Montpellier, France
| | - Guilhem Sempere
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Trésor T Melachio
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Luc Abate
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224-Centre National de la Recherche Scientifique, 5290-UM1-UM2, Montpellier, France
| | - Majoline T Tchioffo
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224-Centre National de la Recherche Scientifique, 5290-UM1-UM2, Montpellier, France
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France. .,Center for Research on Filariasis and other Tropical Diseases (CRFilMT), P.O. Box 5797, Yaoundé, Cameroon. .,Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
10
|
Weiss BL, Maltz MA, Vigneron A, Wu Y, Walter KS, O'Neill MB, Wang J, Aksoy S. Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment. PLoS Pathog 2019; 15:e1007470. [PMID: 30817773 PMCID: PMC6394900 DOI: 10.1371/journal.ppat.1007470] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022] Open
Abstract
Tsetse flies (Glossina spp.) vector pathogenic trypanosomes (Trypanosoma spp.) in sub-Saharan Africa. These parasites cause human and animal African trypanosomiases, which are debilitating diseases that inflict an enormous socio-economic burden on inhabitants of endemic regions. Current disease control strategies rely primarily on treating infected animals and reducing tsetse population densities. However, relevant programs are costly, labor intensive and difficult to sustain. As such, novel strategies aimed at reducing tsetse vector competence require development. Herein we investigated whether Kosakonia cowanii Zambiae (Kco_Z), which confers Anopheles gambiae with resistance to Plasmodium, is able to colonize tsetse and induce a trypanosome refractory phenotype in the fly. Kco_Z established stable infections in tsetse's gut and exhibited no adverse effect on the fly's survival. Flies with established Kco_Z infections in their gut were significantly more refractory to infection with two distinct trypanosome species (T. congolense, 6% infection; T. brucei, 32% infection) than were age-matched flies that did not house the exogenous bacterium (T. congolense, 36% infected; T. brucei, 70% infected). Additionally, 52% of Kco_Z colonized tsetse survived infection with entomopathogenic Serratia marcescens, compared with only 9% of their wild-type counterparts. These parasite and pathogen refractory phenotypes result from the fact that Kco_Z acidifies tsetse's midgut environment, which inhibits trypanosome and Serratia growth and thus infection establishment. Finally, we determined that Kco_Z infection does not impact the fecundity of male or female tsetse, nor the ability of male flies to compete with their wild-type counterparts for mates. We propose that Kco_Z could be used as one component of an integrated strategy aimed at reducing the ability of tsetse to transmit pathogenic trypanosomes.
Collapse
Affiliation(s)
- Brian L Weiss
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Michele A Maltz
- Southern Connecticut State University, New Haven, Connecticut, United States of America
| | - Aurélien Vigneron
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Yineng Wu
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Katharine S Walter
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Michelle B O'Neill
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Jingwen Wang
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| |
Collapse
|
11
|
Bacterial diversity obtained by culturable approaches in the gut of Glossina pallidipes population from a non sleeping sickness focus in Tanzania: preliminary results. BMC Microbiol 2018; 18:164. [PMID: 30470192 PMCID: PMC6251091 DOI: 10.1186/s12866-018-1288-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Glossina pallidipes is a haematophagous insect that serves as a cyclic transmitter of trypanosomes causing African Trypanosomiasis (AT). To fully assess the role of G. pallidipes in the epidemiology of AT, especially the human form of the disease (HAT), it is essential to know the microbial diversity inhabiting the gut of natural fly populations. This study aimed to examine the diversity of G. pallidipes fly gut bacteria by culture-dependent approaches. RESULTS 113 bacterial isolates were obtained from aerobic and anaerobic microorganisms originating from the gut of G. pallidipes. 16S rDNA of each isolate was PCR amplified and sequenced. The overall majority of identified bacteria belonged in descending order to the Firmicutes (86.6%), Actinobacteria (7.6%), Proteobacteria (5.5%)and Bacteroidetes (0.3%). Diversity of Firmicutes was found higher when enrichments and isolation were performed under anaerobic conditions than aerobic ones. Experiments conducted in the absence of oxygen (anaerobiosis) led to the isolation of bacteria pertaining to four phyla (83% Firmicutes, 15% Actinobacteria, 1% Proteobacteria and 0.5% Bacteroidetes, whereas those conducted in the presence of oxygen (aerobiosis) led to the isolation of bacteria affiliated to two phyla only (90% Firmicutes and 10% Proteobacteria). Phylogenetic analyses placed these isolates into 11 genera namely Bacillus, Acinetobacter, Mesorhizobium, Paracoccus, Microbacterium, Micrococcus, Arthrobacter, Corynobacterium, Curtobacterium, Vagococcus and Dietzia spp.which are known to be either facultative anaerobes, aerobes, or even microaerobes. CONCLUSION This study shows that G. pallidipes fly gut is an environmental reservoir for a vast number of bacterial species, which are likely to be important for ecological microbial well being of the fly and possibly on differing vectorial competence and refractoriness against AT epidemiology.
Collapse
|
12
|
Abstract
Background Microbiota plays an important role in the biology, ecology and evolution of insects including tsetse flies. The bacterial profile of 3 Glossina palpalis gambiensis laboratory colonies was examined using 16S rRNA gene amplicon sequencing to evaluate the dynamics of the bacterial diversity within and between each G. p. gambiensis colony. Results The three G. p. gambiensis laboratory colonies displayed similar bacterial diversity indices and OTU distribution. Larval guts displayed a higher diversity when compared with the gastrointestinal tract of adults while no statistically significant differences were observed between testes and ovaries. Wigglesworthia and Sodalis were the most dominant taxa. In more detail, the gastrointestinal tract of adults was more enriched by Wigglesworthia while Sodalis were prominent in gonads. Interestingly, in larval guts a balanced co-existence between Wigglesworthia and Sodalis was observed. Sequences assigned to Wolbachia, Propionibacterium, and Providencia were also detected but to a much lesser degree. Clustering analysis indicated that the bacterial profile in G. p. gambiensis exhibits tissue tropism, hence distinguishing the gut bacterial profile from that present in reproductive organs. Conclusions Our results indicated that age, gender and the origin of the laboratory colonies did not significantly influence the formation of the bacterial profile, once these populations were kept under the same rearing conditions. Within the laboratory populations a tissue tropism was observed between the gut and gonadal bacterial profile. Electronic supplementary material The online version of this article (10.1186/s12866-018-1290-9) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Kariithi HM, Meki IK, Schneider DI, De Vooght L, Khamis FM, Geiger A, Demirbaş-Uzel G, Vlak JM, iNCE IA, Kelm S, Njiokou F, Wamwiri FN, Malele II, Weiss BL, Abd-Alla AMM. Enhancing vector refractoriness to trypanosome infection: achievements, challenges and perspectives. BMC Microbiol 2018; 18:179. [PMID: 30470182 PMCID: PMC6251094 DOI: 10.1186/s12866-018-1280-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural & Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Rd, Loresho, Nairobi, Kenya
| | - Irene K Meki
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - Daniela I Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Linda De Vooght
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, 00100, Nairobi, Kenya
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Guler Demirbaş-Uzel
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - ikbal Agah iNCE
- Institute of Chemical, Environmental & Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Sorge Kelm
- Department of Medical Microbiology, Acıbadem Mehmet Ali Aydınlar University, School of Medicine, 34752, Ataşehir, Istanbul, Turkey
| | - Flobert Njiokou
- Centre for Biomolecular Interactions Bremen, Faculty for Biology & Chemistry, Universität Bremen, Bibliothekstraße 1, 28359 Bremen, Germany
| | - Florence N Wamwiri
- Laboratory of Parasitology and Ecology, Faculty of Sciences, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, BP 812 Cameroon
| | - Imna I Malele
- Trypanosomiasis Research Centre, Kenya Agricultural & Livestock Research Organization, P.O. Box 362-00902, Kikuyu, Kenya
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Adly M M Abd-Alla
- Molecular Department, Vector and Vector Borne Diseases Institute, Tanzania Veterinary Laboratory Agency, Majani Mapana, Off Korogwe Road, Box, 1026 Tanga, Tanzania
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| |
Collapse
|
14
|
Griffith BC, Weiss BL, Aksoy E, Mireji PO, Auma JE, Wamwiri FN, Echodu R, Murilla G, Aksoy S. Analysis of the gut-specific microbiome from field-captured tsetse flies, and its potential relevance to host trypanosome vector competence. BMC Microbiol 2018; 18:146. [PMID: 30470178 PMCID: PMC6251097 DOI: 10.1186/s12866-018-1284-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background The tsetse fly (Glossina sp.) midgut is colonized by maternally transmitted and environmentally acquired bacteria. Additionally, the midgut serves as a niche in which pathogenic African trypanosomes reside within infected flies. Tsetse’s bacterial microbiota impacts many aspects of the fly’s physiology. However, little is known about the structure of tsetse’s midgut-associated bacterial communities as they relate to geographically distinct fly habitats in east Africa and their contributions to parasite infection outcomes. We utilized culture dependent and independent methods to characterize the taxonomic structure and density of bacterial communities that reside within the midgut of tsetse flies collected at geographically distinct locations in Kenya and Uganda. Results Using culture dependent methods, we isolated 34 strains of bacteria from four different tsetse species (G. pallidipes, G. brevipalpis, G. fuscipes and G. fuscipleuris) captured at three distinct locations in Kenya. To increase the depth of this study, we deep sequenced midguts from individual uninfected and trypanosome infected G. pallidipes captured at two distinct locations in Kenya and one in Uganda. We found that tsetse’s obligate endosymbiont, Wigglesworthia, was the most abundant bacterium present in the midgut of G. pallidipes, and the density of this bacterium remained largely consistent regardless of whether or not its tsetse host was infected with trypanosomes. These fly populations also housed the commensal symbiont Sodalis, which was found at significantly higher densities in trypanosome infected compared to uninfected flies. Finally, midguts of field-captured G. pallidipes were colonized with distinct, low density communities of environmentally acquired microbes that differed in taxonomic structure depending on parasite infection status and the geographic location from which the flies were collected. Conclusions The results of this study will enhance our understanding of the tripartite relationship between tsetse, its microbiota and trypanosome vector competence. This information may be useful for developing novel disease control strategies or enhancing the efficacy of those already in use. Electronic supplementary material The online version of this article (10.1186/s12866-018-1284-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bridget C Griffith
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.,Present Address: Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| | - Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.,Present Address: Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Paul O Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joana E Auma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Florence N Wamwiri
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
15
|
Geiger A, Malele I, Abd-Alla AM, Njiokou F. Blood feeding tsetse flies as hosts and vectors of mammals-pre-adapted African Trypanosoma: current and expected research directions. BMC Microbiol 2018; 18:162. [PMID: 30470183 PMCID: PMC6251083 DOI: 10.1186/s12866-018-1281-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Research on the zoo-anthropophilic blood feeding tsetse flies' biology conducted, by different teams, in laboratory settings and at the level of the ecosystems- where also co-perpetuate African Trypanosoma- has allowed to unveil and characterize key features of tsetse flies' bacterial symbionts on which rely both (a) the perpetuation of the tsetse fly populations and (b) the completion of the developmental program of the African Trypanosoma. Transcriptomic analyses have already provided much information on tsetse fly genes as well as on genes of the fly symbiotic partners Sodalis glossinidius and Wigglesworthia, which account for the successful onset or not of the African Trypanosoma developmental program. In parallel, identification of the non- symbiotic bacterial communities hosted in the tsetse fly gut has recently been initiated: are briefly introduced those bacteria genera and species common to tsetse flies collected from distinct ecosystems, that could be further studied as potential biologicals preventing the onset of the African Trypanosoma developmental program. Finally, future work will need to concentrate on how to render tsetse flies refractory, and the best means to disseminate them in the field in order to establish an overall refractory fly population.
Collapse
Affiliation(s)
- Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Imna Malele
- Vector and Vector Borne Diseases Institute, Majani Mapana, Off Korogwe Road, Box, 1026 Tanga, Tanzania
| | - Adly M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
16
|
Jiménez-Cortés JG, García-Contreras R, Bucio-Torres MI, Cabrera-Bravo M, Córdoba-Aguilar A, Benelli G, Salazar-Schettino PM. Bacterial symbionts in human blood-feeding arthropods: Patterns, general mechanisms and effects of global ecological changes. Acta Trop 2018; 186:69-101. [PMID: 30003907 DOI: 10.1016/j.actatropica.2018.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Due to their high impact on public health, human blood-feeding arthropods are one of the most relevant animal groups. Bacterial symbionts have been long known to play a role in the metabolism, and reproduction of these arthropod vectors. Nowadays, we have a more complete picture of their functions, acknowledging the wide influence of bacterial symbionts on processes ranging from the immune response of the arthropod host to the possible establishment of pathogens and parasites. One or two primary symbiont species have been found to co-evolve along with their host in each taxon (being ticks an exception), leading to various kinds of symbiosis, mostly mutualistic in nature. Moreover, several secondary symbiont species are shared by all arthropod groups. With respect to gut microbiota, several bacterial symbionts genera are hosted in common, indicating that these bacterial groups are prone to invade several hematophagous arthropod species feeding on humans. The main mechanisms underlying bacterium-arthropod symbiosis are discussed, highlighting that even primary symbionts elicit an immune response from the host. Bacterial groups in the gut microbiota play a key role in immune homeostasis, and in some cases symbiont bacteria could be competing directly or indirectly with pathogens and parasites. Finally, the effects climate change, great human migrations, and the increasingly frequent interactions of wild and domestic animal species are analyzed, along with their implications on microbiota alteration and their possible impacts on public health and the control of pathogens and parasites harbored in arthropod vectors of human parasites and pathogens.
Collapse
Affiliation(s)
- J Guillermo Jiménez-Cortés
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| | - Rodolfo García-Contreras
- Laboratorio de Bacteriología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Martha I Bucio-Torres
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Margarita Cabrera-Bravo
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Alex Córdoba-Aguilar
- Laboratorio de Ecología de la Conducta de Artrópodos, Instituto de Ecología, Universidad Nacional Autónoma de México, México
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Paz M Salazar-Schettino
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
17
|
Morella NM, Koskella B. The Value of a Comparative Approach to Understand the Complex Interplay between Microbiota and Host Immunity. Front Immunol 2017; 8:1114. [PMID: 28959258 PMCID: PMC5603614 DOI: 10.3389/fimmu.2017.01114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/24/2017] [Indexed: 01/17/2023] Open
Abstract
The eukaryote immune system evolved and continues to evolve within a microbial world, and as such is critically shaped by-and in some cases even reliant upon-the presence of host-associated microbial species. There are clear examples of adaptations that allow the host to simultaneously tolerate and/or promote growth of symbiotic microbiota while protecting itself against pathogens, but the relationship between immunity and the microbiome reaches far beyond simple recognition and includes complex cross talk between host and microbe as well as direct microbiome-mediated protection against pathogens. Here, we present a broad but brief overview of how the microbiome is controlled by and interacts with diverse immune systems, with the goal of identifying questions that can be better addressed by taking a comparative approach across plants and animals and different types of immunity. As two key examples of such an approach, we focus on data examining the importance of early exposure on microbiome tolerance and immune system development and function, and the importance of transmission among hosts in shaping the potential coevolution between, and long-term stability of, host-microbiome associations. Then, by comparing existing evidence across short-lived plants, mouse model systems and humans, and insects, we highlight areas of microbiome research that are strong in some systems and absent in others with the hope of guiding future research that will allow for broad-scale comparisons moving forward. We argue that such an approach will not only help with identification of generalities in host-microbiome-immune interactions but also improve our understanding of the role of the microbiome in host health.
Collapse
Affiliation(s)
- Norma M. Morella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
18
|
Jacob F, Melachio TT, Njitchouang GR, Gimonneau G, Njiokou F, Abate L, Christen R, Reveillaud J, Geiger A. Intestinal Bacterial Communities of Trypanosome-Infected and Uninfected Glossina palpalis palpalis from Three Human African Trypanomiasis Foci in Cameroon. Front Microbiol 2017; 8:1464. [PMID: 28824591 PMCID: PMC5541443 DOI: 10.3389/fmicb.2017.01464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/20/2017] [Indexed: 11/27/2022] Open
Abstract
Glossina sp. the tsetse fly that transmits trypanosomes causing the Human or the Animal African Trypanosomiasis (HAT or AAT) can harbor symbiotic bacteria that are known to play a crucial role in the fly's vector competence. We hypothesized that other bacteria could be present, and that some of them could also influence the fly's vector competence. In this context the objectives of our work were: (a) to characterize the bacteria that compose the G. palpalis palpalis midgut bacteriome, (b) to evidence possible bacterial community differences between trypanosome-infected and non-infected fly individuals from a given AAT and HAT focus or from different foci using barcoded Illumina sequencing of the hypervariable V3-V4 region of the 16S rRNA gene. Forty G. p. palpalis flies, either infected by Trypanosoma congolense or uninfected were sampled from three trypanosomiasis foci in Cameroon. A total of 143 OTUs were detected in the midgut samples. Most taxa were identified at the genus level, nearly 50% at the species level; they belonged to 83 genera principally within the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Prominent representatives included Wigglesworthia (the fly's obligate symbiont), Serratia, and Enterobacter hormaechei. Wolbachia was identified for the first time in G. p. palpalis. The average number of bacterial species per tsetse sample was not significantly different regarding the fly infection status, and the hierarchical analysis based on the differences in bacterial community structure did not provide a clear clustering between infected and non-infected flies. Finally, the most important result was the evidence of the overall very large diversity of intestinal bacteria which, except for Wigglesworthia, were unevenly distributed over the sampled flies regardless of their geographic origin and their trypanosome infection status.
Collapse
Affiliation(s)
- Franck Jacob
- UMR INTERTRYP, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/GMontpellier, France
| | - Trésor T Melachio
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1Yaounde, Cameroon
| | - Guy R Njitchouang
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1Yaounde, Cameroon
| | - Geoffrey Gimonneau
- UMR INTERTRYP, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/GMontpellier, France
| | - Flobert Njiokou
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1Yaounde, Cameroon
| | - Luc Abate
- UMR MIVEGEC, Institut de Recherche pour le Développement 224-Centre National de la Recherche Scientifique 5290Montpellier, France
| | - Richard Christen
- UMR 7138, Systématique Adaptation Evolution, Université de Nice-Sophia AntipolisNice, France
| | - Julie Reveillaud
- Institut National de la Recherche Agronomique, UMR 1309 ASTREMontpellier, France.,CIRAD, UMR ASTREMontpellier, France
| | - Anne Geiger
- UMR INTERTRYP, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/GMontpellier, France
| |
Collapse
|
19
|
Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies: Spiroplasma is present in both laboratory and natural populations. Sci Rep 2017; 7:4699. [PMID: 28680117 PMCID: PMC5498494 DOI: 10.1038/s41598-017-04740-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023] Open
Abstract
Profiling of wild and laboratory tsetse populations using 16S rRNA gene amplicon sequencing allowed us to examine whether the "Wigglesworthia-Sodalis-Wolbachia dogma" operates across species and populations. The most abundant taxa, in wild and laboratory populations, were Wigglesworthia (the primary endosymbiont), Sodalis and Wolbachia as previously characterized. The species richness of the microbiota was greater in wild than laboratory populations. Spiroplasma was identified as a new symbiont exclusively in Glossina fuscipes fuscipes and G. tachinoides, members of the palpalis sub-group, and the infection prevalence in several laboratory and natural populations was surveyed. Multi locus sequencing typing (MLST) analysis identified two strains of tsetse-associated Spiroplasma, present in G. f. fuscipes and G. tachinoides. Spiroplasma density in G. f. fuscipes larva guts was significantly higher than in guts from teneral and 15-day old male and female adults. In gonads of teneral and 15-day old insects, Spiroplasma density was higher in testes than ovaries, and was significantly higher density in live versus prematurely deceased females indicating a potentially mutualistic association. Higher Spiroplasma density in testes than in ovaries was also detected by fluorescent in situ hybridization in G. f. fuscipes.
Collapse
|
20
|
Bossard G, Bartoli M, Fardeau ML, Holzmuller P, Ollivier B, Geiger A. Characterization of recombinant Trypanosoma brucei gambiense Translationally Controlled Tumor Protein (rTbgTCTP) and its interaction with Glossina midgut bacteria. Gut Microbes 2017; 8:413-427. [PMID: 28586253 PMCID: PMC5628649 DOI: 10.1080/19490976.2017.1331833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In humans, sleeping sickness (i.e. Human African Trypanosomiasis) is caused by the protozoan parasites Trypanosoma brucei gambiense (Tbg) in West and Central Africa, and T. b. rhodesiense in East Africa. We previously showed in vitro that Tbg is able to excrete/secrete a large number of proteins, including Translationally Controlled Tumor Protein (TCTP). Moreover, the tctp gene was described previously to be expressed in Tbg-infected flies. Aside from its involvement in diverse cellular processes, we have investigated a possible alternative role within the interactions occurring between the trypanosome parasite, its tsetse fly vector, and the associated midgut bacteria. In this context, the Tbg tctp gene was synthesized and cloned into the baculovirus vector pAcGHLT-A, and the corresponding protein was produced using the baculovirus Spodoptera frugicola (strain 9) / insect cell system. The purified recombinant protein rTbgTCTP was incubated together with bacteria isolated from the gut of tsetse flies, and was shown to bind to 24 out of the 39 tested bacteria strains belonging to several genera. Furthermore, it was shown to affect the growth of the majority of these bacteria, especially when cultivated under microaerobiosis and anaerobiosis. Finally, we discuss the potential for TCTP to modulate the fly microbiome composition toward favoring trypanosome survival.
Collapse
Affiliation(s)
- Géraldine Bossard
- CIRAD, UMR INTERTRYP, Montpellier, France,CONTACT Géraldine Bossard Centre de coopération International en Recherche Agronomique pour le Développement (CIRAD), Campus international de Baillarguet TA-A/17G 34398 Montpellier, France
| | | | | | - Philippe Holzmuller
- CIRAD, UMR CMAEE (control des maladies animales exotiques et émergentes), Montpellier, France
| | | | | |
Collapse
|
21
|
Sterkel M, Oliveira JHM, Bottino-Rojas V, Paiva-Silva GO, Oliveira PL. The Dose Makes the Poison: Nutritional Overload Determines the Life Traits of Blood-Feeding Arthropods. Trends Parasitol 2017; 33:633-644. [PMID: 28549573 DOI: 10.1016/j.pt.2017.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
Vertebrate blood composition is heavily biased towards proteins, and hemoglobin, which is a hemeprotein, is by far the most abundant protein. Typically, hematophagous insects ingest blood volumes several times their weight before the blood meal. This barbarian feast offers an abundance of nutrients, but the degradation of blood proteins generates toxic concentrations of amino acids and heme, along with unparalleled microbiota growth. Despite this challenge, hematophagous arthropods have successfully developed mechanisms that bypass the toxicity of these molecules. While these adaptations allow hematophagous arthropods to tolerate their diet, they also constitute a unique mode of operation for cell signaling, immunity, and metabolism, the study of which may offer insights into the biology of disease vectors and may lead to novel vector-specific control methods.
Collapse
Affiliation(s)
- Marcos Sterkel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Henrique M Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil.
| |
Collapse
|
22
|
Tchioffo MT, Abate L, Boissière A, Nsango SE, Gimonneau G, Berry A, Oswald E, Dubois D, Morlais I. An epidemiologically successful Escherichia coli sequence type modulates Plasmodium falciparum infection in the mosquito midgut. INFECTION GENETICS AND EVOLUTION 2016; 43:22-30. [DOI: 10.1016/j.meegid.2016.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
23
|
Tchioffo MT, Boissière A, Abate L, Nsango SE, Bayibéki AN, Awono-Ambéné PH, Christen R, Gimonneau G, Morlais I. Dynamics of Bacterial Community Composition in the Malaria Mosquito's Epithelia. Front Microbiol 2016; 6:1500. [PMID: 26779155 PMCID: PMC4700937 DOI: 10.3389/fmicb.2015.01500] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/11/2015] [Indexed: 11/13/2022] Open
Abstract
The Anopheles midgut hosts diverse bacterial communities and represents a complex ecosystem. Several evidences indicate that mosquito midgut microbiota interferes with malaria parasite transmission. However, the bacterial composition of salivary glands and ovaries, two other biologically important tissues, has not been described so far. In this study, we investigated the dynamics of the bacterial communities in the mosquito tissues from emerging mosquitoes until 8 days after a blood meal containing Plasmodium falciparum gametocytes and described the temporal colonization of the mosquito epithelia. Bacterial communities were identified in the midgut, ovaries, and salivary glands of individual mosquitoes using pyrosequencing of the 16S rRNA gene. We found that the mosquito epithelia share a core microbiota, but some bacteria taxa were more associated with one or another tissue at a particular time point. The bacterial composition in the tissues of emerging mosquitoes varied according to the breeding site, indicating that some bacteria are acquired from the environment. Our results revealed temporal variations in the bacterial community structure, possibly as a result of the mosquito physiological changes. The abundance of Serratia significantly correlated with P. falciparum infection both in the midgut and salivary glands of malaria challenged mosquitoes, which suggests that interactions occur between microbes and parasites. These bacteria may represent promising targets for vector control strategies. Overall, this study points out the importance of characterizing bacterial communities in malaria mosquito vectors.
Collapse
Affiliation(s)
- Majoline T Tchioffo
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224- Centre National de la Recherche Scientifique 5290- UM1- UM2Montpellier, France; Laboratoire d'entomologie médicale, OCEAC-IRDYaoundé, Cameroon
| | - Anne Boissière
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224- Centre National de la Recherche Scientifique 5290- UM1- UM2 Montpellier, France
| | - Luc Abate
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224- Centre National de la Recherche Scientifique 5290- UM1- UM2 Montpellier, France
| | - Sandrine E Nsango
- Laboratoire d'entomologie médicale, OCEAC-IRDYaoundé, Cameroon; Faculté de Médecine et des Sciences Pharmaceutiques, Université de DoualaDouala, Cameroon
| | | | | | - Richard Christen
- Faculté des Sciences, Centre National de la Recherche Scientifique UMR 7138Nice, France; Laboratoire de Biologie Virtuelle, Faculté des Sciences, UMR 713, Université de NiceNice, France
| | - Geoffrey Gimonneau
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224- Centre National de la Recherche Scientifique 5290- UM1- UM2Montpellier, France; Laboratoire d'entomologie médicale, OCEAC-IRDYaoundé, Cameroon
| | - Isabelle Morlais
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224- Centre National de la Recherche Scientifique 5290- UM1- UM2Montpellier, France; Laboratoire d'entomologie médicale, OCEAC-IRDYaoundé, Cameroon
| |
Collapse
|
24
|
Geiger A, Hamidou Soumana I, Tchicaya B, Rofidal V, Decourcelle M, Santoni V, Hem S. Differential expression of midgut proteins in Trypanosoma brucei gambiense-stimulated vs. non-stimulated Glossina palpalis gambiensis flies. Front Microbiol 2015; 6:444. [PMID: 26029185 PMCID: PMC4428205 DOI: 10.3389/fmicb.2015.00444] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/24/2015] [Indexed: 11/13/2022] Open
Abstract
The unicellular pathogenic protozoan Trypanosoma brucei gambiense is responsible for the chronic form of sleeping sickness. This vector-borne disease is transmitted to humans by the tsetse fly of the group Glossina palpalis, including the subspecies G. p. gambiensis, in which the parasite completes its developmental cycle. Sleeping sickness control strategies can therefore target either the human host or the fly vector. Indeed, suppression of one step in the parasite developmental cycle could abolish parasite transmission to humans, with consequences on the spreading of the disease. In order to develop this type of approach, we have identified, at the proteome level, events resulting from the tripartite interaction between the tsetse fly G. p. gambiensis, its microbiome, and the trypanosome. Proteomes were analyzed from four biological replicates of midguts from flies sampled 3 days post-feeding on either a trypanosome-infected (stimulated flies) or a non-infected (non-stimulated flies) bloodmeal. Over 500 proteins were identified in the midguts of flies from both feeding groups, 13 of which were shown to be differentially expressed in trypanosome-stimulated vs. non-stimulated flies. Functional annotation revealed that several of these proteins have important functions that could be involved in modulating the fly infection process by trypanosomes (and thus fly vector competence), including anti-oxidant and anti-apoptotic, cellular detoxifying, trypanosome agglutination, and immune stimulating or depressive effects. The results show a strong potential for diminishing or even disrupting fly vector competence, and their application holds great promise for improving the control of sleeping sickness.
Collapse
Affiliation(s)
- Anne Geiger
- UMR 177, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/G Montpellier, France
| | | | - Bernadette Tchicaya
- UMR 177, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/G Montpellier, France
| | - Valérie Rofidal
- Plateforme de Spectrométrie de Masse Protéomique - MSPP, Biochimie et Physiologie Moléculaire des Plantes - UMR 5004 Centre National de la Recherche Scientifique/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier II Montpellier, France
| | - Mathilde Decourcelle
- Plateforme de Spectrométrie de Masse Protéomique - MSPP, Biochimie et Physiologie Moléculaire des Plantes - UMR 5004 Centre National de la Recherche Scientifique/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier II Montpellier, France
| | - Véronique Santoni
- Plateforme de Spectrométrie de Masse Protéomique - MSPP, Biochimie et Physiologie Moléculaire des Plantes - UMR 5004 Centre National de la Recherche Scientifique/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier II Montpellier, France
| | - Sonia Hem
- Plateforme de Spectrométrie de Masse Protéomique - MSPP, Biochimie et Physiologie Moléculaire des Plantes - UMR 5004 Centre National de la Recherche Scientifique/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier II Montpellier, France
| |
Collapse
|
25
|
Geiger A, Ponton F, Simo G. Adult blood-feeding tsetse flies, trypanosomes, microbiota and the fluctuating environment in sub-Saharan Africa. ISME JOURNAL 2014; 9:1496-507. [PMID: 25500509 DOI: 10.1038/ismej.2014.236] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 01/01/2023]
Abstract
The tsetse fly vector transmits the protozoan Trypanosoma brucei, responsible for Human African Trypanosomiasis, one of the most neglected tropical diseases. Despite a recent decline in new cases, it is still crucial to develop alternative strategies to combat this disease. Here, we review the literature on the factors that influence trypanosome transmission from the fly vector to its vertebrate host (particularly humans). These factors include climate change effects to pathogen and vector development (in particular climate warming), as well as the distribution of host reservoirs. Finally, we present reports on the relationships between insect vector nutrition, immune function, microbiota and infection, to demonstrate how continuing research on the evolving ecology of these complex systems will help improve control strategies. In the future, such studies will be of increasing importance to understand how vector-borne diseases are spread in a changing world.
Collapse
Affiliation(s)
- Anne Geiger
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier Cedex 5, France
| | - Fleur Ponton
- 1] School of Biological Sciences, The University of Sydney, Sydney, New South Wales, Australia [2] The Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
26
|
Montagna M, Chouaia B, Sacchi L, Porretta D, Martin E, Giorgi A, Lozzia GC, Epis S. A new strain of Wolbachia in an alpine population of the viviparous Oreina cacaliae (Coleoptera: Chrysomelidae). ENVIRONMENTAL ENTOMOLOGY 2014; 43:913-922. [PMID: 25182613 DOI: 10.1603/en13228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microbial symbionts played a central role in insect evolution. Oreina cacaliae (Schrank, 1785) (Coleoptera: Chrysomelidae) is a rare example of a viviparous insect, able to feed on toxic plants and sequester toxic compounds. In the current study, the microbiota associated with O. cacaliae was characterized using a culture-independent approach, targeting the 16S rRNA bacterial gene. The obtained 16S rRNA gene sequences were analyzed and identified at different taxonomic levels. Wolbachia was the dominant bacterium, both in male and female (100 and 91.9%, respectively) individuals; the detected Wolbachia was described as a new sequence type based on multilocus sequence typing (Wolbachia ST375 Ocac_A_wVdO). After phylogenetic analyses, Wolbachia ST375 Ocac_A_wVdO was attributed to the supergroup A. Immunofluorescence assays and electron microscopy confirmed the presence of Wolbachia within O. cacaliae oocytes, confirming its transovarial transmission in this species. Representatives of six species of Oreina were tested for the presence of Wolbachia through specific polymerase chain reaction, and a dendrogram was generated for these species based on coxI gene sequences. The Wolbachia harbored by different species of Oreina were characterized by multilocus sequence typing. Five out of the six examined Oreina species were positive for Wolbachia, with four of these harboring the same sequence type.
Collapse
Affiliation(s)
- Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl Environ Microbiol 2014; 80:4301-12. [PMID: 24814785 DOI: 10.1128/aem.00079-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The invertebrate microbiome contributes to multiple aspects of host physiology, including nutrient supplementation and immune maturation processes. We identified and compared gut microbial abundance and diversity in natural tsetse flies from Uganda using five genetically distinct populations of Glossina fuscipes fuscipes and multiple tsetse species (Glossina morsitans morsitans, G. f. fuscipes, and Glossina pallidipes) that occur in sympatry in one location. We used multiple approaches, including deep sequencing of the V4 hypervariable region of the 16S rRNA gene, 16S rRNA gene clone libraries, and bacterium-specific quantitative PCR (qPCR), to investigate the levels and patterns of gut microbial diversity from a total of 151 individuals. Our results show extremely limited diversity in field flies of different tsetse species. The obligate endosymbiont Wigglesworthia dominated all samples (>99%), but we also observed wide prevalence of low-density Sodalis (tsetse's commensal endosymbiont) infections (<0.05%). There were also several individuals (22%) with high Sodalis density, which also carried coinfections with Serratia. Albeit in low density, we noted differences in microbiota composition among the genetically distinct G. f. fuscipes flies and between different sympatric species. Interestingly, Wigglesworthia density varied in different species (10(4) to 10(6) normalized genomes), with G. f. fuscipes having the highest levels. We describe the factors that may be responsible for the reduced diversity of tsetse's gut microbiota compared to those of other insects. Additionally, we discuss the implications of Wigglesworthia and Sodalis density variations as they relate to trypanosome transmission dynamics and vector competence variations associated with different tsetse species.
Collapse
|
28
|
Tchioffo MT, Boissière A, Churcher TS, Abate L, Gimonneau G, Nsango SE, Awono-Ambéné PH, Christen R, Berry A, Morlais I. Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut bacteria. PLoS One 2013; 8:e81663. [PMID: 24324714 PMCID: PMC3855763 DOI: 10.1371/journal.pone.0081663] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 10/15/2013] [Indexed: 12/15/2022] Open
Abstract
The development of Plasmodium falciparum within the Anopheles gambiae mosquito relies on complex vector-parasite interactions, however the resident midgut microbiota also plays an important role in mediating parasite infection. In natural conditions, the mosquito microbial flora is diverse, composed of commensal and symbiotic bacteria. We report here the isolation of culturable midgut bacteria from mosquitoes collected in the field in Cameroon and their identification based on the 16S rRNA gene sequencing. We next measured the effect of selected natural bacterial isolates on Plasmodium falciparum infection prevalence and intensity over multiple infectious feedings and found that the bacteria significantly reduced the prevalence and intensity of infection. These results contrast with our previous study where the abundance of Enterobacteriaceae positively correlated with P. falciparum infection (Boissière et al. 2012). The oral infection of bacteria probably led to the disruption of the gut homeostasis and activated immune responses, and this pinpoints the importance of studying microbe-parasite interactions in natural conditions. Our results indicate that the effect of bacterial exposure on P. falciparum infection varies with factors from the parasite and the human host and calls for deeper dissection of these parameters for accurate interpretation of bacterial exposure results in laboratory settings.
Collapse
Affiliation(s)
- Majoline T. Tchioffo
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Anne Boissière
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Thomas S. Churcher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Luc Abate
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Geoffrey Gimonneau
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Sandrine E. Nsango
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- Université de Douala, Faculté de Médecine et des Sciences Pharmaceutiques, Douala, Cameroon
| | - Parfait H. Awono-Ambéné
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Richard Christen
- CNRS UMR 7138, Université de Nice, Faculté des Sciences, Nice, France
- Laboratoire de Biologie Virtuelle, UMR 713, Université de Nice, Faculté des Sciences, Nice, France
| | - Antoine Berry
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse, Hôpital Rangueil, Toulouse, France
| | - Isabelle Morlais
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- * E-mail:
| |
Collapse
|
29
|
Wang J, Weiss BL, Aksoy S. Tsetse fly microbiota: form and function. Front Cell Infect Microbiol 2013; 3:69. [PMID: 24195062 PMCID: PMC3810596 DOI: 10.3389/fcimb.2013.00069] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/11/2013] [Indexed: 12/11/2022] Open
Abstract
Tsetse flies are the primary vectors of African trypanosomes, which cause Human and Animal African trypanosomiasis in 36 countries in sub-Saharan Africa. These flies have also established symbiotic associations with bacterial and viral microorganisms. Laboratory-reared tsetse flies harbor up to four vertically transmitted organisms—obligate Wigglesworthia, commensal Sodalis, parasitic Wolbachia and Salivary Gland Hypertrophy Virus (SGHV). Field-captured tsetse can harbor these symbionts as well as environmentally acquired commensal bacteria. This microbial community influences several aspects of tsetse's physiology, including nutrition, fecundity and vector competence. This review provides a detailed description of tsetse's microbiome, and describes the physiology underlying host-microbe, and microbe-microbe, interactions that occur in this fly.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health New Haven, CT, USA
| | | | | |
Collapse
|
30
|
Lu F, Kang X, Jiang C, Lou B, Jiang M, Way MO. Isolation and characterization of bacteria from midgut of the rice water weevil (Coleoptera: Curculionidae). ENVIRONMENTAL ENTOMOLOGY 2013; 42:874-881. [PMID: 24331600 DOI: 10.1603/en13111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gut bacteria are known to play important and often essential roles in the biology of insects. Theoretically, they can be genetically manipulated, then reintroduced into insects to negatively modify specific biological features. The weevil superfamily Curculionoidea is one of the most species-rich and successful animal groups on earth, but currently the overall knowledge of the bacterial communities in weevils and their associations with hosts is still limited. In this study, we isolated and characterized the bacteria in the midgut of an invasive weevil, Lissorhoptrus oryzophilus Kuschel, by culturing methods. Female adults of this weevil were collected from four different geographic regions of the United States and mainland China. Sequencing of the bacterial 16S rRNA amplicons demonstrated that the major culturable gut bacteria of rice water weevil are γ-proteobacteria and Bacilli. The gut bacterial composition differs among regions, with many of the bacteria isolated from only a single region while several were detected from more than one region. Overall, the diversity of gut bacteria in rice water weevil is relatively low. The possible origins of certain bacteria are discussed in relation to the weevil, rice plant, and bacteria.
Collapse
Affiliation(s)
- Fang Lu
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
31
|
Geiger A, Fardeau ML, Njiokou F, Ollivier B. Glossina spp. gut bacterial flora and their putative role in fly-hosted trypanosome development. Front Cell Infect Microbiol 2013; 3:34. [PMID: 23898466 PMCID: PMC3721001 DOI: 10.3389/fcimb.2013.00034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/08/2013] [Indexed: 01/19/2023] Open
Abstract
Human African trypanosomiasis (HAT) is caused by trypanosomes transmitted to humans by the tsetse fly, in which they accomplish their development into their infective metacyclic form. The crucial step in parasite survival occurs when it invades the fly midgut. Insect digestive enzymes and immune defenses may be involved in the modulation of the fly's vector competence, together with bacteria that could be present in the fly's midgut. In fact, in addition to the three bacterial symbionts that have previously been characterized, tsetse flies may harbor additional bacterial inhabitants. This review focuses on the diversity of the bacterial flora in Glossina, with regards to the fly species and their geographical distribution. The rationale was (i) that these newly identified bacteria, associated with tsetse flies, may contribute to vector competence as was shown in other insects and (ii) that differences may exist according to fly species and geographic area. A more complete knowledge of the bacterial microbiota of the tsetse fly and the role these bacteria play in tsetse biology may lead to novel ways of investigation in view of developing alternative anti-vector strategies for fighting human--and possibly animal--trypanosomiasis.
Collapse
Affiliation(s)
- Anne Geiger
- UMR 177 InterTryp, IRD-CIRAD Montpellier, France.
| | | | | | | |
Collapse
|
32
|
The Trypanosoma brucei gambiense secretome impairs lipopolysaccharide-induced maturation, cytokine production, and allostimulatory capacity of dendritic cells. Infect Immun 2013; 81:3300-8. [PMID: 23798533 DOI: 10.1128/iai.00125-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trypanosoma brucei gambiense, a parasitic protozoan belonging to kinetoplastids, is the main etiological agent of human African trypanosomiasis (HAT), or sleeping sickness. One major characteristic of this disease is the dysregulation of the host immune system. The present study demonstrates that the secretome (excreted-secreted proteins) of T. b. gambiense impairs the lipopolysaccharide (LPS)-induced maturation of murine dendritic cells (DCs). The upregulation of major histocompatibility complex class II, CD40, CD80, and CD86 molecules, as well as the secretion of cytokines such as tumor necrosis factor alpha, interleukin-10 (IL-10), and IL-6, which are normally released at high levels by LPS-stimulated DCs, is significantly reduced when these cells are cultured in the presence of the T. b. gambiense secretome. Moreover, the inhibition of DC maturation results in the loss of their allostimulatory capacity, leading to a dramatic decrease in Th1/Th2 cytokine production by cocultured lymphocytes. These results provide new insights into a novel efficient immunosuppressive mechanism directly involving the alteration of DC function which might be used by T. b. gambiense to interfere with the host immune responses in HAT and promote the infectious process.
Collapse
|
33
|
Abd-Alla AMM, Bergoin M, Parker AG, Maniania NK, Vlak JM, Bourtzis K, Boucias DG, Aksoy S. Improving Sterile Insect Technique (SIT) for tsetse flies through research on their symbionts and pathogens. J Invertebr Pathol 2013; 112 Suppl:S2-10. [PMID: 22841636 PMCID: PMC4242710 DOI: 10.1016/j.jip.2012.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 11/23/2022]
Abstract
Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the trypanosomes, which cause human African trypanosomosis (HAT) or sleeping sickness in humans and African animal trypanosomosis (AAT) or nagana in animals. Due to the lack of effective vaccines and inexpensive drugs for HAT, and the development of resistance of the trypanosomes against the available trypanocidal drugs, vector control remains the most efficient strategy for sustainable management of these diseases. Among the control methods used for tsetse flies, Sterile Insect Technique (SIT), in the frame of area-wide integrated pest management (AW-IPM), represents an effective tactic to suppress and/or eradicate tsetse flies. One constraint in implementing SIT is the mass production of target species. Tsetse flies harbor obligate bacterial symbionts and salivary gland hypertrophy virus which modulate the fecundity of the infected flies. In support of the future expansion of the SIT for tsetse fly control, the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture implemented a six year Coordinated Research Project (CRP) entitled "Improving SIT for Tsetse Flies through Research on their Symbionts and Pathogens". The consortium focused on the prevalence and the interaction between the bacterial symbionts and the virus, the development of strategies to manage virus infections in tsetse colonies, the use of entomopathogenic fungi to control tsetse flies in combination with SIT, and the development of symbiont-based strategies to control tsetse flies and trypanosomosis. The results of the CRP and the solutions envisaged to alleviate the constraints of the mass rearing of tsetse flies for SIT are presented in this special issue.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kumsa B, Socolovschi C, Parola P, Rolain JM, Raoult D. Molecular detection of Acinetobacter species in lice and keds of domestic animals in Oromia Regional State, Ethiopia. PLoS One 2012; 7:e52377. [PMID: 23285015 PMCID: PMC3524130 DOI: 10.1371/journal.pone.0052377] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/12/2012] [Indexed: 11/19/2022] Open
Abstract
This study was conducted to determine the presence of Acinetobacter and Rickettsia species DNA in lice and Melophagus ovinus (sheep ked) of animals from Oromia Regional State in Ethiopia. From September through November 2011, a total of 207 cattle, 85 sheep, 47 dogs and 16 cats were examined for ectoparasites. Results of morphological identification revealed several species of ectoparasites: Linognathus vituli (L. vituli), Bovicola bovis (B. bovis) and Solenopotes capillatus (S. capillatus) on cattle; B. ovis and Melophagus ovinus (M. ovinus) on sheep; and Heterodoxus spiniger (H. spiniger) on dogs. There was a significantly (p≤0.0001) higher prevalence of L. vituli observed in cattle than both S. capillatus and B. bovis. Molecular identification of lice using an 18S rRNA gene analysis confirms the identified lice species by morphological methods. We detected different Acinetobacter species among lice (11.1%) and keds (86.4%) including A. soli in L. vituli of cattle, A. lowffii in M. ovinus of sheep, A. pittii in H. spiniger of dogs, 1 new Acinetobacter spp. in M. ovinus and 2 new Acinetobacter spp. in H. spiniger of dogs using partial rpoB gene sequence analysis. There was a significantly higher prevalence of Acinetobacter spp. in keds than in lice (p≤0.00001). Higher percentage of Acinetobacter spp. DNA was detected in H. spiniger than in both B. ovis and L. vituli (p≤0.00001). Carbapenemase resistance encoding genes for blaOXA-23, blaOXA-24, blaOXA-58, blaNDM-1 and blaOXA-51 were not found in any lice and keds. These findings suggest that synanthropic animals and their ectoparasites might increase the risk of human exposure to zoonotic pathogens and could be a source for Acinetobacter spp. infections in humans. However, additional epidemiological data are required to determine whether ectoparasites of animals can act as environmental reservoirs and play a role in spreading these bacteria to both animal and human hosts.
Collapse
Affiliation(s)
- Bersissa Kumsa
- Department of Parasitology, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Cristina Socolovschi
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Jean-Marc Rolain
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Didier Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
- * E-mail:
| |
Collapse
|
35
|
Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol 2012; 21:5138-50. [DOI: 10.1111/j.1365-294x.2012.05759.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/04/2012] [Accepted: 07/15/2012] [Indexed: 11/29/2022]
Affiliation(s)
- J. Osei-Poku
- Department of Genetics; University of Cambridge; Downing Street; Cambridge; CB2 3EH; UK
| | - C. M. Mbogo
- Kenya Medical Research Institute (KEMRI); Centre for Geographic Medicine Research, Coast, P.O. Box 428, Kilifi 80108; Kenya
| | - W. J. Palmer
- Department of Genetics; University of Cambridge; Downing Street; Cambridge; CB2 3EH; UK
| | - F. M. Jiggins
- Department of Genetics; University of Cambridge; Downing Street; Cambridge; CB2 3EH; UK
| |
Collapse
|
36
|
OmpA-mediated biofilm formation is essential for the commensal bacterium Sodalis glossinidius to colonize the tsetse fly gut. Appl Environ Microbiol 2012; 78:7760-8. [PMID: 22941073 DOI: 10.1128/aem.01858-12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many bacteria successfully colonize animals by forming protective biofilms. Molecular processes that underlie the formation and function of biofilms in pathogenic bacteria are well characterized. In contrast, the relationship between biofilms and host colonization by symbiotic bacteria is less well understood. Tsetse flies (Glossina spp.) house 3 maternally transmitted symbionts, one of which is a commensal (Sodalis glossinidius) found in several host tissues, including the gut. We determined that Sodalis forms biofilms in the tsetse gut and that this process is influenced by the Sodalis outer membrane protein A (OmpA). Mutant Sodalis strains that do not produce OmpA (Sodalis ΔOmpA mutants) fail to form biofilms in vitro and are unable to colonize the tsetse gut unless endogenous symbiotic bacteria are present. Our data indicate that in the absence of biofilms, Sodalis ΔOmpA mutant cells are exposed to and eliminated by tsetse's innate immune system, suggesting that biofilms help Sodalis evade the host immune system. Tsetse is the sole vector of pathogenic African trypanosomes, which also reside in the fly gut. Acquiring a better understanding of the dynamics that promote Sodalis colonization of the tsetse gut may enhance the development of novel disease control strategies.
Collapse
|
37
|
Minard G, Tran FH, Raharimalala FN, Hellard E, Ravelonandro P, Mavingui P, Valiente Moro C. Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar. FEMS Microbiol Ecol 2012; 83:63-73. [PMID: 22808994 DOI: 10.1111/j.1574-6941.2012.01455.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/26/2012] [Accepted: 07/06/2012] [Indexed: 11/29/2022] Open
Abstract
The presence of cultivable bacteria Acinetobacter and Asaia was recently demonstrated in the mosquito vector Aedes albopictus. However, it is not known how prevalent these bacteria are in field populations. Here, the presence of these bacteria in Ae. albopictus populations from Madagascar was diagnosed by amplification of 16S rRNA gene fragments. Both genera were detected at relatively high frequencies, 46% for Asaia and 74% for Acinetobacter. The prevalence of Acinetobacter correlated significantly with mosquito gender, and the prevalence of Asaia with the interaction between mosquito gender and the sampling site. For each bacterial genus, more male than female mosquitoes were infected. Using pulse field gel electrophoresis, no significant difference in genome size was found between Acinetobacter isolates from mosquitoes compared with free-living Acinetobacter. However, a great diversity was observed in plasmid numbers (from 1 to 12) and sizes (from < 8 to 690 kb). Mosquito isolates utilized fewer substrates than free-living isolates, but some substrates known as blood or plant components were specifically utilized by mosquito isolates. Therefore it is likely that a specific subpopulation of Acinetobacter is selected by Ae. albopictus. Overall, this study emphasizes the need to gain a global view on the bacterial partners in mosquito vectors.
Collapse
Affiliation(s)
- Guillaume Minard
- Université de Lyon, UMR5557 Ecologie Microbienne, CNRS, USC1190 INRA, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Van Den Abbeele J, Bourtzis K, Weiss B, Cordón-Rosales C, Miller W, Abd-Alla AMM, Parker A. Enhancing tsetse fly refractoriness to trypanosome infection--a new IAEA coordinated research project. J Invertebr Pathol 2012; 112 Suppl:S142-7. [PMID: 22841950 DOI: 10.1016/j.jip.2012.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 11/15/2022]
Abstract
To date, IAEA-supported Sterile Insect Technique (SIT) projects for tsetse and trypanosomiasis control have been in areas without human sleeping sickness, but future projects could include areas of actual or potential human disease transmission. In this context it would be imperative that released sterile tsetse flies are incompetent to transmit the disease-causing trypanosome parasite. Therefore, development of tsetse fly strains refractory to trypanosome infection is highly desirable as a simple and effective method of ensuring vector incompetence of the released flies. This new IAEA Coordinated Research Project (CRP) focuses on gaining a deeper knowledge of the tripartite interactions between the tsetse fly vectors, their symbionts and trypanosome parasites. The objective of this CRP is to acquire a better understanding of mechanisms that limit the development of trypanosome infections in tsetse and how these may be enhanced.
Collapse
Affiliation(s)
- Jan Van Den Abbeele
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
39
|
Soumana IH, Simo G, Njiokou F, Tchicaya B, Abd-Alla AMM, Cuny G, Geiger A. The bacterial flora of tsetse fly midgut and its effect on trypanosome transmission. J Invertebr Pathol 2012; 112 Suppl:S89-93. [PMID: 22841948 DOI: 10.1016/j.jip.2012.03.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 11/13/2022]
Abstract
The tsetse fly, Glossina palpalis is a vector of the trypanosome that causes sleeping sickness in humans and nagana in cattle along with associated human health problems and massive economic losses. The insect is also known to carry a number of symbionts such as Sodalis, Wigglesworthia, Wolbachia whose effects on the physiology of the insect have been studied in depth. However, effects of other bacterial flora on the physiology of the host and vector competence have received little attention. Epidemiological studies on tsetse fly populations from different geographic sites revealed the presence of a variety of bacteria in the midgut. The most common of the flora belong to the genera Entrobacter (most common), Enterococcus, and Acinetobacter. It was a little surprising to find such diversity in the tsetse midgut since the insect is monophagous consuming vertebrate blood only. Diversity of bacteria is normally associated with polyphagous insects. In contrast to the symbionts, the role of resident midgut bacterial flora on the physiology of the fly and vector competence remains to be elucidated. With regard, Sodalis glossinidius, our data showed that flies harbouring this symbiont have three times greater probability of being infected by trypanosomes than flies without the symbiont. The data delineated in these studies under score the need to carry out detailed investigations on the role of resident bacteria on the physiology of the fly and vector competence.
Collapse
Affiliation(s)
- Illiassou Hamidou Soumana
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|