1
|
Jie IWK, Lee KWA, Yoon SE, Song JK, Chan LKW, Lee CH, Jeong E, Kim JH, Yi KH. Advancements in Clinical Utilization of Recombinant Human Collagen: An Extensive Review. Life (Basel) 2025; 15:582. [PMID: 40283137 PMCID: PMC12028911 DOI: 10.3390/life15040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
INTRODUCTION Recombinant human collagen, developed through advanced recombinant DNA technology, has emerged as a cutting-edge biomaterial with diverse applications in medicine. It addresses significant limitations of animal-derived collagens, such as immunogenicity and the risk of zoonotic diseases. OBJECTIVE This review evaluates the clinical applications, benefits, and challenges associated with recombinant human collagen, focusing on its potential to transform medical and surgical practices. METHODS A comprehensive search was conducted in MEDLINE, PubMed, and Ovid databases using keywords such as "Recombinant Human Collagen", "Collagen-Based Biomaterials", "Clinical Applications", "Tissue Repair", and "Wound Healing". Relevant studies, including clinical trials and diagnostic applications, were analyzed and classified according to the Oxford Centre for Evidence-Based Medicine evidence hierarchy. FINDINGS Recombinant human collagen demonstrates superior mechanical properties and controlled degradation rates compared to traditional collagen sources. Clinical studies highlight its effectiveness in accelerating wound closure, promoting dermal regeneration, and minimizing scarring, making it particularly valuable in chronic wound management and surgical interventions. In tissue engineering, recombinant human collagen scaffolds have shown potential for regenerating cartilage, bone, and cardiovascular tissues by supporting cell proliferation, differentiation, and matrix deposition. Additionally, its adaptability for forming hydrogels and matrices enhances its suitability for drug delivery systems, enabling controlled and sustained release of therapeutic agents. CONCLUSION Recombinant human collagen represents a transformative advancement in clinical practice, providing a safer and more effective alternative to traditional collagen sources. Its demonstrated success in wound healing, tissue engineering, and drug delivery highlights its potential to significantly improve patient outcomes. However, challenges such as high production costs, regulatory complexities, and long-term biocompatibility remain barriers to widespread clinical adoption. Further research and collaboration between biotechnology developers and regulatory authorities are essential to fully realize its clinical potential.
Collapse
Affiliation(s)
- Isaac Wong Kai Jie
- The Artisan Clinic, 435 Orchard Road, #20-03, Singapore 238877, Singapore;
| | | | - Song Eun Yoon
- Brandnew Aesthetic Surgery Clinic, Seoul, Republic of Korea
| | - Jong Keun Song
- Pixelab Plastic Surgery Clinic, Seoul, Republic of Korea
| | | | | | - Eunji Jeong
- College of Medicine, Central Michigan University, Saginaw, MI, USA
| | | | - Kyu-Ho Yi
- You & I Clinic, Seoul, Republic of Korea
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Wang X, Fan X, Zhai Y, Li J, Sun H, Li J, Le H, Zhang F, Zhang L, Wang J, Chu Y, Cui P. Development and functional evaluation of recombinant type III collagen intrauterine implant gel. Regen Biomater 2025; 12:rbaf013. [PMID: 40196171 PMCID: PMC11975284 DOI: 10.1093/rb/rbaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Intrauterine adhesion (IUA) is a prevalent complication arising from uterine surgery, significantly impacting women's fertility and overall quality of life. The conventional clinical approach involves hysteroscopic separation of uterine adhesions, though this method poses operational challenges and carries risks of postoperative re-adhesion. Alternatively, the intraoperative placement of intrauterine devices or support balloons can act as a physical barrier to prevent adhesion formation. However, its effectiveness is limited and it may result in secondary damage to the endothelial tissue. To tackle these challenges, we have engineered a temperature-responsive hydrogel incorporating Pluronic HP407/HP188 pharmaceutical excipients and recombinant type III collagen (rCol III) as a bioactive element. Upon in situ injection into the uterine cavity, this hydrogel transitions from a sol-gel phase to a gel in response to body temperature changes, thereby minimizing nonspecific distribution and prolonging the duration of treatment. In vitro studies demonstrate that rCol III temperature-responsive hydrogels exhibit favorable biocompatibility, exhibit a recruitment effect on human endometrial stromal cells, suppress the expression of the fibrotic factor transforming growth factor beta 1 and promote angiogenesis. To evaluate its efficacy in preventing IUA via in vivo experiments, we employed sexually mature female rats for IUA modeling and compared its performance with a commercially available product, cross-linked sodium hyaluronate gel. The results indicate that rCol III temperature-responsive hydrogels significantly enhance retention at the injury site, substantially promote endometrial regeneration, augment endometrial blood supply and reduce abnormal fibrin deposition. This study suggests that rCol III temperature-responsive hydrogels can effectively prevent post-surgical uterine adhesions, highlighting their potential as a promising adhesion prevention strategy.
Collapse
Affiliation(s)
- Xinhui Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Xiaoju Fan
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Yuanxin Zhai
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Jie Li
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Huilin Sun
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Jie Li
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Hao Le
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Feng Zhang
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Li Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Yun Chu
- Jiangsu Trautec Medical Technology Co, Ltd, Changzhou 213200, P. R. China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
3
|
Zhu P, Ma M, You T, Zhang B, Ye S, Liu S. Optimizing prolyl hydroxylation for functional recombinant collagen in Escherichia coli. Int J Biol Macromol 2024; 282:137400. [PMID: 39521206 DOI: 10.1016/j.ijbiomac.2024.137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Collagen, a key extracellular matrix component, is renowned for its biocompatibility, biodegradability, and bioactivity, finding wide applications in food, medicine, cosmetics, and industry. Recombinant collagen expression in Escherichia coli offers advantages such as shorter production cycles and lower costs compared to extraction from animal tissues, though it is known to lack essential post-translational modifications, such as proline hydroxylation, which are crucial for its stability and biological function. Studies have shown that certain prolyl hydroxylases, including BaP4H, DsP4H, and L593, exhibit relatively high modification efficiency in the E. coli expression system. However, structures and functions of recombinant human type III collagen after modification by three prolyl hydroxylases remain uncertain. In this study, we investigated the percentage of proline hydroxylation, hydroxylation sites, circular dichroism spectra, and biological functions of recombinant human type III collagen modified by various prolyl hydroxylases. The results indicated that the L593 exhibited the highest percentage of proline hydroxylation, and the percentage of proline hydroxylation was closely associated with the formation of the collagen triple helix, while the hydroxylation ratio of prolines is not positively correlated with the stability of the collagen triple helix structure. The biological function results showed that the cell adhesion of recombinant collagen 3-3(BaP4H) and 3-3(L593) was significantly enhanced, which was closely related to the triple helix structure of recombinant human type III collagen. Our study provides valuable insights into the industrial production and biological applications of collagen, enhancing its functional research and scalability.
Collapse
Affiliation(s)
- Pei Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Mingxue Ma
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Tianjie You
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Bo Zhang
- Hangzhou Insightale Biotechnology Co., LTD, Hangzhou 310000, PR China
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| | - Si Liu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| |
Collapse
|
4
|
Kong W, Bao Y, Li W, Guan D, Yin Y, Xiao Y, Zhu S, Sun Y, Xia Z. Collaborative Enhancement of Diabetic Wound Healing and Skin Regeneration by Recombinant Human Collagen Hydrogel and hADSCs. Adv Healthc Mater 2024:e2401012. [PMID: 39388509 DOI: 10.1002/adhm.202401012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Stem cell-based therapies hold significant promise for chronic wound healing and skin appendages regeneration, but challenges such as limited stem cell lifespan and poor biocompatibility of delivery systems hinder clinical application. In this study, an in situ delivery system for human adipose-derived stem cells is developed (hADSCs) to enhance diabetic wound healing. The system utilizes a photo-crosslinking recombinant human type III collagen (rHCIII) hydrogel to encapsulate hADSCs, termed the hADSCs@rHCIII hydrogel. This hydrogel undergoes local crosslinking at the wound site, establishing a sturdy 3D niche suitable for stem cell function. Consequently, the encapsulated hADSCs exhibit strong attachment and spreading within the hydrogels, maintaining their proliferation, metabolic activity, and viability for up to three weeks in vitro. Importantly, in vivo studies demonstrate that the hADSCs@rHCIII hydrogel achieves significant in situ delivery of stem cells, prolonging their retention within the wound. This ultimately enhances their immunomodulatory capabilities, promotes neovascularization and granulation tissue formation, facilitates matrix remodeling, and accelerates healing in a diabetic mouse wound model. Collectively, these findings highlight the potential of the conveniently-prepared and user-friendly hADSCs@rHCIII hydrogel as a promising therapeutic approach for diabetic wound treatment and in situ skin regeneration.
Collapse
Affiliation(s)
- Weishi Kong
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Yulu Bao
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Dingding Guan
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Yating Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- Department of Burn and Plastic Surgery, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, P. R. China
| | - Yongqiang Xiao
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, P. R. China
| | - Shihui Zhu
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
- Department of Burns and Plastic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yu Sun
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Zhaofan Xia
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| |
Collapse
|
5
|
Van Damme L, Blondeel P, Van Vlierberghe S. Non-animal derived recombinant collagen-based biomaterials as a promising strategy towards adipose tissue engineering. Biomed Mater 2024; 19:065017. [PMID: 39312940 DOI: 10.1088/1748-605x/ad7e90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Adipose tissue engineering (ATE) has been gaining increasing interest over the past decades, offering promise for new and innovative breast reconstructive strategies. Animal-derived gelatin-methacryloyl (Gel-MA) has already been applied in a plethora of TE strategies. However, due to clinical concerns, related to the potential occurrence of immunoglobulin E-mediated immune responses and pathogen transmission, a shift towards defined, reproducible recombinant proteins has occurred. In the present study, a recombinant protein based on human collagen type I, enriched with arginine-glycine-aspartic acid was functionalized with photo-crosslinkable methacryloyl moieties (RCPhC1-MA), processed into 3D scaffolds and compared with frequently applied Gel-MA from animal origin using an indirect printing method applying poly-lactic acid as sacrificial mould. For both materials, similar gel fractions (>65%) and biodegradation times were obtained. In addition, a significantly lower mass swelling ratio (17.6 ± 1.5 versus 24.3 ± 1.4) and mechanical strength (Young's modulus: 1.1 ± 0.2 kPa versus 1.9 ± 0.3 kPa) were observed for RCPhC1-MA compared to Gel-MA scaffolds.In vitroseeding assays showed similar cell viabilities (>80%) and a higher initial cell attachment for the RCPhC1-MA scaffolds. Moreover, the seeded adipose-derived stem cells could be differentiated into the adipogenic lineage for both Gel-MA and RCPhC1-MA scaffolds, showing a trend towards superior differentiation for the RCPhC1-MA scaffolds based on the triglyceride and Bodipy assay. RCPhC1-MA scaffolds could result in a transition towards the exploitation of non-animal-derived biomaterials for ATE, omitting any regulatory concerns related to the use of animal derived products.
Collapse
Affiliation(s)
- Lana Van Damme
- Department of Plastic & Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, 2K12, 9000 Ghent, Belgium
- Polymer Chemistry & Biomaterials Group-Centre of Macromolecular Chemistry (CMaC)-Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Phillip Blondeel
- Department of Plastic & Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, 2K12, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group-Centre of Macromolecular Chemistry (CMaC)-Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Li D, Wang Y, Zhu S, Hu X, Liang R. Recombinant fibrous protein biomaterials meet skin tissue engineering. Front Bioeng Biotechnol 2024; 12:1411550. [PMID: 39205856 PMCID: PMC11349559 DOI: 10.3389/fbioe.2024.1411550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Natural biomaterials, particularly fibrous proteins, are extensively utilized in skin tissue engineering. However, their application is impeded by batch-to-batch variance, limited chemical or physical versatility, and environmental concerns. Recent advancements in gene editing and fermentation technology have catalyzed the emergence of recombinant fibrous protein biomaterials, which are gaining traction in skin tissue engineering. The modular and highly customizable nature of recombinant synthesis enables precise control over biomaterial design, facilitating the incorporation of multiple functional motifs. Additionally, recombinant synthesis allows for a transition from animal-derived sources to microbial sources, thereby reducing endotoxin content and rendering recombinant fibrous protein biomaterials more amenable to scalable production and clinical use. In this review, we provide an overview of prevalent recombinant fibrous protein biomaterials (collagens, elastin, silk proteins and their chimeric derivatives) used in skin tissue engineering (STE) and compare them with their animal-derived counterparts. Furthermore, we discuss their applications in STE, along with the associated challenges and future prospects.
Collapse
Affiliation(s)
- Dipeng Li
- Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Yirong Wang
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Shan Zhu
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Xuezhong Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Renjie Liang
- Hangzhou Ninth People’s Hospital, Hangzhou, China
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
- School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Kawecki NS, Chen KK, Smith CS, Xie Q, Cohen JM, Rowat AC. Scalable Processes for Culturing Meat Using Edible Scaffolds. Annu Rev Food Sci Technol 2024; 15:241-264. [PMID: 38211941 DOI: 10.1146/annurev-food-072023-034451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
There is increasing consumer demand for alternative animal protein products that are delicious and sustainably produced to address concerns about the impacts of mass-produced meat on human and planetary health. Cultured meat has the potential to provide a source of nutritious dietary protein that both is palatable and has reduced environmental impact. However, strategies to support the production of cultured meats at the scale required for food consumption will be critical. In this review, we discuss the current challenges and opportunities of using edible scaffolds for scaling up the production of cultured meat. We provide an overview of different types of edible scaffolds, scaffold fabrication techniques, and common scaffold materials. Finally, we highlight potential advantages of using edible scaffolds to advance cultured meat production by accelerating cell growth and differentiation, providing structure to build complex 3D tissues, and enhancing the nutritional and sensory properties of cultured meat.
Collapse
Affiliation(s)
- N Stephanie Kawecki
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Kathleen K Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Corinne S Smith
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Qingwen Xie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Julian M Cohen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Amy C Rowat
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
8
|
Salehi Abar E, Vandghanooni S, Torab A, Jaymand M, Eskandani M. A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering. Int J Biol Macromol 2024; 254:127556. [PMID: 37884249 DOI: 10.1016/j.ijbiomac.2023.127556] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The creation of a suitable scaffold is a crucial step in the process of bone tissue engineering (BTE). The scaffold, acting as an artificial extracellular matrix, plays a significant role in determining the fate of cells by affecting their proliferation and differentiation in BTE. Therefore, careful consideration should be given to the fabrication approach and materials used for scaffold preparation. Natural polypeptides such as gelatin and collagen have been widely used for this purpose. The unique properties of nanoparticles, which vary depending on their size, charge, and physicochemical properties, have demonstrated potential in solving various challenges encountered in BTE. Therefore, nanocomposite biomaterials consisting of polymers and nanoparticles have been extensively used for BTE. Gelatin has also been utilized in combination with other nanomaterials to apply for this purpose. Composites of gelatin with various types of nanoparticles are particularly promising for creating scaffolds with superior biological and physicochemical properties. This review explores the use of nanocomposite biomaterials based on gelatin and various types of nanoparticles together for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Elaheh Salehi Abar
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Torab
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Kawecki NS, Norris SCP, Xu Y, Wu Y, Davis AR, Fridman E, Chen KK, Crosbie RH, Garmyn AJ, Li S, Mason TG, Rowat AC. Engineering multicomponent tissue by spontaneous adhesion of myogenic and adipogenic microtissues cultured with customized scaffolds. Food Res Int 2023; 172:113080. [PMID: 37689860 DOI: 10.1016/j.foodres.2023.113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 09/11/2023]
Abstract
The integration of intramuscular fat-or marbling-into cultured meat will be critical for meat texture, mouthfeel, flavor, and thus consumer appeal. However, culturing muscle tissue with marbling is challenging since myocytes and adipocytes have different media and scaffold requirements for optimal growth and differentiation. Here, we present an approach to engineer multicomponent tissue using myogenic and adipogenic microtissues. The key innovation in our approach is the engineering of myogenic and adipogenic microtissues using scaffolds with customized physical properties; we use these microtissues as building blocks that spontaneously adhere to produce multicomponent tissue, or marbled cultured meat. Myocytes are grown and differentiated on gelatin nanofiber scaffolds with aligned topology that mimic the aligned structure of skeletal muscle and promotes the formation of myotubes in both primary rabbit skeletal muscle and murine C2C12 cells. Pre-adipocytes are cultured and differentiated on edible gelatin microbead scaffolds, which are customized to have a physiologically-relevant stiffness, and promote lipid accumulation in both primary rabbit and murine 3T3-L1 pre-adipocytes. After harvesting and stacking the individual myogenic and adipogenic microtissues, we find that the resultant multicomponent tissues adhere into intact structures within 6-12 h in culture. The resultant multicomponent 3D tissue constructs show behavior of a solid material with a Young's modulus of ∼ 2 ± 0.4 kPa and an ultimate tensile strength of ∼ 23 ± 7 kPa without the use of additional crosslinkers. Using this approach, we generate marbled cultured meat with ∼ mm to ∼ cm thickness, which has a protein content of ∼ 4 ± 2 g/100 g that is comparable to a conventionally produced Wagyu steak with a protein content of ∼ 9 ± 4 g/100 g. We show the translatability of this layer-by-layer assembly approach for microtissues across primary rabbit cells, murine cell lines, as well as for gelatin and plant-based scaffolds, which demonstrates a strategy to generate edible marbled meats derived from different species and scaffold materials.
Collapse
Affiliation(s)
- N Stephanie Kawecki
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sam C P Norris
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yixuan Xu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yifan Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ashton R Davis
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ester Fridman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathleen K Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California LA, USA; Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrea J Garmyn
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas G Mason
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Zhou N, Liu YD, Zhang Y, Gu TW, Peng LH. Pharmacological Functions, Synthesis, and Delivery Progress for Collagen as Biodrug and Biomaterial. Pharmaceutics 2023; 15:pharmaceutics15051443. [PMID: 37242685 DOI: 10.3390/pharmaceutics15051443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Collagen has been widely applied as a functional biomaterial in regulating tissue regeneration and drug delivery by participating in cell proliferation, differentiation, migration, intercellular signal transmission, tissue formation, and blood coagulation. However, traditional extraction of collagen from animals potentially induces immunogenicity and requires complicated material treatment and purification steps. Although semi-synthesis strategies such as utilizing recombinant E. coli or yeast expression systems have been explored as alternative methods, the influence of unwanted by-products, foreign substances, and immature synthetic processes have limited its industrial production and clinical applications. Meanwhile, macromolecule collagen products encounter a bottleneck in delivery and absorption by conventional oral and injection vehicles, which promotes the studies of transdermal and topical delivery strategies and implant methods. This review illustrates the physiological and therapeutic effects, synthesis strategies, and delivery technologies of collagen to provide a reference and outlook for the research and development of collagen as a biodrug and biomaterial.
Collapse
Affiliation(s)
- Nan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Da Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
11
|
Rigogliuso S, Campora S, Notarbartolo M, Ghersi G. Recovery of Bioactive Compounds from Marine Organisms: Focus on the Future Perspectives for Pharmacological, Biomedical and Regenerative Medicine Applications of Marine Collagen. Molecules 2023; 28:molecules28031152. [PMID: 36770818 PMCID: PMC9920902 DOI: 10.3390/molecules28031152] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Marine environments cover more than 70% of the Earth's surface and are among the richest and most complex ecosystems. In terms of biodiversity, the ocean represents an important source, still not widely exploited, of bioactive products derived from species of bacteria, plants, and animals. However, global warming, in combination with multiple anthropogenic practices, represents a serious environmental problem that has led to an increase in gelatinous zooplankton, a phenomenon referred to as jellyfish bloom. In recent years, the idea of "sustainable development" has emerged as one of the essential elements of green-economy initiatives; therefore, the marine environment has been re-evaluated and considered an important biological resource. Several bioactive compounds of marine origin are being studied, and among these, marine collagen represents one of the most attractive bio-resources, given its use in various disciplines, such as clinical applications, cosmetics, the food sector, and many other industrial applications. This review aims to provide a current overview of marine collagen applications in the pharmacological and biomedical fields, regenerative medicine, and cell therapy.
Collapse
Affiliation(s)
- Salvatrice Rigogliuso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Abiel s.r.l., c/o Department STEBICEF, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
12
|
Meganathan I, Pachaiyappan M, Aarthy M, Radhakrishnan J, Mukherjee S, Shanmugam G, You J, Ayyadurai N. Recombinant and genetic code expanded collagen-like protein as a tailorable biomaterial. MATERIALS HORIZONS 2022; 9:2698-2721. [PMID: 36189465 DOI: 10.1039/d2mh00652a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Collagen occurs in nature with a dedicated triple helix structure and is the most preferred biomaterial in commercialized medical products. However, concerns on purity, disease transmission, and the reproducibility of animal derived collagen restrict its applications and warrants alternate recombinant sources. The expression of recombinant collagen in different prokaryotic and eukaryotic hosts has been reported with varying degrees of success, however, it is vital to elucidate the structural and biological characteristics of natural collagen. The recombinant production of biologically functional collagen is restricted by its high molecular weight and post-translational modification (PTM), especially the hydroxylation of proline to hydroxyproline. Hydroxyproline plays a key role in the structural stability and higher order self-assembly to form fibrillar matrices. Advancements in synthetic biology and recombinant technology are being explored for improving the yield and biomimicry of recombinant collagen. It emerges as reliable, sustainable source of collagen, promises tailorable properties and thereby custom-made protein biomaterials. Remarkably, the evolutionary existence of collagen-like proteins (CLPs) has been identified in single-cell organisms. Interestingly, CLPs exhibit remarkable ability to form stable triple helical structures similar to animal collagen and have gained increasing attention. Strategies to expand the genetic code of CLPs through the incorporation of unnatural amino acids promise the synthesis of highly tunable next-generation triple helical proteins required for the fabrication of smart biomaterials. The review outlines the importance of collagen, sources and diversification, and animal and recombinant collagen-based biomaterials and highlights the limitations of the existing collagen sources. The emphasis on genetic code expanded tailorable CLPs as the most sought alternate for the production of functional collagen and its advantages as translatable biomaterials has been highlighted.
Collapse
Affiliation(s)
- Ilamaran Meganathan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mohandass Pachaiyappan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Janani Radhakrishnan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Smriti Mukherjee
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
| | - Ganesh Shanmugam
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jingjing You
- Save Sight Institute, Sydney Medical School, University of Sydney, Australia
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
Fang J, Ma Z, Liu D, Wang Z, Cheng S, Zheng S, Wu H, Xia P, Chen X, Yang R, Hao L, Zhang Y. Co-expression of recombinant human collagen α1(III) chain with viral prolyl 4-hydroxylase in Pichia pastoris GS115. Protein Expr Purif 2022; 201:106184. [PMID: 36191842 DOI: 10.1016/j.pep.2022.106184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 10/07/2022]
Abstract
The Collagen α1(Ш) chain (COL3A1) is an important structural protein on the surface of human skin. The activity of prolyl 4-hydroxylase (P4H) is crucial to maintaining the stable triple-helix structure and function of human COL3A1. To obtain hydroxylated human COL3A1, virus-derived P4H A085R was co-expressed with human COL3A1 in Pichia pastoris GS115. Colony PCR analysis and sequencing after transfection confirmed that the target gene was successfully inserted. Quantitative reverse transcription PCR (RT-qPCR) indicated that human COL3A1 and P4H A085R were expressed at mRNA levels in the clones. SDS-PAGE and Western blot analysis of supernatant from the recombinant methylotrophic yeast culture showed that recombinant human COL3A1 (rhCOL3A1) was secreted into the culture medium with an apparent molecular mass of approximately 130 kDa. It was observed that the amount of secreted rhCOL3A1 was highest at 120 h after induction. Furthermore, mass spectrometry analysis demonstrated that rhCOL3A1 was successfully expressed in P. pastoris. The His-tagged rhCOL3A1 protein was purified by Ni-affinity column chromatography.
Collapse
Affiliation(s)
- Jiayuan Fang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Ze Ma
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Dongyue Liu
- Jilin Province Guoda Biological Engineering Co. LTD, 3999 Air Street, Changchun, Jilin, 130102, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Shuqin Cheng
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Shuo Zheng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Hongyan Wu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Peijun Xia
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Xi Chen
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Rui Yang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China.
| | - Ying Zhang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| |
Collapse
|
14
|
Pournemati B, Tabesh H, Jenabi A, Mehdinavaz Aghdam R, Hossein Rezayan A, Poorkhalil A, Ahmadi Tafti SH, Mottaghy K. Injectable conductive nanocomposite hydrogels for cardiac tissue engineering: Focusing on carbon and metal-based nanostructures. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Synthetic biology-powered microbial co-culture strategy and application of bacterial cellulose-based composite materials. Carbohydr Polym 2022; 283:119171. [DOI: 10.1016/j.carbpol.2022.119171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/18/2022]
|
16
|
Yi J, Liu Q, Zhang Q, Chew TG, Ouyang H. Modular protein engineering-based biomaterials for skeletal tissue engineering. Biomaterials 2022; 282:121414. [DOI: 10.1016/j.biomaterials.2022.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
|
17
|
Abstract
Collagen and its derivative proteins have been widely used as a major component for cosmetic formulations as a natural ingredient and moisturizer. Most commercially available collagens are animal-derived collagen type I and other forms of collagen, such as type III collagen, are far less prevalent in animals, making extraction and purification extremely difficult and expensive. Here, we report the production of a 50 kDa protein produced in yeast that is 100% identical to the N-terminus of the human type III collagen. This recombinant protein has a larger molecular weight than most incumbent recombinant collagen proteins available for personal care applications. We report the industrialization of both the fermentation and purification processes to produce a final recombinant protein product. This final protein product was shown to be safe for general applications to human skin and compatible with common formulation protocols, including ethanol-based formulations. This recombinant collagen type III protein was also shown to uniquely stimulate both collagen type I and type III production and secretion by primary human dermal fibroblasts. The unique combination of biostimulation, compatibility with beauty product formulations and demonstrated commercial production, make this novel recombinant type III collagen a good candidate for broad application in the cosmetics industry.
Collapse
|
18
|
Barreiro Carpio M, Dabaghi M, Ungureanu J, Kolb MR, Hirota JA, Moran-Mirabal JM. 3D Bioprinting Strategies, Challenges, and Opportunities to Model the Lung Tissue Microenvironment and Its Function. Front Bioeng Biotechnol 2021; 9:773511. [PMID: 34900964 PMCID: PMC8653950 DOI: 10.3389/fbioe.2021.773511] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Human lungs are organs with an intricate hierarchical structure and complex composition; lungs also present heterogeneous mechanical properties that impose dynamic stress on different tissue components during the process of breathing. These physiological characteristics combined create a system that is challenging to model in vitro. Many efforts have been dedicated to develop reliable models that afford a better understanding of the structure of the lung and to study cell dynamics, disease evolution, and drug pharmacodynamics and pharmacokinetics in the lung. This review presents methodologies used to develop lung tissue models, highlighting their advantages and current limitations, focusing on 3D bioprinting as a promising set of technologies that can address current challenges. 3D bioprinting can be used to create 3D structures that are key to bridging the gap between current cell culture methods and living tissues. Thus, 3D bioprinting can produce lung tissue biomimetics that can be used to develop in vitro models and could eventually produce functional tissue for transplantation. Yet, printing functional synthetic tissues that recreate lung structure and function is still beyond the current capabilities of 3D bioprinting technology. Here, the current state of 3D bioprinting is described with a focus on key strategies that can be used to exploit the potential that this technology has to offer. Despite today's limitations, results show that 3D bioprinting has unexplored potential that may be accessible by optimizing bioink composition and looking at the printing process through a holistic and creative lens.
Collapse
Affiliation(s)
- Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Julia Ungureanu
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Martin R. Kolb
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jeremy A. Hirota
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jose Manuel Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
19
|
Cowan DA, Moncrieffe DA. Procollagen type III amino-terminal propeptide and insulin-like growth factor I as biomarkers of growth hormone administration. Drug Test Anal 2021; 14:808-819. [PMID: 34418311 PMCID: PMC9545871 DOI: 10.1002/dta.3155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
The acceptance in 2012 by the World Anti‐Doping Agency (WADA) of the biomarker test for human growth hormone (hGH) based on procollagen type III amino‐terminal propeptide (P‐III‐NP) and insulin‐like growth factor I (IGF‐I) was perhaps the first time that such a method has been used for forensic purposes. Developing a biomarker test to anti‐doping standards, where the strict liability principle applies, is discussed. An alternative WADA‐accepted approach is based on the measurement of different hGH isoforms, a method that suffers from the very short half‐life of hGH limiting the detection period. Modification or withdrawal of the immunoassays, on which the biomarker measurements largely depend, has necessitated revalidation of the assays, remeasurement of samples and adjustment of the decision limits above which an athlete will be assumed to have administered hGH. When a liquid chromatography coupled mass spectrometry (LC–MS) method became a reality for the measurement of IGF‐I, more consistency of results was assured. Measurement of P‐III‐NP is still dependent on immunoassays although work is underway to develop an LC–MS method. The promised long‐term detection time for the biomarker assay does not appear to have been realised in practice, and this is perhaps partly the result of decision limits being set too high. Nevertheless, more robust assays are needed before a further adjustment of the decision limit is warranted. In the meantime, WADA is considering using P‐III‐NP and IGF‐I as components of a biomarker passport system recording data from an individual athlete, rather than the population. Using this approach, smaller perturbations in the growth hormone (GH) score would mandate an investigation and possible action for hGH administration.
Collapse
Affiliation(s)
- David A Cowan
- Department of Analytical, Environmental and Forensic Science, King's College London, London, UK
| | - Danielle A Moncrieffe
- Department of Analytical, Environmental and Forensic Science, King's College London, London, UK.,Drug Control Centre, Department of Analytical, Environmental and Forensic Science, King's College London, London, UK
| |
Collapse
|
20
|
Rezvani Ghomi E, Nourbakhsh N, Akbari Kenari M, Zare M, Ramakrishna S. Collagen-based biomaterials for biomedical applications. J Biomed Mater Res B Appl Biomater 2021; 109:1986-1999. [PMID: 34028179 DOI: 10.1002/jbm.b.34881] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 05/15/2021] [Indexed: 12/19/2022]
Abstract
Collagen is an insoluble fibrous protein that composes the extracellular matrix in animals. Although collagen has been used as a biomaterial since 1881, the properties and the complex structure of collagen are still extensive study subjects worldwide. In this article, several topics of importance for understanding collagen research are reviewed starting from its historical milestones, followed by the description of the collagen superfamily and its complex structures, with a focus on type I collagen. Subsequently, some of the superior properties of collagen-based biomaterials, such as biocompatibility, biodegradability, mechanical properties, and cell activities, are pinpointed. These properties make collagen applicable in biomedicine, such as wound healing, tissue engineering, surface coating of medical devices, and skin supplementation. Moreover, some antimicrobial strategies and the general host tissue responses regarding collagen as a biomaterial are presented. Finally, the current status and clinical application of the three-dimensional (3D) printing techniques for the fabrication of collagen-based scaffolds and the reconstruction of the human heart's constituents, such as capillary structures or even the entire organ, are discussed. Besides, an overall outlook for the future of this unique biomaterial is provided.
Collapse
Affiliation(s)
- Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Nooshin Nourbakhsh
- Yong Loo Lin School of Medicine, Department of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Mina Zare
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Jaitli A, Roy J, Mcmahan S, Liao J, Tang L. An in vitro system to investigate IOL: Lens capsule interaction. Exp Eye Res 2021; 203:108430. [PMID: 33422509 DOI: 10.1016/j.exer.2020.108430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/03/2023]
Abstract
Posterior capsule opacification (PCO) is the most common complication associated with intraocular lens (IOL) implantation. Unfortunately, current in vitro models cannot be used to assess the potential of PCO due to their failure to simulate the posterior curvature of the lens capsule (LC) and IOL, a factor known to affect PCO pathogenesis in clinic. To overcome such a challenge, a new system to study IOL: LC interaction and potentially predict PCO was developed in this effort. It is believed that the interactions between an IOL and the lens capsule may influence the extent of PCO formation. Specifically, strong adhesion force between an IOL and the LC may impede lens epithelial cell migration and proliferation and thus reduce PCO formation. To assess the adhesion force between an IOL and LC, a new in vitro model was established with simulated LC and a custom-designed micro-force tester. A method to fabricate simulated LCs was developed by imprinting IOLs onto molten gelatin to create simulated three dimensional (3D) LCs with curvature resembling the bag-like structure that collapses on the IOL post implantation. By pushing the LC mold vertically downward, while measuring the change in position of the bending bar with respect to its start position, the adhesion force between the IOLs and LCs was measured. An in vitro system that can measure the adhesion force reproducibly between an IOL and LC with a resolution of ~1 μN was established in this study. During system optimization, the 10% high molecular weight gelatin produced the best LC with the highest IOL: LC adhesion force with all test lenses that were fabricated from acrylic foldable, polymethylmethacrylate (PMMA) and silicone materials. Test IOLs exerted different adhesion force with the 3D simulated LCs in the following sequence: acrylic foldable IOL > silicone IOL > PMMA IOL. These results are in good agreement with the clinical observations associated with PCO performance of IOLs made of the same materials. This novel in vitro system can provide valuable insight on the IOL: LC interplay and its relationship to clinical PCO outcomes.
Collapse
Affiliation(s)
- Arjun Jaitli
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Joyita Roy
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Sara Mcmahan
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
22
|
Chen Z, Fan D, Shang L. Exploring the potential of the recombinant human collagens for biomedical and clinical applications: a short review. ACTA ACUST UNITED AC 2020; 16:012001. [PMID: 32679570 DOI: 10.1088/1748-605x/aba6fa] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural animal collagen and its recombinant collagen are favourable replacements in human tissue engineering due to their remarkable biomedical property. However, this exploitation is largely restricted due to the potential of immunogenicity and virus contamination. Exploring new ways to produce human collagen is fundamental to its biomedical and clinical application. All human fibrillar collagen molecules have three polypeptide chains constructed from a repeating Gly-Xaa-Yaa triplet, where Xaa and Yaa represent one random amino acid. Using cDNA techniques to modify several repeat sequences of the cDNA fragment, a novel human collagen, named recombinant human-like collagen (rHLC), with low immunogenicity and little risk from hidden virus can be engineered and notably tailored to specific applications. Human-like collagen (HLC) was initially used as a coating to modify the tissue engineering scaffold, and then used as the scaffold after cross-link agents were added to increase its mechanical strength. Due to its good biocompatibility, low immunogenicity, stabilised property, and the ability of mass production, HLC has been widely used in skin injury treatments, vascular scaffolds engineering, cartilage, bone defect repair, skincare, haemostatic sponge, and drug delivery, including coating with medical nanoparticles. In this review, we symmetrically reviewed the development, recent advances in design and application of HLC, and other recombinant human collagen-based biomedicine potentials. At the end, future improvements are also discussed.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China. Shaanxi Key Laboratory of Degradable Biomedical Materials; Shaanxi R&D Center of Biomaterial and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China
| | | | | |
Collapse
|
23
|
Fertala A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering (Basel) 2020; 7:E155. [PMID: 33276472 PMCID: PMC7712652 DOI: 10.3390/bioengineering7040155] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens' expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations.
Collapse
Affiliation(s)
- Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|
24
|
Tytgat L, Dobos A, Markovic M, Van Damme L, Van Hoorick J, Bray F, Thienpont H, Ottevaere H, Dubruel P, Ovsianikov A, Van Vlierberghe S. High-Resolution 3D Bioprinting of Photo-Cross-linkable Recombinant Collagen to Serve Tissue Engineering Applications. Biomacromolecules 2020; 21:3997-4007. [PMID: 32841006 PMCID: PMC7556543 DOI: 10.1021/acs.biomac.0c00386] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Various biopolymers, including gelatin, have already been applied to serve a plethora of tissue engineering purposes. However, substantial concerns have arisen related to the safety and the reproducibility of these materials due to their animal origin and the risk associated with pathogen transmission as well as batch-to-batch variations. Therefore, researchers have been focusing their attention toward recombinant materials that can be produced in a laboratory with full reproducibility and can be designed according to specific needs (e.g., by introducing additional RGD sequences). In the present study, a recombinant protein based on collagen type I (RCPhC1) was functionalized with photo-cross-linkable methacrylamide (RCPhC1-MA), norbornene (RCPhC1-NB), or thiol (RCPhC1-SH) functionalities to enable high-resolution 3D printing via two-photon polymerization (2PP). The results indicated a clear difference in 2PP processing capabilities between the chain-growth-polymerized RCPhC1-MA and the step-growth-polymerized RCPhC1-NB/SH. More specifically, reduced swelling-related deformations resulting in a superior CAD-CAM mimicry were obtained for the RCPhC1-NB/SH hydrogels. In addition, RCPhC1-NB/SH allowed the processing of the material in the presence of adipose tissue-derived stem cells that survived the encapsulation process and also were able to proliferate when embedded in the printed structures. As a consequence, it is the first time that successful HD bioprinting with cell encapsulation is reported for recombinant hydrogel bioinks. Therefore, these results can be a stepping stone toward various tissue engineering applications.
Collapse
Affiliation(s)
- Liesbeth Tytgat
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Agnes Dobos
- 3D Printing
and Biofabrication Group, Institute of Materials
Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Marica Markovic
- 3D Printing
and Biofabrication Group, Institute of Materials
Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Lana Van Damme
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Jasper Van Hoorick
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Fabrice Bray
- Miniaturisation
pour l’Analyse, la Synthèse et la Protéomique,
USR 3290 Centre National de la Recherche Scientifique, University of Lille, Villeneuve d’Ascq, 59650 France
| | - Hugo Thienpont
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Heidi Ottevaere
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Peter Dubruel
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Aleksandr Ovsianikov
- 3D Printing
and Biofabrication Group, Institute of Materials
Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Sandra Van Vlierberghe
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| |
Collapse
|
25
|
Peng W, Peng Z, Tang P, Sun H, Lei H, Li Z, Hui D, Du C, Zhou C, Wang Y. Review of Plastic Surgery Biomaterials and Current Progress in Their 3D Manufacturing Technology. MATERIALS 2020; 13:ma13184108. [PMID: 32947925 PMCID: PMC7560273 DOI: 10.3390/ma13184108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/05/2023]
Abstract
Plastic surgery is a broad field, including maxillofacial surgery, skin flaps and grafts, liposuction and body contouring, breast surgery, and facial cosmetic procedures. Due to the requirements of plastic surgery for the biological safety of materials, biomaterials are widely used because of its superior biocompatibility and biodegradability. Currently, there are many kinds of biomaterials clinically used in plastic surgery and their applications are diverse. Moreover, with the rise of three-dimensional printing technology in recent years, the macroscopically more precise and personalized bio-scaffolding materials with microporous structure have made good progress, which is thought to bring new development to biomaterials. Therefore, in this paper, we reviewed the plastic surgery biomaterials and current progress in their 3D manufacturing technology.
Collapse
Affiliation(s)
- Wei Peng
- Department of Palliative Care, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China;
- Occupational Health Emergency Key Laboratory of West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyu Peng
- Department of Thoracic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Pei Tang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (P.T.); (Z.L.)
| | - Huan Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (H.S.); (H.L.); (C.Z.)
| | - Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (H.S.); (H.L.); (C.Z.)
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (P.T.); (Z.L.)
| | - Didi Hui
- Innovatus Oral Cosmetic & Surgical Institute, Norman, OK 73069, USA; (D.H.); (C.D.)
| | - Colin Du
- Innovatus Oral Cosmetic & Surgical Institute, Norman, OK 73069, USA; (D.H.); (C.D.)
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (H.S.); (H.L.); (C.Z.)
| | - Yongwei Wang
- Department of Palliative Care, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China;
- Occupational Health Emergency Key Laboratory of West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
26
|
Wang R, Mu L, Bao Y, Lin H, Ji T, Shi Y, Zhu J, Wu W. Holistically Engineered Polymer-Polymer and Polymer-Ion Interactions in Biocompatible Polyvinyl Alcohol Blends for High-Performance Triboelectric Devices in Self-Powered Wearable Cardiovascular Monitorings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002878. [PMID: 32596980 DOI: 10.1002/adma.202002878] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/11/2020] [Indexed: 05/08/2023]
Abstract
The capability of sensor systems to efficiently scavenge their operational power from stray, weak environmental energies through sustainable pathways could enable viable schemes for self-powered health diagnostics and therapeutics. Triboelectric nanogenerators (TENG) can effectively transform the otherwise wasted environmental, mechanical energy into electrical power. Recent advances in TENGs have resulted in a significant boost in output performance. However, obstacles hindering the development of efficient triboelectric devices based on biocompatible materials continue to prevail. Being one of the most widely used polymers for biomedical applications, polyvinyl alcohol (PVA) presents exciting opportunities for biocompatible, wearable TENGs. Here, the holistic engineering and systematic characterization of the impact of molecular and ionic fillers on PVA blends' triboelectric performance is presented for the first time. Triboelectric devices built with optimized PVA-gelatin composite films exhibit stable and robust triboelectricity outputs. Such wearable devices can detect the imperceptible skin deformation induced by the human pulse and capture the cardiovascular information encoded in the pulse signals with high fidelity. The gained fundamental understanding and demonstrated capabilities enable the rational design and holistic engineering of novel materials for more capable biocompatible triboelectric devices that can continuously monitor vital physiological signals for self-powered health diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ruoxing Wang
- School of Industrial Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Flex Laboratory, Purdue University, West Lafayette, IN, 47907, USA
| | - Liwen Mu
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
- Division of Machine Elements, Luleå University of Technology, Luleå, 97187, Sweden
| | - Yukai Bao
- School of Industrial Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Han Lin
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Tuo Ji
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Yijun Shi
- Division of Machine Elements, Luleå University of Technology, Luleå, 97187, Sweden
| | - Jiahua Zhu
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Wenzhuo Wu
- School of Industrial Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
27
|
Kilmer CE, Battistoni CM, Cox A, Breur GJ, Panitch A, Liu JC. Collagen Type I and II Blend Hydrogel with Autologous Mesenchymal Stem Cells as a Scaffold for Articular Cartilage Defect Repair. ACS Biomater Sci Eng 2020; 6:3464-3476. [PMID: 33463160 PMCID: PMC8287628 DOI: 10.1021/acsbiomaterials.9b01939] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Collagen type II is a promising material to repair cartilage defects since it is a major component of articular cartilage and plays a key role in chondrocyte function. This study investigated the chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs) embedded within a 3:1 collagen type I to II blend (Col I/II) hydrogel or an all collagen type I (Col I) hydrogel. Glycosaminoglycan (GAG) production in Col I/II hydrogels was statistically higher than that in Col I hydrogels or pellet culture, and these results suggested that adding collagen type II promoted GAG production. Col I/II hydrogels had statistically lower alkaline phosphatase (AP) activity than pellets cultured in a chondrogenic medium. The ability of MSCs encapsulated in Col I/II hydrogels to repair cartilage defects was investigated by creating two cartilage defects in the femurs of rabbits. After 13 weeks, histochemical staining suggested that Col I/II blend hydrogels provided favorable conditions for cartilage repair. Histological scoring revealed a statistically higher cartilage repair score for the Col I/II hydrogels compared to either the Col I hydrogels or empty defect controls. Results from this study suggest that there is clinical value in the cartilage repair capabilities of our Col I/II hydrogel with encapsulated MSCs.
Collapse
Affiliation(s)
- Claire E. Kilmer
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
| | - Carly M. Battistoni
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University,
West Lafayette, IN, 47907, USA
| | - Gert J. Breur
- Department of Veterinary Clinical Sciences, Purdue
University, West Lafayette, IN, 47907, USA
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
- School of Biomedical Engineering, University of California
Davis, Davis, CA, 95616, USA
| | - Julie C. Liu
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
| |
Collapse
|
28
|
|
29
|
Advances in biomaterials for adipose tissue reconstruction in plastic surgery. NANOTECHNOLOGY REVIEWS 2020. [DOI: 10.1515/ntrev-2020-0028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Adipose tissue reconstruction is an important technique for soft tissue defects caused by facial plastic surgery and trauma. Adipose tissue reconstruction can be repaired by fat transplantation and biomaterial filling, but there are some problems in fat transplantation, such as second operation and limited resources. The application of advanced artificial biomaterials is a promising strategy. In this paper, injectable biomaterials and three-dimensional (3D) tissue-engineered scaffold materials for adipose tissue reconstruction in plastic surgery are reviewed. Injectable biomaterials include natural biomaterials and artificial biomaterials, which generally have problems such as high absorptivity of fillers, repeated injection, and rejection. In recent years, the technology of new 3D tissue-engineering scaffold materials with adipose-derived stem cells (ADSCs) and porous scaffold as the core has made good progress in fat reconstruction, which is expected to solve the current problem of clinical adipose tissue reconstruction, and various biomaterials preparation technology and transformation research also provide the basis for clinical transformation of fat tissue reconstruction.
Collapse
|
30
|
Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020; 21:1968-1994. [PMID: 32227919 DOI: 10.1021/acs.biomac.0c00045] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic 3D extracellular matrices (ECMs) find application in cell studies, regenerative medicine, and drug discovery. While cells cultured in a monolayer may exhibit unnatural behavior and develop very different phenotypes and genotypes than in vivo, great efforts in materials chemistry have been devoted to reproducing in vitro behavior in in vivo cell microenvironments. This requires fine-tuning the biochemical and structural actors in synthetic ECMs. This review will present the fundamentals of the ECM, cover the chemical and structural features of the scaffolds used to generate ECM mimics, discuss the nature of the signaling biomolecules required and exploited to generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlight the synthetic strategies involved in creating functional 3D ECM mimics.
Collapse
Affiliation(s)
- Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, , 92296 Châtenay-Malabry, France
| | - Sofia Magli
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Linda Rabbachin
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Susanna Sampaolesi
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
31
|
Sohutskay DO, Puls TJ, Voytik-Harbin SL. Collagen Self-assembly: Biophysics and Biosignaling for Advanced Tissue Generation. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Newly Designed Human-Like Collagen to Maximize Sensitive Release of BMP-2 for Remarkable Repairing of Bone Defects. Biomolecules 2019; 9:biom9090450. [PMID: 31487971 PMCID: PMC6769454 DOI: 10.3390/biom9090450] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/18/2022] Open
Abstract
Designing the “ideal” hydrogel/matrix which can load bone morphogenetic protein-2 (BMP-2) in a low dose and with a sustained release is the key for its successful therapeutic application to enhance osteogenesis. The current use of natural collagen sponges as hydrogel/matrix is limited due to the collagen matrix showing weak mechanical strength and unmanageable biodegradability. Furthermore, the efficiency and safe dose usage of the BMP-2 has never been seriously considered other than purely chasing the lowest dose usage and extended-release time. In this paper, we customized a novel enzymatically cross-linked recombinant human-like collagen (HLC) sponge with low immunogenicity, little risk from hidden viruses, and easy production. We obtained a unique vertical pore structure and the porosity of the HLC, which are beneficial for Mesenchymal stem cells (MSCs) migration into the HLC sponge and angiopoiesis. This HLC sponge loading with low dose BMP-2 (1 µg) possessed high mechanical strength along with a burst and a sustained release profile. These merits overcome previous limitations of HLC in bone repair and are safer and more sensitive than commercial collagens. For the first time, we identified that a 5 µg dose of BMP-2 can bring about the side effect of bone overgrowth through this sensitive delivery system. Osteoinduction of the HLC-BMP sponges was proved by an in vivo mouse ectopic bone model and a rat cranial defect repair model. The method and the HLC-BMP sponge have the potential to release other growth factors and aid other tissue regeneration. Additionally, the ability to mass-produce HLC in our study overcomes the current supply shortage, which limits bone repair in the clinic.
Collapse
|
33
|
Gellermann P, Schneider-Barthold C, Bolten SN, Overfelt E, Scheper T, Pepelanova I. Production of a Recombinant Non-Hydroxylated Gelatin Mimetic in Pichia pastoris for Biomedical Applications. J Funct Biomater 2019; 10:E39. [PMID: 31480684 PMCID: PMC6787575 DOI: 10.3390/jfb10030039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 01/10/2023] Open
Abstract
Proteins derived from the natural extracellular matrix like collagen or gelatin are common in clinical research, where they are prized for their biocompatibility and bioactivity. Cells are able to adhere, grow and remodel scaffolds based on these materials. Usually, collagen and gelatin are sourced from animal material, risking pathogenic transmission and inconsistent batch-to-batch product quality. A recombinant production in yeast circumvents these disadvantages by ensuring production with a reproducible quality in animal-component-free media. A gelatin mimetic protein, based on the alpha chain of human collagen I, was cloned in Pichia pastoris under the control of the methanol-inducible alcohol oxidase (AOX1) promoter. A producing clone was selected and cultivated at the 30 L scale. The protein was secreted into the cultivation medium and the final yield was 3.4 g·L-1. Purification of the target was performed directly from the cell-free medium by size exclusion chromatography. The gelatin mimetic protein was tested in cell culture for biocompatibility and for promoting cell adhesion. It supported cell growth and its performance was indistinguishable from animal-derived gelatin. The gelatin-mimetic protein represents a swift strategy to produce recombinant and human-based extracellular matrix proteins for various biomedical applications.
Collapse
Affiliation(s)
- Pia Gellermann
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany
| | | | - Svenja Nicolin Bolten
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Ethan Overfelt
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| |
Collapse
|
34
|
Werten MWT, Eggink G, Cohen Stuart MA, de Wolf FA. Production of protein-based polymers in Pichia pastoris. Biotechnol Adv 2019; 37:642-666. [PMID: 30902728 PMCID: PMC6624476 DOI: 10.1016/j.biotechadv.2019.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/03/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Materials science and genetic engineering have joined forces over the last three decades in the development of so-called protein-based polymers. These are proteins, typically with repetitive amino acid sequences, that have such physical properties that they can be used as functional materials. Well-known natural examples are collagen, silk, and elastin, but also artificial sequences have been devised. These proteins can be produced in a suitable host via recombinant DNA technology, and it is this inherent control over monomer sequence and molecular size that renders this class of polymers of particular interest to the fields of nanomaterials and biomedical research. Traditionally, Escherichia coli has been the main workhorse for the production of these polymers, but the methylotrophic yeast Pichia pastoris is finding increased use in view of the often high yields and potential bioprocessing benefits. We here provide an overview of protein-based polymers produced in P. pastoris. We summarize their physicochemical properties, briefly note possible applications, and detail their biosynthesis. Some challenges that may be faced when using P. pastoris for polymer production are identified: (i) low yields and poor process control in shake flask cultures; i.e., the need for bioreactors, (ii) proteolytic degradation, and (iii) self-assembly in vivo. Strategies to overcome these challenges are discussed, which we anticipate will be of interest also to readers involved in protein expression in P. pastoris in general.
Collapse
Affiliation(s)
- Marc W T Werten
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands.
| | - Gerrit Eggink
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands; Bioprocess Engineering, Wageningen University & Research, NL-6708 PB Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University & Research, NL-6708 WE Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands
| |
Collapse
|
35
|
Spaans S, Fransen PPKH, Schotman MJG, van der Wulp R, Lafleur RP, Kluijtmans SGJM, Dankers PYW. Supramolecular Modification of a Sequence-Controlled Collagen-Mimicking Polymer. Biomacromolecules 2019; 20:2360-2371. [PMID: 31050892 PMCID: PMC6560502 DOI: 10.1021/acs.biomac.9b00353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/29/2019] [Indexed: 11/29/2022]
Abstract
Structurally and functionally well-defined recombinant proteins are an interesting class of sequence-controlled macromolecules to which different crosslinking chemistries can be applied to tune their biological properties. Herein, we take advantage of a 571-residue recombinant peptide based on human collagen type I (RCPhC1), which we functionalized with supramolecular 4-fold hydrogen bonding ureido-pyrimidinone (UPy) moieties. By grafting supramolecular UPy moieties onto the backbone of RCPhC1 (UPy-RCPhC1), increased control over the polymer structure, assembly, gelation, and mechanical properties was achieved. In addition, by increasing the degree of UPy functionalization on RCPhC1, cardiomyocyte progenitor cells were cultured on "soft" (∼26 kPa) versus "stiff" (∼68-190 kPa) UPy-RCPhC1 hydrogels. Interestingly, increased stress fiber formation, focal adhesions, and proliferation were observed on stiffer compared to softer substrates, owing to the formation of stronger cell-material interactions. In conclusion, a bioinspired hydrogel material was designed by a combination of two well-known natural components, i.e., a protein as sequence-controlled polymer and UPy units inspired on nucleobases.
Collapse
Affiliation(s)
- Sergio Spaans
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter-Paul K. H. Fransen
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maaike J. G. Schotman
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ruben van der Wulp
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - René P.
M. Lafleur
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Patricia Y. W. Dankers
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
36
|
Dang X, Yang M, Zhang B, Chen H, Wang Y. Recovery and utilization of collagen protein powder extracted from chromium leather scrap waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7277-7283. [PMID: 30684174 DOI: 10.1007/s11356-019-04226-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
In this work, we investigate collagen protein powder (CPP) extracted from chromium leather scrap waste (CLSW). The composition and molecular weight distribution of CPP were determined by elemental analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), respectively. The microstructure and size distribution of CPP were then characterized by scanning electron microscopy (SEM) and nanometer analyzer instrument. Finally, CPP was treated with corn starch (CS), and the swelling behavior of the resulting CPP-CS blend was investigated in order to determine its range of applications. The experimental data showed that CPP contains 13 different amino-acids. CPP also displayed low mineral salt levels and a nitrogen content of 43.84%, indicating its potential use as an organic fertilizer. The molecular weight range of CPP is 6.5 to ~ 26.6 kDa. After the obtained CPP was blended with CS, the CPP-CS blend is endowed with optimal swelling properties and is able to overcome the solubility drawbacks of CPP alone. In addition, when the CPP was used as a natural fertilizer, the germination rate and height of kidney beans obviously increased.
Collapse
Affiliation(s)
- Xugang Dang
- The Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, China
| | - Mao Yang
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong, 250353, China
| | - Benmin Zhang
- The Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, China
| | - Hui Chen
- The Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, China.
| | - Yajuan Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315016, China
| |
Collapse
|
37
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 599] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
38
|
Abascal NC, Regan L. The past, present and future of protein-based materials. Open Biol 2018; 8:180113. [PMID: 30381364 PMCID: PMC6223211 DOI: 10.1098/rsob.180113] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/05/2018] [Indexed: 11/23/2022] Open
Abstract
Protein-based materials are finding new uses and applications after millennia of impacting the daily life of humans. Some of the earliest uses of protein-based materials are still evident in silk and wool textiles and leather goods. Today, even as silks, wools and leathers are still be used in traditional ways, these proteins are now seen as promising materials for biomaterials, vehicles of drug delivery and components of high-tech fabrics. With the advent of biosynthetic methods and streamlined means of protein purification, protein-based materials-recombinant and otherwise-are being used in a host of applications at the cutting edge of medicine, electronics, materials science and even fashion. This commentary aims to discuss a handful of these applications while taking a critical look at where protein-based materials may be used in the future.
Collapse
Affiliation(s)
- Nadia C Abascal
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lynne Regan
- Department of Interdisciplinary Science, Centre for Synthetic and Systems Biology, Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
Rezaei N, Lyons A, Forde NR. Environmentally Controlled Curvature of Single Collagen Proteins. Biophys J 2018; 115:1457-1469. [PMID: 30269884 PMCID: PMC6260212 DOI: 10.1016/j.bpj.2018.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 12/01/2022] Open
Abstract
The predominant structural protein in vertebrates is collagen, which plays a key role in extracellular matrix and connective tissue mechanics. Despite its prevalence and physical importance in biology, the mechanical properties of molecular collagen are far from established. The flexibility of its triple helix is unresolved, with descriptions from different experimental techniques ranging from flexible to semirigid. Furthermore, it is unknown how collagen type (homo- versus heterotrimeric) and source (tissue derived versus recombinant) influence flexibility. Using SmarTrace, a chain-tracing algorithm we devised, we performed statistical analysis of collagen conformations collected with atomic force microscopy to determine the protein's mechanical properties. Our results show that types I, II, and III collagens-the key fibrillar varieties-exhibit similar molecular flexibilities. However, collagen conformations are strongly modulated by salt, transitioning from compact to extended as KCl concentration increases in both neutral and acidic pH. Although analysis with a standard worm-like chain model suggests that the persistence length of collagen can attain a wide range of values within the literature range, closer inspection reveals that this modulation of collagen's conformational behavior is not due to changes in flexibility but rather arises from the induction of curvature (either intrinsic or induced by interactions with the mica surface). By modifying standard polymer theory to include innate curvature, we show that collagen behaves as an equilibrated curved worm-like chain in two dimensions. Analysis within the curved worm-like chain model shows that collagen's curvature depends strongly on pH and salt, whereas its persistence length does not. Thus, we find that triple-helical collagen is well described as semiflexible irrespective of source, type, pH, and salt environment. These results demonstrate that collagen is more flexible than its conventional description as a rigid rod, which may have implications for its cellular processing and secretion.
Collapse
Affiliation(s)
- Nagmeh Rezaei
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Aaron Lyons
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, Canada.
| |
Collapse
|
40
|
Peng YY, Nebl T, Glattauer V, Ramshaw JA. Incorporation of hydroxyproline in bacterial collagen from Streptococcus pyogenes. Acta Biomater 2018; 80:169-175. [PMID: 30218779 DOI: 10.1016/j.actbio.2018.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
Bacterial collagen-like proteins differ from vertebrate collagens in that they do not contain hydroxyproline, which is seen as a characteristic of the vertebrate collagens, and which provides a significant contribution to the stability of the collagen triple-helix at body temperature. Despite this difference, the bacterial collagens are stable at around body temperature through inclusion of other stabilising sequence elements. Another difference is the lack of aggregation, and certain vertebrate collagen binding domains that can be introduced into the bacterial sequence lack full function when hydroxyproline is absent. In the present study we have demonstrated that a simple method utilising co-translational incorporation during fermentation can be used to incorporate hydroxyproline into the recombinant bacterial collagen. The presence and amount of hydroxyproline incorporation was shown by amino acid analysis and by mass spectrometry. A small increase in thermal stability was observed using circular dichroism spectroscopy. STATEMENT OF SIGNIFICANCE: Recombinant bacterial collagens provide a new opportunity for biomedical materials as they are readily produced in large quantity in E. coli. Unlike animal collagens, they are stable without the need for inclusion of a secondary modification system for hydroxyproline incorporation. In animal collagens, however, introduction of hydroxyproline is essential for stability and is also important for functional molecular interactions within the mammalian extracellular matrix. The present study has shown that hydroxyproline can be readily introduced into recombinant S. pyogenes bacterial collagen through direct co-translational incorporation of this modified imino acid during expression using the codons for proline in the introduced gene construct. This hydroxylation further improves the stability of the collagen and is available to enhance any introduced molecular functions.
Collapse
|
41
|
Cho KH, Uthaman S, Park IK, Cho CS. Injectable Biomaterials in Plastic and Reconstructive Surgery: A Review of the Current Status. Tissue Eng Regen Med 2018; 15:559-574. [PMID: 30603579 PMCID: PMC6171701 DOI: 10.1007/s13770-018-0158-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Injectable biomaterials have attracted increasing attention for volume restoration and tissue regeneration. The main aim of this review is to discuss the current status of the injectable biomaterials for correction of tissue defects in plastic and reconstructive surgery. METHODS Requirements of injectable biomaterials, mechanism of in situ gelation, characteristics, and the combinational usage of adipose-derived stem cells (ADSCs) and growth factors were reviewed. RESULTS The ideal injectable biomaterials should be biocompatible, non-toxic, easy to use, and cost-effective. Additionally, it should possess adequate mechanical properties and stability. In situ gelation method includes physical, chemical, enzymatic and photo-initiated methods. Natural and synthetic biomaterials carry their pros and cons due to their inherent properties. The combined use of ADSCs and growth factors provides enhanced potential for adipose tissue regeneration. CONCLUSIONS The usage of injectable biomaterials has been increasing for the tissue restoration and regeneration. The future of incorporating ADSCs and growth factors into the injectable biomaterials is promising.
Collapse
Affiliation(s)
- Ki-Hyun Cho
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju, 61469 Republic of Korea
| | - Chong-Su Cho
- Research Institute for Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| |
Collapse
|
42
|
|
43
|
Yu F, Zong C, Jin S, Zheng J, Chen N, Huang J, Chen Y, Huang F, Yang Z, Tang Y, Ding G. Optimization of Extraction Conditions and Characterization of Pepsin-Solubilised Collagen from Skin of Giant Croaker (Nibea japonica). Mar Drugs 2018; 16:md16010029. [PMID: 29342895 PMCID: PMC5793077 DOI: 10.3390/md16010029] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/06/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022] Open
Abstract
In the present study, response surface methodology was performed to investigate the effects of extraction parameters on pepsin-solubilised collagen (PSC) from the skin of the giant croaker Nibea japonica. The optimum extraction conditions of PSC were as follows: concentration of pepsin was 1389 U/g, solid-liquid ratio was 1:57 and hydrolysis time was 8.67 h. Under these conditions, the extraction yield of PSC was up to 84.85%, which is well agreement with the predict value of 85.03%. The PSC from Nibea japonica skin was then characterized as type I collagen by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The fourier transforms infrared spetroscopy (FTIR) analysis revealed that PSC maintains its triple-helical structure by the hydrogen bond. All PSCs were soluble in the pH range of 1.0-4.0 and decreases in solubility were observed at neutral or alkaline conditions. All PSCs had a decrease in solubility in the presence of sodium chloride, especially with a concentration above 2%. So, the Nibea japonica skin could serve as another potential source of collagen.
Collapse
Affiliation(s)
- Fangmiao Yu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Chuhong Zong
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Shujie Jin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Jiawen Zheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Nan Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Ju Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yan Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Fangfang Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
44
|
Yang K, Sun J, Wei D, Yuan L, Yang J, Guo L, Fan H, Zhang X. Photo-crosslinked mono-component type II collagen hydrogel as a matrix to induce chondrogenic differentiation of bone marrow mesenchymal stem cells. J Mater Chem B 2017; 5:8707-8718. [DOI: 10.1039/c7tb02348k] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Type II collagen methacrylamide with a triple helix was developed for 3D construction of a cartilaginous ECM-like microenvironment to induce chondrogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Ke Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jing Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Dan Wei
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Lu Yuan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jirong Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Likun Guo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
45
|
Abstract
There is a great deal of interest in obtaining recombinant collagen as an alternative source of material for biomedical applications and as an approach for obtaining basic structural and biological information. However, application of recombinant technology to collagen presents challenges, most notably the need for post-translational hydroxylation of prolines for triple-helix stability. Full length recombinant human collagens have been successfully expressed in cell lines, yeast, and several plant systems, while collagen fragments have been expressed in E. coli. In addition, bacterial collagen-like proteins can be expressed in high yields in E. coli and easily manipulated to incorporate biologically active sequences from human collagens. These expression systems allow manipulation of biologically active sequences within collagen, which has furthered our understanding of the relationships between collagen sequences, structure and function. Here, recombinant studies on collagen interactions with cell receptors, extracellular matrix proteins, and matrix metalloproteinases are reviewed, and discussed in terms of their potential biomaterial and biomedical applications.
Collapse
Affiliation(s)
- Barbara Brodsky
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3169, Australia
| |
Collapse
|
46
|
Stoichevska V, An B, Peng YY, Yigit S, Vashi AV, Kaplan DL, Werkmeister JA, Dumsday GJ, Ramshaw JAM. Formation of multimers of bacterial collagens through introduction of specific sites for oxidative crosslinking. J Biomed Mater Res A 2016; 104:2369-76. [DOI: 10.1002/jbm.a.35772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/15/2016] [Accepted: 05/04/2016] [Indexed: 11/09/2022]
Affiliation(s)
| | - Bo An
- Department of Biomedical Engineering; Tufts University; Medford Massachusetts 02155
| | - Yong Y. Peng
- CSIRO Manufacturing; Bayview Avenue Clayton VIC 3169 Australia
| | - Sezin Yigit
- Department of Biomedical Engineering; Tufts University; Medford Massachusetts 02155
| | - Aditya V. Vashi
- CSIRO Manufacturing; Bayview Avenue Clayton VIC 3169 Australia
| | - David L. Kaplan
- Department of Biomedical Engineering; Tufts University; Medford Massachusetts 02155
| | | | | | | |
Collapse
|
47
|
Wieczorek A, Rezaei N, Chan CK, Xu C, Panwar P, Brömme D, Merschrod S EF, Forde NR. Development and characterization of a eukaryotic expression system for human type II procollagen. BMC Biotechnol 2015; 15:112. [PMID: 26666739 PMCID: PMC4678704 DOI: 10.1186/s12896-015-0228-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/07/2015] [Indexed: 11/10/2022] Open
Abstract
Background Triple helical collagens are the most abundant structural protein in vertebrates and are widely used as biomaterials for a variety of applications including drug delivery and cellular and tissue engineering. In these applications, the mechanics of this hierarchically structured protein play a key role, as does its chemical composition. To facilitate investigation into how gene mutations of collagen lead to disease as well as the rational development of tunable mechanical and chemical properties of this full-length protein, production of recombinant expressed protein is required. Results Here, we present a human type II procollagen expression system that produces full-length procollagen utilizing a previously characterized human fibrosarcoma cell line for production. The system exploits a non-covalently linked fluorescence readout for gene expression to facilitate screening of cell lines. Biochemical and biophysical characterization of the secreted, purified protein are used to demonstrate the proper formation and function of the protein. Assays to demonstrate fidelity include proteolytic digestion, mass spectrometric sequence and posttranslational composition analysis, circular dichroism spectroscopy, single-molecule stretching with optical tweezers, atomic-force microscopy imaging of fibril assembly, and transmission electron microscopy imaging of self-assembled fibrils. Conclusions Using a mammalian expression system, we produced full-length recombinant human type II procollagen. The integrity of the collagen preparation was verified by various structural and degradation assays. This system provides a platform from which to explore new directions in collagen manipulation. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0228-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Wieczorek
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Naghmeh Rezaei
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Clara K Chan
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.,Present Address: Department of Bioengineering, University of California at Los Angeles, Los Angeles, USA
| | - Chuan Xu
- Department of Chemistry, Memorial University, St. John's, NL, A1B 3X7, Canada.,Present Address: Green Innovative Technologies R&D Centre Ltd, Vancouver, Canada
| | - Preety Panwar
- Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Dieter Brömme
- Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Biochemistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Erika F Merschrod S
- Department of Chemistry, Memorial University, St. John's, NL, A1B 3X7, Canada
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
48
|
Setina CM, Haase JP, Glatz CE. Process integration for recovery of recombinant collagen type I α1 from corn seed. Biotechnol Prog 2015; 32:98-107. [DOI: 10.1002/btpr.2191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/07/2015] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Charles E. Glatz
- Dept. of Chemical and Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011
| |
Collapse
|
49
|
Ramshaw JAM. Biomedical applications of collagens. J Biomed Mater Res B Appl Biomater 2015; 104:665-75. [DOI: 10.1002/jbm.b.33541] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 08/31/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022]
|
50
|
Yousaf AM, Kim DW, Kim JK, Kim JO, Yong CS, Choi HG. Novel fenofibrate-loaded gelatin microcapsules with enhanced solubility and excellent flowability: Preparation and physicochemical characterization. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|