1
|
Gayathri RSR, Sheeba MS, Chandran SS, John S, Chiseena CT, John S, R S D, J S G. Isolation, identification and bioprospecting potential of Bacillus subtilis, endophytic bacterium from Bruguiera gymnorrhiza (L.) Lam. ex Savigny. Microb Pathog 2025; 203:107458. [PMID: 40058417 DOI: 10.1016/j.micpath.2025.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Mangroves are crucial for supporting coastal communities, benefiting both humans and animals. Their intricate root systems grasp the soil, mitigating erosion and dampening wave impact. As a result, they shield and fortify shorelines that would otherwise erode. This study focuses on the isolation of endophytic bacteria from the stem of Bruguiera gymnorrhiza. Molecular analysis using 16S rDNA gene sequencing identified the isolate as Bacillus subtilis (BG1). Its hydrolytic enzyme production capabilities were assessed, revealing its ability to produce cellulase, amylase, protease and L-asparaginase. The isolate also demonstrated various plant growth promoting traits including ammonia production, indole 3- acetic acid (IAA) production, hydrogen cyanide (HCN) production, phosphate solubilization, and ACC deaminase activity. IAA and organic acid production were quantified using Liquid Chromatography - Mass Spectrometry (LC-MS/MS), with B. subtilis producing 86.32 ± 0.64 μg mL-1 of IAA, peaking at a retention time of 6.8 min. The endophyte also produced two different organic acids during phosphate solubilization with malic acid been the most abundant (398.79 ± 2.58 μg mL-1). Additionally, B. subtilis was able to form biofilm and exhibited drug resistance towards Cefixime (5 μg). Biofilm was characterized using Fourier transform infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). Invitro antagonist studies demonstrated the significant effectiveness of B. subtilis against two pathogens, Staphylococcus aureus and Streptococcus mutans. This is the first study to successfully isolate and identify endophytic bacteria from B. gymnorrhiza, highlighting its plant growth promoting traits, biofilm forming potential, and antibacterial capabilities.
Collapse
Affiliation(s)
- Raj S R Gayathri
- Postgraduate Department of Botany and Research Centre, Government College for Women, University of Kerala, Thiruvananthapuram, Kerala, 695014, India.
| | - M S Sheeba
- Postgraduate Department of Botany and Research Centre, Government College for Women, University of Kerala, Thiruvananthapuram, Kerala, 695014, India.
| | - Sukanya S Chandran
- Postgraduate Department of Botany and Research Centre, Government College for Women, University of Kerala, Thiruvananthapuram, Kerala, 695014, India
| | - Swapna John
- Postgraduate Department of Botany and Research Centre, Government College for Women, University of Kerala, Thiruvananthapuram, Kerala, 695014, India
| | - C T Chiseena
- Postgraduate Department of Botany and Research Centre, Government College for Women, University of Kerala, Thiruvananthapuram, Kerala, 695014, India
| | - Sneha John
- Postgraduate Department of Botany and Research Centre, Government College for Women, University of Kerala, Thiruvananthapuram, Kerala, 695014, India
| | - Devika R S
- Postgraduate Department of Botany and Research Centre, Government College for Women, University of Kerala, Thiruvananthapuram, Kerala, 695014, India
| | - Greeshma J S
- Postgraduate Department of Botany and Research Centre, Government College for Women, University of Kerala, Thiruvananthapuram, Kerala, 695014, India
| |
Collapse
|
2
|
Zhang QH, Tan XT, Li ZB, Chen YQ, Yang ZY, Xin GR, He CT. De-Methyl Esterification Modification of Root Pectin Mediates Cd Accumulation of Lactuca sativa. PLANT, CELL & ENVIRONMENT 2025; 48:1735-1748. [PMID: 39491538 DOI: 10.1111/pce.15240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Cadmium (Cd) contamination in agricultural soil brings severe health risks through the dietary intake of Cd-polluted crops. The comprehensive role of pectin in lowering Cd accumulation is investigated through low Cd accumulated (L) and high Cd accumulated (H) cultivars of L. sativa. The significantly different Cd contents in the edible parts of two L. sativa cultivars are accomplished by different Cd transportations. The pectin is the dominant responsive cell wall component according to significantly increased uronic acid contents and the differential Cd absorption between unmodified and modified cell wall. The chemical structure characterization revealed the decreased methyl esterification in pectin under Cd treatment compared with control. Significantly brighter LM19 relative fluorescence density and 40.82% decreased methanol in the root pectin of L cultivar under Cd treatment (p < 0.05) supported that the de-methyl esterification of root pectin is more significant in L cultivar than in H cultivar. The pectin de-methyl esterification of L cultivar is achieved by the upregulation of pectin esterases and the downregulation of pectin esterase inhibitors under Cd treatments, which has facilitated the higher Cd-binding of pectin. Our findings provide deep insight into the differential Cd accumulation of L. sativa cultivars and contribute to the understanding the pollutant behaviors in plants.
Collapse
Affiliation(s)
- Qian-Hui Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Xuan-Tong Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Zhen-Bang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Yi-Qi Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Zhong-Yi Yang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - Guo-Rong Xin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Chun-Tao He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| |
Collapse
|
3
|
Wandee R, Sutthanut K, Songsri J, Weerapreeyakul N, Rittirod T, Tippayawat P, Yangkruea O, Jakcharoenpornchai S. Prebiotic property of tamarind seed kernel on Bifidobacterium animalis growth and biofilm formation. Food Chem X 2025; 25:102180. [PMID: 39897976 PMCID: PMC11787668 DOI: 10.1016/j.fochx.2025.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
This research explored the prebiotic potential of tamarind seed kernel powder (RTS), focusing on yield, nutritional composition, physicochemical properties using ATR-FTIR spectroscopy and colorimetric methods, effects on Bifidobacterium animalis in promoting the growth and biofilm formation compared to inulin using bacterial enumeration and crystal violet staining techniques, and the biofilm biomolecular composition characterization. The multi-nutrient composition RTS yielded 65.65 % (w/w), which significantly exhibited prebiotic activity in a dose-dependent manner with effective concentrations at 2.5 and 5 % RTS, stimulated B. animalis growth (rate 22 % • h-1) and enhanced biofilm formation (BFI = 256.71) exceeding the inulin. Moreover, ATR-FTIR spectroscopy and PCA analysis revealed the RTS-induced alteration of the biofilm's biomolecular composition, with a notable increase in amide A and a decrease in carboxylic hydroxyl groups. The study highlights RTS as a promising prebiotic agent with the potential for improving gut health, with further validation in the in vivo models being advisable.
Collapse
Affiliation(s)
- Roongrawee Wandee
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khaetthareeya Sutthanut
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jenjira Songsri
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Theera Rittirod
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Orawan Yangkruea
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirapop Jakcharoenpornchai
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Quintero M, Zuluaga-Valencia SD, Ríos-López LG, Sánchez O, Bernal CA, Sepúlveda N, Gómez-León J. Mercury-Resistant Bacteria Isolated from an Estuarine Ecosystem with Detoxification Potential. Microorganisms 2024; 12:2631. [PMID: 39770833 PMCID: PMC11676337 DOI: 10.3390/microorganisms12122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Mercury pollution is a significant environmental issue, primarily resulting from industrial activities, including gold mining extraction. In this study, 333 microorganisms were tested in increasing mercury concentrations, where 158 bacteria and 14 fungi were able to grow and remain viable at concentrations over 5.0 mg/L of mercuric chloride (II). One of the bacterial strains, Stenotrophomonas sp. INV PRT0231, isolated from the mouth of the San Juan River in the Chocó region in Colombia, showed a high mercury resistance level (MIC90 of 27 ± 9 mg/L), with a removal rate of 86.9%, an absorption rate of 1.2%, and a volatilization rate of 85.7% at pH 6.0 and 30.0 °C. The FTIR analysis showed changes in the functional groups, including fatty acid chains and methyl groups, proteins, and lipopolysaccharides associated with the carboxylate group (COO-), suggesting an important role of these biomolecules and their associated functional groups as mechanisms employed by the bacterium for mercury detoxification. Our study contributes to the understanding of the mechanisms of mercury biotransformation in microbial environmental isolates to help develop bioremediation strategies to mitigate mercury pollution caused by anthropogenic activities.
Collapse
Affiliation(s)
- Marynes Quintero
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (M.Q.); (S.D.Z.-V.); (L.G.R.-L.)
| | - Sol D. Zuluaga-Valencia
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (M.Q.); (S.D.Z.-V.); (L.G.R.-L.)
| | - Lady Giselle Ríos-López
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (M.Q.); (S.D.Z.-V.); (L.G.R.-L.)
| | - Olga Sánchez
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Cesar A. Bernal
- Marine Environmental Quality Laboratory Unit–LABCAM, Marine Environment Quality Program–CAM, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia;
| | - Niza Sepúlveda
- Environmental Biotechnology Research Group, Faculty of Engineering, Technological University of Choco “Diego Luis Cordoba”, Quibdó 270001, Chocó, Colombia;
| | - Javier Gómez-León
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (M.Q.); (S.D.Z.-V.); (L.G.R.-L.)
| |
Collapse
|
5
|
Parmar D, Rosado-Rosa JM, Shrout JD, Sweedler JV. Metabolic insights from mass spectrometry imaging of biofilms: A perspective from model microorganisms. Methods 2024; 224:21-34. [PMID: 38295894 PMCID: PMC11149699 DOI: 10.1016/j.ymeth.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
Biofilms are dense aggregates of bacterial colonies embedded inside a self-produced polymeric matrix. Biofilms have received increasing attention in medical, industrial, and environmental settings due to their enhanced survival. Their characterization using microscopy techniques has revealed the presence of structural and cellular heterogeneity in many bacterial systems. However, these techniques provide limited chemical detail and lack information about the molecules important for bacterial communication and virulence. Mass spectrometry imaging (MSI) bridges the gap by generating spatial chemical information with unmatched chemical detail, making it an irreplaceable analytical platform in the multi-modal imaging of biofilms. In the last two decades, over 30 species of biofilm-forming bacteria have been studied using MSI in different environments. The literature conveys both analytical advancements and an improved understanding of the effects of environmental variables such as host surface characteristics, antibiotics, and other species of microorganisms on biofilms. This review summarizes the insights from frequently studied model microorganisms. We share a detailed list of organism-wide metabolites, commonly observed mass spectral adducts, culture conditions, strains of bacteria, substrate, broad problem definition, and details of the MS instrumentation, such as ionization sources and matrix, to facilitate future studies. We also compared the spatial characteristics of the secretome under different study designs to highlight changes because of various environmental influences. In addition, we highlight the current limitations of MSI in relation to biofilm characterization to enable cross-comparison between experiments. Overall, MSI has emerged to become an important approach for the spatial/chemical characterization of bacterial biofilms and its use will continue to grow as MSI becomes more accessible.
Collapse
Affiliation(s)
- Dharmeshkumar Parmar
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joenisse M Rosado-Rosa
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
6
|
Das RP, Sahoo S, Paidesetty SK, Ahmad I, Sahoo B, Jayabaskaran C, Patel H, Arakha M, Pradhan AK. Isolation, characterization, and multimodal evaluation of novel glycolipid biosurfactant derived from Bacillus species: A promising Staphylococcus aureus tyrosyl-tRNA synthetase inhibitor through molecular docking and MD simulations. Int J Biol Macromol 2024; 261:129848. [PMID: 38302032 DOI: 10.1016/j.ijbiomac.2024.129848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
Glycolipid-based biosurfactants (BSs), known for their intriguing and diverse properties, represent a largely uncharted territory in the realm of potential biomedical applications. This field holds great promise yet remains largely unexplored. This investigation provides new insights into the isolation, characterization, and comprehensive biomedical assessment of a novel glycolipid biosurfactant derived from Bacillus species, meeting the growing demand for understanding its multifaceted impact on various biomedical issues. Within this framework, two glycolipids, BG2A and BG2B, emerged as the most proficient strains in biosurfactant (BS) production. The biosurfactants (BSs) ascertained as glycolipids via thin layer chromatography (TLC) exhibited antimicrobial activity against S. aureus and E. coli. Both isolates exhibited anticancer effects against cervical carcinoma cells and demonstrated significant anti-biofilm activity against V. cholerae. Moreover, molecular docking and molecular dynamics (MD) simulations were employed to explore their antimicrobial resistance properties against Tyrosyl-tRNA synthetase (TyrRS) of Staphylococcus aureus, a well-annotated molecular target. Characterization and interpretation using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H and 13C NMR) confirmed that the BSs produced by each strain were glycolipids. These findings suggest that the isolated BSs can serve as effective agents with antibiofilm, antimicrobial, antioxidant, and anticancer properties, in addition to their considerable antibacterial resistance attributes.
Collapse
Affiliation(s)
- Rohit Pritam Das
- Department of Bioengineering, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), 751030, Odisha, Bhubaneswar, India
| | - Subhadarsini Sahoo
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sudhir Kumar Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751030 Bhubaneswar, Odisha, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India
| | - Banishree Sahoo
- Department of Bioengineering, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), 751030, Odisha, Bhubaneswar, India
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Manoranjan Arakha
- Department of Bioengineering, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), 751030, Odisha, Bhubaneswar, India
| | - Arun Kumar Pradhan
- Department of Bioengineering, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), 751030, Odisha, Bhubaneswar, India.
| |
Collapse
|
7
|
Kassem A, Abbas L, Coutinho O, Opara S, Najaf H, Kasperek D, Pokhrel K, Li X, Tiquia-Arashiro S. Applications of Fourier Transform-Infrared spectroscopy in microbial cell biology and environmental microbiology: advances, challenges, and future perspectives. Front Microbiol 2023; 14:1304081. [PMID: 38075889 PMCID: PMC10703385 DOI: 10.3389/fmicb.2023.1304081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/03/2023] [Indexed: 01/02/2024] Open
Abstract
Microorganisms play pivotal roles in shaping ecosystems and biogeochemical cycles. Their intricate interactions involve complex biochemical processes. Fourier Transform-Infrared (FT-IR) spectroscopy is a powerful tool for monitoring these interactions, revealing microorganism composition and responses to the environment. This review explores the diversity of applications of FT-IR spectroscopy within the field of microbiology, highlighting its specific utility in microbial cell biology and environmental microbiology. It emphasizes key applications such as microbial identification, process monitoring, cell wall analysis, biofilm examination, stress response assessment, and environmental interaction investigation, showcasing the crucial role of FT-IR in advancing our understanding of microbial systems. Furthermore, we address challenges including sample complexity, data interpretation nuances, and the need for integration with complementary techniques. Future prospects for FT-IR in environmental microbiology include a wide range of transformative applications and advancements. These include the development of comprehensive and standardized FT-IR libraries for precise microbial identification, the integration of advanced analytical techniques, the adoption of high-throughput and single-cell analysis, real-time environmental monitoring using portable FT-IR systems and the incorporation of FT-IR data into ecological modeling for predictive insights into microbial responses to environmental changes. These innovative avenues promise to significantly advance our understanding of microorganisms and their complex interactions within various ecosystems.
Collapse
Affiliation(s)
- Amin Kassem
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Lana Abbas
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Oliver Coutinho
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Somie Opara
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Hawraa Najaf
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Diana Kasperek
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Keshav Pokhrel
- Department of Mathematics and Statistics, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Xiaohua Li
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Sonia Tiquia-Arashiro
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| |
Collapse
|
8
|
Ardanuy J, Scanlon KM, Skerry C, Carbonetti NH. DNA-Dependent Interferon Induction and Lung Inflammation in Bordetella pertussis Infection. J Interferon Cytokine Res 2023; 43:478-486. [PMID: 37651198 PMCID: PMC10599430 DOI: 10.1089/jir.2023.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023] Open
Abstract
Pertussis, caused by Bordetella pertussis, is a resurgent respiratory disease but the molecular mechanisms underlying pathogenesis are poorly understood. We recently showed the importance of type I and type III interferon (IFN) induction and signaling for the development of lung inflammation in B. pertussis-infected mouse models. Classically, these IFNs are induced by signaling through a variety of pattern recognition receptors (PRRs) on host cells. Here, we found that the PRR signaling adaptor molecules MyD88 and TRIF contribute to IFN induction and lung inflammatory pathology during B. pertussis infection. However, the PRRs Toll-like receptors (TLR) 3 and TLR4, which signal through TRIF and MyD88, respectively, played no role in IFN induction. Instead, the DNA-sensing PRRs, TLR9 and STING, were important for induction of type I/III IFN and promotion of inflammatory pathology, indicating that DNA is a major inducer of lung IFN responses in B. pertussis infection. These results increase our understanding of this host-pathogen interaction and identify potential targets for host-directed therapies to reduce B. pertussis-mediated pathology.
Collapse
Affiliation(s)
- Jeremy Ardanuy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Karen M. Scanlon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nicholas H. Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Suyama H, Luu LDW, Zhong L, Raftery MJ, Lan R. Integrating proteomic data with metabolic modeling provides insight into key pathways of Bordetella pertussis biofilms. Front Microbiol 2023; 14:1169870. [PMID: 37601354 PMCID: PMC10435875 DOI: 10.3389/fmicb.2023.1169870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Pertussis, commonly known as whooping cough is a severe respiratory disease caused by the bacterium, Bordetella pertussis. Despite widespread vaccination, pertussis resurgence has been observed globally. The development of the current acellular vaccine (ACV) has been based on planktonic studies. However, recent studies have shown that B. pertussis readily forms biofilms. A better understanding of B. pertussis biofilms is important for developing novel vaccines that can target all aspects of B. pertussis infection. This study compared the proteomic expression of biofilm and planktonic B. pertussis cells to identify key changes between the conditions. Major differences were identified in virulence factors including an upregulation of toxins (adenylate cyclase toxin and dermonecrotic toxin) and downregulation of pertactin and type III secretion system proteins in biofilm cells. To further dissect metabolic pathways that are altered during the biofilm lifestyle, the proteomic data was then incorporated into a genome scale metabolic model using the Integrative Metabolic Analysis Tool (iMAT). The generated models predicted that planktonic cells utilised the glyoxylate shunt while biofilm cells completed the full tricarboxylic acid cycle. Differences in processing aspartate, arginine and alanine were identified as well as unique export of valine out of biofilm cells which may have a role in inter-bacterial communication and regulation. Finally, increased polyhydroxybutyrate accumulation and superoxide dismutase activity in biofilm cells may contribute to increased persistence during infection. Taken together, this study modeled major proteomic and metabolic changes that occur in biofilm cells which helps lay the groundwork for further understanding B. pertussis pathogenesis.
Collapse
Affiliation(s)
- Hiroki Suyama
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Mark J. Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Ceniti C, Spina AA, Piras C, Oppedisano F, Tilocca B, Roncada P, Britti D, Morittu VM. Recent Advances in the Determination of Milk Adulterants and Contaminants by Mid-Infrared Spectroscopy. Foods 2023; 12:2917. [PMID: 37569186 PMCID: PMC10418805 DOI: 10.3390/foods12152917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The presence of chemical contaminants, toxins, or veterinary drugs in milk, as well as the adulteration of milk from different species, has driven the development of new tools to ensure safety and quality. Several analytical procedures have been proposed for the rapid screening of hazardous substances or the selective confirmation of the authenticity of milk. Mid-infrared spectroscopy and Fourier-transform infrared have been two of the most relevant technologies conventionally employed in the dairy industry. These fingerprint methodologies can be very powerful in determining the trait of raw material without knowing the identity of each constituent, and several aspects suggest their potential as a screening method to detect adulteration. This paper reviews the latest advances in applying mid-infrared spectroscopy for the detection and quantification of adulterants, milk dilution, the presence of pathogenic bacteria, veterinary drugs, and hazardous substances in milk.
Collapse
Affiliation(s)
- Carlotta Ceniti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (C.C.); (A.A.S.); (F.O.); (B.T.); (P.R.); (D.B.); (V.M.M.)
| | - Anna Antonella Spina
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (C.C.); (A.A.S.); (F.O.); (B.T.); (P.R.); (D.B.); (V.M.M.)
| | - Cristian Piras
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (C.C.); (A.A.S.); (F.O.); (B.T.); (P.R.); (D.B.); (V.M.M.)
| | - Francesca Oppedisano
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (C.C.); (A.A.S.); (F.O.); (B.T.); (P.R.); (D.B.); (V.M.M.)
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (C.C.); (A.A.S.); (F.O.); (B.T.); (P.R.); (D.B.); (V.M.M.)
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (C.C.); (A.A.S.); (F.O.); (B.T.); (P.R.); (D.B.); (V.M.M.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (C.C.); (A.A.S.); (F.O.); (B.T.); (P.R.); (D.B.); (V.M.M.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Valeria Maria Morittu
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (C.C.); (A.A.S.); (F.O.); (B.T.); (P.R.); (D.B.); (V.M.M.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| |
Collapse
|
11
|
Silva LD, Aguiar MM, Paiva AD, Bernardes PC, Gedraite R, Naves EAA. Optimization of clean-in-place (CIP) procedure of pipelines contaminated with Bacillus cereus by applying pulsed flow. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Jin X, Li K, Wei Y, Shang Y, Xu L, Liu M, Xu L, Bai X, Shi X, Jin P, Song J, Wang XC. Polymer-flooding produced water treatment using an electro-hybrid ozonation-coagulation system with novel cathode membranes targeting alternating filtration and in situ self-cleaning. WATER RESEARCH 2023; 233:119749. [PMID: 36804336 DOI: 10.1016/j.watres.2023.119749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Polymer-flooding produced water is more difficult to treat for reinjection compared with normal produced water because of the presence of residual hydrolyzed polyacrylamide (HPAM). A novel cathode membrane integrated electro-hybrid ozonation-coagulation (CM-E-HOC) process was proposed for the treatment of polymer-flooding produced water. This process achieved in situ self-cleaning by generated microbubbles in the cathode membrane. The CM-E-HOC process achieved a higher suspended solid (SS), turbidity and PAM removal efficiency than the CM-EC process. The SS in the CM-E-HOC effluent was ≤ 20 mg/L SS, which met the reinjection requirements of Longdong, Changqing Oilfield, China (Q/SYCQ 08,011-2019) at different current densities (3, 5 and 10 mA/cm2). The CM-E-HOC process greatly mitigated both reversible and irreversible membrane fouling. Therefore, excellent flux recovery was obtained at different in situ self-cleaning intervals during the CM-E-HOC process. Furthermore, alternating filtration achieved continuous water production during the CM-E-HOC process. On one hand, the effective removal of aromatic protein-like substances and an increase in oxygen-containing functional groups were achieved due to the enhanced oxidation ability of the CM-E-HOC process, which decreased membrane fouling. On the other hand, the CM-E-HOC process showed improved coagulation performance because of the increased oxygen-containing functional groups and polymeric Fe species. Therefore, larger flocs with higher fractal dimensions were generated, and a looser and more porous cake layer was formed on the membrane surface during the CM-E-HOC process. Consequently, the CM-E-HOC process exhibited better in situ self-cleaning performance and lower filtration resistance than the CM-EC process.
Collapse
Affiliation(s)
- Xin Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Keqian Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Yixiong Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Yabo Shang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Lanzhou Xu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Mengwen Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Lu Xu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Xue Bai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Xuan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China.
| | - Jina Song
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei Province, 056038, China
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| |
Collapse
|
13
|
Fullen AR, Gutierrez-Ferman JL, Rayner RE, Kim SH, Chen P, Dubey P, Wozniak DJ, Peeples ME, Cormet-Boyaka E, Deora R. Architecture and matrix assembly determinants of Bordetella pertussis biofilms on primary human airway epithelium. PLoS Pathog 2023; 19:e1011193. [PMID: 36821596 PMCID: PMC9990917 DOI: 10.1371/journal.ppat.1011193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/07/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Traditionally, whooping cough or pertussis caused by the obligate human pathogen Bordetella pertussis (Bp) is described as an acute disease with severe symptoms. However, many individuals who contract pertussis are either asymptomatic or show very mild symptoms and yet can serve as carriers and sources of bacterial transmission. Biofilms are an important survival mechanism for bacteria in human infections and disease. However, bacterial determinants that drive biofilm formation in humans are ill-defined. In the current study, we show that Bp infection of well-differentiated primary human bronchial epithelial cells leads to formation of bacterial aggregates, clusters, and highly structured biofilms which are colocalized with cilia. These findings mimic observations from pathological analyses of tissues from pertussis patients. Distinct arrangements (mono-, bi-, and tri-partite) of the polysaccharide Bps, extracellular DNA, and bacterial cells were visualized, suggesting complex heterogeneity in bacteria-matrix interactions. Analyses of mutant biofilms revealed positive roles in matrix production, cell cluster formation, and biofilm maturity for three critical Bp virulence factors: Bps, filamentous hemagglutinin, and adenylate cyclase toxin. Adherence assays identified Bps as a new Bp adhesin for primary human airway cells. Taken together, our results demonstrate the multi-factorial nature of the biofilm extracellular matrix and biofilm development process under conditions mimicking the human respiratory tract and highlight the importance of model systems resembling the natural host environment to investigate pathogenesis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Audra R. Fullen
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Jessica L. Gutierrez-Ferman
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Rachael E. Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Phylip Chen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Purnima Dubey
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Daniel J. Wozniak
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark E. Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Rajendar Deora
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
14
|
Xu J, Zhang Q, Wang S, Nan Z, Long S, Wu Y, Dong S. Bioavailability, transfer, toxicological effects, and contamination assessment of arsenic and mercury in soil-corn systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10063-10078. [PMID: 36066802 DOI: 10.1007/s11356-022-22847-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Sewage irrigation has solved the shortage of agricultural water and increased the content of heavy metal(loid)s (HMs) in soil-crop systems, which harms human health via the food chain. In this study, 43 pairs of soil and corn samples (leaf, stem1, stem2, stem3, root, husk, grain, and corncob) were collected in the Dongdagou (DDG) and Xidagou (XDG) streams of Baiyin City. Fraction and transfer of As and Hg were investigated, and toxicological effects and contamination were assessed in soil-corn systems. The results showed that the mean values of As and Hg in soil were 33.79 mg/kg and 0.96 mg/kg, respectively, which exceeded the soil background values in Gansu Province. As and Hg are mainly dominated by the residual fraction. Total and bioavailability contributed significantly to As and Hg accumulation in corn, with root, stem3, and leaf accumulating more strongly. The results based on the bioavailability concentration soil-corn transfer factor indicated that As and Hg tended to accumulate more in the root, stem3, and leaf and less in grain, and further assessment of the human health effects of consuming contaminated cron is needed. Scanning electron microscope (SEM) and Fourier transform infrared (FTIR) results showed that As and Hg were not significantly toxic to corn parts, indicating morphology. As and Hg were bound to hydroxyl groups in the outer epidermal cell wall of the roots, thereby reducing upward translocation. The trinity assessment (TA) model results indicated that the most severe contamination was found in root and stem1. The TA provides a practical tool for soil-cron systems and helps develop management strategies to prevent ecological hazards.
Collapse
Affiliation(s)
- Jun Xu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qian Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Department of Environmental Science and Engineering, Sichuan University, Sichuan, 610065, China
| | - Shengli Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Zhongren Nan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Song Long
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yining Wu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suhang Dong
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
15
|
Zaуtsev EM, Britsina MV, Ozeretskovskaya MN, Bazhanova IG. Effect of trypsin, lidase and fluimucil on the growth of <i>Bordetella pertussis</i> biofilms on an abiotic substrate. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aim. Study the effect of trypsin, lidase (hyaluronidase) and fluimucil (N-acetyl-L-cysteine) on the growth of biofilms of Bordetella pertussis strains on the abiotic substrate.
Materials and methods. In the experiments, the strains of the main B. pertussis serotypes isolated in the Russian Federation from whooping cough patients in 20012010 were used: No. 178 (serotype 1.2.0), No. 287 (serotype 1.0.3) and No. 317 (serotype 1.2.3), grown on a dense nutrient medium. The intensity of biofilm formation in a liquid nutrient medium in the presence of trypsin, lidase and fluimucil in round-bottomed polystyrene 96-well plates was estimated by staining with 0.1% gentian-violet solution.
Results. Trypsin suppressed the growth of biofilms and destroyed the formed biofilms. Lidase suppressed the growth of biofilms less actively, without affecting the formed biofilms. Fluimucil did not affect both the growth of biofilms and the formed biofilms. The growth of colonies typical for B. pertussis was noted when planting fluids from cultures in the presence of preparations, as well as from culture control wells on a dense nutrient medium.
Conclusion. The different effect of the drugs studied by us may be related to the different quantitative content of targets for trypsin (proteins), lidase (mucopolysaccharides, containing uronic acids), fluimucil (acid mucopolysaccharides) in the biofilm matrix. The growth of the typical morphological properties of the colony of B. pertussis during the sowing of culture seedlings on a dense nutrient medium testifies to the destruction of the biofilm matrix by trypsin and lidase in the absence of influence on plankton cells.
Collapse
|
16
|
Xiong R, Yan J, Mei J, Ye J, Xie J. The enhanced expression of genes encoding diguanylate cyclases under cold stress contributes to the adhesion and biofilm formation of Shewanella putrefaciens WS13. Front Nutr 2022; 9:1076932. [DOI: 10.3389/fnut.2022.1076932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Shewanella putrefaciens is a special spoilage bacterium of seafood during cold storage, which is easy to form biofilm and bring serious hazard to the seafood quality. Life cycle of biofilm starts after bacterial adhesion, which is essential for the formation and development of biofilm. As a ubiquitous second messenger in bacteria, c-di-GMP regulates the conversion between bacterial planktonic state and biofilm state. In this study, the adhesion and biofilm formation of S. putrefaciens WS13 under 4°C were compared to those under 30°C. Atom force microscope and scanning electron microscope were used to study the bacterial adhesion. Biofilm was analyzed by Fourier transform infrared spectroscopy, Bradford assay and phenol-sulfuric acid method. High-performance liquid chromatographic-tandem mass spectrometric and quantitative real-time PCR were applied to study c-di-GMP level and genes encoding diguanylate cyclases in cells, respectively. Results showed that the swarming mobility of S. putrefaciens WS13 was weaker under 4°C, however, the adhesive force under 4°C was 4–5 times higher than that under 30°C. Biofilm biomass, extracellular polysaccharides and extracellular proteins were 2.5 times, 3 times, and 1.6 times more than those under 30°C, respectively, but biofilm composition formed under both temperatures were similar. c-di-GMP level in S. putrefaciens WS13 under 30°C was no more than half of that in the corresponding growth stage under 4°C. Quantitative real-time PCR analysis also showed that the expression of genes encoding diguanylate cyclases were significantly enhanced under 4°C than that under 30°C. S. putrefaciens WS13 adapted to the cold stress by enhancing the expression of genes encoding diguanylate cyclases to promote bacterial adhesion and biofilm formation. This study provides a theoretical foundation for the research on the cold adaptation mechanism of specific spoilage bacteria of seafood based on c-di-GMP, and also provides a new idea to control seafood quality from the perspective of microbial molecular biology.
Collapse
|
17
|
Su R, Xie T, Yao H, Chen Y, Wang H, Dai X, Wang Y, Shi L, Luo Y. Lead Responses and Tolerance Mechanisms of Koelreuteria paniculata: A Newly Potential Plant for Sustainable Phytoremediation of Pb-Contaminated Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214968. [PMID: 36429686 PMCID: PMC9691260 DOI: 10.3390/ijerph192214968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 05/06/2023]
Abstract
Phytoremediation could be an alternative strategy for lead (Pb) contamination. K. paniculata has been reported as a newly potential plant for sustainable phytoremediation of Pb-contaminated soil. Physiological indexes, enrichment accumulation characteristics, Pb subcellular distribution and microstructure of K. paniculata were carefully studied at different levels of Pb stress (0-1200 mg/L). The results showed that plant growth increased up to 123.8% and 112.7%, relative to the control group when Pb stress was 200 mg/L and 400 mg/L, respectively. However, the average height and biomass of K. paniculata decrease when the Pb stress continues to increase. In all treatment groups, the accumulation of Pb in plant organs showed a trend of root > stem > leaf, and Pb accumulation reached 81.31%~86.69% in the root. Chlorophyll content and chlorophyll a/b showed a rising trend and then fell with increasing Pb stress. Catalase (CAT) and peroxidase (POD) activity showed a positive trend followed by a negative decline, while superoxide dismutase (SOD) activity significantly increased with increasing levels of Pb exposure stress. Transmission electron microscopy (TEM) showed that Pb accumulates in the inactive metabolic regions (cell walls and vesicles) in roots and stems, which may be the main mechanism for plants to reduce Pb biotoxicity. Fourier transform infrared spectroscopy (FTIR) showed that Pb stress increased the content of intracellular -OH and -COOH functional groups. Through organic acids, polysaccharides, proteins and other compounds bound to Pb, the adaptation and tolerance of K. paniculata to Pb were enhanced. K. paniculata showed good phytoremediation potential and has broad application prospects for heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Rongkui Su
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410004, China
| | - Tianzhi Xie
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haisong Yao
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yonghua Chen
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (Y.C.); (Y.L.)
| | - Hanqing Wang
- School of Civil Engineering, Central South Forestry University, Changsha 410018, China
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, Changsha 410018, China
| | - Xiangrong Dai
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410004, China
| | - Yangyang Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Lei Shi
- College of Environmental Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Yiting Luo
- Business College, Hunan First Normal University, Changsha 410205, China
- Correspondence: (Y.C.); (Y.L.)
| |
Collapse
|
18
|
Biofilm Development on Carbon Steel by Iron Reducing Bacterium Shewanella putrefaciens and Their Role in Corrosion. METALS 2022. [DOI: 10.3390/met12061005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Microscopic, electrochemical and surface characterization techniques were used to investigate the effects of iron reducing bacteria (IRB) biofilm on carbon steel corrosion for 72 and 168 h under batch conditions. The organic nutrient availability for the bacteria was varied to evaluate biofilms formed under nutritionally rich, as compared to nutritionally deficient, conditions. Focused ion beam-scanning electron microscopy (FIB-SEM) was used to investigate the effect of subsurface biofilm structures on the corrosion characteristics of carbon steel. Hydrated biofilms produced by IRB were observed under environmental scanning electron microscope (ESEM) with minimal surface preparation, and the elemental composition of the biofilms was investigated using energy dispersive spectroscopy (EDX). Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) was used to provide information on the organic and inorganic chemical makeup of the biofilms. Electrochemical techniques employed for assessing corrosion, by open circuit potential, linear polarization and potentiodynamic polarization tests indicated no significant difference in the corrosion resistance for carbon steel in IRB-inoculated, compared to the abiotic solutions of common Postgate C after 72 and 168 h. However, the steel was found to be more susceptible to corrosion when the yeast extract was removed from the biotic environment for the 168 h test. In the absence of yeast nutrient, it is postulated that IRB received energy by transforming the protective film of Fe3+ into more soluble Fe2+ products.
Collapse
|
19
|
Green synthesis and characterization of silver nanoparticles using Eugenia roxburghii DC. extract and activity against biofilm-producing bacteria. Sci Rep 2022; 12:8383. [PMID: 35589849 PMCID: PMC9120126 DOI: 10.1038/s41598-022-12484-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
The green synthesis of silver nanoparticles (AgNPs) and their applications have attracted many researchers as the AgNPs are used effectively in targeting specific tissues and pathogenic microorganisms. The purpose of this study is to synthesize and characterize silver nanoparticles from fully expanded leaves of Eugenia roxburghii DC., as well as to test their effectiveness in inhibiting biofilm production. In this study, at 0.1 mM concentration of silver nitrate (AgNO3), stable AgNPs were synthesized and authenticated by monitoring the color change of the solution from yellow to brown, which was confirmed with spectrophotometric detection of optical density. The crystalline nature of these AgNPs was detected through an X-Ray Diffraction (XRD) pattern. AgNPs were characterized through a high-resolution transmission electron microscope (HR-TEM) to study the morphology and size of the nanoparticles (NPs). A new biological approach was undertaken through the Congo Red Agar (CRA) plate assay by using the synthesized AgNPs against biofilm production. The AgNPs effectively inhibit biofilm formation and the biofilm-producing bacterial colonies. This could be a significant achievement in contending with many dynamic pathogens.
Collapse
|
20
|
Qi Z, Pei P, Zhang Y, Chen H, Yang S, Liu T, Zhang Y, Yang K. 131I-αPD-L1 immobilized by bacterial cellulose for enhanced radio-immunotherapy of cancer. J Control Release 2022; 346:240-249. [PMID: 35469982 DOI: 10.1016/j.jconrel.2022.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/26/2022] [Accepted: 04/17/2022] [Indexed: 11/19/2022]
Abstract
Radioisotope therapy (RIT) of cancer is restrained by the nonspecific distribution of radioisotope and ineptitude for metastatic tumors. Meanwhile, the clinical application of immune checkpoint blockade (ICB) confronts problems such as low responsive rate, multiple administration requirements and immune-related adverse events (irAE). To address these challenges, we prepared an injectable suspension by immobilizing 131I-labeled anti-programmed cell death-ligand 1 antibody (αPD-L1) in bacterial cellulose for precise and durable radio-immunotherapy of cancer. The crisscross network structure of bacterial cellulose nanofibers would contribute to the long-term retention of 131I-labeled αPD-L1 within tumors, which could reduce the side effect stemmed from the nonspecific 131I distribution in normal tissues. The potent long-term RIT of 131I, combined with ICB by αPD-L1, could effectively restrain the growth of primary tumor in mice. In addition to the direct killing effect, 131I-αPD-L1 immobilized by bacterial cellulose could enhance the immunogenic cell death (ICD) of cancer cells, activating the maturation of multiple immune cells to induce a systemic anti-tumor immune effect. Our therapeutic strategy could suppress spontaneous cancer metastasis and prolong the survival time of tumor-bearing mice. This study proposed a new approach for combined radio-immunotherapy and a novel solution for tumor metastasis in advanced-stage cancers.
Collapse
Affiliation(s)
- Zhongyuan Qi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yujuan Zhang
- Experimental Center of Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
21
|
Sportelli MC, Kranz C, Mizaikoff B, Cioffi N. Recent advances on the spectroscopic characterization of microbial biofilms: A critical review. Anal Chim Acta 2022; 1195:339433. [DOI: 10.1016/j.aca.2022.339433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023]
|
22
|
Within-Host Adaptation of Staphylococcus aureus in a Bovine Mastitis Infection Is Associated with Increased Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168840. [PMID: 34445550 PMCID: PMC8396210 DOI: 10.3390/ijms22168840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Within-host adaptation is a typical feature of chronic, persistent Staphylococcus aureus infections. Research projects addressing adaptive changes due to bacterial in-host evolution increase our understanding of the pathogen’s strategies to survive and persist for a long time in various hosts such as human and bovine. In this study, we investigated the adaptive processes of S. aureus during chronic, persistent bovine mastitis using a previously isolated isogenic strain pair from a dairy cow with chronic, subclinical mastitis, in which the last variant (host-adapted, Sigma factor SigB-deficient) quickly replaced the initial, dominant variant. The strain pair was cultivated under specific in vitro infection-relevant growth-limiting conditions (iron-depleted RPMI under oxygen limitation). We used a combinatory approach of surfaceomics, molecular spectroscopic fingerprinting and in vitro phenotypic assays. Cellular cytotoxicity assays using red blood cells and bovine mammary epithelial cells (MAC-T) revealed changes towards a more cytotoxic phenotype in the host-adapted isolate with an increased alpha-hemolysin (α-toxin) secretion, suggesting an improved capacity to penetrate and disseminate the udder tissue. Our results foster the hypothesis that within-host evolved SigB-deficiency favours extracellular persistence in S. aureus infections. Here, we provide new insights into one possible adaptive strategy employed by S. aureus during chronic, bovine mastitis, and we emphasise the need to analyse genotype–phenotype associations under different infection-relevant growth conditions.
Collapse
|
23
|
Al-Saadi S, Raman RS, Panter C. A Two-Step Silane Coating Incorporated with Quaternary Ammonium Silane for Mitigation of Microbial Corrosion of Mild Steel. ACS OMEGA 2021; 6:16913-16923. [PMID: 34250350 PMCID: PMC8264834 DOI: 10.1021/acsomega.1c01567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/10/2021] [Indexed: 06/01/2023]
Abstract
Quaternary ammonium compounds have been used as antibacterial materials. However, as they are hydrophilic and produce a positively charged surface, it is challenging to develop a durable antimicrobial coating of such compounds. The objective of this study is to investigate a two-step silane coating incorporated with quaternary ammonium silane for mitigation of microbiologically influenced corrosion (MIC) of mild steel in biotic solution (a marine environment with bacteria). The corrosion resistance was characterized by electrochemical impedance spectroscopy and potentiodynamic polarization tests. The intact silane coating and that pre-exposed to the biotic solution were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The most probable method (MPN) was used to quantify the active microorganisms attached to the uncoated and silane-coated surfaces. Electrochemical results reveal that the coating thus developed improved the corrosion resistance of steel in the biotic solution. The MPN, FTIR, and scanning electron microscopy suggest a significant decrease in the number of active cells that get attached to the coated surface.
Collapse
Affiliation(s)
- Saad Al-Saadi
- Department
of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
- Department
of Chemical Engineering, Babylon University, Hillah 51002, Babylon, Iraq
| | - R.K. Singh Raman
- Department
of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
- Department
of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Christopher Panter
- CP
Microbiology and Analytical Laboratories, 677 Springvale Rd., Mulgrave, VIC 3170, Australia
| |
Collapse
|
24
|
Zhou L, Wang Y, Lou Y, Shao H, Li Y. Effect of aluminum stress on the quality of Enteromorpha prolifera based on SEM-EDX and FT-IR. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyaa037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
To clarify the effect of aluminum stress on the quality of Enteromorpha prolifera (E. prolifera) and to explore the mechanism of the combination of aluminum and E. prolifera, we analyzed changes in the nutrients, micromorphology, element distribution, and spectrum of E. prolifera treated with different concentrations of aluminum (0, 0.2, 2.0, and 20.0 μmol·L–1) using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDX) and Fourier-transform infrared spectroscopy (FT-IR). The biomass, protein, dietary fiber, and ash contents of E. prolifera initially increased and then subsequently decreased with an increasing concentration of aluminum. Meanwhile, the total amount of amino acids decreased. Scanning the surface of E. prolifera by SEM-EDX revealed that a high concentration of aluminum damaged the cells of E. prolifera. Additionally, the content of aluminum on the surface of E. prolifera cells increased and the absorption of other elements was also affected. The FT-IR analysis showed that aluminum might combine with the functional groups at the 3408 cm–1, 2928 cm–1, and 1072 cm–1 peaks in E. prolifera and alter the characteristic of the different absorption peaks.
Collapse
|
25
|
Wang J, Chen X, Chu S, Hayat K, Chi Y, Zhi Y, Zhang D, Zhou P. Influence of Cd toxicity on subcellular distribution, chemical forms, and physiological responses of cell wall components towards short-term Cd stress in Solanum nigrum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13955-13969. [PMID: 33201503 DOI: 10.1007/s11356-020-11505-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Solanum nigrum is a well-documented cadmium (Cd) hyperaccumulator; however, its Cd-induced tolerance capability and detoxification mechanism remain elusive. Hence, a short-term hydroponic experiment was performed in a multiplane glasshouse to determine the influence of Cd toxicity on subcellular distribution, chemical forms, and the physiological responses of cell wall towards Cd stress in a 4-week-old plant. The experiment was conducted following completely randomized design (CRD) with five treatments (n = 4 replicates). The results showed that Cd stress showed dose-dependent response towards growth inhibition. The subcellular distribution of Cd in S. nigrum was in the order of cell wall > soluble fractions > organelles, and Cd was predominantly extracted by 1 M NaCl (29.87~43.66%). The Cd contents in different plant tissues and cell wall components including pectin, hemicellulose 1 (HC1), hemicellulose 2 (HC2), and cellulose were increased with the increase in Cd concentrations; however, the percentage of Cd concentration decreased in pectin and cellulose. Results of the polysaccharide components such as uronic acid, total sugar contents, and pectin methylesterase (PME) activity showed Cd-induced dose-dependent increase relative to exposure Cd stress. The pectin methylesterase (PME) activity was significantly (p < 0.05) enhanced by 125.78% at 75 μM Cd in root, 105.78% and 73.63% at 100 μM Cd in stem and leaf, respectively. In addition, the esterification, amidation, and pectinase treatment of cell wall and Fourier transform infrared spectroscopy (FTIR) assay exhibited many functional groups that were involved in cell wall retention Cd, especially on carboxyl and hydroxyl groups of cell wall components that indicated that the -OH and -COOH groups of S. nigrum cell wall play a crucial role in Cd fixation. In summary, results of the current study will add a novel insight to understand mobilization/immobilization as well as detoxification mechanism of cadmium in S. nigrum.
Collapse
Affiliation(s)
- Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuee Zhi
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
26
|
Han L, Chen Y, Chen M, Wu Y, Su R, Du L, Liu Z. Mushroom residue modification enhances phytoremediation potential of Paulownia fortunei to lead-zinc slag. CHEMOSPHERE 2020; 253:126774. [PMID: 32464764 DOI: 10.1016/j.chemosphere.2020.126774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 05/22/2023]
Abstract
Phytoremediation is an effective strategy for the remediation of lead-zinc slag, while the response of plant on lead and zinc was less concerned. In this study, mushroom residue was adding in lead-zinc slag to enhance the phytoremediation potential of P. fortunei, the effects of three treatments (lead-zinc slag, red soil, lead-zinc slag + 10% (m/m) mushroom residue) on the growth, physiology and microstructure of P. fortunei were determined. The results showed that the addition of mushroom residue increased the biomass, plant height and chlorophyll concentration of P. fortunei, indicating that the addition of mushroom residue can facilitate the growth of P. fortunei. Moreover, the proportions of oxalate-Pb forms and phosphate-Zn were dominant in leaves and stems of P. fortunei. With the addition of mushroom residue, Pb and Zn were transformed to the extraction state with weak migration activity, which can reduce the damage level of Pb and Zn to P. fortunei. The results from scanning transmission electron microscopy (STEM) showed that, the mushroom residue amendment could maintain the integrity of the cell structural of P. fortunei. The results from fourier transform infrared spectrometer (FTIR) analysis showed that the mushroom residue amendment could increase the contents of proteins and polysaccharides in P. fortunei, which can combine with the metals. Clearly, the mushroom residue amendment could promote the growth ability of P. fortunei in lead and zinc slag and strengthen the phytoremediation potential.
Collapse
Affiliation(s)
- Liangze Han
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yonghua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Mingli Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Yangfeng Wu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Rongkui Su
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Lu Du
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| |
Collapse
|
27
|
He C, Zhao Y, Wang F, Oh K, Zhao Z, Wu C, Zhang X, Chen X, Liu X. Phytoremediation of soil heavy metals (Cd and Zn) by castor seedlings: Tolerance, accumulation and subcellular distribution. CHEMOSPHERE 2020; 252:126471. [PMID: 32220713 DOI: 10.1016/j.chemosphere.2020.126471] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Cd and Zn pollution was observed to often occur simultaneously in soils. However, previous studies focused on single heavy metal instead of Cd and Zn combined pollution. Castor (Ricinus communis) is considered to have great potential for contaminated soil remediation. The resistance of castor seedlings to heavy metals and the mechanism behind it remain unknown. In this study, the tolerance and accumulation ability of castor seedlings to Cd and Zn were investigated, and the accumulation mechanism involving the subcellular distribution in different tissues was further explored. The results on biomass and chlorophyll revealed that castor seedlings have good tolerance to the pollution with 0-5 mg/kg Cd and 380 mg/kg Zn, while not to the heavy pollution with 25 mg/kg Cd and 380 mg/kg Zn. The maximum accumulation concentrations of Cd and Zn, 175.3 mg Cd/kg and 386.8 mg/kg Zn, appeared in castor seedling root instead of stem and leaf, indicating that root played a significant part in accumulating Zn and Cd. The relative low dosage of Cd (0-5 mg/kg) promoted the accumulation of Zn in the subcellular component, while high dosage (25 mg/kg) inhibited the accumulation of Zn. In subcellular accumulation and distribution of castor seedlings, Cd (27.1%-69.4%) and Zn (39.6%-66.6%) in the cell wall was the highest. With the increase of Cd addition, the accumulation of Cd increased in cell wall while decreased in organelle and soluble fraction. Hydroxyl, amino, amides and carboxyl functional groups on cell wall might provided the main binding sites for Cd and Zn.
Collapse
Affiliation(s)
- Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yanping Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Kokyo Oh
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kisai, Saitama, 347-0115, Japan
| | - Zhenzhen Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Changlu Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xinying Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xiaoyan Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
28
|
Schlaugat J, Patzer K, Hentrop T, Solle D, Pepelanova I, Schröder U, Scheper T. Development and characterization of a fiber optical fluorescence sensor for the online monitoring of biofilms and their microenvironment. Eng Life Sci 2020; 20:252-264. [PMID: 32647504 PMCID: PMC7336156 DOI: 10.1002/elsc.201900140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 11/15/2022] Open
Abstract
The growth of microorganisms on surfaces and interfaces as a biofilm is very common and plays important role in various areas such as material science, biomedicine, or waste treatment among others. Due to their inhomogeneous structure and the variance in the microorganism consortium, the analysis of biofilms represents a significant challenge. An online fluorescence sensor was developed that is able to measure the most important biological fluorophores (proteins, nicotinamide adenine dinucleotide, and flavin) in a noninvasive manner in biofilms, e.g. in bioelectrochemical applications. The sensor gives the opportunity to continuously draw conclusions on the metabolic state of the biofilm. The developed sensor has a diameter of 1 mm at the sensor tip and can be moved on and into the biofilm surface. In the first experiment, the measuring range of the sensor and the long-term stability could be determined and the system applicability was confirmed. In addition, measurements in biofilm-like structures could be performed. The formation of a wastewater-based biofilm was monitored using the developed sensor, demonstrating the functionality of the sensor in a proof-of-principle experiment.
Collapse
Affiliation(s)
- Jana Schlaugat
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Kai Patzer
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Thorleif Hentrop
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Dörte Solle
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Iliyana Pepelanova
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Uwe Schröder
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Thomas Scheper
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| |
Collapse
|
29
|
Yu S, Sheng L, Mao H, Huang X, Luo L, Li Y. Physiological response of Conyza Canadensis to cadmium stress monitored by Fourier transform infrared spectroscopy and cadmium accumulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:118007. [PMID: 31923788 DOI: 10.1016/j.saa.2019.118007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/25/2019] [Accepted: 12/27/2019] [Indexed: 05/24/2023]
Abstract
The cadmium(Cd) pollution of soil causes serious environmental problems. Cd is a high toxic and high water soluble element without biological function, and it is easily taken in by plants owing to its high bioavailability. Thus it easily entered the food chain and threaten people's health. Here,different concentrations of Cd solutions were used to study the physiological response and Cd accumulation characteristics of Conyza Canadensis (L.) Cronq. The physiological response was characterized by Fourier Transform Infrared (FTIR) spectroscopy, and Cd accumulation in plant and distribution were tested by Atomic absorption spectroscopy (AAS) under different concentrations Cd stress. When Cd concentrations toxicity <3 mg·L-1, the C. Canadensis (L.) Cronq. could grow normally without any symptoms, and the Cd concentrations increased to 7 mg·L-1, the C. Canadensis (L.) Cronq. had a little lower biomass, but there was no significant difference in the biomass among treatment concentrations. The peak shape of each component remained unchanged before and after Cd treatment. Only the absorption peak of some functional groups involved in Cd adsorption shifted with different degrees, such as hydroxy groups (3417-3429 cm-1), carboxyl groups (1380-1386 cm-1), and acid amide groups (1631-1637 cm -1). The characteristic peak absorption intensity of root, stem and leaf was different with the increase of heavy metal concentration. The absorbance of the roots with high Cd concentration was higher than that with medium-low Cd concentration. This shows that high concentration of Cd could induce C. Canadensis (L.) Cronq. seedlings to produce a large number of protein, amino acid and other substances, and through osmotic regulation to enhance stress resistance, provide nitrogen source, reduce heavy metal toxicity, and stabilize the internal environment. After Cd treatment, the characteristic peaks of stem and leaf were higher than or close to the control. This is due to the high tolerance of C. Canadensis (L.) Cronq. seedlings to heavy metals. The Cd accumulation in the shoots (stems and leaves) of C. Canadensis (L.) Cronq. was obviously lower than that in roots and the Cd content in the shoots usually increased with increasing Cd concentration. The maximum accumulation of Cd in shoots was 1898.07 mg·kg-1 after 11 days grown in the water spiked with 7 mg·L-1 Cd concentration. The study suggests that C. Canadensis (L.) Cronq. has some remediation effect and endurance ability against heavy metal polluted contaminated soil and has potential utilization value in the technical field of phytoremediation of Cd polluted soil.
Collapse
Affiliation(s)
- Shunhui Yu
- Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir Region, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Li Sheng
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Huaping Mao
- Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir Region, Chongqing Three Gorges University, Wanzhou 404100, China.
| | - Xioushan Huang
- Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir Region, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Linsen Luo
- Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir Region, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Yunyue Li
- Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir Region, Chongqing Three Gorges University, Wanzhou 404100, China
| |
Collapse
|
30
|
Hoseinzadeh E, Wei C, Farzadkia M, Rezaee A. Effects of Low Frequency-Low Voltage Alternating Electric Current on Apoptosis Progression in Bioelectrical Reactor Biofilm. Front Bioeng Biotechnol 2020; 8:2. [PMID: 32039189 PMCID: PMC6987302 DOI: 10.3389/fbioe.2020.00002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Bioelectrochemical systems have undergone several modifications to promote the enzymes or pathways used to reduce the energy required for microbial metabolism. Changes in dominant bacteria, population, and growth rates occur when an electric current is applied intermittently. Applying electricity to bioelectrical reactor (BER) biofilms can either stimulate cells or lead to cell death; therefore, determining the applied voltage range that leads to viable and stimulated bacteria is crucial. We investigated the progression of apoptosis induced by a low frequency-low voltage alternating electric current (AC) in a BER biofilm and found that biofilms on carbon cloth (CC) and stainless steel (SS) 304 electrodes had pHzpc values of 8.67. The pHzpc of the biofilms increased by two compared to that of the inoculant bacteria mass. Furthermore, the Henderson–Hasselbalch equation reveals that the compositions of cell walls of the biofilms that formed on the CC and SS304 electrodes are very similar. In contrast, the CC and SS304 biofilms differ from the inoculant biomass without the influence of an AC field; this indicates that there are differences in the compositions of the cell walls in the present bacteria. Fourier transform infrared spectroscopy was used to compare spectra of the biofilms with that of the inoculation mass, and there were differences in shape and absorbance intensity, indicating variability in the composition, and quantity of each individual biofilm component. In addition, the dehydrogenase activity (DHA) content varied under different applied voltages; the highest DHA was obtained at 8 Vpp. A flow cytometry analysis showed a relatively low number of apoptotic cells (10.93 ± 5.19%) for the AC amplitudes studied. Thus, a low voltage-low frequency AC likely induces significant changes in bacterial metabolic activity but causes no significant change in their viability.
Collapse
Affiliation(s)
- Edris Hoseinzadeh
- Department of Environmental Health Engineering, Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Chiang Wei
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Mahdi Farzadkia
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Rezaee
- Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
31
|
Wickramasinghe NN, Ravensdale J, Coorey R, Chandry SP, Dykes GA. The Predominance of Psychrotrophic Pseudomonads on Aerobically Stored Chilled Red Meat. Compr Rev Food Sci Food Saf 2019; 18:1622-1635. [DOI: 10.1111/1541-4337.12483] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Nirmani N. Wickramasinghe
- School of Public HealthCurtin Univ. Perth Western Australia 6845 Australia
- Dept. of Agriculture and FoodCSIRO Werribee Victoria 3030 Australia
| | - Joshua Ravensdale
- School of Public HealthCurtin Univ. Perth Western Australia 6845 Australia
| | - Ranil Coorey
- School of Molecular an Health SciencesCurtin Univ. Perth Western Australia 6845 Australia
| | - Scott P. Chandry
- Dept. of Agriculture and FoodCSIRO Werribee Victoria 3030 Australia
| | - Gary A. Dykes
- School of Public HealthCurtin Univ. Perth Western Australia 6845 Australia
| |
Collapse
|
32
|
Soler-Arango J, Figoli C, Muraca G, Bosch A, Brelles-Mariño G. The Pseudomonas aeruginosa biofilm matrix and cells are drastically impacted by gas discharge plasma treatment: A comprehensive model explaining plasma-mediated biofilm eradication. PLoS One 2019; 14:e0216817. [PMID: 31233528 PMCID: PMC6590783 DOI: 10.1371/journal.pone.0216817] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/28/2019] [Indexed: 12/21/2022] Open
Abstract
Biofilms are microbial communities encased in a protective matrix composed of exopolymeric substances including exopolysaccharides, proteins, lipids, and extracellular DNA. Biofilms cause undesirable effects such as biofouling, equipment damage, prostheses colonization, and disease. Biofilms are also more resilient than free-living cells to regular decontamination methods and therefore, alternative methods are needed to eradicate them. The use of non-thermal atmospheric pressure plasmas is a good alternative as plasmas contain reactive species, free radicals, and UV photons well-known for their decontamination potential against free microorganisms. Pseudomonas aeruginosa biofilms colonize catheters, indwelling devices, and prostheses. Plasma effects on cell viability have been previously documented for P. aeruginosa biofilms. Nonetheless, the effect of plasma on the biofilm matrix has received less attention and there is little evidence regarding the changes the matrix undergoes. The aim of this work was to study the effect plasma exerts mostly on the P. aeruginosa biofilm matrix and to expand the existing knowledge about its effect on sessile cells in order to achieve a better understanding of the mechanism/s underlying plasma-mediated biofilm inactivation. We report a reduction in the amount of the biofilm matrix, the loss of its tridimensional structure, and morphological changes in sessile cells at long exposure times. We show chemical and structural changes on the biofilm matrix (mostly on carbohydrates and eDNA) and cells (mostly on proteins and lipids) that are more profound with longer plasma exposure times. We also demonstrate the presence of lipid oxidation products confirming cell membrane lipid peroxidation as plasma exposure time increases. To our knowledge this is the first report providing detailed evidence of the variety of chemical and structural changes that occur mostly on the biofilm matrix and sessile cells as a consequence of the plasma treatment. Based on our results, we propose a comprehensive model explaining plasma-mediated biofilm inactivation.
Collapse
Affiliation(s)
- Juliana Soler-Arango
- Biofilm Eradication Laboratory, Center for Research and Development of Industrial Fermentations, Consejo Nacional de Investigaciones Científicas y Técnicas (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cecilia Figoli
- Bioespectroscopy Laboratory, Center for Research and Development of Industrial Fermentations, Consejo Nacional de Investigaciones Científicas y Técnicas (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Giuliana Muraca
- Biofilm Eradication Laboratory, Center for Research and Development of Industrial Fermentations, Consejo Nacional de Investigaciones Científicas y Técnicas (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alejandra Bosch
- Bioespectroscopy Laboratory, Center for Research and Development of Industrial Fermentations, Consejo Nacional de Investigaciones Científicas y Técnicas (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail: (AB); (GBM)
| | - Graciela Brelles-Mariño
- Biofilm Eradication Laboratory, Center for Research and Development of Industrial Fermentations, Consejo Nacional de Investigaciones Científicas y Técnicas (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail: (AB); (GBM)
| |
Collapse
|
33
|
Jin X, Zhang W, Hou R, Jin P, Song J, Wang XC. Tracking the reactivity of ozonation towards effluent organic matters from WWTP using two-dimensional correlation spectra. J Environ Sci (China) 2019; 76:289-298. [PMID: 30528020 DOI: 10.1016/j.jes.2018.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 06/09/2023]
Abstract
The characteristics of effluent organic matter (EfOM) from a wastewater treatment plant (WWTP) during ozonation were investigated using excitation and emission matrix (EEM) spectra, Fourier transform infrared spectroscopy (FT-IR) and high-performance size exclusion chromatography (HPSEC) at different ozone dosages. The selectivity of ozonation towards different constituents and functional groups was analysed using two-dimensional correlation spectra (2D-COS) probed by FT-IR, synchronous fluorescence spectra and HPSEC. The results indicated that ozonation can destroy aromatic structures of EfOM and change its molecular weight distribution (MWD). According to 2D-COS analysis, microbial humic-like substances were preferentially removed, and then the protein-like fractions. Terrestrial humic-like components exhibited inactivity towards ozonation compared with the above two fractions. Protein-like substances with small molecular weight were preferentially reacted during ozonation based on 2D-COS probed by HPSEC. In addition, the selectivity of ozone towards different functional groups of EfOM exhibited the following sequence: phenolic and alcoholic CO groups > aromatic structures containing CC double bonds > aliphatic CH. X-ray photoelectron spectroscopy (XPS) further elucidated the preferential reaction of aromatic structures in EfOM during ozonation.
Collapse
Affiliation(s)
- Xin Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rui Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jina Song
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
34
|
Biofilm formation by meat-borne Pseudomonas fluorescens on stainless steel and its resistance to disinfectants. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Uddin MJ, Jeon G, Ahn J. Variability in the Adaptive Response of Antibiotic-Resistant Salmonella Typhimurium to Environmental Stresses. Microb Drug Resist 2018; 25:182-192. [PMID: 30067146 DOI: 10.1089/mdr.2018.0079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was designed to evaluate the resistance phenotype and genotype of wild type (WT)-, cefotaxime (CET)-, and ciprofloxacin (CIP)-induced Salmonella Typhimurium ATCC 19585, CIP-resistant Salmonella Typhimurium ATCC 19585, Salmonella Typhimurium CCARM 8009, and Salmonella Typhimurium KCCM 40253 before and after exposure to pH 4.5, 4% NaCl, and heat at 42°C. The susceptibilities of WT Salmonella Typhimurium ATCC 19585 and WT Salmonella Typhimurium KCCM 40253 to all antibiotics tested in this study were decreased after CET and CIP induction with the exception with kanamycin, meropenem, and polymyxin B. The highest β-lactamase activities were 2.8 and 3.3 nmol/(min·mL), respectively, at the WT- and CET-induced Salmonella Typhimurium CCARM 8009. FT-IR spectra were found to be dominant at the region from 1,700 to 1,500 cm-1 corresponding to proteins such as amides I, II, and III. The relative expression levels of efflux pump-related genes (acrA, acrB, and TolC), porin-related gene (ompC), virulence-related gene (stn), adhesion-related gene (fimA), and stress-induced alternative sigma factor (rpoS) varied in the antibiotic resistance and stress exposure. This study provides useful information for understanding the antibiotic resistance profile, physicochemical property, and gene expression pattern in Salmonella Typhimurium in association with the induction of antibiotic resistance and exposure to environmental stresses.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University , Chuncheon, Gangwon, Republic of Korea
| | - Gibeom Jeon
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University , Chuncheon, Gangwon, Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University , Chuncheon, Gangwon, Republic of Korea
| |
Collapse
|
36
|
Ravindran D, Ramanathan S, Arunachalam K, Jeyaraj G, Shunmugiah K, Arumugam V. Phytosynthesized silver nanoparticles as antiquorum sensing and antibiofilm agent against the nosocomial pathogen Serratia marcescens
: an in vitro
study. J Appl Microbiol 2018; 124:1425-1440. [DOI: 10.1111/jam.13728] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/13/2018] [Accepted: 02/02/2018] [Indexed: 12/16/2022]
Affiliation(s)
- D. Ravindran
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - S. Ramanathan
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - K. Arunachalam
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - G.P. Jeyaraj
- TIL Biosciences - Animal Health Division of Tablets (India) Limited; Jhaver Centre; Egmore Chennai Tamil Nadu India
| | - K.P. Shunmugiah
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - V.R. Arumugam
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| |
Collapse
|
37
|
Wang J, Ye S, Xue S, Hartley W, Wu H, Shi L. The physiological response of Mirabilis jalapa Linn. to lead stress and accumulation. INTERNATIONAL BIODETERIORATION & BIODEGRADATION 2018; 128:11-14. [DOI: 10.1016/j.ibiod.2016.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
38
|
Dorji D, Mooi F, Yantorno O, Deora R, Graham RM, Mukkur TK. Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance. Med Microbiol Immunol 2018; 207:3-26. [PMID: 29164393 DOI: 10.1007/s00430-017-0524-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023]
Abstract
Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years. Possible reasons hypothesised for resurgence have ranged from incompliance with the recommended vaccination programmes with the currently used aP vaccine to infection with a resurged clinical isolates characterised by mutations in the virulence factors, resulting in antigenic divergence with vaccine strain, and increased production of pertussis toxin, resulting in dampening of immune responses. While use of these vaccines provide varying degrees of protection against whooping cough, protection against infection and transmission appears to be less effective, warranting continuation of efforts in the development of an improved pertussis vaccine formulations capable of achieving this objective. Major approaches currently under evaluation for the development of an improved pertussis vaccine include identification of novel biofilm-associated antigens for incorporation in current aP vaccine formulations, development of live attenuated vaccines and discovery of novel non-toxic adjuvants capable of inducing both antibody and CMI. In this review, the potential roles of different accredited virulence factors, including novel biofilm-associated antigens, of B. pertussis in the evolution, formulation and delivery of improved pertussis vaccines, with potential to block the transmission of whooping cough in the community, are discussed.
Collapse
Affiliation(s)
- Dorji Dorji
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
- Jigme Dorji Wangchuck National Referral Hospital, Khesar Gyalpo Medical University of Bhutan, Thimphu, Bhutan
| | - Frits Mooi
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Osvaldo Yantorno
- Laboratorio de Biofilms Microbianos, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Rajendar Deora
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston Salem, NC, 27157, USA
| | - Ross M Graham
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
| | - Trilochan K Mukkur
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia.
| |
Collapse
|
39
|
Grunert T, Jovanovic D, Sirisarn W, Johler S, Weidenmaier C, Ehling-Schulz M, Xia G. Analysis of Staphylococcus aureus wall teichoic acid glycoepitopes by Fourier Transform Infrared Spectroscopy provides novel insights into the staphylococcal glycocode. Sci Rep 2018; 8:1889. [PMID: 29382892 PMCID: PMC5789974 DOI: 10.1038/s41598-018-20222-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/15/2018] [Indexed: 01/20/2023] Open
Abstract
Surface carbohydrate moieties are essential for bacterial communication, phage-bacteria and host-pathogen interaction. Most Staphylococcus aureus produce polyribitolphosphate type Wall teichoic acids (WTAs) substituted with α- and/or β-O-linked N-acetyl-glucosamine (α-/β-O-GlcNAc) residues. GlcNAc modifications have attracted particular interest, as they were shown to govern staphylococcal adhesion to host cells, to promote phage susceptibility conferring beta-lactam resistance and are an important target for antimicrobial agents and vaccines. However, there is a lack of rapid, reliable, and convenient methods to detect and quantify these sugar residues. Whole cell Fourier transform infrared (FTIR) spectroscopy could meet these demands and was employed to analyse WTAs and WTA glycosylation in S. aureus. Using S. aureus mutants, we found that a complete loss of WTA expression resulted in strong FTIR spectral perturbations mainly related to carbohydrates and phosphorus-containing molecules. We could demonstrate that α- or β-O-GlcNAc WTA substituents can be clearly differentiated by chemometrically assisted FTIR spectroscopy. Our results suggest that whole cell FTIR spectroscopy represents a powerful and reliable method for large scale analysis of WTA glycosylation, thus opening up a complete new range of options for deciphering the staphylococcal pathogenesis related glycocode.
Collapse
Affiliation(s)
- Tom Grunert
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| | - Dijana Jovanovic
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wanchat Sirisarn
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Christopher Weidenmaier
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen and German Center for Infection Research, Tübingen, Germany
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Guoqing Xia
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
40
|
Jin N, Semple KT, Jiang L, Luo C, Zhang D, Martin FL. Spectrochemical analyses of growth phase-related bacterial responses to low (environmentally-relevant) concentrations of tetracycline and nanoparticulate silver. Analyst 2018; 143:768-776. [DOI: 10.1039/c7an01800b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Exposure to environmental insults mostly occur at low levels, making it challenging to measure bacterial responses.
Collapse
Affiliation(s)
- Naifu Jin
- Lancaster Environment Centre
- Lancaster University
- Lancaster LA1 4YQ
- UK
| | - Kirk T. Semple
- Lancaster Environment Centre
- Lancaster University
- Lancaster LA1 4YQ
- UK
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Dayi Zhang
- Lancaster Environment Centre
- Lancaster University
- Lancaster LA1 4YQ
- UK
- School of Environment
| | - Francis L. Martin
- School of Pharmacy and Biomedical Sciences
- University of Central Lancashire
- Preston PR1 2HE
- UK
| |
Collapse
|
41
|
Cerusico N, Aybar JP, Lopez S, Molina SG, Chavez Jara R, Sesto Cabral ME, Valdez JC, Ben Altabef A, Ramos AN. FTIR spectroscopy of chronic venous leg ulcer exudates: an approach to spectral healing marker identification. Analyst 2018. [DOI: 10.1039/c7an01909b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic venous leg ulcer arises as a venous insufficiency complication and is a cause of great morbidity.
Collapse
Affiliation(s)
- Nicolas Cerusico
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Juan P. Aybar
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Silvana Lopez
- Servicio de Dermatología
- Hospital de Clínicas Presidente Nicolás Avellaneda
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Silvia G. Molina
- Servicio de Dermatología
- Hospital de Clínicas Presidente Nicolás Avellaneda
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Romina Chavez Jara
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Maria Eugenia Sesto Cabral
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Juan C. Valdez
- Instituto de Microbiología
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
- San Miguel de Tucumán
| | - Aida Ben Altabef
- INQUINOA-CONICET
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| | - Alberto N. Ramos
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| |
Collapse
|
42
|
Manu DS, Kumar Thalla A. The combined effects of carbon/nitrogen ratio, suspended biomass, hydraulic retention time and dissolved oxygen on nutrient removal in a laboratory-scale anaerobic-anoxic-oxic activated sludge biofilm reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:248-259. [PMID: 29339624 DOI: 10.2166/wst.2017.537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The current trend in sustainable development deals mainly with environmental management. There is a need for economically affordable, advanced treatment methods for the proper treatment and management of domestic wastewater containing excess nutrients (such as nitrogen and phosphorus) which can cause eutrophication. The reduction of the excess nutrient content of wastewater by appropriate technology is of much concern to the environmentalist. In the current study, a novel integrated anaerobic-anoxic-oxic activated sludge biofilm (A2O-AS-biofilm) reactor was designed and operated to improve the biological nutrient removal by varying reactor operating conditions such as carbon to nitrogen (C/N) ratio, suspended biomass, hydraulic retention time (HRT) and dissolved oxygen (DO). Based on various trials, it was seen that the A2O-AS-biofilm reactor achieved good removal efficiencies with regard to chemical oxygen demand (95.5%), total phosphorus (93.1%), ammonia nitrogen concentration (NH4+-N) (98%) and total nitrogen (80%) when the reactor was maintained at C/N ratio of 4, suspended biomass of 3 to 3.5 g/L, HRT of 10 h, and DO of 1.5 to 2.5 mg/L. Scanning electron microscopy (SEM) of suspended and attached biofilm showed a dense structure of coccus and bacillus bacteria with the diameter ranging from 0.3 to 1.2 μm. The Fourier transform infrared (FTIR) spectroscopy results indicated phosphorylated macromolecules and carbohydrates mix or bind with extracellular proteins in exopolysaccharides.
Collapse
Affiliation(s)
- D S Manu
- Department of Civil Engineering, National Institute of Technology Karnataka, Mangalore, Karnataka 575025, India E-mail:
| | - Arun Kumar Thalla
- Department of Civil Engineering, National Institute of Technology Karnataka, Mangalore, Karnataka 575025, India E-mail:
| |
Collapse
|
43
|
Hyperbiofilm Formation by Bordetella pertussis Strains Correlates with Enhanced Virulence Traits. Infect Immun 2017; 85:IAI.00373-17. [PMID: 28893915 DOI: 10.1128/iai.00373-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023] Open
Abstract
Pertussis, or whooping cough, caused by the obligate human pathogen Bordetella pertussis is undergoing a worldwide resurgence. The majority of studies of this pathogen are conducted with laboratory-adapted strains which may not be representative of the species as a whole. Biofilm formation by B. pertussis plays an important role in pathogenesis. We conducted a side-by-side comparison of the biofilm-forming abilities of the prototype laboratory strains and the currently circulating isolates from two countries with different vaccination programs. Compared to the reference strain, all strains examined herein formed biofilms at high levels. Biofilm structural analyses revealed country-specific differences, with strains from the United States forming more structured biofilms. Bacterial hyperaggregation and reciprocal expression of biofilm-promoting and -inhibitory factors were observed in clinical isolates. An association of increased biofilm formation with augmented epithelial cell adhesion and higher levels of bacterial colonization in the mouse nose and trachea was detected. To our knowledge, this work links for the first time increased biofilm formation in bacteria with a colonization advantage in an animal model. We propose that the enhanced biofilm-forming capacity of currently circulating strains contributes to their persistence, transmission, and continued circulation.
Collapse
|
44
|
Jin N, Paraskevaidi M, Semple KT, Martin FL, Zhang D. Infrared Spectroscopy Coupled with a Dispersion Model for Quantifying the Real-Time Dynamics of Kanamycin Resistance in Artificial Microbiota. Anal Chem 2017; 89:9814-9821. [DOI: 10.1021/acs.analchem.7b01765] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Naifu Jin
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Maria Paraskevaidi
- School
of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Kirk T. Semple
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Francis L. Martin
- School
of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Dayi Zhang
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
45
|
Gowrishankar S, Pandian SK. Modulation of Staphylococcus epidermidis (RP62A) extracellular polymeric layer by marine cyclic dipeptide-cyclo( l -leucyl- l -prolyl) thwarts biofilm formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1254-1262. [DOI: 10.1016/j.bbamem.2017.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022]
|
46
|
Jin N, Zhang D, Martin FL. Fingerprinting microbiomes towards screening for microbial antibiotic resistance. Integr Biol (Camb) 2017; 9:406-417. [DOI: 10.1039/c7ib00009j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naifu Jin
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Francis L. Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
47
|
Wang H, Wu N, Jiang Y, Ye K, Xu X, Zhou G. Response of long-term acid stress to biofilm formation of meat-related Salmonella Enteritidis. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.04.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Kim HC. Novel strategies for diagnosing the cause of short-term organic fouling in ultrafiltration. ENVIRONMENTAL TECHNOLOGY 2015; 37:1539-1549. [PMID: 26586304 DOI: 10.1080/09593330.2015.1120785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The main objective of this study was to demonstrate the usefulness of a multi-strategic approach for identifying the extent and mechanism of fouling in the ultrafiltration (UF) of wastewater effluent organic matter (EfOM). In this study, we combined EfOM fractionation with spectroscopic autopsies for clean and fouled UF membranes. The EfOM fractions were sequentially removed from the wastewater effluent using relatively gentle techniques (neutral pH and no extractions). The residual EfOM samples were then used in UF tests. This work showed that resistance to filtration was partially reduced with the removal of particles (>20 nm), but almost all of the short-term fouling was eliminated with the removal of organic acids, which constitute 22% of the total organic carbon. The membrane autopsies were conducted using attenuated reflectance infrared spectroscopy for the top and bottom fouled membranes, and comparison was made with the infrared spectra of a clean membrane. Hydrophilic base/neutrals were the dominant EfOM constituents at the top of the fouled membranes. Hydrophobic acids were adsorbed onto the pore walls deep inside the membranes, which coincided with the permeability recovery of fouled membranes. The fouling mechanisms were examined by measuring the resistance to filtration as a function of permeate flux using various operational conditions and by investigating the effectiveness of hydraulic and chemical cleaning on the restoration of membrane permeability.
Collapse
Affiliation(s)
- Hyun-Chul Kim
- a Water Resources Research Institute , Sejong University , Seoul , Republic of Korea
| |
Collapse
|
49
|
Cattelan N, Dubey P, Arnal L, Yantorno OM, Deora R. Bordetella biofilms: a lifestyle leading to persistent infections. Pathog Dis 2015; 74:ftv108. [PMID: 26586694 DOI: 10.1093/femspd/ftv108] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
Bordetella bronchiseptica and B. pertussis are Gram-negative bacteria that cause respiratory diseases in animals and humans. The current incidence of whooping cough or pertussis caused by B. pertussis has reached levels not observed since the 1950s. Although pertussis is traditionally known as an acute childhood disease, it has recently resurged in vaccinated adolescents and adults. These individuals often become silent carriers, facilitating bacterial circulation and transmission. Similarly, vaccinated and non-vaccinated animals continue to be carriers of B. bronchiseptica and shed bacteria resulting in disease outbreaks. The persistence mechanisms of these bacteria remain poorly characterized. It has been proposed that adoption of a biofilm lifestyle allows persistent colonization of the mammalian respiratory tract. The history of Bordetella biofilm research is only a decade long and there is no single review article that has exclusively focused on this area. We systematically discuss the role of Bordetella factors in biofilm development in vitro and in the mouse respiratory tract. We further outline the implications of biofilms to bacterial persistence and transmission in humans and for the design of new acellular pertussis vaccines.
Collapse
Affiliation(s)
- Natalia Cattelan
- Microbial Biofilm Laboratory, CINDEFI-CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata (1900), Argentina
| | - Purnima Dubey
- Department of Pathology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Laura Arnal
- Microbial Biofilm Laboratory, CINDEFI-CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata (1900), Argentina
| | - Osvaldo M Yantorno
- Microbial Biofilm Laboratory, CINDEFI-CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata (1900), Argentina
| | - Rajendar Deora
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| |
Collapse
|
50
|
Tidwell JE, Dawson-Andoh B, Adedipe EO, Nkansah K, Dietz MJ. Can Near-infrared Spectroscopy Detect and Differentiate Implant-associated Biofilms? Clin Orthop Relat Res 2015; 473:3638-46. [PMID: 26265208 PMCID: PMC4586235 DOI: 10.1007/s11999-015-4497-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/31/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND Established bacterial diagnostic techniques for orthopaedic-related infections rely on a combination of imperfect tests that often can lead to negative culture results. Spectroscopy is a tool that potentially could aid in rapid detection and differentiation of bacteria in implant-associated infections. QUESTIONS/PURPOSES We asked: (1) Can principal component analysis explain variation in spectral curves for biofilm obtained from Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa? (2) What is the accuracy of Fourier transformed-near infrared (FT-NIR)/multivariate data analysis in identifying the specific species associated with biofilm? METHODS Three clinical isolates, S aureus, S epidermidis, and P aeruginosa were cultured to create biofilm on surgical grade stainless steel. At least 52 samples were analyzed per group using a FT-NIR spectrometer. Multivariate and principal component analyses were performed on the spectral data to allow for modeling and identification of the bacterial species. RESULTS Spectral analysis was able to correctly identify 86% (37/43) of S aureus, 89% (16/18) of S epidermidis, and 70% (28/40) of P aeruginosa samples with minimal error. Overall, models developed using spectral data preprocessed using a combination of standard normal variant and first-derivative transformations performed much better than models developed with the raw spectral data in discriminating between the three classes of bacteria because of its low Type 1 error and large intermodel distinction. CONCLUSIONS The use of spectroscopic methods to identify and classify bacterial biofilms on orthopaedic implant material is possible and improves with advanced modeling that can be obtained rapidly with little error. The sensitivity for identification was 97% for S aureus (95% CI, 88-99%), 100% for S epidermidis (95% CI, 95-100%), and 77% for P aeruginosa (95% CI, 65-86%). The specificity of the S aureus was 86% (95% CI, 3-93%), S epidermidis was 89% (95% CI, 67-97%), and P aeruginosa was 70% (95% CI, 55-82%). CLINICAL RELEVANCE This technique of spectral data acquisition and advanced modeling should continue to be explored as a method for bacterial biofilm identification. A spectral databank of bacterial and potentially contaminating tissues should be acquired initially through an in vivo animal model and quickly transition to explanted devices and the clinical arena.
Collapse
Affiliation(s)
- John E. Tidwell
- Department of Orthopaedics, West Virginia University, PO Box 9196, Morgantown, WV 26506-9196 USA
| | - Ben Dawson-Andoh
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV USA
| | - Emmanuel O. Adedipe
- Department of Horticultural Sciences, North Carolina State University, Raleigh, NC USA
| | - Kofi Nkansah
- Division of Resource Management, West Virginia University, Morgantown, WV USA
| | - Matthew J. Dietz
- Department of Orthopaedics, West Virginia University, PO Box 9196, Morgantown, WV 26506-9196 USA
| |
Collapse
|