1
|
Kim MC, Jang SS, Van Lo T, Noh JY, Lim HA, Kim HY, Mun DY, Kim K, Lee TW, Choi YG, Yoon SW, Jeong DG, Kim SS, Kim HK. Circulation characteristics of bat coronaviruses linked to bat ecological factors in Korea, 2021-2022. Virulence 2025; 16:2502551. [PMID: 40336345 PMCID: PMC12077446 DOI: 10.1080/21505594.2025.2502551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/25/2024] [Accepted: 01/26/2025] [Indexed: 05/09/2025] Open
Abstract
Considering that bat ecology alterations may be linked with pathogen spillover, research on bat coronaviruses, particularly on the infection and transmission pattern among bats in relation with their ecology, is essential. We captured bats distributed in Korea from 2021 to 2022, examined coronaviruses in oral swabs, feces, urine, and ectoparasites, and were able to detect alphacoronavirus. We investigated coronaviruses, but noted no substantial differences in the body condition index in the coronavirus-positive bats. Binary logistic regression analysis revealed that bat ecological factors that were significantly associated with coronavirus-positive were roost type, sample type, and bat species. Coronavirus-positive ectoparasite cases suggested additional study on the potential role of them as the viral transmission vectors or fomites. Reinfection of a different coronavirus in recaptured bats was evident, suggesting the possibility that coronavirus circulation can evade the potential protective immunity acquired from previous coronavirus infections. The present findings provide comprehensive information on the coronaviruses transmission dynamics within bat populations linked with bat ecology.
Collapse
Affiliation(s)
- Min Chan Kim
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Seong Sik Jang
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Thi Van Lo
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Ji Yeong Noh
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyun A. Lim
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Ha Yeon Kim
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Da Young Mun
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Kihyun Kim
- Ecological Technology Research Team, Division of Ecological Application, National Institute of Ecology, Seocheon, Republic of Korea
| | - Taek-Woo Lee
- Ecological Technology Research Team, Division of Ecological Application, National Institute of Ecology, Seocheon, Republic of Korea
| | - Yong Gun Choi
- The Korean Institute of Biospeleology, Daejeon, Korea
| | - Sun-Woo Yoon
- Department of Biological Sciences and Biotechnology, Andong National University, Andong, Republic of Korea
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Bio-Analytical Science Division, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Sun-Sook Kim
- Ecological Technology Research Team, Division of Ecological Application, National Institute of Ecology, Seocheon, Republic of Korea
| | - Hye Kwon Kim
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
2
|
Chen J, Zhang W, Li Y, Liu C, Dong T, Chen H, Wu C, Su J, Li B, Zhang W, Hu B, Jia J, Ma CB, Zhu Y, He X, Li A, Pan K, Lin H, Guo Z, Li C, Zhang L, Yan H, Zhou P, Peng W, Shi ZL. Bat-infecting merbecovirus HKU5-CoV lineage 2 can use human ACE2 as a cell entry receptor. Cell 2025; 188:1729-1742.e16. [PMID: 39970913 DOI: 10.1016/j.cell.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Merbecoviruses comprise four viral species with remarkable genetic diversity: MERS-related coronavirus, Tylonycteris bat coronavirus HKU4, Pipistrellus bat coronavirus HKU5, and Hedgehog coronavirus 1. However, the potential human spillover risk of animal merbecoviruses remains to be investigated. Here, we reported the discovery of HKU5-CoV lineage 2 (HKU5-CoV-2) in bats that efficiently utilize human angiotensin-converting enzyme 2 (ACE2) as a functional receptor and exhibits a broad host tropism. Cryo-EM analysis of HKU5-CoV-2 receptor-binding domain (RBD) and human ACE2 complex revealed an entirely distinct binding mode compared with other ACE2-utilizing merbecoviruses with RBD footprint largely shared with ACE2-using sarbecoviruses and NL63. Structural and functional analyses indicate that HKU5-CoV-2 has a better adaptation to human ACE2 than lineage 1 HKU5-CoV. Authentic HKU5-CoV-2 infected human ACE2-expressing cell lines and human respiratory and enteric organoids. This study reveals a distinct lineage of HKU5-CoVs in bats that efficiently use human ACE2 and underscores their potential zoonotic risk.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yang Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chen Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Tianyi Dong
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huiyu Chen
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chunguang Wu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jia Su
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bei Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ben Hu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingkun Jia
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Bao Ma
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yan Zhu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ang Li
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Kaiyi Pan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haofeng Lin
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zishuo Guo
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cong Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| | - Huan Yan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Peng Zhou
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Wei Peng
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zheng-Li Shi
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China.
| |
Collapse
|
3
|
Han Y, Xu P, Wang Y, Zhao W, Zhang J, Zhang S, Wang J, Jin Q, Wu Z. Panoramic analysis of coronaviruses carried by representative bat species in Southern China to better understand the coronavirus sphere. Nat Commun 2023; 14:5537. [PMID: 37684236 PMCID: PMC10491624 DOI: 10.1038/s41467-023-41264-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Bats, recognized as considerable reservoirs for coronaviruses (CoVs), serve as natural hosts for several highly pathogenic CoVs, including SARS-CoV and SARS-CoV-2. Investigating the bat CoV community provides insights into the origin for highly pathogenic CoVs and highlights bat CoVs with potential spillover risks. This study probes the evolution, recombination, host range, geographical distribution, and cross-species transmission characteristics of bat CoVs across China and its associated CoVs in other regions. Through detailed research on 13,064 bat samples from 14 provinces of China, 1141 CoV strains are found across 10 subgenera and one unclassified Alpha-CoV, generating 399 complete genome sequences. Within bat CoVs, 11 new CoV species are identified and 425 recombination events are detected. Bats in southern China, particularly in Yunnan province, exhibit a pronounced diversity of CoVs. Limited sampling and low detection rates exist for CoVs in Myotacovirus, Nyctacovirus, Hibecovirus, Nobecovirus in China. The genus Myotis is highlighted as a potential ancestral host for Alpha-CoV, with the genus Hipposideros suggested as a likely progenitor host for bat-associated Beta-CoV, indicating the complexity of cross-species transmission dynamics. Through the comprehensive analysis, this study enriches the understanding of bat CoVs and offers a valuable resource for future research.
Collapse
Affiliation(s)
- Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenliang Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Cohen LE, Fagre AC, Chen B, Carlson CJ, Becker DJ. Coronavirus sampling and surveillance in bats from 1996-2019: a systematic review and meta-analysis. Nat Microbiol 2023; 8:1176-1186. [PMID: 37231088 PMCID: PMC10234814 DOI: 10.1038/s41564-023-01375-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Abstract
The emergence of SARS-CoV-2 highlights a need for evidence-based strategies to monitor bat viruses. We performed a systematic review of coronavirus sampling (testing for RNA positivity) in bats globally. We identified 110 studies published between 2005 and 2020 that collectively reported positivity from 89,752 bat samples. We compiled 2,274 records of infection prevalence at the finest methodological, spatiotemporal and phylogenetic level of detail possible from public records into an open, static database named datacov, together with metadata on sampling and diagnostic methods. We found substantial heterogeneity in viral prevalence across studies, reflecting spatiotemporal variation in viral dynamics and methodological differences. Meta-analysis identified sample type and sampling design as the best predictors of prevalence, with virus detection maximized in rectal and faecal samples and by repeat sampling of the same site. Fewer than one in five studies collected and reported longitudinal data, and euthanasia did not improve virus detection. We show that bat sampling before the SARS-CoV-2 pandemic was concentrated in China, with research gaps in South Asia, the Americas and sub-Saharan Africa, and in subfamilies of phyllostomid bats. We propose that surveillance strategies should address these gaps to improve global health security and enable the origins of zoonotic coronaviruses to be identified.
Collapse
Affiliation(s)
- Lily E Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Binqi Chen
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
5
|
Aicher SM, Streicher F, Chazal M, Planas D, Luo D, Buchrieser J, Nemcova M, Seidlova V, Zukal J, Serra-Cobo J, Pontier D, Pain B, Zimmer G, Schwartz O, Roingeard P, Pikula J, Dacheux L, Jouvenet N. Species-Specific Molecular Barriers to SARS-CoV-2 Replication in Bat Cells. J Virol 2022; 96:e0060822. [PMID: 35862713 PMCID: PMC9327701 DOI: 10.1128/jvi.00608-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Bats are natural reservoirs of numerous coronaviruses, including the potential ancestor of SARS-CoV-2. Knowledge concerning the interaction between coronaviruses and bat cells is sparse. We investigated the ability of primary cells from Rhinolophus and Myotis species, as well as of established and novel cell lines from Myotis myotis, Eptesicus serotinus, Tadarida brasiliensis, and Nyctalus noctula, to support SARS-CoV-2 replication. None of these cells were permissive to infection, not even the ones expressing detectable levels of angiotensin-converting enzyme 2 (ACE2), which serves as the viral receptor in many mammalian species. The resistance to infection was overcome by expression of human ACE2 (hACE2) in three cell lines, suggesting that the restriction to viral replication was due to a low expression of bat ACE2 (bACE2) or the absence of bACE2 binding in these cells. Infectious virions were produced but not released from hACE2-transduced M. myotis brain cells. E. serotinus brain cells and M. myotis nasal epithelial cells expressing hACE2 efficiently controlled viral replication, which correlated with a potent interferon response. Our data highlight the existence of species-specific and cell-specific molecular barriers to viral replication in bat cells. These novel chiropteran cellular models are valuable tools to investigate the evolutionary relationships between bats and coronaviruses. IMPORTANCE Bats are host ancestors of several viruses that cause serious disease in humans, as illustrated by the ongoing SARS-CoV-2 pandemic. Progress in investigating bat-virus interactions has been hampered by a limited number of available bat cellular models. We have generated primary cells and cell lines from several bat species that are relevant for coronavirus research. The various permissivities of the cells to SARS-CoV-2 infection offered the opportunity to uncover some species-specific molecular restrictions to viral replication. All bat cells exhibited a potent entry-dependent restriction. Once this block was overcome by overexpression of human ACE2, which serves at the viral receptor, two bat cell lines controlled well viral replication, which correlated with the inability of the virus to counteract antiviral responses. Other cells potently inhibited viral release. Our novel bat cellular models contribute to a better understanding of the molecular interplays between bat cells and viruses.
Collapse
Affiliation(s)
- Sophie-Marie Aicher
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Felix Streicher
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Maxime Chazal
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Delphine Planas
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Dongsheng Luo
- Institut Pasteur, Université de Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | - Julian Buchrieser
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus and Immunity Unit, Paris, France
| | - Monika Nemcova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Veronika Seidlova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology of the Czech Academy of Sciences Brno, Brno, Czech Republic
| | - Jordi Serra-Cobo
- Institut de Recerca de la Biodiversitat (IRBio), Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Dominique Pontier
- Université de Lyon, LabEx Ecofect, Lyon, France
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, France
| | - Bertrand Pain
- University of Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, Bron, France
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Philippe Roingeard
- INSERM U1259 MAVIVH and Plateforme IBiSA de Microscopie Electronique, Faculté de Médecine, Université de Tours, Tours, France
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Laurent Dacheux
- Institut Pasteur, Université de Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| |
Collapse
|
6
|
Genomic Comparisons of Alphacoronaviruses and Betacoronaviruses from Korean Bats. Viruses 2022; 14:v14071389. [PMID: 35891370 PMCID: PMC9320528 DOI: 10.3390/v14071389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Coronaviruses are well known as a diverse family of viruses that affect a wide range of hosts. Since the outbreak of severe acute respiratory syndrome, a variety of bat-associated coronaviruses have been identified in many countries. However, they do not represent all the specific geographic locations of their hosts. In this study, full-length genomes representing newly identified bat coronaviruses in South Korea were obtained using an RNA sequencing approach. The analysis, based on genome structure, conserved replicase domains, spike gene, and nucleocapsid genes revealed that bat Alphacoronaviruses are from three different viral species. Among them, the newly identified B20-97 strain may represent a new putative species, closely related to PEDV. In addition, the newly-identified MERS-related coronavirus exhibited shared genomic nucleotide identities of less than 76.4% with other Merbecoviruses. Recombination analysis and multiple alignments of spike and RBD amino acid sequences suggested that this strain underwent recombination events and could possibly use hDPP4 molecules as its receptor. The bat SARS-related CoV B20-50 is unlikely to be able to use hACE2 as its receptor and lack of an open reading frame in ORF8 gene region. Our results illustrate the diversity of coronaviruses in Korean bats and their evolutionary relationships. The evolution of the bat coronaviruses related ORF8 accessory gene is also discussed.
Collapse
|
7
|
Duan X, Zhang Z, Zhang W. How Is the Risk of Major Sudden Infectious Epidemic Transmitted? A Grounded Theory Analysis Based on COVID-19 in China. Front Public Health 2021; 9:795481. [PMID: 34900927 PMCID: PMC8661694 DOI: 10.3389/fpubh.2021.795481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 01/23/2023] Open
Abstract
The outbreak of a sudden infectious epidemic often causes serious casualties and property losses to the whole society. The COVID-19 epidemic that broke out in China at the end of December 2019, spread rapidly, resulting in large groups of confirmed diagnoses, and causing severe damage to China's society. This epidemic even now encompasses the globe. This paper takes the COVID-19 epidemic that has occurred in China as an example, the original data of this paper is derived from 20 Chinese media reports on COVID-19, and the grounded theory is used to analyze the original data to find the risk transmission rules of a sudden infectious epidemic. The results show that in the risk transmission of a sudden infectious epidemic, there are six basic elements: the risk source, the risk early warning, the risk transmission path, the risk transmission victims, the risk transmission inflection point, and the end of risk transmission. After a sudden infectious epidemic breaks out, there are three risk transmission paths, namely, a medical system risk transmission path, a social system risk transmission path, and a psychological risk transmission path, and these three paths present a coupling structure. These findings in this paper suggest that people should strengthen the emergency management of a sudden infectious epidemic by controlling of the risk source, establishing an efficient and scientific risk early warning mechanism and blocking of the risk transmission paths. The results of this study can provide corresponding policy implications for the emergency management of sudden public health events.
Collapse
Affiliation(s)
- Xin Duan
- School of Management, Anhui University, Hefei, China
| | - Zhisheng Zhang
- School of Finance and Public Management, Anhui University of Finance and Economics, Bengbu, China
| | - Wei Zhang
- School of Public Administration, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Do HQ, Nguyen VG, Chung CU, Jeon YS, Shin S, Jang KC, Pham LBH, Kong A, Kim CU, Park YH, Park BK, Chung HC. Genomic Characterization of a Novel Alphacoronavirus Isolated from Bats, Korea, 2020. Viruses 2021; 13:v13102041. [PMID: 34696471 PMCID: PMC8540747 DOI: 10.3390/v13102041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Coronavirus, an important zoonotic disease, raises concerns of future pandemics. The bat is considered a source of noticeable viruses resulting in human and livestock infections, especially the coronavirus. Therefore, surveillance and genetic analysis of coronaviruses in bats are essential in order to prevent the risk of future diseases. In this study, the genome of HCQD-2020, a novel alphacoronavirus detected in a bat (Eptesicus serotinus), was assembled and described using next-generation sequencing and bioinformatics analysis. The comparison of the whole-genome sequence and the conserved amino acid sequence of replicated proteins revealed that the new strain was distantly related with other known species in the Alphacoronavirus genus. Phylogenetic construction indicated that this strain formed a separated branch with other species, suggesting a new species of Alphacoronavirus. Additionally, in silico prediction also revealed the risk of cross-species infection of this strain, especially in the order Artiodactyla. In summary, this study provided the genetic characteristics of a possible new species belonging to Alphacoronavirus.
Collapse
Affiliation(s)
- Hai-Quynh Do
- Virology Lab, Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea;
| | - Van-Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam;
| | - Chul-Un Chung
- Department of Life Science, Dongguk University, Gyeongju 38066, Korea;
- Correspondence: (C.-U.C.); (B.-K.P.); (H.-C.C.); Tel.: +82-2-880-1255 (C.-U.C., B.-K.P. & H.-C.C.); Fax: +82-2-885-0263 (C.-U.C., B.-K.P. & H.-C.C.)
| | - Yong-Shin Jeon
- Department of Life Science, Dongguk University, Gyeongju 38066, Korea;
| | - Sook Shin
- Noah Biotech Research Unit, Noah Biotech Co. Ltd, Suwon 16612, Korea; (S.S.); (K.-C.J.); (Y.-H.P.)
| | - Kuem-Chan Jang
- Noah Biotech Research Unit, Noah Biotech Co. Ltd, Suwon 16612, Korea; (S.S.); (K.-C.J.); (Y.-H.P.)
| | - Le Bich Hang Pham
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam;
| | - Aeri Kong
- Department of Medical Science, University of California, Los Angeles, CA 90095, USA;
| | - Cheong-Ung Kim
- Department of Veterinary Medicine Microbology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea;
| | - Yong-Ho Park
- Noah Biotech Research Unit, Noah Biotech Co. Ltd, Suwon 16612, Korea; (S.S.); (K.-C.J.); (Y.-H.P.)
| | - Bong-Kyun Park
- Virology Lab, Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea;
- Correspondence: (C.-U.C.); (B.-K.P.); (H.-C.C.); Tel.: +82-2-880-1255 (C.-U.C., B.-K.P. & H.-C.C.); Fax: +82-2-885-0263 (C.-U.C., B.-K.P. & H.-C.C.)
| | - Hee-Chun Chung
- Virology Lab, Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea;
- Correspondence: (C.-U.C.); (B.-K.P.); (H.-C.C.); Tel.: +82-2-880-1255 (C.-U.C., B.-K.P. & H.-C.C.); Fax: +82-2-885-0263 (C.-U.C., B.-K.P. & H.-C.C.)
| |
Collapse
|
9
|
Lee SY, Chung CU, Park JS, Kim YJ, Kim YS, Na EJ, Kim Y, Oem JK. Genetic diversity of bat coronaviruses and comparative genetic analysis of MERS-related coronaviruses in South Korea. Transbound Emerg Dis 2021; 69:e463-e472. [PMID: 34536059 DOI: 10.1111/tbed.14324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/17/2021] [Accepted: 09/11/2021] [Indexed: 01/05/2023]
Abstract
Bats have been identified as a natural reservoir of several potentially zoonotic viruses, including Lyssavirus, Ebola virus, Marburg virus, Hendra virus, Nipah virus, as well as severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus (CoV). Here, we performed a molecular epidemiological investigation of South Korean bat viruses. Genetic comparative analysis was performed on the spike glycoprotein gene of the detected MERS-related CoVs. Among 1640 samples (348 oral swabs, 1199 faecal samples, 83 urine samples and 10 bat carcass) collected across 24 South Korean provinces during 2017-2019, CoV was detected in 82 samples (75 faeces and seven oral swab samples) from 11 provinces. Surveillance over the 3 years during which samples were collected revealed significantly higher CoV detection rates between spring and autumn, and a high detection rate in Vespertillionidae and Rhinolophidae bats. Our phylogenetic analysis shows that Korean bat CoVs are genetically diverse regardless of their spatiotemporal distribution and their host species, and that the discovered bat CoVs belong to various subgenera within the Alpha- and Betacoronavirus genera. Twenty detected MERS-related CoVs belonging to the genus Betacoronavirus were similar to the Ia io bat CoV NL140422 and NL13845 strains. A comprehensive genetic analysis of two Korean bat MERS-related CoV spike receptor binding domain (RBDs) (176 and 267 strains) showed that the 18 critical residues that are involved in interactions with the human DPP4 receptor are most similar to the NL13845 strain, which is known to not bind with hDPP4. A deeper analysis of the interfacing residues in the Korean bat MERS-related CoVs RBD-hDPP4 complexes showed that the Korean bat CoVs has fewer polar contacts than the NL13845 strain. Although further study will be needed, these results suggest that Korean bat MERS-related CoVs are unlikely to bind with hDPP4. Nevertheless, these findings highlight the need for continuous monitoring to identifying the origin of new infectious diseases, specifically mutant CoV.
Collapse
Affiliation(s)
- Sook-Young Lee
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Chul-Un Chung
- Department of Life Science, Dongguk University, Gyeongju, Republic of Korea
| | - Jun Soo Park
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Yoon Ji Kim
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Young-Sik Kim
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Eun-Jee Na
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - YongKwan Kim
- Wildlife Disease Response Team, National Institution of Wildlife Disease Control and Prevention, Gwangju, Republic of Korea
| | - Jae-Ku Oem
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
10
|
Fang M, Hu W, Liu B. Characterization of bat coronaviruses: a latent global threat. J Vet Sci 2021; 22:e72. [PMID: 34553517 PMCID: PMC8460465 DOI: 10.4142/jvs.2021.22.e72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022] Open
Abstract
It has been speculated that bats serve as reservoirs of a huge variety of emerging coronaviruses (CoVs) that have been responsible for severe havoc in human health systems as well as negatively affecting human economic and social systems. A prime example is the currently active severe acute respiratory syndrome (SARS)-CoV2, which presumably originated from bats, demonstrating that the risk of a new outbreak of bat coronavirus is always latent. Therefore, an in-depth investigation to better comprehend bat CoVs has become an important issue within the international community, a group that aims to attenuate the consequences of future outbreaks. In this review, we present a concise introduction to CoVs found in bats and discuss their distribution in Southeast Asia. We also discuss the unique adaptation features in bats that confer the ability to be a potential coronavirus reservoir. In addition, we review the bat coronavirus-linked diseases that have emerged in the last two decades. Finally, we propose key factors helpful in the prediction of a novel coronavirus outbreak and present the most recent methods used to forecast an evolving outbreak.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, China
- Jiangxi Lvke Agriculture and Animal Husbandry Technology Co., Ltd, Yichun 336000, Jiangxi, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun 336000, Jiangxi, China.
| |
Collapse
|
11
|
Na EJ, Lee SY, Kim HJ, Oem JK. Comparative genetic analyses of Korean bat coronaviruses with SARS-CoV and the newly emerged SARS-CoV-2. J Vet Sci 2021; 22:e12. [PMID: 33522164 PMCID: PMC7850784 DOI: 10.4142/jvs.2021.22.e12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
Background Bats have been considered natural reservoirs for several pathogenic human coronaviruses (CoVs) in the last two decades. Recently, a bat CoV was detected in the Republic of Korea; its entire genome was sequenced and reported to be genetically similar to that of the severe acute respiratory syndrome CoV (SARS-CoV). Objectives The objective of this study was to compare the genetic sequences of SARS-CoV, SARS-CoV-2, and the two Korean bat CoV strains 16BO133 and B15-21, to estimate the likelihood of an interaction between the Korean bat CoVs and the human angiotensin-converting enzyme 2 (ACE2) receptor. Methods The phylogenetic analysis was conducted with the maximum-likelihood (ML) method using MEGA 7 software. The Korean bat CoVs receptor binding domain (RBD) of the spike protein was analyzed by comparative homology modeling using the SWISS-MODEL server. The binding energies of the complexes were calculated using PRODIGY and MM/GBGA. Results Phylogenetic analyses of the entire RNA-dependent RNA polymerase, spike regions, and the complete genome revealed that the Korean CoVs, along with SARS-CoV and SARS-CoV-2, belong to the subgenus Sarbecovirus, within BetaCoVs. However, the two Korean CoVs were distinct from SARS-CoV-2. Specifically, the spike gene of the Korean CoVs, which is involved in host infection, differed from that of SARS-CoV-2, showing only 66.8%–67.0% nucleotide homology and presented deletions within the RBD, particularly within regions critical for cross-species transmission and that mediate interaction with ACE2. Binding free energy calculation revealed that the binding affinity of Korean bat CoV RBD to hACE2 was drastically lower than that of SARS-CoV and SARS-CoV-2. Conclusions These results suggest that Korean bat CoVs are unlikely to bind to the human ACE2 receptor.
Collapse
Affiliation(s)
- Eun Jee Na
- Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Sook Young Lee
- Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Jae Ku Oem
- Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University, Iksan 54596, Korea.
| |
Collapse
|
12
|
Biodiversity loss and COVID-19 pandemic: The role of bats in the origin and the spreading of the disease. Biochem Biophys Res Commun 2021; 538:2-13. [PMID: 33092787 PMCID: PMC7566801 DOI: 10.1016/j.bbrc.2020.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
The loss of biodiversity in the ecosystems has created the general conditions that have favored and, in fact, made possible, the insurgence of the COVID-19 pandemic. A lot of factors have contributed to it: deforestation, changes in forest habitats, poorly regulated agricultural surfaces, mismanaged urban growth. They have altered the composition of wildlife communities, greatly increased the contacts of humans with wildlife, and altered niches that harbor pathogens, increasing their chances to come in contact with humans. Among the wildlife, bats have adapted easily to anthropized environments such as houses, barns, cultivated fields, orchards, where they found the suitable ecosystem to prosper. Bats are major hosts for αCoV and βCoV: evolution has shaped their peculiar physiology and their immune system in a way that makes them resistant to viral pathogens that would instead successfully attack other species, including humans. In time, the coronaviruses that bats host as reservoirs have undergone recombination and other modifications that have increased their ability for inter-species transmission: one modification of particular importance has been the development of the ability to use ACE2 as a receptor in host cells. This particular development in CoVs has been responsible for the serious outbreaks in the last two decades, and for the present COVID-19 pandemic.
Collapse
|
13
|
Abstract
Bats are natural reservoirs for potential zoonotic viruses. In this study, next-generation sequencing was performed to obtain entire genome sequences of picornavirus from a picornavirus-positive bat feces sample (16BF77) and to explore novel viruses in a pooled bat sample (16BP) from samples collected in South Korea, 2016. Fourteen mammalian viral sequences were identified from 16BF77 and 29 from 16BP, and verified by RT-PCR. The most abundant virus in 16BF77 was picornavirus. Highly variable picornavirus sequences encoding 3Dpol were classified into genera Kobuvirus, Shanbavirus, and an unassigned group within the family Picornaviridae. Amino acid differences between these partial 3Dpol sequences were ≥ 65.7%. Results showed that one bat was co-infected by picornaviruses of more than two genera. Retrovirus, coronavirus, and rotavirus A sequences also were found in the BP sample. The retrovirus and coronavirus genomes were identified in nine and eight bats, respectively. Korean bat retroviruses and coronavirus demonstrated strong genetic relationships with a Chinese bat retrovirus (RfRV) and coronavirus (HKU5-1), respectively. A co-infection was identified in one bat with a retrovirus and a coronavirus. Our results indicate that Korean bats were multiply infected by several mammal viruses.
Collapse
|
14
|
Lo VT, Yoon SW, Noh JY, Kim Y, Choi YG, Jeong DG, Kim HK. Long-term surveillance of bat coronaviruses in Korea: Diversity and distribution pattern. Transbound Emerg Dis 2020; 67:2839-2848. [PMID: 32473082 PMCID: PMC7300860 DOI: 10.1111/tbed.13653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022]
Abstract
Bats harbour diverse coronaviruses (CoVs), some of which are associated with zoonotic infections, as well as inter‐species transmission. In this study, a total of 512 bat faecal samples from the bat habitats at different geographical locations in South Korea were investigated between 2016 and 2019. Seventy‐eight samples were positive for coronaviruses (15.2%), comprising 68 alphacoronaviruses (13.3%) and 10 betacoronaviruses (2.0%). The positive rates tended to increase during the awakening (April) period. Notably, betacoronaviruses were only found in the site where Rhinolophus ferrumequinum was the major species of bats, and were related to SARS‐ and MERS‐related CoVs identified in China and South Korea, respectively. No betacoronaviruses were closely related to SARS‐CoV‐2 in this study. Alphacoronaviruses were detected in the sites where Hypsugo alaschanicus, Miniopterus fuliginosus, Miniopterus schreibersii, Rhinolophus ferrumequinum, Myotis bombinus, Myotis macrodactylus and Myotis petax were found to be the major bat species. Furthermore, alphacoronaviruses had higher genetic diversity than betacoronaviruses and had a wider distribution in Korea. Considering that different bat species are co‐roosting in crowded conditions in the same habitat, the diverse coronaviruses in Korean bats are likely to undergo cross‐species transmission events due to the richness in host species. Therefore, continuous monitoring should be performed, especially at the awakening time of the hibernating bats in the habitats where diverse bat species co‐roost, to better understand the evolution of coronaviruses in bats.
Collapse
Affiliation(s)
- Van Thi Lo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Bio-Analytical Science Division, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Sun-Woo Yoon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Bio-Analytical Science Division, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Ji Yeong Noh
- Department of Microbiology, College of Natural Sciences, Chungbuk National University, Cheongju, Korea
| | - Youngji Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yong Gun Choi
- The Korean Institute of Biospeleology, Daejeon, Korea
| | - Dae Gwin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Bio-Analytical Science Division, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Hye Kwon Kim
- Department of Microbiology, College of Natural Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
15
|
Kim Y, Son K, Kim YS, Lee SY, Jheong W, Oem JK. Complete genome analysis of a SARS-like bat coronavirus identified in the Republic of Korea. Virus Genes 2019; 55:545-549. [PMID: 31076983 PMCID: PMC7089380 DOI: 10.1007/s11262-019-01668-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/30/2019] [Indexed: 01/05/2023]
Abstract
Bats have been widely known as natural reservoir hosts of zoonotic diseases, such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) caused by coronaviruses (CoVs). In the present study, we investigated the whole genomic sequence of a SARS-like bat CoV (16BO133) and found it to be 29,075 nt in length with a 40.9% G+C content. Phylogenetic analysis using amino acid sequences of the ORF 1ab and the spike gene showed that the bat coronavirus strain 16BO133 was grouped with the Beta-CoV lineage B and was closely related to the JTMC15 strain isolated from Rhinolophus ferrumequinum in China. However, 16BO133 was distinctly located in the phylogenetic topology of the human SARS CoV strain (Tor2). Interestingly, 16BO133 showed complete elimination of ORF8 regions induced by a frame shift of the stop codon in ORF7b. The lowest amino acid identity of 16BO133 was identified at the spike region among various ORFs. The spike region of 16BO133 showed 84.7% and 75.2% amino acid identity with Rf1 (SARS-like bat CoV) and Tor2 (human SARS CoV), respectively. In addition, the S gene of 16BO133 was found to contain the amino acid substitution of two critical residues (N479S and T487 V) associated with human infection. In conclusion, we firstly carried out whole genome characterization of the SARS-like bat coronavirus discovered in the Republic of Korea; however, it presumably has no human infectivity. However, continuous surveillance and genomic characterization of coronaviruses from bats are necessary due to potential risks of human infection induced by genetic mutation.
Collapse
Affiliation(s)
- Yongkwan Kim
- Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, Republic of Korea.,Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Kidong Son
- Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, Republic of Korea
| | - Young-Sik Kim
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Sook-Young Lee
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Weonhwa Jheong
- Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, Republic of Korea
| | - Jae-Ku Oem
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
16
|
Wong ACP, Li X, Lau SKP, Woo PCY. Global Epidemiology of Bat Coronaviruses. Viruses 2019; 11:E174. [PMID: 30791586 PMCID: PMC6409556 DOI: 10.3390/v11020174] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
Bats are a unique group of mammals of the order Chiroptera. They are highly diversified and are the group of mammals with the second largest number of species. Such highly diversified cell types and receptors facilitate them to be potential hosts of a large variety of viruses. Bats are the only group of mammals capable of sustained flight, which enables them to disseminate the viruses they harbor and enhance the chance of interspecies transmission. This article aims at reviewing the various aspects of the global epidemiology of bat coronaviruses (CoVs). Before the SARS epidemic, bats were not known to be hosts for CoVs. In the last 15 years, bats have been found to be hosts of >30 CoVs with complete genomes sequenced, and many more if those without genome sequences are included. Among the four CoV genera, only alphaCoVs and betaCoVs have been found in bats. As a whole, both alphaCoVs and betaCoVs have been detected from bats in Asia, Europe, Africa, North and South America and Australasia; but alphaCoVs seem to be more widespread than betaCoVs, and their detection rate is also higher. For betaCoVs, only those from subgenera Sarbecovirus, Merbecovirus, Nobecovirus and Hibecovirus have been detected in bats. Most notably, horseshoe bats are the reservoir of SARS-CoV, and several betaCoVs from subgenus Merbecovirus are closely related to MERS-CoV. In addition to the interactions among various bat species themselves, bat⁻animal and bat⁻human interactions, such as the presence of live bats in wildlife wet markets and restaurants in Southern China, are important for interspecies transmission of CoVs and may lead to devastating global outbreaks.
Collapse
Affiliation(s)
- Antonio C P Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Xin Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Susanna K P Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Patrick C Y Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
17
|
Lee SY, Son KD, Yong-Sik K, Wang SJ, Kim YK, Jheong WH, Oem JK. Genetic diversity and phylogenetic analysis of newly discovered bat astroviruses in Korea. Arch Virol 2018; 163:3065-3072. [PMID: 30097745 PMCID: PMC7087088 DOI: 10.1007/s00705-018-3992-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/07/2018] [Indexed: 11/28/2022]
Abstract
Bats have been identified as a natural reservoir for several potentially zoonotic viruses. Recently, astroviruses have been reported in bats in many countries, but not Korea. We collected 363 bat samples from thirteen species at twenty-nine sites in Korea across 2016 and tested them for astrovirus. The detection of the RNA-dependent RNA polymerase (RdRp) gene in bat astroviruses was confirmed in thirty-four bats across four bat species in Korea: twenty-five from Miniopterus fuliginosusi, one from Myotis macrodactylus, four from M. petax, and four from Rhinolophus ferrumequinum. The highest detection rates for astrovirus were found in Sunchang (61.5%, 8/13 bats), and in the samples collected in April (63.2%, 12/19 bats). The amino acid identity of astroviral sequences identified from bat samples was ≥ 46.6%. More specifically, the amino acid identity within multiple clones from individual bats was ≥ 50.8%. Additionally, the phylogenetic topology between astroviruses from different bat families showed a close relationship. Furthermore, phylogenetic analysis of the partial ORF2 sequence of bat astroviruses was found to have a maximum similarity of 73.3–74.8% with available bat astrovirus sequences. These results indicate potential multiple-infection by several bat astrovirus species in individual bats, or hyperpolymorphism in the astrovirus strains, as well as the transmission of astroviruses across bat families; furthermore, our phylogenetic analysis of the partial ORF2 implied that a novel astrovirus may exist. However, the wide diversity of astroviral sequences appeared to have no significant correlation with bat species or the spatiotemporal distribution of Korean bat astroviruses.
Collapse
Affiliation(s)
- Sook-Young Lee
- Environmental Health Research Department, National Institution of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, Republic of Korea
| | - Ki-Dong Son
- Environmental Health Research Department, National Institution of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, Republic of Korea
| | - Kim Yong-Sik
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Chonbuk National University, Iksan, Chonbuk, Republic of Korea
| | - Seung-Jun Wang
- Environmental Health Research Department, National Institution of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, Republic of Korea
| | - Yong-Kwan Kim
- Environmental Health Research Department, National Institution of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, Republic of Korea
| | - Weon-Hwa Jheong
- Environmental Health Research Department, National Institution of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, Republic of Korea
| | - Jae-Ku Oem
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Chonbuk National University, Iksan, Chonbuk, Republic of Korea.
| |
Collapse
|