1
|
dos Reis JBA, de Oliveira TMR, Sartori da Silva MRS, Lopes FAC, de Paula AM, Pontes NDC, do Vale HMM. Different Land Use Systems in the Brazilian Cerrado and Their Effects on Soil Bacterial Communities. Microorganisms 2025; 13:804. [PMID: 40284640 PMCID: PMC12029540 DOI: 10.3390/microorganisms13040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
The effect of agricultural practices on soil bacterial communities is not constant and depends a lot on the climatic context, changes in the soil characteristics, land use, and agricultural strategy. Thus, knowledge about how different land use systems in the Cerrado influence the diversity and taxonomic structure of microbial communities under the same soil type remains limited. In this context, the objective of this work was to analyze and compare the bacterial communities of Cerrado soil under two different land use systems (cover crop and potato cultivation) and in a neighboring native Cerrado area. For this, we used high-throughput amplicon sequencing of 16S rRNA genes (metabarcoding) to characterize the bacterial community at different taxonomic levels in a native Cerrado area, in a potato crop area, and in an area with cover crops. Our data indicated significant impacts on soil physicochemical properties and enzymatic activity, which directly reflect the dynamics of bacterial communities. The three bacterial phyla with the highest relative abundance in the three areas were Proteobacteria, Actinobacteriota, and Acidobacteriota. At the taxonomic class level, small variations were observed among areas, while at the amplicon sequence variant (ASV) level, these variations were more pronounced. The alpha diversity indices showed that the bacterial communities among the areas are rich and diverse. Bray-Curtis and Jaccard distance-based PCoA demonstrated an overlap of bacterial communities present in the cover crop area with the native Cerrado area and separation from the potato cultivation area. The in silico prediction demonstrated that the native Cerrado area presented the highest values of functional diversity of the soil bacterial community compared to the others. Thus, our results provide a holistic view of how different land use systems in the Cerrado can influence the taxonomic and functional diversity of soil bacterial communities.
Collapse
Affiliation(s)
| | - Thayssa Monize Rosa de Oliveira
- Centro de Excelência em Bioinsumos (CEBIO), Instituto Federal Goiano, Campus Morrinhos, Morrinhos 75650-000, GO, Brazil; (T.M.R.d.O.); (N.d.C.P.)
| | | | | | | | - Nadson de Carvalho Pontes
- Centro de Excelência em Bioinsumos (CEBIO), Instituto Federal Goiano, Campus Morrinhos, Morrinhos 75650-000, GO, Brazil; (T.M.R.d.O.); (N.d.C.P.)
| | - Helson Mario Martins do Vale
- University of Brasilia, Institute of Biological Sciences, Brasília 70910-900, DF, Brazil; (J.B.A.d.R.); (M.R.S.S.d.S.)
| |
Collapse
|
2
|
Li M, He J, Chen X, Dong X, Liu S, Anderson CWN, Zhou M, Gao X, Tang X, Zhao D, Lan T. Interactive effects of microplastics and cadmium on soil properties, microbial communities and bok choy growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176831. [PMID: 39395501 DOI: 10.1016/j.scitotenv.2024.176831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The simultaneous presence of microplastics (MPs) and cadmium (Cd) in soil environments has raised concerns regarding their potential interactive effects on soil-plant ecosystems. This study explores how polyethylene (PE) at concentrations of 0.5 % (w/w), 1 % (w/w), and 2 % (w/w), and Cd at concentrations of 3 mg kg-1 and 12 mg kg-1, either alone or combined, impact soil physicochemical properties, microbial community structures, and bok choy growth through a 40-day pot experiment. Our findings reveal that the addition of 2 % (w/w) PE significantly increased soil organic carbon (SOC). However, when 2 % PE coexisted with Cd, SOC levels decreased, potentially due to a reduction in enzyme activity (β-1,4-glucosidase). PE increased the proportion of 1-2 mm soil aggregates, while the coexistence of 2 % PE and Cd significantly increased the content of soil aggregates larger than 2 mm. The coexistence of PE and Cd increased available potassium (AK) in the soil by approximately 13 % to 41 %. Regarding bok choy growth, the aboveground biomass under 2 % PE was approximately 210 % of that under 0.5 % PE, possibly because of the enhancement in soil nutrients. The presence of Cd, however, reduced the chlorophyll content of bok choy by approximately 18 % to 34 %. Notably, the coexistence of high PE concentration (2 % w/w) and low Cd concentration (3 mg kg-1) resulted in the highest aboveground biomass among all coexistence treatments. Furthermore, the addition of PE and Cd significantly altered the structure of soil bacterial and fungal communities, with fungi showing a greater response. Bacteria were significantly associated with soil inorganic N content and plant growth. This study provides new insights into the interactions of microplastics and Cd within microbial-soil-plant systems.
Collapse
Affiliation(s)
- Mengxiao Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China
| | - Jiaju He
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China
| | - Xiaofeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China
| | - Xiaoman Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China
| | - Shuang Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China
| | - Christopher W N Anderson
- School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Minghua Zhou
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China
| | - Di Zhao
- General Station of Arable Soil Quality and Fertilizer of Sichuan Province, 610041 Chengdu, Sichuan, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China.
| |
Collapse
|
3
|
Li Y, Compson ZG, Kuang X, Yu L, Song Q, Liu J, Huang D, Zhou H, Huang S, Li T, Yang Q. Increased stability of a subtropic bamboo forest soil bacterial communities through integration of water and fertilizer management compared to conventional management. BMC PLANT BIOLOGY 2024; 24:1072. [PMID: 39538134 PMCID: PMC11559078 DOI: 10.1186/s12870-024-05759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Conventional management (CM), substantial fertilization and flooding irrigation, has led to soil acidification, the decrease in soil bacterial diversity in bamboo forests. Integration of water and fertilizer management (IWF) can effectively improve the efficiency of water and fertilizer use, but its effect on soil environment, especially on microbial community, is still unclear. METHODS Here, we used next-generation high-throughput sequencing to compare soil properties and bacterial communities through different fertilization and irrigation methods under IWF and CM. RESULTS Compared to the control group, CM significantly reduced soil pH and bacterial diversity, while IWF improved soil nutrition status, increased soil bacterial diversity and soil pH to a level similar to the control group. Compared with CM, IWF also improved the relative abundance of beneficial bacteria and copiotrophic bacteria community in the soil, and the bacterial community in IWF was similar to CK. The structure of the bacterial community was also significantly correlated with soil organic matter, total nitrogen, hydrolyzable nitrogen, and available potassium, while soil bacterial diversity was mainly associated with soil hydrolyzable nitrogen. CONCLUSIONS IWF can play an important role in preventing soil acidification, the loss of soil bacterial diversity, and improving the structure of the bacterial community under specific conditions.
Collapse
Affiliation(s)
- Yi Li
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang, 330045, China
- Jiangxi Academy of Forestry, Nanchang, 330013, China
| | - Zacchaeus G Compson
- Department of Biological Sciences Advanced Environmental Research Institute, University of North Texas Denton, Denton, TX, USA
| | - Xiaobao Kuang
- Jiangxi Academy of Forestry, Nanchang, 330013, China
- Jiangxi Jinggangshan Bamboo Forest Ecosystem National Observation and Research Station, Jinggangshan, 343600, Jiangxi, China
| | - Lin Yu
- Jiangxi Academy of Forestry, Nanchang, 330013, China
- Jiangxi Jinggangshan Bamboo Forest Ecosystem National Observation and Research Station, Jinggangshan, 343600, Jiangxi, China
| | - Qingni Song
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Liu
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dongmei Huang
- School of Humanities and Public Administration, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hanchang Zhou
- Jiangxi Academy of Forestry, Nanchang, 330013, China
- Jiangxi Jinggangshan Bamboo Forest Ecosystem National Observation and Research Station, Jinggangshan, 343600, Jiangxi, China
| | - Siyuan Huang
- Jiangxi Academy of Forestry, Nanchang, 330013, China
- Jiangxi Jinggangshan Bamboo Forest Ecosystem National Observation and Research Station, Jinggangshan, 343600, Jiangxi, China
| | - Ting Li
- Jiangxi Academy of Forestry, Nanchang, 330013, China
- Jiangxi Jinggangshan Bamboo Forest Ecosystem National Observation and Research Station, Jinggangshan, 343600, Jiangxi, China
| | - Qingpei Yang
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Liu D, Ge X, Pan D, Zheng X, Zhou X. Bacillus subtilis B55 degraded the ferulic acid and p-coumaric acid and changed the soil bacterial community in soils. J Appl Microbiol 2024; 135:lxae243. [PMID: 39299920 DOI: 10.1093/jambio/lxae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
AIMS This study aimed to assess the effects of phenolic acid-degrading bacteria strains on phenolic acid content, plant growth, and soil bacterial community in phenolic acid-treated soils. METHODS AND RESULTS The strain of interest coded as B55 was isolated from cucumber root litter, and its degradation rates of ferulic acid and p-coumaric acid were 81.92% and 72.41% in Luria-Bertani solution, respectively, and B55 was identified as Bacillus subtilis. B55 had plant growth-promoting attributes, including solubilization of inorganic phosphate and production of siderophore and indole acetic acid. Both ferulic acid and p-coumaric acid significantly restrained an increase in cucumber seedling dry biomass, while the B55 inoculation not only completely counteracted the damage of phenolic acids to cucumber seedlings and decreased the content of ferulic acid and p-coumaric acid in soil, but also promoted cucumber seedlings growth. Amplicon sequencing found that B55 inoculation changed the cucumber rhizosphere bacterial community structure and promoted the enrichment of certain bacteria, such as Pseudomonas, Arthrobacter, Bacillus, Flavobacterium, Streptomyces, and Comamonas. CONCLUSIONS B55 not only promoted cucumber seedling growth, and decreased the content of ferulic acid and p-coumaric acid in soil, but it also increased the relative abundance of beneficial microorganisms in the cucumber rhizosphere.
Collapse
Affiliation(s)
- Dongli Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Xin Ge
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Dandan Pan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Xianqing Zheng
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
do Carmo KB, Dias R, de Quadros PD, Berber GCM, Bourscheidt MLB, de Farias Neto AL, Dos Santos Weber OL, Triplett EW, Ferreira A. Assessment of soil bacterial communities in integrated crop production systems within the Amazon Biome, Brazil: a comparative study. Braz J Microbiol 2024; 55:2815-2825. [PMID: 38696039 PMCID: PMC11405747 DOI: 10.1007/s42770-024-01352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Integrated production systems have been proposed as alternative to sustainable land use. However, information regarding bacterial community structure and diversity in soils of integrated Crop-Livestock-Forest systems remains unknown. We hypothesize that these integrated production systems, with their ecological intensification, can modulate the soil bacterial communities. However, Yet, it remains unclear whether the modulation of bacterial biodiversity is solely attributable to the complexity of root exudates or if seasonal climatic events also play a contributory role. The objective of this study is to evaluate the impact of monoculture and integrated production systems on bacterial soil communities in the Amazon Biome, Brazil. Three monoculture systems, each with a single crop over time and space (Eucalyptus (E), Crop Soybean (C), Pasture (P)), and three integrated systems with multiple crops over time and space (ECI, PI, ECPI) were evaluated, along with a Native forest serving as a reference area. Soil samples were collected at a depth of 0-10 cm during both the wet and dry seasons. Bacterial composition was determined using Illumina high-throughput sequencing of the 16 S rRNA gene. The sequencing results revealed the highest abundance classified under the phyla Firmicutes, Actinobacteria, and Proteobacteria. The Firmicutes correlated with the Crop in the rainy period and in the dry only ECPI and Forest. For five classes corresponding to the three phyla, the Crop stood out with the greatest fluctuations in their relative abundance compared to other production systems. In cluster analysis by genus during the rainy season, only Forest and ECPI showed no similarity with the other production systems. However, in the dry season, both were grouped with Forest and EPI. Therefore, the bacterial community in integrated systems proved to be sensitive to management practices, even with only two years of use. ECPI demonstrated the greatest similarity in bacterial structure to the Native forest, despite just two years of experimental deployment. Crop exhibited fluctuations in relative abundance in both seasons, indicating an unsustainable production system with changes in soil microbial composition. These findings support our hypothesis that integrated production systems and their ecological intensification, as exemplified by ECPI, can indeed modulate soil bacterial communities.
Collapse
Affiliation(s)
- Kellen Banhos do Carmo
- Programa de pós graduação em Agricultura Tropical, Universidade Federal de Mato Grosso (UFMT), Campus Central, Cuiabá, MT, 78060-900, Brazil
| | - Raquel Dias
- Microbiology & Cell Science Department, University of Florida (UF), Gainesville, FL, 110-700, USA
| | - Patricia Dorr de Quadros
- Departamento de Solos e Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90410-000, Brazil
| | - Gilcele Campos Martin Berber
- Programa de pós graduação em Ciências Ambientais, Universidade Federal de Mato Grosso (UFMT), Campus Sinop, Sinop, MT, 78550-000, Brazil
| | - Maira Laís Both Bourscheidt
- Curso de graduação em Zootecnia, Universidade Federal de Mato Grosso (UFMT), Campus Sinop, Sinop, MT, 78550-000, Brazil
| | - Austeclinio Lopes de Farias Neto
- Embrapa Agrossilvipastoril - Empresa Brasileira de Pesquisa Agropecuária; endereço atual Embrapa Trigo, Passo Fundo, RS, 99050-970, Brazil
| | - Oscarlina Lucia Dos Santos Weber
- Programa de pós graduação em Agricultura Tropical, Universidade Federal de Mato Grosso (UFMT), Campus Central, Cuiabá, MT, 78060-900, Brazil
| | - Eric W Triplett
- Microbiology & Cell Science Department, University of Florida (UF), Gainesville, FL, 110-700, USA
| | - Anderson Ferreira
- Programa de pós graduação em Agricultura Tropical, Universidade Federal de Mato Grosso (UFMT), Campus Central, Cuiabá, MT, 78060-900, Brazil.
| |
Collapse
|
6
|
Borsodi AK, Megyes M, Zsigmond T, Horel Á. Soil bacterial communities affected by land-use types in a small catchment area of the Balaton Uplands (Hungary). Biol Futur 2024; 75:313-325. [PMID: 39066977 DOI: 10.1007/s42977-024-00233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Changes resulting from different tillage practices can affect the structure of microbial communities, thereby altering soil ecosystems and their functioning. The aim of this study was to explore and compare the physical, chemical properties and bacterial community composition of soils from different land use types (forest, grassland, vineyard, and arable field) in a small catchment. 16S rRNA gene-based amplicon sequencing was used to reveal the taxonomic diversity of summer and autumn soil samples taken from two different slope positions. The greater the anthropogenic impact was on the type of land use, the greater the change was in soil physical and chemical parameters. All sample types were dominated by the phyla Pseudomonadota, Acidobacteriota, Actinobacteriota, Bacteroidota and Verrucomicrobiota. Differences in the relative abundance of various bacterial taxa reflected the different land use types, the seasonality, and the topography. These diversity changes were consistent with the differences in soil properties.
Collapse
Affiliation(s)
- Andrea K Borsodi
- Department of Microbiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
- HUN-REN Centre for Ecological Research, Institute of Aquatic Ecology, Karolina út 29, Budapest, 1113, Hungary.
| | - Melinda Megyes
- Department of Microbiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Tibor Zsigmond
- HUN-REN Centre for Agricultural Research, Institute for Soil Sciences, Ruszti út 2-4, Budapest, 1022, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
- HUN-REN Centre for Agricultural Research, National Laboratory for Water Science and Water Security, Institute for Soil Sciences, Ruszti út 2-4, Budapest, 1022, Hungary
| | - Ágota Horel
- HUN-REN Centre for Agricultural Research, Institute for Soil Sciences, Ruszti út 2-4, Budapest, 1022, Hungary
- HUN-REN Centre for Agricultural Research, National Laboratory for Water Science and Water Security, Institute for Soil Sciences, Ruszti út 2-4, Budapest, 1022, Hungary
| |
Collapse
|
7
|
Yu L, Li D, Zhang Y, Wang Y, Yao Q, Yang K. An optimal combined slow-release nitrogen fertilizer and urea can enhance the decomposition rate of straw and the yield of maize by improving soil bacterial community and structure under full straw returning system. Front Microbiol 2024; 15:1358582. [PMID: 38962118 PMCID: PMC11219627 DOI: 10.3389/fmicb.2024.1358582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/06/2024] [Indexed: 07/05/2024] Open
Abstract
Under a full straw returning system, the relationship between soil bacterial community diversity and straw decomposition, yield, and the combined application of slow-release nitrogen and urea remains unclear. To evaluate these effects and provide an effective strategy for sustainable agricultural production, a 2-year field positioning trial was conducted using maize as the research object. Six experimental treatments were set up: straw returning + no nitrogen fertilizer (S1N0), straw returning + slow-release nitrogen fertilizer:urea = 0:100% (S1N1), straw returning + slow-release nitrogen fertilizer:urea = 30%:70% (S1N2), straw returning + slow-release nitrogen fertilizer:urea = 60%:40% (S1N3), straw returning + slow-release nitrogen fertilizer:urea = 90%:10% (S1N4), and straw removal + slow-release nitrogen fertilizer:urea = 30%:70% (S0N2). Significant differences (p < 0.05) were observed between treatments for Proteobacteria, Acidobacteriota, Myxococcota, and Actinobacteriota at the jointing stage; Proteobacteria, Acidobacteriota, Myxococcota, Bacteroidota, and Gemmatimonadota at the tasseling stage; and Bacteroidota, Firmicutes, Myxococcota, Methylomirabilota, and Proteobacteria at the maturity stage. The alpha diversity analysis of the soil bacterial community showed that the number of operational taxonomic units (OTUs) and the Chao1 index were higher in S1N2, S1N3, and S1N4 compared with S0N2 at each growth stage. Additionally, the alpha diversity measures were higher in S1N3 and S1N4 compared with S1N2. The beta diversity analysis of the soil bacterial community showed that the bacterial communities in S1N3 and S1N4 were more similar or closely clustered together, while S0N2 was further from all treatments across the three growth stages. The cumulative straw decomposition rate was tested for each treatment, and data showed that S1N3 (90.58%) had the highest decomposition rate. At the phylum level, straw decomposition was positively correlated with Proteobacteria, Actinobacteriota, Myxococcota, and Bacteroidota but significantly negatively correlated with Acidobacteriota. PICRUSt2 function prediction results show that the relative abundance of bacteria in soil samples from each treatment differed significantly. The maize yield of S1N3 was 15597.85 ± 1477.17 kg/hm2, which was 12.80 and 4.18% higher than that of S1N1 and S0N2, respectively. In conclusion, a combination of slow-release nitrogen fertilizer and urea can enhance the straw decomposition rate and maize yield by improving the soil bacterial community and structure within a full straw returning system.
Collapse
Affiliation(s)
- Lihong Yu
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Duo Li
- Daqing Agricultural Technology Extension Center, Daqing, China
| | - Yifei Zhang
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yufeng Wang
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qin Yao
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Kejun Yang
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
8
|
Wang QY, Wang QR, Wang TY, Zhang SQ, Yu HW. Impacts of polypropylene microplastics on the distribution of cadmium, enzyme activities, and bacterial community in black soil at the aggregate level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170541. [PMID: 38290684 DOI: 10.1016/j.scitotenv.2024.170541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/01/2024]
Abstract
Microplastics (MPs) can co-occur widely with heavy metals in soil. This study intended to investigate the influences of the co-exposure of polyethylene MPs (0.5 %, w/w) and cadmium (Cd) in black soil on the Cd distribution, enzyme activities, and bacterial communities in both bulk soil and different sized soil aggregates (> 1, 0.50-1, 0.25-0.50, and < 0.25 mm aggregates) after a 90-day incubation. Our results showed that the existence of MPs increased the distributions of Cd in >1 mm and < 0.25 mm soil aggregates and decreased its distributions in 0.50-1 mm and 0.25-0.50 mm soil aggregates. About 12.15 %-17.65 % and 9.03 %-11.13 % of Cd were distributed in the exchangeable and oxidizable forms in bulk soil and various sized soil aggregates after the addition of MPs which were higher than those in the only Cd-treated soil (11.17 %-14.72 % and 8.66 %-10.43 %, respectively), while opposite tendency was found for Cd in the reducible form. Urease and β-glucosidase activities in the Cd-treated soils were 1.14-1.18 and 1.07-1.31 times higher than those in the Cd-MPs treated soils. MPs disturbed soil bacterial community at phylum level and increased the bacteria richness in bulk soil. The levels of predicted functional genes which are linked to the biodegradation and metabolism of exogenous substances and soil C and N cycles were altered by the co-exposure of Cd and MPs. The findings of this study could help deepen our knowledge about the responses of soil properties, especially microbial community, to the co-occurrence of MPs and heavy metals in soil.
Collapse
Affiliation(s)
- Quan-Ying Wang
- Key Laboratory of Wet Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Qi-Rong Wang
- Key Laboratory of Wet Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Tian-Ye Wang
- Key Laboratory of Wet Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Shao-Qing Zhang
- Key Laboratory of Wet Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Hong-Wen Yu
- Key Laboratory of Wet Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
9
|
Ran T, Liao H, Zhao Y, Li J. Soil plastisphere interferes with soil bacterial community and their functions in the rhizosphere of pepper (Capsicum annuum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115946. [PMID: 38194808 DOI: 10.1016/j.ecoenv.2024.115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
With a growing number of research reports on microplastics (MPs), there is increasing concern regarding MPs-induced contamination in soil ecological systems. Notwithstanding, the interaction between the plastisphere and rhizosphere microbial hotspots in soil-plant systems, as well as the diversity and composition of plastisphere microbial communities in such systems, remain largely unexplored. This study evaluated the response of rhizosphere bacterial communities to MPs at three growth stages of pepper and examined the bacterial communities present on MPs (plastisphere). The 16 S rRNA revealed that, under the stress of MPs, the Chao1 and Shannon index of the pepper soil bacterial community decreased. Meanwhile the relative abundance of Actinobacteriota was decreased, and that of Proteobacteria was increased. Furthermore, the plastisphere serves as a unique microbial habitat (niche) that recruits the colonization of specific bacterial groups, including potential plastic-degrading bacteria and potential pathogens (e.g., Massilia and Pseudomonas). Simultaneously, the plastisphere recruits specific bacteria that may impact the rhizosphere soil bacterial communities, thus indirectly affecting plant growth. Functional prediction using PICRUSt2 revealed higher activity in the plastisphere for Metabolism of terpenoids and polyketides, Human diseases, and Xenobiotics biodegradation and metabolism. Notably, the human diseases metabolic pathway exhibited increased activity, suggesting potential ecological risks associated with pathogens. These results highlighted that the plastisphere serves as a unique microbial habitat (niche) in the soil ecological systems, recruiting specific bacteria and potentially interfering with the surrounding soil microbial community, thereby influencing the functional characteristics of the soil ecological systems.
Collapse
Affiliation(s)
- Taishan Ran
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, People's Republic of China
| | - Hongkai Liao
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, People's Republic of China.
| | - Yuxin Zhao
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, People's Republic of China
| | - Juan Li
- Department of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, People's Republic of China.
| |
Collapse
|
10
|
Kong L, Zhang L, Wang Y, Huang Z. Impact of Ecological Restoration on the Physicochemical Properties and Bacterial Communities in Alpine Mining Area Soils. Microorganisms 2023; 12:41. [PMID: 38257868 PMCID: PMC10818615 DOI: 10.3390/microorganisms12010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Ecological restoration has notably impacted microbe and soil characteristics in abandoned open pit mines, especially in alpine regions. Yet, the adaptive responses of microbial communities in the initial years of mine site restoration remain largely unexplored. This study endeavors to offer a thorough comprehension of soil properties and microbial dynamics during the initial phases of alpine mining land reclamation. It places emphasis on physicochemical properties and microbial community composition and evaluates the feasibility of phytoremediation, along with proposing subsequent measures. Our study employs spatial sequence instead of time-sequenceal sequence to investigate early-stage changes in soil microbes and physicochemical properties in alpine mining land reclamation. We used high-throughput sequencing for the 16S rRNA amplicon study. Over time, soil physicochemical properties improved noticeably. Soil pH shifted from neutral to alkaline (7.04-8.0), while soil electrical conductivity (EC) decreased to 77 μS·cm-1 in R_6a. Cation exchange capacity (CEC) initially decreased from R_2a (12.30-27.98 cmol·kg-1) and then increased. Soil organic matter increased from 17.7 to 43.2 g·kg-1 over time during mine reclamation and restoration. The dominant bacterial community consisted of Proteobacteria (33.94% to 52.09%), Acidobacteriota (4.94% to 15.88%), Bacteroidota (6.52% to 11.15%), Actinobacteriota (7.18% to 9.61%), and Firmicutes (4.52% to 16.80%) with varying relative abundances. Gene annotation of sequences from various reclamation years revealed general function prediction, translation, ribosome structure, cell wall/membrane/envelope biogenesis, nucleotide translocation, and metabolism, along with other related functions. Mine reclamation improved soil fertility and properties, with the R_6a treatment being the most effective. Starting in the 2nd year of reclamation, the effective phosphorus content and the dominance of microbial bacteria, notably the Bacillus content, decreased. Firmicute fertilization promoted phosphorus and bacterial growth. In conclusion, employing a blend of sequencing and experimental approaches, our study unveils early-stage enhancements in soil microbial and physicochemical properties during the reclamation of alpine mining areas. The results underscore the beneficial impacts of vegetation restoration on key properties, including soil fertility, pore structure, and bacterial community composition. Special attention is given to assessing the effectiveness of the R_6a treatment and identifying deficiencies in the R_2a treatment. It serves as a reference for addressing the challenges associated with soil fertility and microbial community structure restoration in high-altitude mining areas in Qinghai-Tibet. This holds great significance for soil and water conservation as well as vegetation restoration in alpine mining regions. Furthermore, it supports the sustainable restoration of local ecosystems.
Collapse
Affiliation(s)
| | | | | | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; (L.K.); (L.Z.); (Y.W.)
| |
Collapse
|
11
|
Andrade PHM, Machado PC, Paula AF, Paganin ACL, Rezende GS, Matheucci E, Carvalho LM, Freire CCM, Cunha AF, Lacava PT. 16S metabarcoding analysis reveals the influence of organic and conventional farming practices on bacterial communities from the rhizospheric of Coffea arabica L. BRAZ J BIOL 2023; 83:e274070. [PMID: 37937628 DOI: 10.1590/1519-6984.274070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023] Open
Abstract
Coffea sp. is cultivated in many tropical countries. Brazil has always adopted intensive agricultural practices, but organic coffee farming is an alternative system based on the non-use of agrochemicals and the rational management of soils. Metabarcoding 16S analysis using next-generation sequencing has been developed to identify and compare the diversity of the Coffea arabica L. rhizospheric bacterial community in two farming areas in São Paulo, Brazil. Dourado uses conventional farming, while Ribeirão Corrente uses organic. We found broad taxonomic composition, with sequences from 24 phyla, 55 classes, 61 orders, 146 families, and 337genus. The three most abundant phyla were Proteobacteria (38.27%), Actinobacteria (15.56%), and Acidobacteria (16.10%). In organic farming, the top 3 were the family Sphingomonadaceae, order Rhizobiales, genus Nocardioides, and Gp6. The genus Gp2 and the phylum Candidatus Saccharibacteria were the most abundant OTUs exclusively present in conventional farming. In the organic farming practice, Proteobacteria, Actinobacteria, and Acidobacteria were also present among the exclusive OTUs; we also found OTUs belonging to Bacteroidetes, Firmicutes, and Verrucomicrobia. Our study indicates a positive effect of organic farming on microbial communities. Fertilization may directly affect soil microbiota, suggesting that a large and active microbial community low in functional diversity might not adapt to new climatic conditions. A diverse community could provide better resilience to environmental changes, improving the productivity of this important crop.
Collapse
Affiliation(s)
- P H M Andrade
- Universidade Federal de São Carlos - UFSCar, Programa de Pós-graduação em Genética Evolutiva e Biologia Molecular, São Carlos, SP, Brasil
- Universidade Federal de São Carlos - UFSCar, Centro de Ciências Biológicas e da Saúde, Departamento de Morfologia e Patologia, Laboratório de Microbiologia e Biomoléculas, São Carlos, SP, Brasil
| | - P C Machado
- Universidade Federal de São Carlos - UFSCar, Centro de Ciências Biológicas e da Saúde, Departamento de Morfologia e Patologia, Laboratório de Microbiologia e Biomoléculas, São Carlos, SP, Brasil
- Universidade Federal de São Carlos - UFSCar, Programa de Pós-graduação em Biotecnologia, São Carlos, São Paulo, Brasil
| | - A F Paula
- Universidade Federal de São Carlos - UFSCar, Programa de Pós-graduação em Genética Evolutiva e Biologia Molecular, São Carlos, SP, Brasil
- Universidade Federal de São Carlos - UFSCar, Centro de Ciências Biológicas e da Saúde, Departamento de Morfologia e Patologia, Laboratório de Microbiologia e Biomoléculas, São Carlos, SP, Brasil
| | - A C L Paganin
- Universidade Federal de São Carlos - UFSCar, Departamento de Genética e Evolução, Laboratório de Bioquímica e Genética Aplicada, São Carlos, SP, Brasil
| | - G S Rezende
- Universidade Federal de São Carlos - UFSCar, Departamento de Genética e Evolução, Laboratório de Bioquímica e Genética Aplicada, São Carlos, SP, Brasil
| | - E Matheucci
- Universidade Federal de São Carlos - UFSCar, Programa de Pós-graduação em Biotecnologia, São Carlos, São Paulo, Brasil
- DNA Consult, São Carlos, SP, Brasil
| | - L M Carvalho
- Universidade Estadual de Campinas - Unicamp, Instituto de Biologia, Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Campinas, SP, Brasil
| | - C C M Freire
- Universidade Federal de São Carlos - UFSCar, Departamento de Genética e Evolução, Laboratório de Bioinformática Evolutiva, São Carlos, SP, Brasil
| | - A F Cunha
- Universidade Federal de São Carlos - UFSCar, Programa de Pós-graduação em Biotecnologia, São Carlos, São Paulo, Brasil
- Universidade Federal de São Carlos - UFSCar, Departamento de Genética e Evolução, Laboratório de Bioquímica e Genética Aplicada, São Carlos, SP, Brasil
| | - P T Lacava
- Universidade Federal de São Carlos - UFSCar, Centro de Ciências Biológicas e da Saúde, Departamento de Morfologia e Patologia, Laboratório de Microbiologia e Biomoléculas, São Carlos, SP, Brasil
- Universidade Federal de São Carlos - UFSCar, Programa de Pós-graduação em Biotecnologia, São Carlos, São Paulo, Brasil
| |
Collapse
|
12
|
Jiang Y, Zhu W, Zhu K, Ge Y, Li W, Liao N. Similarities and differences in the microbial structure of surface soils of different vegetation types. PeerJ 2023; 11:e16260. [PMID: 37872953 PMCID: PMC10590577 DOI: 10.7717/peerj.16260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023] Open
Abstract
Background Soil microbial community diversity serves as a highly sensitive indicator for assessing the response of terrestrial ecosystems to various changes, and it holds significant ecological relevance in terms of indicating ecological alterations. At the global scale, vegetation type acts as a major driving force behind the diversity of soil microbial communities, encompassing both bacterial and fungal components. Modifications in vegetation type not only induce transformations in the visual appearance of land, but also influence the soil ecosystem's material cycle and energy flow, resulting in substantial impacts on the composition and performance of soil microbes. Methods In order to examine the disparities in the structure and diversity of soil microbial communities across distinct vegetation types, we opted to utilize sample plots representing four specific vegetation types. These included a woodland with the dominant tree species Drypetes perreticulata, a woodland with the dominant tree species Horsfieldia hainanensis, a Zea mays farmland and a Citrus reticulata fields. Through the application of high-throughput sequencing, the 16S V3_V4 region of soil bacteria and the ITS region of fungi were sequenced in this experiment. Subsequently, a comparative analysis was conducted to explore and assess the structure and dissimilarities of soil bacterial and fungal communities of the four vegetation types were analyzed comparatively. Results Our findings indicated that woodland soil exhibit a higher richness of microbial diversity compared to farmland soils. There were significant differences between woodland and farmland soil microbial community composition. However, all four dominant phyla of soil fungi were Ascomycota across the four vegetation types, but the bacterial dominant phyla were different in the two-farmland soil microbial communities with the highest similarity. Furthermore, we established a significant correlation between the nutrient content of different vegetation types and the relative abundance of soil microorganisms at both phyla and genus levels. This experiment serves as a crucial step towards unraveling the intricate relationships between plants, soil microbes, and soil, as well as understanding the underlying driving mechanism.
Collapse
Affiliation(s)
- Yong Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultual University, Shenyang, China
| | - Keye Zhu
- College of Forestry, Shenyang Agricultual University, Shenyang, China
| | - Yang Ge
- College of Forestry, Shenyang Agricultual University, Shenyang, China
| | - Wuzheng Li
- Guangxi Fangcheng Golden Camellias National Nature Reserve, Fangchenggang, China
| | - Nanyan Liao
- Guangxi Fangcheng Golden Camellias National Nature Reserve, Fangchenggang, China
| |
Collapse
|
13
|
Palansooriya KN, Sang MK, El-Naggar A, Shi L, Chang SX, Sung J, Zhang W, Ok YS. Low-density polyethylene microplastics alter chemical properties and microbial communities in agricultural soil. Sci Rep 2023; 13:16276. [PMID: 37770500 PMCID: PMC10539289 DOI: 10.1038/s41598-023-42285-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Microplastic (MP) pollution in agricultural soils, resulting from the use of plastic mulch, compost, and sewage sludge, jeopardizes the soil microbial populations. However, the effects of MPs on soil chemical properties and microbial communities remain largely unknown. Here, we investigated the effects of different concentration levels (0, 0.1, 1, 3, 5, and 7%; w:w) of low-density polyethylene (LDPE) MPs on the chemical properties and bacterial communities of agricultural soil in an incubation study. The addition of LDPE MPs did not drastically change soil pH (ranging from 8.22 to 8.42). Electrical conductivity increased significantly when the LDPE MP concentrations were between 1 and 7%, whereas the total exchangeable cations (Na+, K+, Mg2+, and Ca2+) decreased significantly at higher LDPE MP concentrations (3-7%). The highest available phosphorus content (2.13 mg kg-1) was observed in 0.1% LDPE MP. Bacterial richness (Chao1 and Ace indices) was the lowest at 0.1% LDPE MP, and diversity indices (Shannon and Invsimpson) were higher at 0 and 1% LDPE MP than at other concentrations. The effect of LDPE MP concentrations on bacterial phyla remained unchanged, but the bacterial abundance varied. The relative abundance of Proteobacteria (25.8-33.0%) was the highest in all treatments. The abundance of Acidobacteria (15.8-17.2%) was also high, particularly in the 0, 0.1, and 1% LDPE MPs. With the increase in LDPE MP concentration, the abundance of Actinobacteria gradually increased from 7.80 to 31.8%. Our findings suggest that different MP concentration levels considerably alter soil chemical properties and microbial composition, which may potentially change the ecological functions of soil ecosystems.
Collapse
Affiliation(s)
- Kumuduni Niroshika Palansooriya
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, Rural Development Administration, National Institute of Agricultural Science, Wanju, 55365, Republic of Korea
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Jwakyung Sung
- Department of Crop Science, College of Agriculture, Life Science and Environmental Chemistry, Chungbuk National University, Cheongju, 28644, Chungcheongbuk-Do, Republic of Korea
| | - Wei Zhang
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Green Manufacturing Technology, College of Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
14
|
Mason ARG, Cavagnaro TR, Guerin GR, Lowe AJ. Soil Bacterial Assemblage Across a Production Landscape: Agriculture Increases Diversity While Revegetation Recovers Community Composition. MICROBIAL ECOLOGY 2023; 85:1098-1112. [PMID: 36763113 PMCID: PMC10156840 DOI: 10.1007/s00248-023-02178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/17/2023] [Indexed: 05/04/2023]
Abstract
Aboveground ecological impacts associated with agricultural land use change are evident as natural plant communities are replaced with managed production systems. These impacts have been extensively studied, unlike those belowground, which remain poorly understood. Soil bacteria are good candidates to monitor belowground ecological dynamics due to their prevalence within the soil system and ability to survive under harsh and changing conditions. Here, we use soil physicochemical assessment and 16S rRNA gene sequencing to investigate the soil physical and bacterial assemblage changes across a mixed-use agricultural landscape. We assess soil from remnant vegetation (Eucalyptus mallee), new and old vineyards, old pasture, and recently revegetated areas. Elevated concentrations of nitrogen (NO3-) and plant-available (Colwell) phosphorus were identified in the managed vineyard systems, highlighting the impact of agricultural inputs on soil nutrition. Alpha diversity comparison revealed a significant difference between the remnant mallee vegetation and the vineyard systems, with vineyards supporting highest bacterial diversity. Bacterial community composition of recently revegetated areas was similar to remnant vegetation systems, suggesting that bacterial communities can respond quickly to aboveground changes, and that actions taken to restore native plant communities may also act to recover natural microbial communities, with implications for soil and plant health. Findings here suggest that agriculture may disrupt the correlation between above- and belowground diversities by altering the natural processes that otherwise govern this relationship (e.g. disturbance, plant production, diversity of inputs), leading to the promotion of belowground microbial diversity in agricultural systems.
Collapse
Affiliation(s)
- A R G Mason
- School of Agriculture, Food & Wine, The University of Adelaide, Adelaide, Australia.
| | - T R Cavagnaro
- School of Agriculture, Food & Wine, The University of Adelaide, Adelaide, Australia
| | - G R Guerin
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - A J Lowe
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
15
|
Chaudhary S, Sindhu SS, Dhanker R, Kumari A. Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiol Res 2023; 271:127340. [PMID: 36889205 DOI: 10.1016/j.micres.2023.127340] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Reduction in soil fertility and depletion of natural resources due to current intensive agricultural practices along with climate changes are the major constraints for crop productivity and global food security. Diverse microbial populations' inhabiting the soil and rhizosphere participate in biogeochemical cycling of nutrients and thereby, improve soil fertility and plant health, and reduce the adverse impact of synthetic fertilizers on the environment. Sulphur is 4th most common crucial macronutrient required by all organisms including plants, animals, humans and microorganisms. Effective strategies are required to enhance sulphur content in crops for minimizing adverse effects of sulphur deficiency on plants and humans. Various microorganisms are involved in sulphur cycling in soil through oxidation, reduction, mineralization, and immobilization, and volatalization processes of diverse sulphur compounds. Some microorganisms possess the unique ability to oxidize sulphur compounds into plant utilizable sulphate (SO42-) form. Considering the importance of sulphur as a nutrient for crops, many bacteria and fungi involved in sulphur cycling have been characterized from soil and rhizosphere. Some of these microbes have been found to positively affect plant growth and crop yield through multiple mechanisms including the enhanced mobilization of nutrients in soils (i.e., sulphate, phosphorus and nitrogen), production of growth-promoting hormones, inhibition of phytopathogens, protection against oxidative damage and mitigation of abiotic stresses. Application of these beneficial microbes as biofertilizers may reduce the conventional fertilizer application in soils. However, large-scale, well-designed, and long-term field trials are necessary to recommend the use of these microbes for increasing nutrient availability for growth and yield of crop plants. This review discusses the current knowledge regarding sulphur deficiency symptoms in plants, biogeochemical cycling of sulphur and inoculation effects of sulphur oxidizing microbes in improving plant biomass and crop yield in different crops.
Collapse
Affiliation(s)
- Suman Chaudhary
- Research Associate, EBL Laboratory, ICAR-Central Institute of Research on Buffaloes, Hisar 125001, Haryana, India.
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| | - Rinku Dhanker
- International Institute of Veterinary, Education & Research, Bahuakbarpur, Rohtak 124001, Haryana, India.
| | - Anju Kumari
- Center of Food Science and Technology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| |
Collapse
|
16
|
Ordine JVW, de Souza GM, Tamasco G, Virgilio S, Fernandes AFT, Silva-Rocha R, Guazzaroni ME. Metagenomic Insights for Antimicrobial Resistance Surveillance in Soils with Different Land Uses in Brazil. Antibiotics (Basel) 2023; 12:antibiotics12020334. [PMID: 36830245 PMCID: PMC9952835 DOI: 10.3390/antibiotics12020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Land-use conversion changes soil properties and their microbial communities, which, combined with the overuse of antibiotics in human and animal health, promotes the expansion of the soil resistome. In this context, we aimed to profile the resistome and the microbiota of soils under different land practices. We collected eight soil samples from different locations in the countryside of São Paulo (Brazil), assessed the community profiles based on 16S rRNA sequencing, and analyzed the soil metagenomes based on shotgun sequencing. We found differences in the communities' structures and their dynamics that were correlated with land practices, such as the dominance of Staphylococcus and Bacillus genera in agriculture fields. Additionally, we surveyed the abundance and diversity of antibiotic resistance genes (ARGs) and virulence factors (VFs) across studied soils, observing a higher presence and homogeneity of the vanRO gene in livestock soils. Moreover, three β-lactamases were identified in orchard and urban square soils. Together, our findings reinforce the importance and urgency of AMR surveillance in the environment, especially in soils undergoing deep land-use transformations, providing an initial exploration under the One Health approach of environmental levels of resistance and profiling soil communities.
Collapse
Affiliation(s)
- João Vitor Wagner Ordine
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Gabrielle Messias de Souza
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Gustavo Tamasco
- ByMyCell Inova Simples. Avenue Dra. Nadir Águiar, 1805-Supera Parque, Ribeirão Preto 14056-680, SP, Brazil
| | - Stela Virgilio
- ByMyCell Inova Simples. Avenue Dra. Nadir Águiar, 1805-Supera Parque, Ribeirão Preto 14056-680, SP, Brazil
| | - Ana Flávia Tonelli Fernandes
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Rafael Silva-Rocha
- ByMyCell Inova Simples. Avenue Dra. Nadir Águiar, 1805-Supera Parque, Ribeirão Preto 14056-680, SP, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
- Correspondence: ; Tel.: +55-(16)-33153680
| |
Collapse
|
17
|
Qin P, Li T, Cui Z, Zhang H, Hu X, Wei G, Chen C. Responses of bacterial communities to microplastics: More sensitive in less fertile soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159440. [PMID: 36244477 DOI: 10.1016/j.scitotenv.2022.159440] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Recently, the potential impact of microplastics (MPs) on bacterial communities has risen enormously attention due to the increasing amount of plastic waste generated nowadays. However, there is a lack of clarity due to limited studies on the responses of bacterial communities to MPs exposures in various soil ecosystems. Here, we conducted a soil microcosm experiment to analyze the potential impact of MPs on bacterial communities in farmland soil, forest soil, and sandy soil. The changes in alpha/beta diversity and co-occurrence network of bacterial communities were more significant in farmland soil amended with PS MPs (5 g kg-1), forest soil amended with PP MPs (5 g kg-1), and sandy soil amended with PP MPs (1 g kg-1). Particularly, the bacterial communities in sandy soil with the least soil organic carbon content were disturbed most significantly compared to other treatments. LEfSe analysis revealed that specific bacterial taxa such as phylum Proteobacteria, Actinobacteria, Firmicutes, and genus Sphingomonas, Candidatus Udaeobacter, Gemmatimonas, were sensitive to MPs exposures. Functional annotation showed that perturbation of bacterial communities was related to organic carbon decomposition, nitrogen fixation, nitrate reduction/respiration, etc. In sum, MPs may potentially affect bacterial community structure and functions relevant to carbon/nitrogen cycles at long-term realistic field exposure.
Collapse
Affiliation(s)
- Peiyan Qin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Tao Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zhaowen Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiao Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Chun Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
18
|
Characterization of Microbial Communities and Naturally Occurring Radionuclides in Soilless Growth Media Amended with Different Concentrations of Biochar. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biochar, derived from the pyrolysis of plant materials has the potential to enhance plant growth in soilless media. Howevetar, little is known about the impact of biochar amendments to soilless growth media, microbial community composition, and fate of chemical constituents in the media. In this study, different concentrations of biochar were added to soilless media and microbial composition, and chemical constituents were analyzed using metagenomics and gamma spectroscopy techniques, respectively. Across treatments, carboxyl-C, phenolic-C, and aromatic-C were the main carbon sources that influenced microbial community composition. Flavobacterium (39.7%), was the predominantly bacteria genus, followed by Acidibacter (12.2%), Terrimonas (10.1%), Cytophaga (7.5%), Ferruginibacter (6.0%), Lacunisphaera (5.9%), Cellvibrio (5.8%), Opitutus (4.8%), Mucilaginibacter (4.0%) and Bryobacter (4.0%). Negative relationships were found between Cytophaga and 226Ra (r = −0.84, p = 0.0047), 40K (r = −0.82, p = 0.0069) and 137Cs (r = −0.93, p = 0.0002). Similarly, Mucilaginibacter was negatively correlated with 226Ra (r = −0.83, p = 0.0054) and 137Cs (r = −0.87, p = 0.0021). Overall, the data suggest that high % biochar amended samples have high radioactivity concentration levels. Some microorganisms have less presence in high radioactivity concentration levels.
Collapse
|
19
|
Dos Reis JBA, do Vale HMM, Lorenzi AS. Insights into taxonomic diversity and bioprospecting potential of Cerrado endophytic fungi: a review exploring an unique Brazilian biome and methodological limitations. World J Microbiol Biotechnol 2022; 38:202. [PMID: 35999403 DOI: 10.1007/s11274-022-03386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
Cerrado is the second largest biome in Brazil, and it is known for harboring a wide variety of endemic plant and microbial species, among which are endophytic fungi. Endophytic fungi are microorganisms capable of colonizing the interior of plant tissues without causing disease in host plants. Especially in the Cerrado biome, this group of microorganisms is still poorly studied and information on species estimation, ecological and evolutionary importance is not accurate and remains unknown. Also, it is extremely important to emphasize that great part of studies available on Cerrado endophytic fungi are national literature, including master's dissertations, course conclusion works or unpublished doctoral theses. The majority of these studies has highlighted that the endemic plant species are an important habitat for fungal endophytes, and new species have increasingly been described. Due to the lack of international literature on Cerrado endophytic fungi, the present review brings a bibliographic survey on taxonomic diversity and bioprospecting potential of fungal endophytes from a unique environment. This review also emphasizes the importance of studying Brazilian endophytic fungi from Cerrado as a source of new technologies (biofertilizer and biocontroller), since they are secondary metabolite-producing organisms with different biological activities for biotechnological, agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
| | - Helson Mário Martins do Vale
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília-UnB, Brasília, DF, Brazil
| | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília-UnB, Brasília, DF, Brazil.
| |
Collapse
|
20
|
Xiao X, Li J, Lyu J, Feng Z, Zhang G, Yang H, Gao C, Jin L, Yu J. Chemical fertilizer reduction combined with bio-organic fertilizers increases cauliflower yield via regulation of soil biochemical properties and bacterial communities in Northwest China. Front Microbiol 2022; 13:922149. [PMID: 35966650 PMCID: PMC9363920 DOI: 10.3389/fmicb.2022.922149] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/08/2022] [Indexed: 12/03/2022] Open
Abstract
The continuous application of chemical fertilizers in vegetable cropping has led to deterioration of the soil environment and reduced yield and quality. The objective of this study was to evaluate the effect of combining chemical and bio-organic fertilizers on cauliflower yield, soil biochemical properties, and the bacterial community. Six treatments were established: no fertilizer (CK, control), chemical fertilizers (CF, conventional dosage for this region), balanced fertilization (BF, 30% reduction of chemical fertilizers), and balanced fertilization plus 3,000, 6,000, or 12,000 kg.ha-1 bio-organic fertilizer (Lvneng Ruiqi Biotechnology Co., Ltd., Gansu, China) (BF + OF1, BF + OF2, BF + OF3, respectively). A two-season field experiment with cauliflower was conducted under the different fertilizer treatments in irrigation districts along the Yellow River, Northwest China. The results indicate that the yield, soil organic matter, total potassium content, and enzyme activity under the bio-organic treatments were generally higher than those under the CF treatment. Compared with the CF treatment, the BF treatment increased soil organic matter content, enzyme activity and soil bacterial relative abundance. Moreover, the bacterial alpha-diversity were higher than those of conventional fertilization. The predominant phyla, including Proteobacteria, Actinobacteria, Gemmatimonadetes, and Chloroflexi, were the main contributors to the microbiome shift, as demonstrated by their remarkable enrichment in the soil under BF + OF2 and BF + OF3 treatments. Furthermore, Pearson correlation analyses show significant correlations among the soil organic matter, available P and K, electrical conductivity, and relative abundance of potentially beneficial microbial groups, such as the genera Massilia, Bacillus, Lysobacter, and Nitrosospira. Overall, this study suggests that balanced fertilization and the application of bio-organic fertilizers are essential to ensure soil fertility and long-term sustainable green productivity.
Collapse
Affiliation(s)
- Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Ju Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhi Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Haixing Yang
- Agricultural Technology Extension Center of Yuzhong County, Lanzhou, China
| | - Chengfei Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
21
|
Palansooriya KN, Sang MK, Igalavithana AD, Zhang M, Hou D, Oleszczuk P, Sung J, Ok YS. Biochar alters chemical and microbial properties of microplastic-contaminated soil. ENVIRONMENTAL RESEARCH 2022; 209:112807. [PMID: 35093312 DOI: 10.1016/j.envres.2022.112807] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 05/06/2023]
Abstract
The occurrence of microplastics (MPs) in soils can negatively affect soil biodiversity and function. Soil amendments applied to MP-contaminated soil can alter the overall soil properties and enhance its functions and processes. However, little is known about how soil amendments improve the quality of MP-contaminated soils. Thus, the present study used a microcosm experiment to explore the potential effects of four types of biochar on the chemical and microbial properties of low-density polyethylene (LDPE) MP-contaminated soil under both drought and well-watered conditions. The results show that the biochars altered soil pH, electrical conductivity (EC), available phosphorous, and total exchangeable cations (TEC) with some variability depending on the biochar type. Oilseed rape straw (OSR)-derived biochars increased soil pH, EC, and TEC under both water conditions with the highest values of 7.94, 0.54 dS m-1 and 22.0 cmol(+) kg-1, respectively. Soil enzyme activities varied under all treatments; in particular, under drought conditions, the fluorescein diacetate activity increased in soils with high temperature (700 °C) biochar. The application of soft wood pellet biochar (700 °C) to MP-contaminated soil increased urease activity by 146% under well-watered conditions. OSR-derived biochars significantly reduced soil acid phosphatase activity under both water conditions. With biochar supplementation, the diversity indices of the bacterial community increased in well-watered soil but not in soil under drought conditions. The abundance of bacterial phyla, such as Firmicutes, Proteobacteria, Actinobacteria, Dictyoglomi, and Gemmatimonadetes, was relatively high in all treatments. Biochar application resulted in negligible variations in bacterial communities under drought conditions but significant variations under well-watered conditions. The findings of this study imply that biochar can be used as a soil amendment to improve the overall soil quality of MP-contaminated soil, but its impact varies depending on the pyrolysis feedstock and temperature. Thus, selecting a suitable biochar is important for improving the soil quality in MP-contaminated soils.
Collapse
Affiliation(s)
- Kumuduni Niroshika Palansooriya
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration, Wanju, 55365, South Korea
| | | | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310028, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Sklodowska University, Lublin, 20-031, Poland
| | - Jwakyung Sung
- Department of Crop Science, College of Agriculture, Life Science and Environmental Chemistry, Chungbuk National University, Cheongju, Chungcheongbuk-do, 28644, South Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
22
|
Richness of arbuscular mycorrhizal fungi (Glomeromycota) along a vegetation gradient of Brazilian Cerrado: responses to seasonality, soil types, and plant communities. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01785-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Ambardar S, Bhagat N, Vakhlu J, Gowda M. Diversity of Rhizo-Bacteriome of Crocus sativus Grown at Various Geographical Locations and Cataloging of Putative PGPRs. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.644230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Earlier plant growth promoting rhizo-bacteria (PGPRs) were isolated from the plants, by cultivation based techniques and the interaction was mostly thought to be bilateral. The routine bilateral study, with no information on the associated microbiome, could be one of the reasons for the limited success of PGPRs in the field conditions. Keeping in view the role of PGPRs in rhizo-bacteriome on the growth and production of plant, the present study was aimed at studying the diversity of the rhizo-bacteriome of saffron grown across three geographical locations namely Kashmir, Kishtwar and Bengaluru. Variation in the rhizo-bacteriome of saffron growing across 10 different sites from 3 geographical locations was studied using 16S rDNA amplicon metagenomic sequencing. 16 bacterial phyla, 261 genera and 73 bacterial species were cataloged from all the rhizosphere samples. Proteobacteria was a dominant phylum in all the rhizosphere samples. Rhizo-bacteriome of saffron grown in Kishtwar was found to be significantly different from the rhizo-bacteriome of saffron grown in Kashmir and Bengaluru. Interestingly, the rhizo-bacteriome of saffron grown in Bengaluru was very similar to the saffron grown in Kashmir, thereby indicating that the rhizo-bacteriome in saffron is “plant driven” as the corm sown in Bengaluru were from Kashmir. Despite variation in rhizo-bacteriome, core rhizo-bacteriome in saffron was identified that was represented by 53 genera and eight bacterial species belonging to 11 phyla irrespective of their geographical distribution. In addition, 21 PGPRs were reported for the first time from the saffron rhizosphere. The high yielding saffron field Wuyan was found to have the highest number of PGPRs; this indicates that the presence of PGPR is important for yield enhancement than diversity. The two PGPR Rhizobium leguminosarum and Luteibacter rhizovicinus were reported from all the locations except Kishtwar that had escaped isolation in our previous attempts using cultivation based techniques. It is being proposed instead of going for random isolation and screening for PGPRs from plant rhizosphere, an alternate strategy using metagenomic cataloging of the rhizo-bacteriome community and cultivation of the dominant PGPR should be undertaken. This strategy will help in the selection of dominant PGPRs, specific to the plant in question.
Collapse
|
24
|
Bobul'ská L, Espíndola SP, Coelho MA, Ferreira AS. Impact of land use on soil function and bacterial community in the Brazilian savanna. AN ACAD BRAS CIENC 2021; 93:e20201906. [PMID: 34550206 DOI: 10.1590/0001-3765202120201906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/20/2021] [Indexed: 11/21/2022] Open
Abstract
Land use systems have a great impact on soil function and microbial diversity in tropical soils. Our study aimed to evaluate soil biochemical indicators and community composition and to assess the relationship between soil biochemical and microbial indicators and bacterial diversity of three agroecosystems (pine forest, soya and sugarcane) and native Cerrado forest in the Brazilian savanna. Soil biochemical indicators (soil organic matter and enzymes) and high-throughput sequencing of 16S rDNA were performed in two topsoil depths (0-5 cm and 5-10 cm). Soil microbial and enzyme activity showed that agricultural soil usage has a negative impact on soil function compared to native and pine forests. Results also revealed higher enzyme activities in 0-5 cm depth compared to 5-10 cm depth, but enzymatic activities depend on land use systems. Soil bacterial community was affected by land use systems and depth, revealing changes in structure and abundance of bacterial composition. Alpha-diversity indexes were higher in the agricultural systems than in the forests, however they showed a significant negative correlation with most of the studied soil microbial and biochemical indicators. Our research had brought new relevant information about the relationship between the soil biochemical indicators and the bacterial diversity in the Brazilian Cerrado.
Collapse
Affiliation(s)
- Lenka Bobul'ská
- University of Prešov in Prešov, Department of Ecology, Faculty of Humanities and Natural Sciences, 17, November 1, Prešov 080 01, Slovakia
| | - Suéllen P Espíndola
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Campus Glória, Bloco CCG, 38410-337 Uberlândia, MG, Brazil
| | - Michelle A Coelho
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Campus Glória, Bloco CCG, 38410-337 Uberlândia, MG, Brazil
| | - Adão S Ferreira
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Campus Glória, Bloco CCG, 38410-337 Uberlândia, MG, Brazil
| |
Collapse
|
25
|
Bhagat N, Sharma S, Ambardar S, Raj S, Trakroo D, Horacek M, Zouagui R, Sbabou L, Vakhlu J. Microbiome Fingerprint as Biomarker for Geographical Origin and Heredity in Crocus sativus: A Feasibility Study. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.688393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Host–microbiome interactions are specific and not random, making them defining entities for the host. The hypothesis proposed by various researchers earlier, that both plants and animals harbor specific inheritable core microbiome, is being augmented in the present study. Additionally, a case for using microbial fingerprint as a biomarker, not only for plant identification but also as a geographical indicator, has been investigated, taking Crocus sativus, saffron, as a study material. Crocus sativus, a monogenetic herb, on account of its male sterility and vegetative propagation, is reported to lack genome based molecular markers. Cormosphere microbiome (microbiome associated with corm) has been compared across three geographical locations, in two continents, to identify the core and unique microbiome, during the vegetative phase of its growth. Microbiome analysis done at phylum and genus level, using next generation sequencing technology, revealed that cormosphere at three locations harbored common phyla. At genus level, 24 genera were found common to all three geographical locations, indicating them to be part of the core microbiome of saffron. However, there were some bacterial genera unique to Kashmir, Kishtwar, and Morocco that can be used to develop microbial markers/geographical indicators for saffron grown in these regions. This is a preliminary study, indicating that the location specific bacterial community can be used to develop microbial barcodes but needs further augmentation with high coverage data from other saffron growing geographical regions.
Collapse
|
26
|
Wang C, Masoudi A, Wang M, Yang J, Yu Z, Liu J. Land-use types shape soil microbial compositions under rapid urbanization in the Xiong'an New Area, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145976. [PMID: 33677303 DOI: 10.1016/j.scitotenv.2021.145976] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
For urban planning and infrastructural projects, considerable attention has been paid to the relationship between soil biota, especially protists, and edaphic conditions in various land-use types having different plant species in the Xiong'an New Area of China. To elucidate this relationship, we assessed edaphic variables and soil biota compositions and compared them among 5 habitat types: human-made forests, crop cultivations, arid rivers, Baiyangdian (BYD) Lake, and around oil wells. In all, 12 experimental plots from terrestrial and aquatic ecosystems were assessed using high-throughput sequencing of environmental DNA, targeting the V3-V4 region of the 16S rRNA gene, internal transcribed spacer 1, and V4 region of the 18S rRNA gene for bacteria, fungi, and protists, respectively. The abundance of bacterial and protist communities was higher than fungi, possibly because fungi prefer acidic soil conditions and likely have greater susceptibility to anthropogenic activities. Across all experimental plots, land-use types contributed the most to the β-diversity of soil biota, followed by soil moisture. Diversity and richness were significantly higher at aquatic habitats than at terrestrial habitats. Predictive metagenomic analysis of trophic groups predicted relatively high frequency of functional genes from bacterial metabolism pathways (carbohydrate and amino acid); contrary to expectation, phototrophic protists, but not fungal symbionts and protistan consumers, were the dominant group at the BYD Lake. Geographical coordinates showed significant (P < 0.05) relationships with all microbiome taxa (nodes at network) from all land-use types. Moreover, soil-microbiome relationships were more complex and more intense at crop habitats. Links between protist and fungal taxa were the highest at the petroleum-contaminated sampling sites, indicating the importance of these two soil microbiomes in polluted soil. Thus, our findings suggest that human manipulation and land-use types are crucial factors for soil biota structure and composition across our sampling sites.
Collapse
Affiliation(s)
- Can Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jia Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
27
|
de Souza LC, Procópio L. The profile of the soil microbiota in the Cerrado is influenced by land use. Appl Microbiol Biotechnol 2021; 105:4791-4803. [PMID: 34061229 DOI: 10.1007/s00253-021-11377-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 02/03/2023]
Abstract
Extensive areas of the Cerrado biome have been deforested by the rapid advance of agricultural frontiers, especially by agricultural monocultures, and cultivated pastures. The objective of this study was to characterize the soil microbial community of an environment without anthropogenic interference and to compare it with soybean soil and pasture areas. For that, metagenomic sequencing techniques of the 16S rRNA gene were employed. Consistent changes in the profiles of diversity and abundance were described between communities in relation to the type of soil. The soil microbiome of the native environment was influenced by the pH level and content of Al3+, whereas the soil microbiomes cultivated with soybean and pasture were associated with the levels of nutrients N and P and the ions Ca2+ and Mg2+, respectively. The analysis of bacterial communities in the soil of the native environment showed a high abundance of members of the Proteobacteria phylum, with emphasis on the Bradyrhizobium and Burkholderia genera. In addition, significant levels of species of the Bacillus genus, and Dyella ginsengisoli, and Edaphobacter aggregans of the Acidobacteria phylum were detected. In the soil community with soybean cultivation, there was a predominance of Proteobacteria, mainly of the Sphingobium and Sphingomonas genera. In the pasture, the soil microbiota was dominated by the Firmicutes, which was almost entirely represented by the Bacillus genus. These results suggest an adaptation of the bacterial community to the soybean and pasture cultivations and will support understanding how environmental and anthropogenic factors shape the soil microbial community. KEY POINTS: • The Cerrado soil microbiota is sensitive to impacts on the biome. • Microbial communities have been altered at all taxonomic levels.
Collapse
Affiliation(s)
- Lucas Conceição de Souza
- Faculty of Geosciences (FAGEO), Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil.
| | - Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Li Z, Cupples AM. Diversity of nitrogen cycling genes at a Midwest long-term ecological research site with different management practices. Appl Microbiol Biotechnol 2021; 105:4309-4327. [PMID: 33944983 DOI: 10.1007/s00253-021-11303-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 11/30/2022]
Abstract
Nitrogen fertilizer results in the release of nitrous oxide (N2O), a concern because N2O is an ozone-depleting substance and a greenhouse gas. Although the reduction of N2O to nitrogen gas can control emissions, the factors impacting the enzymes involved have not been fully explored. The current study investigated the abundance and diversity of genes involved in nitrogen cycling (primarily denitrification) under four agricultural management practices (no tillage [NT], conventional tillage [CT], reduced input, biologically-based). The work involved examining soil shotgun sequencing data for nine genes (napA, narG, nirK, nirS, norB, nosZ, nirA, nirB, nifH). For each gene, relative abundance values, diversity and richness indices, and taxonomic classification were determined. Additionally, the genes associated with nitrogen metabolism (defined by the KEGG hierarchy) were examined. The data generated were statistically compared between the four management practices. The relative abundance of four genes (nifH, nirK, nirS, and norB) were significantly lower in the NT treatment compared to one or more of the other soils. The abundance values of napA, narG, nifH, nirA, and nirB were not significantly different between NT and CT. The relative abundance of nirS was significantly higher in the CT treatment compared to the others. Diversity and richness values were higher for four of the nine genes (napA, narG, nirA, nirB). Based on nirS/nirK ratios, CT represents the highest N2O consumption potential in four soils. In conclusion, the microbial communities involved in nitrogen metabolism were sensitive to different agricultural practices, which in turn, likely has implications for N2O emissions. KEY POINTS: • Four genes were less abundant in NT compared to one or more of the others soils (nifH, nirK, nirS, norB). • The most abundant sequences for many of the genes classified within the Proteobacteria. • Higher diversity and richness indices were observed for four genes (napA, narG, nirA, nirB). • Based on nirS/nirK ratios, CT represents the highest N2O consumption potential.
Collapse
Affiliation(s)
- Zheng Li
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.
| |
Collapse
|
29
|
Seasonal and long-term effects of nutrient additions and liming on the nifH gene in cerrado soils under native vegetation. iScience 2021; 24:102349. [PMID: 33870141 PMCID: PMC8044383 DOI: 10.1016/j.isci.2021.102349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 03/18/2021] [Indexed: 11/20/2022] Open
Abstract
Biological nitrogen fixation (BNF) represents the main input source of N in tropical savannas. BNF could be particularly important for Brazilian savannas (known as Cerrado) that show a highly conservative N cycle. We evaluated the effects of seasonal precipitation and nutrient additions on the nifH gene abundance in soils from a long-term fertilization experiment in a Cerrado's native area. The experiment consists of five treatments: (1) control, (2) liming, (3) nitrogen (N), (4) nitrogen + phosphorus (NP), and (5) phosphorus (P) additions. The nifH gene sequence was related to Bradyrhizobium members. Seasonal effects on N-fixing potential were observed by a decrease in the nifH relative abundance from rainy to dry season in control, N, and NP treatments. A significant reduction in nifH abundance was found in the liming treatment in both seasons. The findings evidenced the multiple factors controlling the potential N-fixing by free-living diazotrophs in these nutrient-limited and seasonally dry ecosystems.
Collapse
|
30
|
Endophytic Microbial Diversity: A New Hope for the Production of Novel Anti-tumor and Anti-HIV Agents as Future Therapeutics. Curr Microbiol 2021; 78:1699-1717. [PMID: 33725144 DOI: 10.1007/s00284-021-02359-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/10/2021] [Indexed: 12/22/2022]
Abstract
Cancer is a collective name for a variety of diseases that can begin in virtually every organ or body tissue as abnormal cells develop uncontrollably and ten million new cancer cases are diagnosed all over the world at present. Whereas HIV is a virus that makes people susceptible to infection and contributes to the condition of acquired immune deficiency syndrome (AIDS). Almost 37 million people are currently diagnosed with HIV and 1 million people die every year, which is the worst-case scenario. Potential medicinal compounds have played a crucial role in the production of certain clinically beneficial novel anti-cancer and anti-HIV agents that are produced from natural sources especially from plants. These include Taxol, Vinblastine, Podophyllotoxin, Betulinic acid, Camptothecin, and Vincristine, etc. In the past decades, bioactive compounds were extracted directly from the plant sources which was more time consuming, led to low yield productivity, high cost, and bad impact on biodiversity. Endophytes, the microorganisms that reside inside the host plant by not causing any kind of harm to them and have potential applications in agriculture, medicine, pollution, and food industries. Therefore, by isolating and characterizing novel endophytes from medicinal plants and extracting their secondary metabolites to produce useful bioactive compounds can be beneficial for well-being and society as a future therapeutics. This approach is not harmful to biodiversity economical, timesaving, low cost, and can lead to the discovery of various industrial and commercially important novel anti-tumor and anti-HIV agents in the future. The Himalayas are home to several medicinal plants and the endophytic microbial biodiversity of the Himalayan region is also not much explored yet. However, the effect of compounds from these endophytes on anticancer and antiviral activity, especially anti-HIV has been largely unexplored. Hence, the present review is designed to the exploration of endophytic microbial diversity that can give rise to the discovery of various novel potential industrially valuable bioactive compounds that can lessen the rate of such type of pandemic diseases in the future by providing low-cost future therapeutics in future.
Collapse
|
31
|
Cheng X, Yun Y, Wang H, Ma L, Tian W, Man B, Liu C. Contrasting bacterial communities and their assembly processes in karst soils under different land use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142263. [PMID: 33181984 DOI: 10.1016/j.scitotenv.2020.142263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Structure and assembly processes of soil bacterial communities under different land use at karst areas remained poorly understood to date. To address this issue, soil samples from arable land and pristine forest over a karst cave, located in the acid rain impacted area, Hubei province, were collected and subjected to high-throughput sequencing and multivariate statistical analysis. Bacterial communities and functions remarkably distinguished between soils under different land use. Both edaphic properties (the content of SO42-, C/N, pH, TN) and weathering processes, such as Si concentration, Mg/Al and Ca/Al, significantly impacted on soil bacterial community structures. Variable selections were predominant ecological processes, and pH and SO42- concentration were of significance in community assembly. Random molecular ecological network analysis revealed a more stable and complex microbial network in the forest ecosystem, which can quickly response to environmental change. Forest soil bacteria were mainly phototrophs, involving in C and N cycles, whereas those in arable soils were mainly chemoheterotrophs, capable of degrading organic fertilizers due to anthropogenic activities as confirmed by the analysis of keystone taxa, indicators and functional prediction. These results reveal that land use constructed soil bacterial communities in different aspects such as the structure, potential functions, microbial interactions and correlations with environmental variables. To our knowledge, this is the first report on bacterial community assembly in karst soils under different land use which enhances our understanding about how land use impact on microbial interaction and community assembly processes.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yuan Yun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, Wuhan 430074, China.
| | - Liyuan Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Wen Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Baiying Man
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Chaoyang Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
32
|
Effects of a microbial restoration substrate on plant growth and rhizosphere bacterial community in a continuous tomato cropping greenhouse. Sci Rep 2020; 10:13729. [PMID: 32792530 PMCID: PMC7426824 DOI: 10.1038/s41598-020-70737-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/30/2020] [Indexed: 11/08/2022] Open
Abstract
Continuous cropping of tomato is increasingly practiced in greenhouse cultivation, leading to several soil-related obstacles. In this study, a type of microbial restoration substrate (MRS) was used to amend soils from the re-cropping of tomato for 8 years under greenhouse-cultivated conditions. Two treatments were established: using 1,500 kg hm-2 of MRS to amend soil as treatment (TR), and non-MRS as control (CK). The severity of bacterial wilt (BW), soil properties and rhizobacterial community composition under two different treatments were compared. The application of MRS led to an average 83.75% reduction in the severity of BW, and significantly increased the plant height, root activity and yield. Meanwhile, soil pH, soil organic contents (SOC), total nitrogen (TN) and exchangeable calcium were significantly increased (P < 0.05) by MRS treatment. Illumina-MiSeq sequencing analysis of the 16S rRNA genes revealed that MRS increased the diversity of the tomato rhizobacterial community. The relative abundances of Proteobacteria, Actinobacteria and Bacteroidetes were enhanced, whereas those of Acidobacteria, Chloroflexi, TM7 and Firmicutes were decreased by MRS. The redundancy analysis (RDA) revealed that the severity of tomato BW was negatively correlated with the relative abundances of Actinobacteria, Bacteroidetes and Proteobacteria, but positively correlated with those of Gemmatimonadetes, Firmicutes and Acidobacteria. In addition, the effects of MRS on rhizobacterial metabolic potentials were predicted using a Kyoto Encyclopedia of Genes and Genomes (KEGG) database, implying that MRS could significantly increase nitrogen metabolisms and reduce carbon metabolism. Together, our results indicated that the use of MRS could reestablish soil microbial communities, which was beneficial to plant health compared with the control.
Collapse
|
33
|
Li Y, Zeng C, Long M. Variation of soil nutrients and bacterial community diversity of different land utilization types in Yangtze River Basin, Chongqing Municipality. PeerJ 2020; 8:e9386. [PMID: 32742767 PMCID: PMC7370933 DOI: 10.7717/peerj.9386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/28/2020] [Indexed: 11/20/2022] Open
Abstract
The diversity and community distribution of soil bacteria in different land use types in Yangtze River Basin, Chongqing Municipality were studied by using Illumina MiSeq analysis methods. Soil physical and chemical properties were determined, and correlation analyses were performed to identify the key factors affecting bacterial numbers and α-diversity in these soils. The results showed that the soil physical and chemical properties of different land use types decrease in the order: mixed forest (M2) > pure forest (P1) > grassland (G3) > bare land (B4). There were significant differences in bacterial diversity and communities of different land use types. The diversity of different land use types showed the same sequence with the soil physical and chemical properties. The abundance and diversity of bacterial in M2 and P1 soils was significantly higher than that in G3 and B4 soils. At phylum level, G3 and B4 soils were rich in only Proteobacteria and Actinobacteria, whereas M2 and P1 soils were rich in Proteobacteria, Actinobacteria and Firmicutes. At genus level, Faecalibacterium and Agathobacter were the most abundant populations in M2 soil and were not found in other soils. Pearson correlation analysis showed that soil moisture content, pH, AN, AP, AK and soil enzyme activity were significantly related to bacterial numbers, diversity and community distribution.
Collapse
Affiliation(s)
- Yanlin Li
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, China
| | - Chunmei Zeng
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, China
| | - Meijun Long
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
34
|
Soil bacterial communities in the Brazilian Cerrado: Response to vegetation type and management. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2019. [DOI: 10.1016/j.actao.2019.103463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Grazing Regulates the Spatial Heterogeneity of Soil Microbial Communities Within Ecological Networks. Ecosystems 2019. [DOI: 10.1007/s10021-019-00448-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Bennett KL, Almanza A, McMillan WO, Saltonstall K, Vdovenko EL, Vinda JS, Mejia L, Driesse K, De León LF, Loaiza JR. Habitat disturbance and the organization of bacterial communities in Neotropical hematophagous arthropods. PLoS One 2019; 14:e0222145. [PMID: 31491005 PMCID: PMC6730880 DOI: 10.1371/journal.pone.0222145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022] Open
Abstract
The microbiome plays a key role in the biology, ecology and evolution of arthropod vectors of human pathogens. Vector-bacterial interactions could alter disease transmission dynamics through modulating pathogen replication and/or vector fitness. Nonetheless, our understanding of the factors shaping the bacterial community in arthropod vectors is incomplete. Using large-scale 16S amplicon sequencing, we examine how habitat disturbance structures the bacterial assemblages of field-collected whole-body hematophagous arthropods that vector human pathogens including mosquitoes (Culicidae), sand flies (Psychodidae), biting midges (Ceratopogonidae) and hard ticks (Ixodidae). We found that all comparisons of the bacterial community among species yielded statistically significant differences, but a difference was not observed between adults and nymphs of the hard tick, Haemaphysalis juxtakochi. While Culicoides species had the most distinct bacterial community among dipterans, tick species were composed of entirely different bacterial OTU’s. We observed differences in the proportions of some bacterial types between pristine and disturbed habitats for Coquillettidia mosquitoes, Culex mosquitoes, and Lutzomyia sand flies, but their associations differed within and among arthropod assemblages. In contrast, habitat quality was a poor predictor of differences in bacterial classes for Culicoides biting midges and hard tick species. In general, similarities in the bacterial communities among hematophagous arthropods could be explained by their phylogenetic relatedness, although intraspecific variation seems influenced by habitat disturbance.
Collapse
Affiliation(s)
- Kelly L. Bennett
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
- * E-mail: (KLB); (JRL)
| | - Alejandro Almanza
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
| | - W. Owen McMillan
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
| | | | | | - Jorge S. Vinda
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
| | - Luis Mejia
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Panamá, República de Panamá
| | - Kaitlin Driesse
- University at Albany, State University of New York, NY, United States of America
| | - Luis F. De León
- Department of Biology, University of Massachusetts Boston, Boston, MA, United States of America
| | - Jose R. Loaiza
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Panamá, República de Panamá
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Panamá, República de Panamá
- * E-mail: (KLB); (JRL)
| |
Collapse
|
37
|
Ojha A, Zhang W. A comparative study of microbial community and dynamics of Asaia in the brown planthopper from susceptible and resistant rice varieties. BMC Microbiol 2019; 19:139. [PMID: 31234788 PMCID: PMC6591912 DOI: 10.1186/s12866-019-1512-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The brown planthopper (BPH) is likely the most destructive, piercing and sucking monophagous insect pest of rice that causes substantial economic losses to farmers. Although yeast-like symbionts (YLS) and virus transmission have been observed in the BPH, the bacterial population inhabiting the BPH has received minimal research attention. Labelling BPH-associated bacterial species may shed light on BPH biology and the interaction between the BPH and rice to provide novel approaches for the efficient control of this insect pest. RESULTS We examined RNA-seq results to identify bacterial populations present in different generations of BPHs maintained on susceptible or resistant rice varieties. Overall, 87 operational taxonomic units (OTUs) were determined from the BPH-F0, F6 and F16 generations. These OTUs had Shannon and Simpson index values of 0.37-0.6 and 0.56-1.19, respectively. The evenness values of 0.7-1.00 showed the vastness of the bacterial diversity recovered from the BPH samples. The results showed high species diversity in the BPHs collected from susceptible rice and a high number of members of unclassified bacteria in the BPHs isolated from resistant rice. We noticed that Proteobacteria OTUs were predominant across all samples. Furthermore, PCR data of Asaia species showed variable DNA amplification across the BPH samples collected from susceptible or resistant varieties. The identification of Asaia in BPH eggs and BPH-egg-infected rice revealed its influence on the interaction between the BPH egg and rice. CONCLUSIONS The BPHs had clear differences in their microbiomes and in their ability to feed on different rice hosts. These variations could have an essential impact on host adaptation and interaction. These results provide a better understanding of the bacterial diversity and interaction of the microbiome of different generations of BPHs. Furthermore, PCR data of Asaia sp. variation across the BPH samples (isolated from different host genotypes selected from the field and laboratory, including BPH eggs and egg-infected rice tissues), suggest that Asaia could be an important member of the insect microbiome involved in adaptation, its interaction with rice and, most importantly, as a paratransgenic tool for insect control.
Collapse
Affiliation(s)
- Abhishek Ojha
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
38
|
Response of soil bacterial community structure to different reclamation years of abandoned salinized farmland in arid China. Arch Microbiol 2019; 201:1219-1232. [PMID: 31190086 DOI: 10.1007/s00203-019-01689-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Abstract
In recent years, understanding the impact of reclamation of abandoned salinized field on microbial community structure is of great importance for ecosystem restoration in arid regions. The aim of this work was to investigate the effects of reclamation years on soil properties, bacterial community composition and diversity based on field sampling and llumina MiSeq sequencing. The five reclamation years are: unreclaimed salinized and reclaimed (1, 5, 10, and 15 years) fields. The results showed soil properties are significantly altered by abandoned salinized field. In particular, reclamation significantly decreased soil electrical conductivity, Cl-, SO42-, Na+, and Ca2+, during 5 years of reclamation. In addition, reclamation increased the richness and diversity of the bacterial community, except for the 1-year field soils. There was a large difference in the abundant bacterial phyla in 1-year field soils compared with other field soils. Proteobacteria were the most abundant in all of the field soils. Principal coordinates analysis showed that the abandoned and 1-year field soils exhibited specific differences in bacterial community structures compared with other field soils. Statistical analyses showed that available phosphorus, SO42-, Mg2+, and Ca2+ were the main physicochemical properties affecting the soil bacterial communities. Overall, reclamation improved soil physicochemical properties and altered the structure and composition of soil bacterial communities compared with unreclaimed salinized soil.
Collapse
|
39
|
Zheng X, Liu B, Zhu Y, Wang J, Zhang H, Wang Z. Bacterial community diversity associated with the severity of bacterial wilt disease in tomato fields in southeast China. Can J Microbiol 2019; 65:538-549. [PMID: 30958971 DOI: 10.1139/cjm-2018-0637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tomato bacterial wilt caused by Ralstonia solanacearum is a devastating plant disease. The aims of this study were to investigate the relationship among soil nutrients, rhizobacterial community, and abundance of R. solanacearum, and to gather useful information for controlling the disease. Fifteen tomato rhizosphere soils were collected from three regions, encompassing five disease grades. Then, soil physicochemical properties and rhizobacterial communities were investigated. The content of soil organic carbon (SOC), total phosphorus (TP), total potassium (TK), and exchangeable calcium was significantly higher in the healthy plant rhizosphere soils than in diseased plant rhizosphere soils (P < 0.05). The healthy soils had a relatively higher abundance of Proteobacteria and a lower abundance of Acidobacteria than the diseased soils from the same region. Redundancy analysis demonstrated that R. solanacearum abundance was positively correlated with total nitrogen content and negatively correlated with soil pH, SOC, TP, TK, and exchangeable calcium. Ralstonia solanacearum abundance correlated positively with Chloroflexi, Acidobacteria, and Planctomycetes abundance but negatively with Nitrospirae, Bacteroidetes, and Proteobacteria abundance. These results suggested that improving soil pH, applying the amount of P and K fertilizers, and controlling the dosage of N fertilizer might be an effective approach in controlling bacterial wilt disease.
Collapse
Affiliation(s)
- Xuefang Zheng
- a Agrobiological Resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, P.R. China
| | - Bo Liu
- a Agrobiological Resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, P.R. China
| | - Yujing Zhu
- a Agrobiological Resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, P.R. China
| | - Jieping Wang
- a Agrobiological Resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, P.R. China
| | - Haifeng Zhang
- a Agrobiological Resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, P.R. China
| | - Ziran Wang
- b Department of Biochemistry and Biotechnology, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China
| |
Collapse
|
40
|
Affiliation(s)
- Michael Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| | - Antonia Dos Reis Figueira
- Universidade Federal de Lavras, Departamento de Fitopatologia, Caixa, CEP, Lavras, Minas Gerais, Brasil
| |
Collapse
|
41
|
McGee KM, Eaton WD, Shokralla S, Hajibabaei M. Determinants of Soil Bacterial and Fungal Community Composition Toward Carbon-Use Efficiency Across Primary and Secondary Forests in a Costa Rican Conservation Area. MICROBIAL ECOLOGY 2019; 77:148-167. [PMID: 29858646 DOI: 10.1007/s00248-018-1206-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Tropical secondary forests currently represent over half of the world's remaining tropical forests and are critical candidates for maintaining global biodiversity and enhancing potential carbon-use efficiency (CUE) and, thus, carbon sequestration. However, these ecosystems can exhibit multiple successional pathways, which have hindered our understanding of the soil microbial drivers that facilitate improved CUE. To begin to address this, we examined soil % C; % N; C:N ratio; soil microbial biomass C (Cmic); NO3-; NH4+; pH; % moisture; % sand, silt, and clay; and elevation, along with soil bacterial and fungal community composition, and determined which soil abiotic properties structure the soil Cmic and the soil bacterial and fungal communities across a primary forest, 33-year-old secondary forest, and 22-year-old young secondary in the Northern Zone of Costa Rica. We provide evidence that soil microbial communities were mostly distinct across the habitat types and that these habitats appear to have affected the soil ectomycorrhizal fungi and the soil microbial groups associated with the degradation of complex carbon compounds. We found that soil Cmic levels increased along the management gradient from young, to old secondary, to primary forest. In addition, the changes in soil Cmic and soil fungal community structure were significantly related to levels of soil NO3-. Our analyses showed that even after 33 years of natural forest regrowth, the clearing of tropical forests can have persistent effects on soil microbial communities and that it may take a longer time than we realized for secondary forests to develop carbon-utilization efficiencies similar to that of a primary forest. Our results also indicated that forms of inorganic N may be an important factor in structuring soil Cmic and the soil microbial communities, leading to improved CUE in regenerating secondary forests. This study is the first in the region to highlight some of the factors which appear to be structuring the soil Cmic and soil microbial communities such that they are more conducive for enhanced CUE in secondary forests.
Collapse
Affiliation(s)
- Katie M McGee
- Centre for Biodiversity Genomics at Biodiversity Institute of Ontario and Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - William D Eaton
- Department of Biology, Pace University, 1 Pace Plaza, New York, NY, 10038, USA
| | - Shadi Shokralla
- Centre for Biodiversity Genomics at Biodiversity Institute of Ontario and Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Mehrdad Hajibabaei
- Centre for Biodiversity Genomics at Biodiversity Institute of Ontario and Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
42
|
Li J, Lin J, Pei C, Lai K, Jeffries TC, Tang G. Variation of soil bacterial communities along a chronosequence of Eucalyptus plantation. PeerJ 2018; 6:e5648. [PMID: 30280026 PMCID: PMC6160830 DOI: 10.7717/peerj.5648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/25/2018] [Indexed: 12/30/2022] Open
Abstract
Eucalyptus is harvested for wood and fiber production in many tropical and sub-tropical habitats globally. Plantation has been controversial because of its influence on the surrounding environment, however, the influence of massive Eucalyptus planting on soil microbial communities is unclear. Here we applied high-throughput sequencing of the 16S rRNA gene to assess the microbial community composition and diversity of planting chronosequences, involving two, five and ten years of Eucalyptus plantation, comparing to that of secondary-forest in South China. We found that significant changes in the composition of soil bacteria occurred when the forests were converted from secondary-forest to Eucalyptus. The bacterial community structure was clearly distinct from control and five year samples after Eucalyptus was grown for 2 and 10 years, highlighting the influence of this plantation on local soil microbial communities. These groupings indicated a cycle of impact (2 and 10 year plantations) and low impact (5-year plantations) in this chronosequence of Eucalyptus plantation. Community patterns were underpinned by shifts in soil properties such as pH and phosphorus concentration. Concurrently, key soil taxonomic groups such as Actinobacteria showed abundance shifts, increasing in impacted plantations and decreasing in low impacted samples. Shifts in taxonomy were reflected in a shift in metabolic potential, including pathways for nutrient cycles such as carbon fixation, which changed in abundance over time following Eucalyptus plantation. Combined these results confirm that Eucalyptus plantation can change the community structure and diversity of soil microorganisms with strong implications for land-management and maintaining the health of these ecosystems.
Collapse
Affiliation(s)
- Jiayu Li
- College of Forestry and Landscape Architecture, South China Limestone Plants Research Center, South China Agricultural University, Guangzhou, China.,School of Science and Health, University of Western Sydney, Penrith, NSW, Australia
| | - Jiayi Lin
- College of Forestry and Landscape Architecture, South China Limestone Plants Research Center, South China Agricultural University, Guangzhou, China
| | - Chenyu Pei
- College of Forestry and Landscape Architecture, South China Limestone Plants Research Center, South China Agricultural University, Guangzhou, China
| | - Kaitao Lai
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, North Ryde, NSW, Australia
| | - Thomas C Jeffries
- School of Science and Health, University of Western Sydney, Penrith, NSW, Australia
| | - Guangda Tang
- College of Forestry and Landscape Architecture, South China Limestone Plants Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
43
|
Li Y, Kong Y, Teng D, Zhang X, He X, Zhang Y, Lv G. Rhizobacterial communities of five co-occurring desert halophytes. PeerJ 2018; 6:e5508. [PMID: 30186688 PMCID: PMC6119601 DOI: 10.7717/peerj.5508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/02/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recently, researches have begun to investigate the microbial communities associated with halophytes. Both rhizobacterial community composition and the environmental drivers of community assembly have been addressed. However, few studies have explored the structure of rhizobacterial communities associated with halophytic plants that are co-occurring in arid, salinized areas. METHODS Five halophytes were selected for study: these co-occurred in saline soils in the Ebinur Lake Nature Reserve, located at the western margin of the Gurbantunggut Desert of Northwestern China. Halophyte-associated bacterial communities were sampled, and the bacterial 16S rDNA V3-V4 region amplified and sequenced using the Illumina Miseq platform. The bacterial community diversity and structure were compared between the rhizosphere and bulk soils, as well as among the rhizosphere samples. The effects of plant species identity and soil properties on the bacterial communities were also analyzed. RESULTS Significant differences were observed between the rhizosphere and bulk soil bacterial communities. Diversity was higher in the rhizosphere than in the bulk soils. Abundant taxonomic groups (from phylum to genus) in the rhizosphere were much more diverse than in bulk soils. Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Planctomycetes were the most abundant phyla in the rhizosphere, while Proteobacteria and Firmicutes were common in bulk soils. Overall, the bacterial community composition were not significantly differentiated between the bulk soils of the five plants, but community diversity and structure differed significantly in the rhizosphere. The diversity of Halostachys caspica, Halocnemum strobilaceum and Kalidium foliatum associated bacterial communities was lower than that of Limonium gmelinii and Lycium ruthenicum communities. Furthermore, the composition of the bacterial communities of Halostachys caspica and Halocnemum strobilaceum was very different from those of Limonium gmelinii and Lycium ruthenicum. The diversity and community structure were influenced by soil EC, pH and nutrient content (TOC, SOM, TON and AP); of these, the effects of EC on bacterial community composition were less important than those of soil nutrients. DISCUSSION Halophytic plant species played an important role in shaping associated rhizosphere bacterial communities. When salinity levels were constant, soil nutrients emerged as key factors structuring bacterial communities, while EC played only a minor role. Pairwise differences among the rhizobacterial communities associated with different plant species were not significant, despite some evidence of differentiation. Further studies involving more halophyte species, and individuals per species, are necessary to elucidate plant species identity effects on the rhizosphere for co-occurring halophytes.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang, China
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Ecology Post-doctoral Research Station, Xinjiang University, Urumqi, Xinjiang, China
| | - Yan Kong
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, China
- SJTU-Yale Joint Center for Biostistics, Shanghai Jiaotong University, Shanghai, China
| | - Dexiong Teng
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
| | - Xueni Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang, China
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
| | - Xuemin He
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang, China
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
| | - Yang Zhang
- College of Resource and Environment Sciences, Xinjiang University, Urumqi, Xinjiang, China
| | - Guanghui Lv
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang, China
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
44
|
Cheng Z, Chen Y, Zhang F. Effect of reclamation of abandoned salinized farmland on soil bacterial communities in arid northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:799-808. [PMID: 29494981 DOI: 10.1016/j.scitotenv.2018.02.259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Understanding the impact of reclamation of abandoned salinized farmland on soil bacterial community is of great importance for maintaining soil health and sustainability in arid regions. In this study, we used field sampling and 454 pyrosequencing methods to investigate the effects of 5-year reclamation treatments on soil properties, bacterial community composition and diversity. The four reclamation treatments are: abandoned salinized farmland (CK), cropland (CL), grassland (GL) and woodland (WL). We have found soil properties are significantly altered by abandoned salinized farmland reclamation. In particular, the lowest soil pH and electrical conductivity (EC) values are observed in CL (P<0.05). The dominant phyla are Firmicutes, Proteobacteria, Chloroflexi, Actinobacteria and Acidobacteria in all treatments. At the genus levels, the relative abundance of Bacillus, Lactococcus, Streptococcus and Enterococcus in CK, GL and WL is significantly higher than in CL. Bacterial diversity indices (i.e. ACE, Chao and Shannon) dramatically increase after the reclamation, with the highest in CL. Similar patterns of bacterial communities have been observed in CK, GL and WL soils, but significantly different from CL. Regression analyses indicate that the relative abundance of these phyla are significantly correlated with soil Fe, pH and EC. Results from non-metric multidimensional scaling (NMDS) and redundancy analysis (RDA) indicate that soil Fe content, EC and pH are the most important factors in shaping soil bacterial communities. Overall, results indicate that abandoned salinized farmland reclaimed for CL significantly decrease soil pH and EC, and increase soil bacterial community diversity. Soil Fe concentration, EC and pH are the dominant environmental factors affecting soil bacterial community composition. The important role of Fe concentration in shaping bacterial community composition is a new discovery among the similar studies.
Collapse
Affiliation(s)
- Zhibo Cheng
- Agricultural College, Shihezi University, Shihezi City, 832003, China; CSIRO Land and Water, Canberra, ACT, 2601, Australia
| | - Yun Chen
- CSIRO Land and Water, Canberra, ACT, 2601, Australia
| | - Fenghua Zhang
- Agricultural College, Shihezi University, Shihezi City, 832003, China.
| |
Collapse
|
45
|
Hua J, Feng Y, Jiang Q, Bao X, Yin Y. Shift of bacterial community structure along different coastal reclamation histories in Jiangsu, Eastern China. Sci Rep 2017; 7:10096. [PMID: 28855690 PMCID: PMC5577240 DOI: 10.1038/s41598-017-10608-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/11/2017] [Indexed: 11/09/2022] Open
Abstract
Tideland reclamation has drastic effects on coastal ecosystem involved in soil microorganisms. However, the knowledge regarding temporal variations of microbial community along reclamation chronosequence and their environmental variable predictor is still poorly known. Using Illumina sequencing, we qualified bacterial community composition in soils collected from one tideland and four reclamation stages, i.e. 2-year, 7-year, 19-year and 39-year in Jiangsu, Eastern China. Across all samples, the dominant groups were Proteobacteria, Bacteroidete, Acidobacteria, Planctomycetes and Chloroflexi. Reclamation activity and its histories greatly altered bacterial community structure, and only 0.28% of phylotypes were shared by five soils. Specially, some typical marine bacteria (Gaetulibacter, Alcanivorax …) disappeared in reclamation soils, while other groups (Niabella, Flavisolibacter…) were gradually eminent. Generally, bacterial diversity and richness increased with reclamation histories. Bacterial community was correlated with most of soil physico-chemical properties. Amongst, mean weight diameter of soil aggregates (MWD) was detected as a primary factor predicting bacterial community composition. Together, our results indicated that effects of reclamation on bacterial community varied with diked histories, and MWD was a major factor predicting bacterial community during progressive reclamation. These findings offer predicting case study for understanding the impact of reclamation and its histories on microbial community in a coastal ecosystem.
Collapse
Affiliation(s)
- Jianfeng Hua
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.,State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Youzhi Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Qian Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xuewen Bao
- Nanjing Forest Police College, Nanjing, China.
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
46
|
Ojha A, Sinha DK, Padmakumari AP, Bentur JS, Nair S. Bacterial Community Structure in the Asian Rice Gall Midge Reveals a Varied Microbiome Rich in Proteobacteria. Sci Rep 2017; 7:9424. [PMID: 28842593 PMCID: PMC5573367 DOI: 10.1038/s41598-017-09791-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/31/2017] [Indexed: 02/03/2023] Open
Abstract
The Asian rice gall midge (ARGM) has emerged as a model gall forming pest of rice. The ARGM infestation of rice results in failure of panicle formation and economic loss. Understanding the molecular basis of ARGM-rice interactions is very crucial in order to control this devastating pest of rice. The current investigation was devised to identify bacterial communities present in the ARGM and in addition the bacterial diversity in the maggots during their interaction with susceptible or resistant rice varieties. Sequencing of 16S rRNA bacterial gene (V3-V4 region) revealed differences in the microflora of the ARGM maggots feeding on susceptible or resistant rice hosts. Results revealed that Wolbachia was the predominant bacterium in pupae and adults while Pseudomonas was predominant in maggots. Further, we observed that members of proteobacteria were predominant across all the samples. There was high species diversity in maggots isolated from susceptible rice and a high representation of unclassified bacteria in maggots isolated from resistant rice. This is the first study that reports variation of microbiome of the ARGM, based on host phenotype from which it was isolated, and results suggest that these variations could have an important role in host's susceptibility.
Collapse
Affiliation(s)
- Abhishek Ojha
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110 067, India.,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Deepak Kumar Sinha
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - A P Padmakumari
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - J S Bentur
- Agri Biotech Foundation, Rajendranagar, Hyderabad, 500 030, India
| | - Suresh Nair
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
47
|
Distinct bacterial communities across a gradient of vegetation from a preserved Brazilian Cerrado. Antonie van Leeuwenhoek 2017; 110:457-469. [PMID: 28062969 DOI: 10.1007/s10482-016-0815-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
Abstract
The Cerrado biome in the Sete Cidades National Park, an Ecological Reserve in Northeastern Brazil, has conserved its native biodiversity and presents a variety of plants found in other savannas in Brazil. Despite this finding the soil microbial diversity and community structure are poorly understood. Therefore, we described soil bacterial diversity and distribution along a savanna vegetation gradient taking into account the prevailing environmental factors. The bacterial composition was retrieved by sequencing a fragment of the 16S ribosomal RNA gene. The bacterial operational taxonomic units (OTUs) were assigned to 37 different phyla, 96 classes, and 83 genera. At the phylum level, a core comprised by Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Verrucomicrobia and Planctomycetes, was detected in all areas of Cerrado. 'Cerrado stricto sensu' and 'Cerradao' share more similarities between edaphic properties and vegetation and also present more similar bacterial communities, while 'Floresta decidual' and 'Campo graminoide' show the largest environmental differences and also more distinct bacterial communities. Proteobacteria (26%), Acidobacteria (21%) and Actinobacteria (21%) were the most abundant phyla within the four areas. All the samples present similar bacteria richness (alpha diversity) and the observed differences among them (beta diversity) were more related to the abundance of specific taxon OTUs compared to their presence or absence. Total organic C, N and P are the main abiotic factors structuring the bacterial communities. In summary, our findings show the bacterial community structure was clearly different across the Cerrado gradient, but that these environments share a bacterial phylum-core comprising Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia and Planctomycetes with other Brazilian savannas.
Collapse
|
48
|
Liu X, Zhang S, Jiang Q, Bai Y, Shen G, Li S, Ding W. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci Rep 2016; 6:36773. [PMID: 27857159 PMCID: PMC5114674 DOI: 10.1038/srep36773] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022] Open
Abstract
Although bacterial communities play important roles in the suppression of pathogenic diseases and crop production, little is known about the bacterial communities associated with bacterial wilt. Based on 16S rRNA gene sequencing, statistical analyses of microbial communities in disease-suppressive and disease-conducive soils from three districts during the vegetation period of tobacco showed that Proteobacteria was the dominant phylum, followed by Acidobacteria. Only samples from September were significantly correlated to disease factors. Fifteen indicators from taxa found in September (1 class, 2 orders, 3 families and 9 genera) were identified in the screen as being associated with disease suppression, and 10 of those were verified for potential disease suppression in March. Kaistobacter appeared to be the genus with the most potential for disease suppression. Elucidating microbially mediated natural disease suppression is fundamental to understanding microecosystem responses to sustainable farming and provides a possible approach for modeling disease-suppressive indicators. Here, using cluster analysis, MRPP testing, LEfSe and specific filters for a Venn diagram, we provide insight into identifying possible indicators of disease suppression of tobacco bacterial wilt.
Collapse
Affiliation(s)
- Xiaojiao Liu
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Shuting Zhang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Qipeng Jiang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Yani Bai
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Guihua Shen
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
49
|
Rughöft S, Herrmann M, Lazar CS, Cesarz S, Levick SR, Trumbore SE, Küsel K. Community Composition and Abundance of Bacterial, Archaeal and Nitrifying Populations in Savanna Soils on Contrasting Bedrock Material in Kruger National Park, South Africa. Front Microbiol 2016; 7:1638. [PMID: 27807431 PMCID: PMC5069293 DOI: 10.3389/fmicb.2016.01638] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/30/2016] [Indexed: 11/13/2022] Open
Abstract
Savannas cover at least 13% of the global terrestrial surface and are often nutrient limited, especially by nitrogen. To gain a better understanding of their microbial diversity and the microbial nitrogen cycling in savanna soils, soil samples were collected along a granitic and a basaltic catena in Kruger National Park (South Africa) to characterize their bacterial and archaeal composition and the genetic potential for nitrification. Although the basaltic soils were on average 5 times more nutrient rich than the granitic soils, all investigated savanna soil samples showed typically low nutrient availabilities, i.e., up to 38 times lower soil N or C contents than temperate grasslands. Illumina MiSeq amplicon sequencing revealed a unique soil bacterial community dominated by Actinobacteria (20-66%), Chloroflexi (9-29%), and Firmicutes (7-42%) and an increase in the relative abundance of Actinobacteria with increasing soil nutrient content. The archaeal community reached up to 14% of the total soil microbial community and was dominated by the thaumarchaeal Soil Crenarchaeotic Group (43-99.8%), with a high fraction of sequences related to the ammonia-oxidizing genus Nitrosopshaera sp. Quantitative PCR targeting amoA genes encoding the alpha subunit of ammonia monooxygenase also revealed a high genetic potential for ammonia oxidation dominated by archaea (~5 × 107 archaeal amoA gene copies g-1 soil vs. mostly < 7 × 104 bacterial amoA gene copies g-1 soil). Abundances of archaeal 16S rRNA and amoA genes were positively correlated with soil nitrate, N and C contents. Nitrospira sp. was detected as the most abundant group of nitrite oxidizing bacteria. The specific geochemical conditions and particle transport dynamics at the granitic catena were found to affect soil microbial communities through clay and nutrient relocation along the hill slope, causing a shift to different, less diverse bacterial and archaeal communities at the footslope. Overall, our results suggest a strong effect of the savanna soils' nutrient scarcity on all microbial communities, resulting in a distinct community structure that differs markedly from nutrient-rich, temperate grasslands, along with a high relevance of archaeal ammonia oxidation in savanna soils.
Collapse
Affiliation(s)
- Saskia Rughöft
- Chair of Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena Jena, Germany
| | - Martina Herrmann
- Chair of Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University JenaJena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany
| | - Cassandre S Lazar
- Chair of Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena Jena, Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany; Institute of Biology, Leipzig UniversityLeipzig, Germany
| | - Shaun R Levick
- Biogeochemical Processes, Max Planck Institute for Biogeochemistry Jena, Germany
| | - Susan E Trumbore
- Biogeochemical Processes, Max Planck Institute for Biogeochemistry Jena, Germany
| | - Kirsten Küsel
- Chair of Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University JenaJena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany
| |
Collapse
|
50
|
Ji Y, Angel R, Klose M, Claus P, Marotta H, Pinho L, Enrich-Prast A, Conrad R. Structure and function of methanogenic microbial communities in sediments of Amazonian lakes with different water types. Environ Microbiol 2016; 18:5082-5100. [PMID: 27507000 DOI: 10.1111/1462-2920.13491] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/06/2016] [Indexed: 11/28/2022]
Abstract
Tropical lake sediments are a significant source for the greenhouse gas methane. We studied function (pathway, rate) and structure (abundance, taxonomic composition) of the microbial communities (Bacteria, Archaea) leading to methane formation together with the main physicochemical characteristics in the sediments of four clear water, six white water and three black water lakes of the Amazon River system. Concentrations of sulfate and ferric iron, pH and δ13 C of organic carbon were usually higher, while concentrations of carbon, nitrogen and rates of CH4 production were generally lower in white water versus clear water or black water sediments. Copy numbers of bacterial and especially archaeal ribosomal RNA genes also tended to be relatively lower in white water sediments. Hydrogenotrophic methanogenesis contributed 58 ± 16% to total CH4 production in all systems. Network analysis identified six communities, of which four were comprised mostly of bacteria found in all sediment types, while two were mostly in clear water sediment. Terminal restriction fragment length polymorphism (T-RFLP) and pyrosequencing showed that the compositions of the communities differed between the different sediment systems, statistically related to the particular physicochemical conditions and to CH4 production rates. Among the archaea, clear water, white water, and black water sediments contained relatively more Methanomicrobiales, Methanosarcinaceae and Methanocellales, respectively, while Methanosaetaceae were common in all systems. Proteobacteria, Deltaproteobacteria (Myxococcales, Syntrophobacterales, sulfate reducers) in particular, Acidobacteria and Firmicutes were the most abundant bacterial phyla in all sediment systems. Among the other important bacterial phyla, clear water sediments contained relatively more Alphaproteobacteria and Planctomycetes, whereas white water sediments contained relatively more Betaproteobacteria, Firmicutes, Actinobacteria, and Chloroflexi than the respective other sediment systems. The data showed communities of bacteria common to all sediment types, but also revealed microbial groups that were significantly different between the sediment types, which also differed in physicochemical conditions. Our study showed that function of the microbial communities may be understood on the basis of their structures, which in turn are determined by environmental heterogeneity.
Collapse
Affiliation(s)
- Yang Ji
- Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Ningliu Road 219, Nanjing, 210044, China.,Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Roey Angel
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry meets Microbiology, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Melanie Klose
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Peter Claus
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Humberto Marotta
- Laboratório de Biogeoquímica, Departamento de Ecologia, Instituto de Biologia, University Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Graduated Program in Geosciences (Geochemistry), Graduated Program in Geography, Research Center on Biomass and Water Management (NAB/UFF), Sedimentary Environmental Processes Laboratory (LAPSA/UFF), International Laboratory of Global Change (LINC-Global), Fluminense Federal University (UFF), Niterói, Brazil
| | - Luana Pinho
- Department of Chemical Oceanography, Rio de Janeiro State University, Pavilhão João Lyra Filho, sala 4008 Bloco E, Rua São Francisco Xavier, 524, Maracanã-RJ, 20550-900, Brazil
| | - Alex Enrich-Prast
- Laboratório de Biogeoquímica, Departamento de Ecologia, Instituto de Biologia, University Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Department of Environmental Change, Linköping University, Linköping, Sweden
| | - Ralf Conrad
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| |
Collapse
|