1
|
Lyte JM, Seyoum MM, Ayala D, Kers JG, Caputi V, Johnson T, Zhang L, Rehberger J, Zhang G, Dridi S, Hale B, De Oliveira JE, Grum D, Smith AH, Kogut M, Ricke SC, Ballou A, Potter B, Proszkowiec-Weglarz M. Do we need a standardized 16S rRNA gene amplicon sequencing analysis protocol for poultry microbiota research? Poult Sci 2025; 104:105242. [PMID: 40334389 DOI: 10.1016/j.psj.2025.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
Bacteria are the major component of poultry gastrointestinal tract (GIT) microbiota and play an important role in host health, nutrition, physiology regulation, intestinal development, and growth. Bacterial community profiling based on the 16S ribosomal RNA (rRNA) gene amplicon sequencing approach has become the most popular method to determine the taxonomic composition and diversity of the poultry microbiota. The 16S rRNA gene profiling involves numerous steps, including sample collection and storage, DNA isolation, 16S rRNA gene primer selection, Polymerase Chain Reaction (PCR), library preparation, sequencing, raw sequencing reads processing, taxonomic classification, α- and β-diversity calculations, and statistical analysis. However, there is currently no standardized protocol for 16S rRNA gene analysis profiling and data deposition for poultry microbiota studies. Variations in DNA storage and isolation, primer design, and library preparation are known to introduce biases, affecting community structure and microbial population analysis leading to over- or under-representation of individual bacteria within communities. Additionally, different sequencing platforms, bioinformatics pipeline, and taxonomic database selection can affect classification and determination of the microbial taxa. Moreover, detailed experimental design and DNA processing and sequencing methods are often inadequately reported in poultry 16S rRNA gene sequencing studies. Consequently, poultry microbiota results are often difficult to reproduce and compare across studies. This manuscript reviews current practices in profiling poultry microbiota using 16S rRNA gene amplicon sequencing and proposes the development of guidelines for protocol for 16S rRNA gene sequencing that spans from sample collection through data deposition to achieve more reliable data comparisons across studies and allow for comparisons and/or interpretations of poultry studies conducted worldwide.
Collapse
Affiliation(s)
- Joshua M Lyte
- United States Department of Agriculture, Agricultural Research Service, Southeast Area, Poultry Production and Product Safety Research, Fayetteville 72701, AR, United States
| | - Mitiku M Seyoum
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, AR, United States
| | - Diana Ayala
- Purina Animal Nutrition Center, Land O'Lakes, Gray Summit 63039, MO, United States
| | - Jannigje G Kers
- Faculty of Veterinary Medicine, Utrecht University, and Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Valentina Caputi
- United States Department of Agriculture, Agricultural Research Service, Southeast Area, Poultry Production and Product Safety Research, Fayetteville 72701, AR, United States
| | - Timothy Johnson
- University of Minnesota, Saint Paul 55108, MN, United States
| | - Li Zhang
- Mississippi State University, Mississippi State 39762, MS, United States
| | - Joshua Rehberger
- Arm and Hammer Animal Nutrition, Waukesha 53186, WI, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater 74078, OK, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, AR, United States
| | - Brett Hale
- AgriGro, Doniphan 6393, MO, United States
| | | | - Daniel Grum
- Purina Animal Nutrition Center, Land O'Lakes, Gray Summit 63039, MO, United States
| | - Alexandra H Smith
- Mississippi State University, Mississippi State 39762, MS, United States
| | - Michael Kogut
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station 77845, TX, United States
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, 53706, WI, United States
| | - Anne Ballou
- Iluma Alliance, Durham 27703, NC, United States
| | - Bill Potter
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, AR, United States
| | - Monika Proszkowiec-Weglarz
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agriculture Research Center, Animal Biosciences and Biotechnology Laboratory, Beltsville 20705, MD, United States.
| |
Collapse
|
2
|
Shen C, Wedell E, Pop M, Warnow T. TIPP3 and TIPP3-fast: Improved abundance profiling in metagenomics. PLoS Comput Biol 2025; 21:e1012593. [PMID: 40184383 PMCID: PMC11970662 DOI: 10.1371/journal.pcbi.1012593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/26/2025] [Indexed: 04/06/2025] Open
Abstract
We present TIPP3 and TIPP3-fast, new tools for abundance profiling in metagenomic datasets. Like its predecessor, TIPP2, the TIPP3 pipeline uses a maximum likelihood approach to place reads into labeled taxonomies using marker genes, but it achieves superior accuracy to TIPP2 by enabling the use of much larger taxonomies through improved algorithmic techniques. We show that TIPP3 is generally more accurate than leading methods for abundance profiling in two important contexts: when reads come from genomes not already in a public database (i.e., novel genomes) and when reads contain sequencing errors. We also show that TIPP3-fast has slightly lower accuracy than TIPP3, but is also generally more accurate than other leading methods and uses a small fraction of TIPP3's runtime. Additionally, we highlight the potential benefits of restricting abundance profiling methods to those reads that map to marker genes (i.e., using a filtered marker-gene based analysis), which we show typically improves accuracy. TIPP3 is freely available at https://github.com/c5shen/TIPP3.
Collapse
Affiliation(s)
- Chengze Shen
- Siebel School of Computing and Data Science, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Eleanor Wedell
- Siebel School of Computing and Data Science, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mihai Pop
- Department of Computer Science, University of Maryland at College Park, College Park, Maryland, United States of America
| | - Tandy Warnow
- Siebel School of Computing and Data Science, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
3
|
Pyakurel S, Caddey BJ, Dias AP, De Buck J, Morck DW, Orsel K. Profiling bacterial communities in feedlot cattle affected with bovine foot rot and bovine digital dermatitis lesions using 16S rRNA gene sequencing and quantitative real-time PCR. BMC Microbiol 2025; 25:158. [PMID: 40114065 PMCID: PMC11924851 DOI: 10.1186/s12866-025-03869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The primary infectious foot diseases in cattle, bovine foot rot (BFR) and bovine digital dermatitis (BDD), commonly associated with Fusobacterium necrophorum and Treponema spp., respectively, are considered polybacterial in etiology with several additional bacteria involved such as Porphyromonas levii, Bacteroides pyogenes, and Fusobacterium mortiferum. BDD is further classified into several M-stages (M2: active and ulcerative; M4: chronic proliferative). Using quantitative real-time PCR and 16S rRNA gene (V3-V4 region) sequencing, we quantified several specific bacteria and analyzed bacterial communities present in biopsies of visually diagnosed cases of BFR (n = 32), M2 (n = 17), and M4 (n = 12) stages of BDD in feedlot cattle in contrast to inconclusive (n = 14) clinical cases and healthy (n = 25) cattle. RESULTS Bacterial composition of healthy skin differed significantly from that of skin lesions, and between BFR and both lesion stages of BDD, which also differed from each other. All animal groups had generally the same bacterial species, albeit in distinct ratios. Differential abundance analysis relative to the healthy group identified a higher abundance of Fusobacterium spp. in BFR and Treponema spp. in both BDD-M2 and BDD-M4. P. levii had the highest absolute abundance in all animal groups. A significantly higher abundance of F. necrophorum was observed in BFR compared to BDD-M2, and F. mortiferum in both stages of BDD compared to the inconclusive group. Both BDD M-stages had a significantly higher abundance of Treponema phagedenis and Treponema pedis. Treponema medium was significantly more abundant in BDD-M4 compared to BDD-M2. CONCLUSION These results further the evidence of the involvement of Treponema spp., in BDD in feedlot cattle. However, it suggests further exploration of the role of Fusobacterium spp. in BFR and BDD. Importantly, a discriminating polybacterial involvement in these infections was evident demonstrated by changes in the population of multiple bacteria when compared to healthy animals.
Collapse
Affiliation(s)
- Susan Pyakurel
- Faculty of Veterinary Medicine, Health Sciences Center, University of Calgary, 3330 Hospital Drive, Calgary, NW, AB, T2N 4N1, Canada
| | - Benjamin Jordan Caddey
- Faculty of Veterinary Medicine, Health Sciences Center, University of Calgary, 3330 Hospital Drive, Calgary, NW, AB, T2N 4N1, Canada
| | - Angelica Petersen Dias
- Faculty of Veterinary Medicine, Health Sciences Center, University of Calgary, 3330 Hospital Drive, Calgary, NW, AB, T2N 4N1, Canada
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, Health Sciences Center, University of Calgary, 3330 Hospital Drive, Calgary, NW, AB, T2N 4N1, Canada
| | - Douglas Walter Morck
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Karin Orsel
- Faculty of Veterinary Medicine, Health Sciences Center, University of Calgary, 3330 Hospital Drive, Calgary, NW, AB, T2N 4N1, Canada.
| |
Collapse
|
4
|
Ranjan A, Arora J, Chauhan A, Basniwal RK, Kumari A, Rajput VD, Prazdnova EV, Ghosh A, Mukerjee N, Mandzhieva SS, Sushkova S, Minkina T, Jindal T. Advances in characterization of probiotics and challenges in industrial application. Biotechnol Genet Eng Rev 2024; 40:3226-3269. [PMID: 36200338 DOI: 10.1080/02648725.2022.2122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
An unbalanced diet and poor lifestyle are common reasons for numerous health complications in humans. Probiotics are known to provide substantial benefits to human health by producing several bioactive compounds, vitamins, short-chain fatty acids and short peptides. Diets that contain probiotics are limited to curd, yoghurt, kefir, kimchi, etc. However, exploring the identification of more potential probiotics and enhancing their commercial application to improve the nutritional quality would be a significant step to utilizing the maximum benefits. The complex evolution patterns among the probiotics are the hurdles in their characterization and adequate application in the industries and dairy products. This article has mainly discussed the molecular methods of characterization that are based on the analysis of ribosomal RNA, whole genome, and protein markers and profiles. It also has critically emphasized the emerging challenges in industrial applications of probiotics.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jayati Arora
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Rupesh Kumar Basniwal
- Amity Institute of Advanced Research and Studies (M&D), Amity University, Noida, India
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgeniya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, New South Wales, Australia
| | - Saglara S Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| |
Collapse
|
5
|
Mijnendonckx K, Smolders C, Bartak D, Le Duc T, Morales‐Hidalgo M, Povedano‐Priego C, Jroundi F, Merroun ML, Leys N, Cerna K. Comparing the effectiveness of different DNA extraction methods in MX-80 bentonite. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70047. [PMID: 39582279 PMCID: PMC11586505 DOI: 10.1111/1758-2229.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
Approaches to DNA extraction play a crucial role in determining the variability of results obtained through 16S rRNA amplicon sequencing. Particularly, clay-rich samples can impede the efficiency of various standard cultivation-independent techniques. We conducted an inter-laboratory comparison study to thoroughly assess the efficacy of two published DNA extraction methods (kit-based and phenol-chloroform-based) specifically designed for bentonite samples. To this end, we spiked Wyoming MX 80 bentonite with two different mock communities and compared the obtained DNA yield and purity, the presence of contaminants and the community profile. Our findings suggest that both methods are equally viable, with the best choice depending on the specific requirements of the downstream analysis. However, it is crucial to maintain consistency in the chosen method, as comparing results becomes challenging, particularly in the presence of bentonite. In summary, our study emphasizes the significance of standardized DNA extraction methods and underscores the importance of validating these methods using appropriate controls when studying microbial communities with 16S rRNA amplicon sequencing, particularly in environments characterized by low biomass and clay-rich compositions. Additionally, slight modifications to one of the extraction methods can substantially enhance its efficiency.
Collapse
Affiliation(s)
| | - Carla Smolders
- Unit of MicrobiologyBelgian Nuclear Research CentreMolBelgium
| | - Deepa Bartak
- Department of Applied Biology, Institute for Nanomaterials, Advanced Technologies and InnovationTechnical University of Liberec (TUL)LiberecCzech Republic
| | - Trung Le Duc
- Department of Applied Biology, Institute for Nanomaterials, Advanced Technologies and InnovationTechnical University of Liberec (TUL)LiberecCzech Republic
| | | | | | - Fadwa Jroundi
- Department of MicrobiologyUniversity of GranadaGranadaSpain
| | | | - Natalie Leys
- Unit of MicrobiologyBelgian Nuclear Research CentreMolBelgium
| | - Katerina Cerna
- Department of Applied Biology, Institute for Nanomaterials, Advanced Technologies and InnovationTechnical University of Liberec (TUL)LiberecCzech Republic
| |
Collapse
|
6
|
Buetas E, Jordán-López M, López-Roldán A, D'Auria G, Martínez-Priego L, De Marco G, Carda-Diéguez M, Mira A. Full-length 16S rRNA gene sequencing by PacBio improves taxonomic resolution in human microbiome samples. BMC Genomics 2024; 25:310. [PMID: 38528457 DOI: 10.1186/s12864-024-10213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Sequencing variable regions of the 16S rRNA gene (≃300 bp) with Illumina technology is commonly used to study the composition of human microbiota. Unfortunately, short reads are unable to differentiate between highly similar species. Considering that species from the same genus can be associated with health or disease it is important to identify them at the lowest possible taxonomic rank. Third-generation sequencing platforms such as PacBio SMRT, increase read lengths allowing to sequence the whole gene with the maximum taxonomic resolution. Despite its potential, full length 16S rRNA gene sequencing is not widely used yet. The aim of the current study was to compare the sequencing output and taxonomic annotation performance of the two approaches (Illumina short read sequencing and PacBio long read sequencing of 16S rRNA gene) in different human microbiome samples. DNA from saliva, oral biofilms (subgingival plaque) and faeces of 9 volunteers was isolated. Regions V3-V4 and V1-V9 were amplified and sequenced by Illumina Miseq and by PacBio Sequel II sequencers, respectively. RESULTS With both platforms, a similar percentage of reads was assigned to the genus level (94.79% and 95.06% respectively) but with PacBio a higher proportion of reads were further assigned to the species level (55.23% vs 74.14%). Regarding overall bacterial composition, samples clustered by niche and not by sequencing platform. In addition, all genera with > 0.1% abundance were detected in both platforms for all types of samples. Although some genera such as Streptococcus tended to be observed at higher frequency in PacBio than in Illumina (20.14% vs 14.12% in saliva, 10.63% vs 6.59% in subgingival plaque biofilm samples) none of the differences were statistically significant when correcting for multiple testing. CONCLUSIONS The results presented in the current manuscript suggest that samples sequenced using Illumina and PacBio are mostly comparable. Considering that PacBio reads were assigned at the species level with higher accuracy than Illumina, our data support the use of PacBio technology for future microbiome studies, although a higher cost is currently required to obtain an equivalent number of reads per sample.
Collapse
Affiliation(s)
- Elena Buetas
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | - Marta Jordán-López
- Department of Periodontics, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Andrés López-Roldán
- Department of Periodontics, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Giuseppe D'Auria
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | - Llucia Martínez-Priego
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | - Griselda De Marco
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | | | - Alex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
- CIBER Center for Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
7
|
Olivier SA, Bull MK, Strube ML, Murphy R, Ross T, Bowman JP, Chapman B. Long-read MinION™ sequencing of 16S and 16S-ITS-23S rRNA genes provides species-level resolution of Lactobacillaceae in mixed communities. Front Microbiol 2023; 14:1290756. [PMID: 38143859 PMCID: PMC10740194 DOI: 10.3389/fmicb.2023.1290756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The Lactobacillaceae are lactic acid bacteria harnessed to deliver important outcomes across numerous industries, and their unambiguous, species-level identification from mixed community environments is an important endeavor. Amplicon-based metataxonomics using short-read sequencing of partial 16S rRNA gene regions is widely used to support this, however, the high genetic similarity among Lactobacillaceae species restricts our ability to confidently describe these communities even at genus level. Long-read sequencing (LRS) of the whole 16S rRNA gene or the near complete rRNA operon (16S-ITS-23S) has the potential to improve this. We explored species ambiguity amongst Lactobacillaceae using in-silico tool RibDif2, which identified allele overlap when various partial and complete 16S rRNA gene and 16S-ITS-23S rRNA regions were amplified. We subsequently implemented LRS by MinION™ to compare the capacity of V3-V4, 16S and 16S-ITS-23S rRNA amplicons to accurately describe the diversity of a 20-species Lactobacillaceae mock community in practice. In-silico analysis identified more instances of allele/species overlap with V3-V4 amplicons (n = 43) compared to the 16S rRNA gene (n = 11) and partial (n = up to 15) or complete (n = 0) 16S-ITS-23S rRNA amplicons. With subsequent LRS of a DNA mock community, 80% of target species were identified using V3-V4 amplicons whilst the 16S rRNA gene and 16S-ITS-23S rRNA region amplicons resulted in 95 and 100% of target species being identified. A considerable reduction in false-positive identifications was also seen with 16S rRNA gene (n = 3) and 16S-ITS-23S rRNA region (n = 9) amplicons compared with V3-V4 amplicons (n = 43). Whilst the target species affected by allele overlap in V3-V4 and 16S rRNA gene sequenced mock communities were predicted by RibDif2, unpredicted species ambiguity was observed in 16S-ITS-23S rRNA sequenced communities. Considering the average nucleotide identity (ANI) between ambiguous species (~97%) and the basecall accuracy of our MinION™ sequencing protocol (96.4%), the misassignment of reads between closely related taxa is to be expected. With basecall accuracy exceeding 99% for recent MinION™ releases, the increased species-level differentiating power promised by longer amplicons like the 16S-ITS-23S rRNA region, may soon be fully realized.
Collapse
Affiliation(s)
- Sandra A. Olivier
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- Quantal Bioscience Pty Ltd., Sydney, NSW, Australia
| | - Michelle K. Bull
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- Quantal Bioscience Pty Ltd., Sydney, NSW, Australia
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Robert Murphy
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Tom Ross
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - John P. Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Belinda Chapman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- Quantal Bioscience Pty Ltd., Sydney, NSW, Australia
| |
Collapse
|
8
|
Vandeweyer D, Bruno D, Bonelli M, IJdema F, Lievens B, Crauwels S, Casartelli M, Tettamanti G, De Smet J. Bacterial biota composition in gut regions of black soldier fly larvae reared on industrial residual streams: revealing community dynamics along its intestinal tract. Front Microbiol 2023; 14:1276187. [PMID: 38107863 PMCID: PMC10722301 DOI: 10.3389/fmicb.2023.1276187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Some insect species have gained attention as efficient bioconverters of low-value organic substrates (i.e., residual streams) into high-value biomass. Black soldier fly (BSF) (Hermetia illucens) larvae are particularly interesting for bioconversion due to their ability to grow on a wide range of substrates, including low-value industrial residual streams. This is in part due to the plasticity of the gut microbiota of polyphagous insects, like BSF. Gut microbiota composition varies depending on rearing substrates, via a mechanism that might support the recruitment of microorganisms that facilitate digestion of a specific substrate. At the same time, specific microbial genera do persist on different substrates via unknown mechanisms. This study aimed to offer insights on this microbial plasticity by investigating how the composition of the bacterial community present in the gut of BSF larvae responds to two industrial residual streams: swill (a mixture of catering and supermarket leftovers) and distiller's dried grains with solubles. The bacterial biota composition of substrates, whole larvae at the beginning of the rearing period and at harvest, rearing residues, and larval gut regions were investigated through 16S rRNA gene sequencing. It was observed that both substrate and insect development influenced the bacterial composition of the whole larvae. Zooming in on the gut regions, there was a clear shift in community composition from a higher to a lower diversity between the anterior/middle midgut and the posterior midgut/hindgut, indicating a selective pressure occurring in the middle midgut region. Additionally, the abundance of the bacterial biota was always high in the hindgut, while its diversity was relatively low. Even more, the bacterial community in the hindgut was found to be relatively more conserved over the different substrates, harboring members of the BSF core microbiota. We postulate a potential role of the hindgut as a reservoir for insect-associated microbes. This warrants further research on that underexplored region of the intestinal tract. Overall, these findings contribute to our understanding of the bacterial biota structure and dynamics along the intestinal tract, which can aid microbiome engineering efforts to enhance larval performance on (industrial) residual streams.
Collapse
Affiliation(s)
- Dries Vandeweyer
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems, KU Leuven, Geel, Belgium
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Freek IJdema
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems, KU Leuven, Geel, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Sam Crauwels
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Morena Casartelli
- Department of Biosciences, University of Milan, Milan, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology, University of Naples Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology, University of Naples Federico II, Portici, Italy
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems, KU Leuven, Geel, Belgium
| |
Collapse
|
9
|
Kleikamp HBC, Grouzdev D, Schaasberg P, van Valderen R, van der Zwaan R, Wijgaart RVD, Lin Y, Abbas B, Pronk M, van Loosdrecht MCM, Pabst M. Metaproteomics, metagenomics and 16S rRNA sequencing provide different perspectives on the aerobic granular sludge microbiome. WATER RESEARCH 2023; 246:120700. [PMID: 37866247 DOI: 10.1016/j.watres.2023.120700] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
The tremendous progress in sequencing technologies has made DNA sequencing routine for microbiome studies. Additionally, advances in mass spectrometric techniques have extended conventional proteomics into the field of microbial ecology. However, systematic studies that provide a better understanding of the complementary nature of these 'omics' approaches, particularly for complex environments such as wastewater treatment sludge, are urgently needed. Here, we describe a comparative metaomics study on aerobic granular sludge from three different wastewater treatment plants. For this, we employed metaproteomics, whole metagenome, and 16S rRNA amplicon sequencing to study the same granule material with uniform size. We furthermore compare the taxonomic profiles using the Genome Taxonomy Database (GTDB) to enhance the comparability between the different approaches. Though the major taxonomies were consistently identified in the different aerobic granular sludge samples, the taxonomic composition obtained by the different omics techniques varied significantly at the lower taxonomic levels, which impacts the interpretation of the nutrient removal processes. Nevertheless, as demonstrated by metaproteomics, the genera that were consistently identified in all techniques cover the majority of the protein biomass. The established metaomics data and the contig classification pipeline are publicly available, which provides a valuable resource for further studies on metabolic processes in aerobic granular sludge.
Collapse
Affiliation(s)
- Hugo B C Kleikamp
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| | | | - Pim Schaasberg
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ramon van Valderen
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ramon van der Zwaan
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Roel van de Wijgaart
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | | | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
10
|
Naumova N, Barsukov P, Baturina O, Rusalimova O, Kabilov M. West-Siberian Chernozem: How Vegetation and Tillage Shape Its Bacteriobiome. Microorganisms 2023; 11:2431. [PMID: 37894089 PMCID: PMC10609427 DOI: 10.3390/microorganisms11102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Managing soil biodiversity using reduced tillage is a popular approach, yet soil bacteriobiomes in the agroecosystems of Siberia has been scarcely studied, especially as they are related to tillage. We studied bacteriobiomes in Chernozem under natural steppe vegetation and cropped for wheat using conventional or no tillage in a long-term field trial in the Novosibirsk region, Russia, by using the sequence diversity of the V3/V4 region of 16S rRNA genes. Actinobacteria, Acidobacteria, and Proteobacteria summarily accounted for 80% of the total number of sequences, with Actinobacteria alone averaging 51%. The vegetation (natural vs. crop) and tillage (ploughed vs. no-till) affected the bacterial relative abundance at all taxonomic levels and many taxa, e.g., hundreds of OTUs. However, such changes did not translate into α-biodiversity changes, i.e., observed and potential OTUs' richness, Shannon, and Simpson, excepting the slightly higher evenness and equitability in the top 0-5 cm of the undisturbed soil. As for the β-biodiversity, substituting conventional ploughing with no tillage and maintaining the latter for 12 years notably shifted the soil bacteriobiome closer to the one in the undisturbed soil. This study, presenting the first inventory of soil bacteriobiomes under different tillage in the south of West Siberia, underscores the need to investigate the seasonality and longevity aspects of tillage, especially as they are related to crop production.
Collapse
Affiliation(s)
- Natalia Naumova
- Institute of Soil Science and Agrochemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.B.); (O.R.)
| | - Pavel Barsukov
- Institute of Soil Science and Agrochemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.B.); (O.R.)
| | - Olga Baturina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.B.); (M.K.)
| | - Olga Rusalimova
- Institute of Soil Science and Agrochemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.B.); (O.R.)
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.B.); (M.K.)
| |
Collapse
|
11
|
Madison JD, LaBumbard BC, Woodhams DC. Shotgun metagenomics captures more microbial diversity than targeted 16S rRNA gene sequencing for field specimens and preserved museum specimens. PLoS One 2023; 18:e0291540. [PMID: 37725594 PMCID: PMC10508626 DOI: 10.1371/journal.pone.0291540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
The use of museum specimens for research in microbial evolutionary ecology remains an under-utilized investigative dimension with important potential. Despite this potential, there remain barriers in methodology and analysis to the wide-spread adoption of museum specimens for such studies. Here, we hypothesized that there would be significant differences in taxonomic prediction and related diversity among sample type (museum or fresh) and sequencing strategy (medium-depth shotgun metagenomic or 16S rRNA gene). We found dramatically higher predicted diversity from shotgun metagenomics when compared to 16S rRNA gene sequencing in museum and fresh samples, with this differential being larger in museum specimens. Broadly confirming these hypotheses, the highest diversity found in fresh samples was with shotgun sequencing using the Rep200 reference inclusive of viruses and microeukaryotes, followed by the WoL reference database. In museum-specimens, community diversity metrics also differed significantly between sequencing strategies, with the alpha-diversity ACE differential being significantly greater than the same comparisons made for fresh specimens. Beta diversity results were more variable, with significance dependent on reference databases used. Taken together, these findings demonstrate important differences in diversity results and prompt important considerations for future experiments and downstream analyses aiming to incorporate microbiome datasets from museum specimens.
Collapse
Affiliation(s)
- Joseph D. Madison
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Brandon C. LaBumbard
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Douglas C. Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Paul B. Concatenated 16S rRNA sequence analysis improves bacterial taxonomy. F1000Res 2023; 11:1530. [PMID: 37767069 PMCID: PMC10521043 DOI: 10.12688/f1000research.128320.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Microscopic, biochemical, molecular, and computer-based approaches are extensively used to identify and classify bacterial populations. Advances in DNA sequencing and bioinformatics workflows have facilitated sophisticated genome-based methods for microbial taxonomy although sequencing of the 16S rRNA gene is widely employed to identify and classify bacterial communities as a cost-effective and single-gene approach. However, the 16S rRNA sequence-based species identification accuracy is limited because of the occurrence of multiple copies of the 16S rRNA gene and higher sequence identity between closely related species. The availability of the genomes of several bacterial species provided an opportunity to develop comprehensive species-specific 16S rRNA reference libraries. Methods: Sequences of the 16S rRNA genes were retrieved from the whole genomes available in the Genome databases. With defined criteria, four 16S rRNA gene copy variants were concatenated to develop a species-specific reference library. The sequence similarity search was performed with a web-based BLAST program, and MEGA software was used to construct the phylogenetic tree. Results: Using this approach, species-specific 16S rRNA gene libraries were developed for four closely related Streptococcus species ( S. gordonii, S. mitis, S. oralis, and S. pneumoniae). Sequence similarity and phylogenetic analysis using concatenated 16S rRNA copies yielded better resolution than single gene copy approaches. Conclusions: The approach is very effective in classifying genetically closely related bacterial species and may reduce misclassification of bacterial species and genome assemblies.
Collapse
Affiliation(s)
- Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
13
|
Lin TY, Liu WT. Validation of 16S rRNA gene sequencing and metagenomics for evaluating microbial immigration in a methanogenic bioreactor. WATER RESEARCH 2023; 243:120358. [PMID: 37481999 DOI: 10.1016/j.watres.2023.120358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
To quantitatively evaluate the impact of microbial immigration from an upstream community on the microbial assembly of a downstream community, an ecological genomics (ecogenomics)-based mass balance (EGMB) model coupled with 16S rRNA gene sequencing was previously developed. In this study, a mock community was used to further validate the EGMB models and demonstrate the feasibility of using metagenome-based EGMB model to reveal both microbial activity and function. The mock community consisting of Aeromonas, Escherichia, and Pseudomonas was fed into a lab-scale methanogenic bioreactor together with dissolved organic substrate. Using qPCR, 16S rRNA gene, 16S rRNA gene copy number normalization (GCN), and metagenome, results showed highly comparable community profiles in the feed. In the bioreactor, Aeromonas and Pseudomonas exhibited negative growth rates throughout the experiment by all approaches. Escherichia's growth rate was negative by most biomarkers but was slightly positive by 16S rRNA gene. Still, all approaches showed a decreasing trend toward negative in the growth rate of Escherichia as reactor operation time increased. Uncultivated populations of phyla Desulfobacterota, Chloroflexi, Actinobacteriota, and Spirochaetota were observed to increase in abundance, suggesting their contribution in degrading the feed biomass. Based on metabolic reconstruction of metagenomes, these populations possessed functions of hydrolysis, fermentation, fatty acid degradation, or acetate oxidation. Overall results supported the application of both 16S rRNA gene- and metagenome-based EGMB models to measure the growth rate of microbes in the bioreactor, and the latter had advantage in providing insights into the microbial functions of uncultivated populations.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
14
|
Gudra D, Silamikelis I, Pjalkovskis J, Danenberga I, Pupola D, Skenders G, Ustinova M, Megnis K, Leja M, Vangravs R, Fridmanis D. Abundance and prevalence of ESBL coding genes in patients undergoing first line eradication therapy for Helicobacter pylori. PLoS One 2023; 18:e0289879. [PMID: 37561723 PMCID: PMC10414638 DOI: 10.1371/journal.pone.0289879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
The spread of extended-spectrum beta-lactamases (ESBLs) in nosocomial and community-acquired enterobacteria is an important challenge for clinicians due to the limited therapeutic options for infections that are caused by these organisms. Here, we developed a panel of ESBL coding genes, evaluated the abundance and prevalence of ESBL encoding genes in patients undergoing H. pylori eradication therapy, and summarized the effects of eradication therapy on functional profiles of the gut microbiome. To assess the repertoire of known beta lactamase (BL) genes, they were divided into clusters according to their evolutionary relation. Primers were designed for amplification of cluster marker regions, and the efficiency of this amplification panel was assessed in 120 fecal samples acquired from 60 patients undergoing H. pylori eradication therapy. In addition, fecal samples from an additional 30 patients were used to validate the detection efficiency of the developed ESBL panel. The presence for majority of targeted clusters was confirmed by NGS of amplification products. Metagenomic sequencing revealed that the abundance of ESBL genes within the pool of microorganisms was very low. The global relative abundances of the ESBL-coding gene clusters did not differ significantly among treatment states. However, at the level of each cluster, classical ESBL producers such as Klebsiella sp. for blaOXY (p = 0.0076), Acinetobacter sp. for blaADC (p = 0.02297) and others, differed significantly with a tendency to decrease compared to the pre- and post-eradication states. Only 13 clusters were common across all three datasets, suggesting a patient-specific distribution profile of ESBL-coding genes. The number of AMR genes detected in the post-eradication state was higher than that in the pre-eradication state, which could be attributed, at least in part, to the therapy. This study demonstrated that the ESBL screening panel was effective in targeting ESBL-coding gene clusters from bacterial DNA and that minor differences exist in the abundance and prevalence of ESBL-coding gene levels before and after eradication therapy.
Collapse
Affiliation(s)
- Dita Gudra
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | - Darta Pupola
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Girts Skenders
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Maija Ustinova
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | | |
Collapse
|
15
|
Gao Y, Wu M. Accounting for 16S rRNA copy number prediction uncertainty and its implications in bacterial diversity analyses. ISME COMMUNICATIONS 2023; 3:59. [PMID: 37301942 PMCID: PMC10257666 DOI: 10.1038/s43705-023-00266-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
16S rRNA gene copy number (16S GCN) varies among bacterial species and this variation introduces potential biases to microbial diversity analyses using 16S rRNA read counts. To correct the biases, methods have been developed to predict 16S GCN. A recent study suggests that the prediction uncertainty can be so great that copy number correction is not justified in practice. Here we develop RasperGade16S, a novel method and software to better model and capture the inherent uncertainty in 16S GCN prediction. RasperGade16S implements a maximum likelihood framework of pulsed evolution model and explicitly accounts for intraspecific GCN variation and heterogeneous GCN evolution rates among species. Using cross-validation, we show that our method provides robust confidence estimates for the GCN predictions and outperforms other methods in both precision and recall. We have predicted GCN for 592605 OTUs in the SILVA database and tested 113842 bacterial communities that represent an exhaustive and diverse list of engineered and natural environments. We found that the prediction uncertainty is small enough for 99% of the communities that 16S GCN correction should improve their compositional and functional profiles estimated using 16S rRNA reads. On the other hand, we found that GCN variation has limited impacts on beta-diversity analyses such as PCoA, NMDS, PERMANOVA and random-forest test.
Collapse
Affiliation(s)
- Yingnan Gao
- Department of Biology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA
| | - Martin Wu
- Department of Biology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA.
| |
Collapse
|
16
|
Pan P, Gu Y, Sun DL, Wu QL, Zhou NY. Microbial Diversity Biased Estimation Caused by Intragenomic Heterogeneity and Interspecific Conservation of 16S rRNA Genes. Appl Environ Microbiol 2023; 89:e0210822. [PMID: 37129483 PMCID: PMC10231250 DOI: 10.1128/aem.02108-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/09/2023] [Indexed: 05/03/2023] Open
Abstract
The 16S rRNA gene has been extensively used as a molecular marker to explore evolutionary relationships and profile microbial composition throughout various environments. Despite its convenience and prevalence, limitations are inevitable. Variable copy numbers, intragenomic heterogeneity, and low taxonomic resolution have caused biases in estimating microbial diversity. Here, analysis of 24,248 complete prokaryotic genomes indicated that the 16S rRNA gene copy number ranged from 1 to 37 in bacteria and 1 to 5 in archaea, and intragenomic heterogeneity was observed in 60% of prokaryotic genomes, most of which were below 1%. The overestimation of microbial diversity caused by intragenomic variation and the underestimation introduced by interspecific conservation were calculated when using full-length or partial 16S rRNA genes. Results showed that, at the 100% threshold, microbial diversity could be overestimated by as much as 156.5% when using the full-length gene. The V4 to V5 region-based analyses introduced the lowest overestimation rate (4.4%) but exhibited slightly lower species resolution than other variable regions under the 97% threshold. For different variable regions, appropriate thresholds rather than the canonical value 97% were proposed for minimizing the risk of splitting a single genome into multiple clusters and lumping together different species into the same cluster. This study has not only updated the 16S rRNA gene copy number and intragenomic variation information for the currently available prokaryotic genomes, but also elucidated the biases in estimating prokaryotic diversity with quantitative data, providing references for choosing amplified regions and clustering thresholds in microbial community surveys. IMPORTANCE Microbial diversity is typically analyzed using marker gene-based methods, of which 16S rRNA gene sequencing is the most widely used approach. However, obtaining an accurate estimation of microbial diversity remains a challenge, due to the intragenomic variation and low taxonomic resolution of 16S rRNA genes. Comprehensive examination of the bias in estimating such prokaryotic diversity using 16S rRNA genes within ever-increasing prokaryotic genomes highlights the importance of the choice of sequencing regions and clustering thresholds based on the specific research objectives.
Collapse
Affiliation(s)
- Piaopiao Pan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yichao Gu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Lei Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qinglong L. Wu
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Conti A, Casagrande Pierantoni D, Robert V, Corte L, Cardinali G. MinION Sequencing of Yeast Mock Communities To Assess the Effect of Databases and ITS-LSU Markers on the Reliability of Metabarcoding Analysis. Microbiol Spectr 2023; 11:e0105222. [PMID: 36519933 PMCID: PMC9927109 DOI: 10.1128/spectrum.01052-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microbial communities play key roles both for humans and the environment. They are involved in ecosystem functions, maintaining their stability, and provide important services, such as carbon cycle and nitrogen cycle. Acting both as symbionts and as pathogens, description of the structure and composition of these communities is important. Metabarcoding uses ribosomal DNA (rDNA) (eukaryotic) or rRNA gene (prokaryotic) sequences for identification of species present in a site and measuring their abundance. This procedure requires several technical steps that could be source of bias producing a distorted view of the real community composition. In this work, we took advantage of an innovative "long-read" next-generation sequencing (NGS) technology (MinION) amplifying the DNA spanning from the internal transcribed spacer (ITS) to large subunit (LSU) that can be read simultaneously in this platform, providing more information than "short-read" systems. The experimental system consisted of six fungal mock communities composed of species present at various relative amounts to mimic natural situations characterized by predominant and low-frequency species. The influence of the sequencing platform (MinION and Illumina MiSeq) and the effect of different reference databases and marker sequences on metagenomic identification of species were evaluated. The results showed that the ITS-based database provided more accurate species identification than LSU. Furthermore, a procedure based on a preliminary identification with standard reference databases followed by the production of custom databases, including only the best outputs of the first step, is proposed. This additional step improved the estimate of species proportion of the mock communities and reduced the number of ghost species not really present in the simulated communities. IMPORTANCE Metagenomic analyses are fundamental in many research areas; therefore, improvement of methods and protocols for the description of microbial communities becomes more and more necessary. Long-read sequencing could be used for reducing biases due to the multicopy nature of rDNA sequences and short-read limitations. However, these novel technologies need to be assessed and standardized with controlled experiments, such as mock communities. The interest behind this work was to evaluate how long reads performed identification and quantification of species mixed in precise proportions and how the choice of database affects such analyses. Development of a pipeline that mitigates the effect of the barcoding sequences and the impact of the reference database on metagenomic analyses can help microbiome studies go one step further.
Collapse
Affiliation(s)
- Angela Conti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Vincent Robert
- Westerdjik Institute for Biodiversity, Utrecht, Netherlands
| | - Laura Corte
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- CEMIN Excellence Research Centre, Perugia, Italy
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- CEMIN Excellence Research Centre, Perugia, Italy
| |
Collapse
|
18
|
Fu S, Wang R, Xu Z, Zhou H, Qiu Z, Shen L, Yang Q. Metagenomic sequencing combined with flow cytometry facilitated a novel microbial risk assessment framework for bacterial pathogens in municipal wastewater without cultivation. IMETA 2023; 2:e77. [PMID: 38868349 PMCID: PMC10989823 DOI: 10.1002/imt2.77] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/14/2024]
Abstract
A workflow that combined metagenomic sequencing with flow cytometry was developed. The absolute abundance of pathogens was accurately estimated in mock communities and real samples. Metagenome-assembled genomes binned from metagenomic data set is robust in phylogenetic analysis and virulence profiling.
Collapse
Affiliation(s)
- Songzhe Fu
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of EducationDalian Ocean UniversityDalianChina
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of EducationNorthwest UniversityXi'anChina
| | - Rui Wang
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of EducationDalian Ocean UniversityDalianChina
| | - Zheng Xu
- Shenzhen Yantian District People's HospitalShenzhenChina
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Huiwen Zhou
- College of Life Science and HealthNortheastern UniversityShenyangChina
| | - Zhiguang Qiu
- School of Environment and Energy, Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Lixin Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of EducationNorthwest UniversityXi'anChina
| | - Qian Yang
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGentBelgium
| |
Collapse
|
19
|
Proctor A, Parvinroo S, Richie T, Jia X, Lee STM, Karp PD, Paley S, Kostic AD, Pierre JF, Wannemuehler MJ, Phillips GJ. Resources to Facilitate Use of the Altered Schaedler Flora (ASF) Mouse Model to Study Microbiome Function. mSystems 2022; 7:e0029322. [PMID: 35968975 PMCID: PMC9600240 DOI: 10.1128/msystems.00293-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Animals colonized with a defined microbiota represent useful experimental systems to investigate microbiome function. The altered Schaedler flora (ASF) represents a consortium of eight murine bacterial species that have been used for more than 4 decades where the study of mice with a reduced microbiota is desired. In contrast to germ-free mice, or mice colonized with only one or two species, ASF mice show the normal gut structure and immune system development. To further expand the utility of the ASF, we have developed technical and bioinformatic resources to enable a systems-based analysis of microbiome function using this model. Here, we highlighted four distinct applications of these resources that enable and improve (i) measurements of the abundance of each ASF member by quantitative PCR; (ii) exploration and comparative analysis of ASF genomes and the metabolic pathways they encode that comprise the entire gut microbiome; (iii) global transcriptional profiling to identify genes whose expression responds to environmental changes within the gut; and (iv) discovery of genetic changes resulting from the evolutionary adaptation of the microbiota. These resources were designed to be accessible to a broad community of researchers that, in combination with conventionally-reared mice (i.e., with complex microbiome), should contribute to our understanding of microbiome structure and function. IMPORTANCE Improved experimental systems are needed to advance our understanding of how the gut microbiome influences processes of the mammalian host as well as microbial community structure and function. An approach that is receiving considerable attention is the use of animal models that harbor a stable microbiota of known composition, i.e., defined microbiota, which enables control over an otherwise highly complex and variable feature of mammalian biology. The altered Schaedler flora (ASF) consortium is a well-established defined microbiota model, where mice are stably colonized with 8 distinct murine bacterial species. To take better advantage of the ASF, we established new experimental and bioinformatics resources for researchers to make better use of this model as an experimental system to study microbiome function.
Collapse
Affiliation(s)
- Alexandra Proctor
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Shadi Parvinroo
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Tanner Richie
- Division of Biology, Kansas State University, Manhattan Kansas, USA
| | - Xinglin Jia
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan Kansas, USA
| | - Peter D. Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Suzanne Paley
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Aleksandar D. Kostic
- Department of Microbiology and Immunology, Joslin Diabetes Center, Harvard University, Cambridge Massachusetts, USA
| | - Joseph F. Pierre
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison Wisconsin, USA
| | | | - Gregory J. Phillips
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
20
|
Heidrich V, Beule L. Are short-read amplicons suitable for the prediction of microbiome functional potential? A critical perspective. IMETA 2022; 1:e38. [PMID: 38868716 PMCID: PMC10989910 DOI: 10.1002/imt2.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 06/14/2024]
Abstract
Taxonomic marker gene analysis allows uncovering taxonomic profiles of microbial communities at low cost, making it omnipresent in microbiome research. There is an ever-expanding set of tools to extract further biological information from this kind of data. In this perspective, we enunciate several concerns regarding the biological validity of predicting functional potential from taxonomic profiles, especially when they are generated by short-read sequencing. The taxonomic resolution of marker genes, intragenomic variability of marker genes, and the compositional nature of microbiome data are discussed. Combining actual measurements of microbiome functions with predicted functional potentials is proposed as a powerful approach to better understand microbiome functioning. In this context, the significance of predicted functional potentials for generating and testing hypotheses is highlighted. We argue that functions of microbiomes predicted from microbiome DNA read count data generated by short-read amplicon sequencing should not serve as the only basis to draw biological inferences.
Collapse
Affiliation(s)
- Vitor Heidrich
- Centro de Oncologia MolecularHospital Sírio‐LibanêsSão PauloBrazil
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
| | - Lukas Beule
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated PlantsInstitute for Ecological Chemistry, Plant Analysis and Stored Product ProtectionBerlinGermany
| |
Collapse
|
21
|
Sergaki C, Anwar S, Fritzsche M, Mate R, Francis RJ, MacLellan-Gibson K, Logan A, Amos GCA. Developing whole cell standards for the microbiome field. MICROBIOME 2022; 10:123. [PMID: 35945640 PMCID: PMC9361656 DOI: 10.1186/s40168-022-01313-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/24/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Effective standardisation of the microbiome field is essential to facilitate global translational research and increase the reproducibility of microbiome studies. In this study, we describe the development and validation of a whole cell reference reagent specific to the gut microbiome by the UK National Institute for Biological Standards and Control. We also provide and test a two-step reporting framework to allow microbiome researchers to quickly and accurately validate choices of DNA extraction, sequencing, and bioinformatic pipelines. RESULTS Using 20 strains that are commonly found in the gut, we developed a whole cell reference reagent (WC-Gut RR) for the evaluation of the DNA extraction protocols commonly used in microbiome pipelines. DNA was first analysed using the physicochemical measures of yield, integrity, and purity, which demonstrated kits widely differed in the quality of the DNA they produced. Importantly, the combination of the WC-Gut RR and the three physicochemical measures allowed us to differentiate clearly between kit performance. We next assessed the ability of WC-Gut RR to evaluate kit performance in the reconstitution of accurate taxonomic profiles. We applied a four-measure framework consisting of Sensitivity, false-positive relative abundance (FPRA), Diversity, and Similarity as previously described for DNA reagents. Using the WC-Gut RR and these four measures, we could reliably identify the DNA extraction kits' biases when using with both 16S rRNA sequencing and shotgun sequencing. Moreover, when combining this with complementary DNA standards, we could estimate the relative bias contributions of DNA extraction kits vs bioinformatic analysis. Finally, we assessed WC-Gut RR alongside other commercially available reagents. The analysis here clearly demonstrates that reagents of lower complexity, not composed of anaerobic and hard-to-lyse strains from the gut, can artificially inflate the performance of microbiome DNA extraction kits and bioinformatic pipelines. CONCLUSIONS We produced a complex whole cell reagent that is specific for the gut microbiome and can be used to evaluate and benchmark DNA extractions in microbiome studies. Used alongside a DNA standard, the NIBSC DNA-Gut-Mix RR helps estimating where biases occur in microbiome pipelines. In the future, we aim to establish minimum thresholds for data quality through an interlaboratory collaborative study. Video Abstract.
Collapse
Affiliation(s)
- Chrysi Sergaki
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK.
| | - Saba Anwar
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Martin Fritzsche
- Division of Analytical and Biological Sciences, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Ryan Mate
- Division of Analytical and Biological Sciences, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Robert J Francis
- Division of Analytical and Biological Sciences, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Kirsty MacLellan-Gibson
- Division of Analytical and Biological Sciences, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Alastair Logan
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Gregory C A Amos
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
22
|
Chakoory O, Comtet-Marre S, Peyret P. RiboTaxa: combined approaches for rRNA genes taxonomic resolution down to the species level from metagenomics data revealing novelties. NAR Genom Bioinform 2022; 4:lqac070. [PMID: 36159175 PMCID: PMC9492272 DOI: 10.1093/nargab/lqac070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Metagenomic classifiers are widely used for the taxonomic profiling of metagenomics data and estimation of taxa relative abundance. Small subunit rRNA genes are a gold standard for phylogenetic resolution of microbiota, although the power of this marker comes down to its use as full-length. We aimed at identifying the tools that can efficiently lead to taxonomic resolution down to the species level. To reach this goal, we benchmarked the performance and accuracy of rRNA-specialized versus general-purpose read mappers, reference-targeted assemblers and taxonomic classifiers. We then compiled the best tools (BBTools, FastQC, SortMeRNA, MetaRib, EMIRGE, VSEARCH, BBMap and QIIME 2’s Sklearn classifier) to build a pipeline called RiboTaxa. Using metagenomics datasets, RiboTaxa gave the best results compared to other tools (i.e. Kraken2, Centrifuge, METAXA2, phyloFlash, SPINGO, BLCA, MEGAN) with precise taxonomic identification and relative abundance description without false positive detection (F-measure of 100% and 83.7% at genus level and species level, respectively). Using real datasets from various environments (i.e. ocean, soil, human gut) and from different approaches (e.g. metagenomics and gene capture by hybridization), RiboTaxa revealed microbial novelties not discerned by current bioinformatics analysis opening new biological perspectives in human and environmental health.
Collapse
Affiliation(s)
- Oshma Chakoory
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| | - Sophie Comtet-Marre
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| |
Collapse
|
23
|
Selma-Royo M, Calvo-Lerma J, Bäuerl C, Esteban-Torres M, Cabrera-Rubio R, Collado MC. Human milk microbiota: what did we learn in the last 20 years? MICROBIOME RESEARCH REPORTS 2022; 1:19. [PMID: 38046359 PMCID: PMC10688795 DOI: 10.20517/mrr.2022.05] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 12/05/2023]
Abstract
Human milk (HM) is the gold standard for infant nutrition during the first months of life. Beyond its nutritional components, its complex bioactive composition includes microorganisms, their metabolites, and oligosaccharides, which also contribute to gut colonization and immune system maturation. There is growing evidence of the beneficial effects of bacteria present in HM. However, current research presents limited data on the presence and functions of other organisms. The potential biological impacts on maternal and infant health outcomes, the factors contributing to milk microbes' variations, and the potential functions in the infant's gut remain unclear. This review provides a global overview of milk microbiota, what the actual knowledge is, and what the gaps and challenges are for the next years.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| |
Collapse
|
24
|
DNA- and RNA-based bacterial communities and geochemical zonation under changing sediment porewater dynamics on the Aldabra Atoll. Sci Rep 2022; 12:4257. [PMID: 35277525 PMCID: PMC8917147 DOI: 10.1038/s41598-022-07980-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
The remote Aldabra Atoll, Seychelles, provides the rare opportunity to study bacterial communities in pristine carbonate sediments across an entire biome. The four sampled sites cover sand with high porewater exchange, bioturbated silt and mud with intermediate exchange, as well as a seasonally and episodically desiccated landlocked pool. As sediments harbour dead cells and environmental DNA alongside live cells, we used bacterial 16S rRNA gene and transcript analysis to distinguish between past and present inhabitants. Previously described laminated sediments mirroring past conditions in the Cerin, France could not be retrieved. Thus, the aim was adjusted to determine whether bacterial community composition and diversity follow typical geochemical zonation patterns at different locations of the atoll. Our data confirm previous observations that diversity decreases with depth. In the lagoon, the bacterial community composition changed from Pseudomonas dominating in the sand to diverse mixed surface and sulphate reduction zones in the anaerobic mud with strongly negative Eh. The latter correlated with high total alkalinity, ammonia, and total sulphide, alongside a decrease in SO42−/Cl− and high relative abundances of sulphate reducing (Halo-) Desulfovibrio, sulphur oxidizing Arcobacteraceae, photo(hetero)troph Cyanobacteria, Alphaproteobacteria, and fermenting Propionigenium. In contrast to expectations, deeper mud and pool sediments harboured high abundances of Halomonas or Alphaproteobacteria alongside high C/N and increased salinity. We believe that this atypical community shift may be driven by a change in the complexity of available organic matter.
Collapse
|
25
|
Jin J, Yamamoto R, Takeuchi T, Cui G, Miyauchi E, Hojo N, Ikuta K, Ohno H, Shiroguchi K. High-throughput identification and quantification of single bacterial cells in the microbiota. Nat Commun 2022; 13:863. [PMID: 35194029 PMCID: PMC8863893 DOI: 10.1038/s41467-022-28426-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
The bacterial microbiota works as a community that consists of many individual organisms, i.e., cells. To fully understand the function of bacterial microbiota, individual cells must be identified; however, it is difficult with current techniques. Here, we develop a method, Barcoding Bacteria for Identification and Quantification (BarBIQ), which classifies single bacterial cells into taxa–named herein cell-based operational taxonomy units (cOTUs)–based on cellularly barcoded 16S rRNA sequences with single-base accuracy, and quantifies the cell number for each cOTU in the microbiota in a high-throughput manner. We apply BarBIQ to murine cecal microbiotas and quantify in total 3.4 × 105 bacterial cells containing 810 cOTUs. Interestingly, we find location-dependent global differences in the cecal microbiota depending on the dietary vitamin A deficiency, and more differentially abundant cOTUs at the proximal location than the distal location. Importantly, these location differences are not clearly shown by conventional 16S rRNA gene-amplicon sequencing methods, which quantify the 16S rRNA genes, not the cells. Thus, BarBIQ enables microbiota characterization with the identification and quantification of individual constituent bacteria, which is a cornerstone for microbiota studies. Here, Jin et al., develop a method called Barcoding Bacteria for Identification and Quantification (BarBIQ), which allows to both characterize the global microbiome and to identify and quantify single-cell bacterial members in a high-throughput manner.
Collapse
Affiliation(s)
- Jianshi Jin
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| | - Reiko Yamamoto
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| | - Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eiji Miyauchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Nozomi Hojo
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, 3-2-1, Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Katsuyuki Shiroguchi
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan.
| |
Collapse
|
26
|
Banker RMW, Lipovac J, Stachowicz JJ, Gold DA. Sodium molybdate does not inhibit sulfate-reducing bacteria but increases shell growth in the Pacific oyster Magallana gigas. PLoS One 2022; 17:e0262939. [PMID: 35139090 PMCID: PMC8827440 DOI: 10.1371/journal.pone.0262939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022] Open
Abstract
Recent work on microbe-host interactions has revealed an important nexus between the environment, microbiome, and host fitness. Marine invertebrates that build carbonate skeletons are of particular interest in this regard because of predicted effects of ocean acidification on calcified organisms, and the potential of microbes to buffer these impacts. Here we investigate the role of sulfate-reducing bacteria, a group well known to affect carbonate chemistry, in Pacific oyster (Magallana gigas) shell formation. We reared oyster larvae to 51 days post fertilization and exposed organisms to control and sodium molybdate conditions, the latter of which is thought to inhibit bacterial sulfate reduction. Contrary to expectations, we found that sodium molybdate did not uniformly inhibit sulfate-reducing bacteria in oysters, and oysters exposed to molybdate grew larger shells over the experimental period. Additionally, we show that microbiome composition, host gene expression, and shell size were distinct between treatments earlier in ontogeny, but became more similar by the end of the experiment. Although additional testing is required to fully elucidate the mechanisms, our work provides preliminary evidence that M. gigas is capable of regulating microbiome dysbiosis caused by environmental perturbations, which is reflected in shell development.
Collapse
Affiliation(s)
- Roxanne M. W. Banker
- Department of Earth and Planetary Sciences, University of California, Davis, California, United States of America
| | - Jacob Lipovac
- Department of Earth and Planetary Sciences, University of California, Davis, California, United States of America
| | - John J. Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - David A. Gold
- Department of Earth and Planetary Sciences, University of California, Davis, California, United States of America
| |
Collapse
|
27
|
Dreier M, Meola M, Berthoud H, Shani N, Wechsler D, Junier P. High-throughput qPCR and 16S rRNA gene amplicon sequencing as complementary methods for the investigation of the cheese microbiota. BMC Microbiol 2022; 22:48. [PMID: 35130830 PMCID: PMC8819918 DOI: 10.1186/s12866-022-02451-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
Background Next-generation sequencing (NGS) methods and especially 16S rRNA gene amplicon sequencing have become indispensable tools in microbial ecology. While they have opened up new possibilities for studying microbial communities, they also have one drawback, namely providing only relative abundances and thus compositional data. Quantitative PCR (qPCR) has been used for years for the quantification of bacteria. However, this method requires the development of specific primers and has a low throughput. The constraint of low throughput has recently been overcome by the development of high-throughput qPCR (HT-qPCR), which allows for the simultaneous detection of the most prevalent bacteria in moderately complex systems, such as cheese and other fermented dairy foods. In the present study, the performance of the two approaches, NGS and HT-qPCR, was compared by analyzing the same DNA samples from 21 Raclette du Valais protected designation of origin (PDO) cheeses. Based on the results obtained, the differences, accuracy, and usefulness of the two approaches were studied in detail. Results The results obtained using NGS (non-targeted) and HT-qPCR (targeted) show considerable agreement in determining the microbial composition of the cheese DNA samples studied, albeit the fundamentally different nature of these two approaches. A few inconsistencies in species detection were observed, particularly for less abundant ones. The detailed comparison of the results for 15 bacterial species/groups measured by both methods revealed a considerable bias for certain bacterial species in the measurements of the amplicon sequencing approach. We identified as probable origin to this PCR bias due to primer mismatches, variations in the number of copies for the 16S rRNA gene, and bias introduced in the bioinformatics analysis. Conclusion As the normalized microbial composition results of NGS and HT-qPCR agreed for most of the 21 cheese samples analyzed, both methods can be considered as complementary and reliable for studying the microbial composition of cheese. Their combined application proved to be very helpful in identifying potential biases and overcoming methodological limitations in the quantitative analysis of the cheese microbiota. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02451-y.
Collapse
Affiliation(s)
- Matthias Dreier
- Agroscope, Schwarzenburgstrasse 161, CH-3003, Bern, Switzerland. .,Laboratory of Microbiology, University of Neuchâtel, Emile-Argand 11, CH-2000, Neuchâtel, Switzerland.
| | - Marco Meola
- Agroscope, Schwarzenburgstrasse 161, CH-3003, Bern, Switzerland.,Department of Biomedicine, Applied Microbiology Research, University of Basel, Basel, Switzerland.,Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Hélène Berthoud
- Agroscope, Schwarzenburgstrasse 161, CH-3003, Bern, Switzerland
| | - Noam Shani
- Agroscope, Schwarzenburgstrasse 161, CH-3003, Bern, Switzerland
| | - Daniel Wechsler
- Agroscope, Schwarzenburgstrasse 161, CH-3003, Bern, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
| |
Collapse
|
28
|
Pierella Karlusich JJ, Pelletier E, Zinger L, Lombard F, Zingone A, Colin S, Gasol JM, Dorrell RG, Henry N, Scalco E, Acinas SG, Wincker P, de Vargas C, Bowler C. A robust approach to estimate relative phytoplankton cell abundances from metagenomes. Mol Ecol Resour 2022; 23:16-40. [PMID: 35108459 PMCID: PMC10078663 DOI: 10.1111/1755-0998.13592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022]
Abstract
Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton communities generally consist of PCR amplification of bacterial (16S), nuclear (18S) and/or chloroplastic (16S) rRNA marker genes from DNA extracted from environmental samples. However, our appreciation of phytoplankton abundance or biomass is limited by PCR-amplification biases, rRNA gene copy number variations across taxa, and the fact that rRNA genes do not provide insights into metabolic traits such as photosynthesis. Here, we targeted the photosynthetic gene psbO from metagenomes to circumvent these limitations: the method is PCR-free, and the gene is universally and exclusively present in photosynthetic prokaryotes and eukaryotes, mainly in one copy per genome. We applied and validated this new strategy with the size-fractionated marine samples collected by Tara Oceans, and showed improved correlations with flow cytometry and microscopy than when based on rRNA genes. Furthermore, we revealed unexpected features of the ecology of these ecosystems, such as the high abundance of picocyanobacterial aggregates and symbionts in the ocean, and the decrease in relative abundance of phototrophs towards the larger size classes of marine dinoflagellates. To facilitate the incorporation of psbO in molecular-based surveys, we compiled a curated database of >18,000 unique sequences. Overall, psbO appears to be a promising new gene marker for molecular-based evaluations of entire phytoplankton communities.
Collapse
Affiliation(s)
- Juan José Pierella Karlusich
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France.,CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Eric Pelletier
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Lucie Zinger
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France.,CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Fabien Lombard
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Sorbonne Universités, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), 06230, Villefranche-sur-Mer, France.,Institut Universitaire de France (IUF), Paris, France
| | - Adriana Zingone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Sébastien Colin
- European Molecular Biology Laboratory, Heidelberg, Germany.,Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP, 29680, Roscoff, France.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciènces del Mar, CSIC, Barcelona, Spain
| | - Richard G Dorrell
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France
| | - Nicolas Henry
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Eleonora Scalco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciènces del Mar, CSIC, Barcelona, Spain
| | - Patrick Wincker
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Colomban de Vargas
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP, 29680, Roscoff, France
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France.,CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| |
Collapse
|
29
|
Silverman JD, Bloom RJ, Jiang S, Durand HK, Dallow E, Mukherjee S, David LA. Measuring and mitigating PCR bias in microbiota datasets. PLoS Comput Biol 2021; 17:e1009113. [PMID: 34228723 PMCID: PMC8284789 DOI: 10.1371/journal.pcbi.1009113] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
PCR amplification plays an integral role in the measurement of mixed microbial communities via high-throughput DNA sequencing of the 16S ribosomal RNA (rRNA) gene. Yet PCR is also known to introduce multiple forms of bias in 16S rRNA studies. Here we present a paired modeling and experimental approach to characterize and mitigate PCR NPM-bias (PCR bias from non-primer-mismatch sources) in microbiota surveys. We use experimental data from mock bacterial communities to validate our approach and human gut microbiota samples to characterize PCR NPM-bias under real-world conditions. Our results suggest that PCR NPM-bias can skew estimates of microbial relative abundances by a factor of 4 or more, but that this bias can be mitigated using log-ratio linear models. High-throughput DNA sequencing is often used to profile the species composition of host-associated microbial communities (microbiota). One important step in DNA sequencing is amplification where DNA from many different bacteria are repeatedly copied using a technique called Polymerase Chain Reaction (PCR). However, PCR is known to introduce multiple forms of bias as DNA from some bacteria are more efficiently copied than others. Here we introduce experimental and computational procedures that allows PCR NPM-bias (PCR bias from non-primer-mismatch sources) to be measured and mitigated in studies of microbial communities.
Collapse
Affiliation(s)
- Justin D Silverman
- College of Information Science and Technology, Pennsylvania State University, State College, Pennsylvania, United States of America
- Institute for Computational and Data Science, Pennsylvania State University, State College, Pennsylvania, United States of America
- Department of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Rachael J Bloom
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, United States of America
- University Program for Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Sharon Jiang
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Heather K Durand
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Eric Dallow
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Sayan Mukherjee
- Departments of Statistical Science, Mathematics, Computer Science, Biostatistics & Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Lawrence A David
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
30
|
Horie M, Yang D, Joosten P, Munk P, Wadepohl K, Chauvin C, Moyano G, Skarżyńska M, Dewulf J, Aarestrup FM, Blaha T, Sanders P, Gonzalez-Zorn B, Wasyl D, Wagenaar JA, Heederik D, Mevius D, Schmitt H, Smit LAM, Van Gompel L. Risk Factors for Antimicrobial Resistance in Turkey Farms: A Cross-Sectional Study in Three European Countries. Antibiotics (Basel) 2021; 10:820. [PMID: 34356741 PMCID: PMC8300668 DOI: 10.3390/antibiotics10070820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Food-producing animals are an important reservoir and potential source of transmission of antimicrobial resistance (AMR) to humans. However, research on AMR in turkey farms is limited. This study aimed to identify risk factors for AMR in turkey farms in three European countries (Germany, France, and Spain). Between 2014 and 2016, faecal samples, antimicrobial usage (AMU), and biosecurity information were collected from 60 farms. The level of AMR in faecal samples was quantified in three ways: By measuring the abundance of AMR genes through (i) shotgun metagenomics sequencing (n = 60), (ii) quantitative real-time polymerase chain reaction (qPCR) targeting ermB, tetW, sul2, and aph3'-III; (n = 304), and (iii) by identifying the phenotypic prevalence of AMR in Escherichia coli isolates by minimum inhibitory concentrations (MIC) (n = 600). The association between AMU or biosecurity and AMR was explored. Significant positive associations were detected between AMU and both genotypic and phenotypic AMR for specific antimicrobial classes. Beta-lactam and colistin resistance (metagenomics sequencing); ampicillin and ciprofloxacin resistance (MIC) were associated with AMU. However, no robust AMU-AMR association was detected by analyzing qPCR targets. In addition, no evidence was found that lower biosecurity increases AMR abundance. Using multiple complementary AMR detection methods added insights into AMU-AMR associations at turkey farms.
Collapse
Affiliation(s)
- Mayu Horie
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| | - Dongsheng Yang
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| | - Philip Joosten
- Veterinary Epidemiology Unit, Department of Obstetrics, Reproduction and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (P.J.); (J.D.)
| | - Patrick Munk
- Research Group for Genomic Epidemiology, The National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark; (P.M.); (F.M.A.)
| | - Katharina Wadepohl
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Büscheler Straße 9, 49456 Bakum, Germany; (K.W.); (T.B.)
| | - Claire Chauvin
- Epidemiology, Health and Welfare Unit, The French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (C.C.); (P.S.)
| | - Gabriel Moyano
- Antimicrobial Resistance Unit (ARU), Animal Health Departement, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (G.M.); (B.G.-Z.)
| | - Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute (PIWet), Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.S.); (D.W.)
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Department of Obstetrics, Reproduction and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (P.J.); (J.D.)
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, The National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark; (P.M.); (F.M.A.)
| | - Thomas Blaha
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Büscheler Straße 9, 49456 Bakum, Germany; (K.W.); (T.B.)
| | - Pascal Sanders
- Epidemiology, Health and Welfare Unit, The French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (C.C.); (P.S.)
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit (ARU), Animal Health Departement, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (G.M.); (B.G.-Z.)
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute (PIWet), Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.S.); (D.W.)
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (J.A.W.); (D.M.)
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| | - Dik Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (J.A.W.); (D.M.)
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| | - Liese Van Gompel
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| |
Collapse
|
31
|
Lewe N, Hermans S, Lear G, Kelly LT, Thomson-Laing G, Weisbrod B, Wood SA, Keyzers RA, Deslippe JR. Phospholipid fatty acid (PLFA) analysis as a tool to estimate absolute abundances from compositional 16S rRNA bacterial metabarcoding data. J Microbiol Methods 2021; 188:106271. [PMID: 34146605 DOI: 10.1016/j.mimet.2021.106271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023]
Abstract
Microbial biodiversity monitoring through the analysis of DNA extracted from environmental samples is increasingly popular because it is perceived as being rapid, cost-effective, and flexible concerning the sample types studied. DNA can be extracted from diverse media before high-throughput sequencing of the prokaryotic 16S rRNA gene is used to characterize the taxonomic diversity and composition of the sample (known as metabarcoding). While sources of bias in metabarcoding methodologies are widely acknowledged, previous studies have focused mainly on the effects of these biases within a single substrate type, and relatively little is known of how these vary across substrates. We investigated the effect of substrate type (water, microbial mats, lake sediments, stream sediments, soil and a mock microbial community) on the relative performance of DNA metabarcoding in parallel with phospholipid fatty acid (PLFA) analysis. Quantitative estimates of the biomass of different taxonomic groups in samples were made through the analysis of PLFAs, and these were compared to the relative abundances of microbial taxa estimated from metabarcoding. Furthermore, we used the PLFA-based quantitative estimates of the biomass to adjust relative abundances of microbial groups determined by metabarcoding to provide insight into how the biomass of microbial taxa from PLFA analysis can improve understanding of microbial communities from environmental DNA samples. We used two sets of PLFA biomarkers that differed in their number of PLFAs to evaluate how PLFA biomarker selection influences biomass estimates. Metabarcoding and PLFA analysis provided significantly different views of bacterial composition, and these differences varied among substrates. We observed the most notable differences for the Gram-negative bacteria, which were overrepresented by metabarcoding in comparison to PLFA analysis. In contrast, the relative biomass and relative sequence abundances aligned reasonably well for Cyanobacteria across the tested freshwater substrates. Adjusting relative abundances of microbial taxa estimated by metabarcoding with PLFA-based quantification estimates of the microbial biomass led to significant changes in the microbial community compositions in all substrates. We recommend including independent estimates of the biomass of microbial groups to increase comparability among metabarcoding libraries from environmental samples, especially when comparing communities associated with different substrates.
Collapse
Affiliation(s)
- Natascha Lewe
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Centre for Biodiversity and Restoration Ecology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Syrie Hermans
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Laura T Kelly
- Coastal and Freshwater Group, Cawthron Institute, 98 Halifax Street, East Nelson, 7010, New Zealand
| | - Georgia Thomson-Laing
- Coastal and Freshwater Group, Cawthron Institute, 98 Halifax Street, East Nelson, 7010, New Zealand
| | - Barbara Weisbrod
- Human and Environmental Toxicology, Department of Biology, Universität Konstanz, 78457 Konstanz, Germany
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, 98 Halifax Street, East Nelson, 7010, New Zealand
| | - Robert A Keyzers
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Julie R Deslippe
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Centre for Biodiversity and Restoration Ecology, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
32
|
Sivakala KK, Jose PA, Matan O, Zohar-Perez C, Nussinovitch A, Jurkevitch E. In vivo predation and modification of the Mediterranean fruit fly Ceratitis capitata (Wiedemann) gut microbiome by the bacterial predator Bdellovibrio bacteriovorus. J Appl Microbiol 2021; 131:2971-2980. [PMID: 34061420 DOI: 10.1111/jam.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
AIMS The Mediterranean fruit fly (the medfly) causes major losses of agricultural fruits. Its microbiome is mainly composed of various Enterobacteriaceae that contribute to nutrient acquisition and are associated with the fly's development. Moreover, the performance of males produced by the sterile insect technique is improved by providing mass-reared insects with specific gut bacteria. Bdellovibrio and like organisms (BALOs) are obligate predators of Gram-negative bacteria that efficiently preys upon diverse Enterobacteriaceae, making it a potential disruptor of the fly's microbiome. We hypothesized that the fly's microbiome can be targeted to control the insect. METHODS AND RESULTS Inoculation of B. bacteriovorus as free-swimming or encapsulated cells into gut extracts significantly reduced gut bacterial abundance, sustaining predator survival. Similar treatments applied to adult flies showed that the predators also survived in the gut environment. While addition of the predators did not affect total gut bacterial abundance and end-point fly mortality, a shift in the gut community structure, measured by high-throughput community sequencing was observed. CONCLUSIONS The bacterial predator of bacteria B. bacteriovorus can prey and survive in vivo in the medfly gut. SIGNIFICANCE AND IMPACT OF THE STUDY This study establishes the potential of BALOs to affect the microbiome of insect hosts.
Collapse
Affiliation(s)
- K K Sivakala
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Entomology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - P A Jose
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Entomology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - O Matan
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - C Zohar-Perez
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - A Nussinovitch
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - E Jurkevitch
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
33
|
Stephanou C, Omirou M, Philippot L, Zissimos AM, Christoforou IC, Trajanoski S, Oulas A, Ioannides IM. Land use in urban areas impacts the composition of soil bacterial communities involved in nitrogen cycling. A case study from Lefkosia (Nicosia) Cyprus. Sci Rep 2021; 11:8198. [PMID: 33854127 PMCID: PMC8047022 DOI: 10.1038/s41598-021-87623-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
The different types of land-use and soil lithology in urban and peri-urban areas of modern cities compose a complex mosaic of soil ecosystems. It is largely unknown how these differences result in changes in bacterial community composition and structure as well as in functional guilds involved in N cycling. To investigate the bacterial composition and the proportion of denitrifiers in agricultural, forested, schoolyard and industrial areas, 24 samples were collected from urban and peri-urban sites of Lefkosia. Bacterial diversity and the proportion of denitrifiers were assessed by NGS and qPCR, respectively. Proteobacteria, Actinobacteria, Bacteriodetes, Chloroflexi, Acidobacteria and Planctomycetes were identified as the most dominant phyla across all sites, while agricultural sites exhibited the highest bacterial diversity. Heavy metals such as Co, Pb, V and Al were identified as key factors shaping bacterial composition in industrial and schoolyard sites, while the bacterial assemblages in agricultural and forested sites were associated with Ca. Variance partitioning analysis showed that 10.2% of the bacterial community variation was explained by land use management, 5.1% by chemical elements due to soil lithology, and 1.4% by sampling location. The proportion of denitrifiers varied with land use management. In industrial and schoolyard sites, the abundance of the nosZII bacterial community increased while nirK abundance declined. Our data showed that land use and lithology have a moderate impact on the bacterial assemblages in urban and peri-urban areas of Lefkosia. As the nosZII bacterial community is important to the N2O sink capacity of soils, it would be interesting to elucidate the factors contributing to the proliferation of the nosZII clade in these soils.
Collapse
Affiliation(s)
- Coralea Stephanou
- Department of Agrobiotechnology, Agricultural Research Institute, Nicosia, Cyprus
| | - Michalis Omirou
- Department of Agrobiotechnology, Agricultural Research Institute, Nicosia, Cyprus. .,Department of Agrobiotechnology, Agricultural Microbiology Laboratory, Agricultural Research Institute, Athalassa, Cyprus.
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Agroécologie, 21000, Dijon, France
| | - Andreas M Zissimos
- Geological Survey Department, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Irene C Christoforou
- Geological Survey Department, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Slave Trajanoski
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Anastasis Oulas
- Cyprus Institute of Neurology and Genetics, Bioinformatics Group, Engomi, Cyprus
| | - Ioannis M Ioannides
- Department of Agrobiotechnology, Agricultural Research Institute, Nicosia, Cyprus
| |
Collapse
|
34
|
Veyisoglu A. Nonomuraea cypriaca sp. nov., isolated from soil. Arch Microbiol 2021; 203:2639-2645. [PMID: 33710377 DOI: 10.1007/s00203-021-02202-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022]
Abstract
A novel actinobacterium, designated strain K274T, was isolated from soil collected from Zafer Cape (Cape Apostolos Andreas), the easternmost tip of Cyprus on the Karpas peninsula, Magusa, Northern Cyprus, and a polyphasic approach was used for characterization of the strain. The isolate was found to have chemotaxonomic and morphological properties associated with members of the genus Nonomuraea. The strain has the highest similarity to Nonomuraea zeae DSM 100528T with 99.1% similarity value. In the phylogenetic dendogram based on 16S rRNA gene sequence, strain K274T was formed a distinct clade together N. zeae DSM 100528T, 'Nonomuraea basaltis' 160415 (98.9% similarity), and 'Nonomuraea lycopersici' NEAU-DE8(1) (98.2% similarity). The genome sequence of strain K274T was 11.5 Mbp in size with a total of 11,848 protein-coding genes and 75 RNA genes. The genomic G + C content of the novel strain was 69.7 mol%. Both average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) results between the strain and phlyogenetic neighbours were well below the threshold value, and the novelty are supported by phenotypic and chemotaxonomic differences. Because of all these, strain K274T represents a novel species in the genus Nonomuraea, for which the name Nonomuraea cypriaca sp. nov. is proposed. The type strain is K274T (= DSM 45718T = KCTC 29095T).
Collapse
Affiliation(s)
- Aysel Veyisoglu
- Department of Medical Services and Techniques, Vocational School of Health Services, Sinop University, 57000, Sinop, Turkey.
| |
Collapse
|
35
|
Ciuffreda L, Rodríguez-Pérez H, Flores C. Nanopore sequencing and its application to the study of microbial communities. Comput Struct Biotechnol J 2021; 19:1497-1511. [PMID: 33815688 PMCID: PMC7985215 DOI: 10.1016/j.csbj.2021.02.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
Since its introduction, nanopore sequencing has enhanced our ability to study complex microbial samples through the possibility to sequence long reads in real time using inexpensive and portable technologies. The use of long reads has allowed to address several previously unsolved issues in the field, such as the resolution of complex genomic structures, and facilitated the access to metagenome assembled genomes (MAGs). Furthermore, the low cost and portability of platforms together with the development of rapid protocols and analysis pipelines have featured nanopore technology as an attractive and ever-growing tool for real-time in-field sequencing for environmental microbial analysis. This review provides an up-to-date summary of the experimental protocols and bioinformatic tools for the study of microbial communities using nanopore sequencing, highlighting the most important and recent research in the field with a major focus on infectious diseases. An overview of the main approaches including targeted and shotgun approaches, metatranscriptomics, epigenomics, and epitranscriptomics is provided, together with an outlook to the major challenges and perspectives over the use of this technology for microbial studies.
Collapse
Affiliation(s)
- Laura Ciuffreda
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| |
Collapse
|